1
|
Yang B, Lavigne A, Carugo D, Turney B, Somani B, Stride E. Mitigating infections in implantable urological continence devices: risks, challenges, solutions, and future innovations. A comprehensive literature review. Curr Opin Urol 2024; 34:495-508. [PMID: 39105299 DOI: 10.1097/mou.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
PURPOSE OF REVIEW Stress urinary incontinence is a growing issue in ageing men, often following treatment for prostate cancer or bladder outflow obstruction. While implantable urological devices offer relief, infections are a significant concern. These infections can lead to device removal, negating the benefits and impacting patient outcomes. This review explores the risks and factors contributing to these infections and existing strategies to minimize them. These strategies encompass a multifaceted approach that considers patient-specific issues, environmental issues, device design and surgical techniques. However, despite these interventions, there is still a pressing need for further advancements in device infection prevention. RECENT FINDINGS Faster diagnostics, such as Raman spectroscopy, could enable early detection of infections. Additionally, biocompatible adjuncts like ultrasound-responsive microbubbles hold promise for enhanced drug delivery and biofilm disruption, particularly important as antibiotic resistance rises worldwide. SUMMARY By combining advancements in diagnostics, device design, and patient-specific surgical techniques, we can create a future where implantable urological devices offer men a significant improvement in quality of life with minimal infection risk.
Collapse
Affiliation(s)
- Bob Yang
- Royal Berkshire NHS Foundation Trust
- Oxford University, Oxford
| | | | | | | | - Bhaskar Somani
- University Hospital Southampton, NHS Foundation Trust, Southampton, UK
| | | |
Collapse
|
2
|
McAtamney A, Heaney C, Lizama-Chamu I, Sanchez LM. Reducing Mass Confusion over the Microbiome. Anal Chem 2023; 95:16775-16785. [PMID: 37934885 PMCID: PMC10841885 DOI: 10.1021/acs.analchem.3c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
As genetic tools continue to emerge and mature, more information is revealed about the identity and diversity of microbial community members. Genetic tools can also be used to make predictions about the chemistry that bacteria and fungi produce to function and communicate with one another and the host. Ongoing efforts to identify these products and link genetic information to microbiome chemistry rely on analytical tools. This tutorial highlights recent advancements in microbiome studies driven by techniques in mass spectrometry.
Collapse
Affiliation(s)
- Allyson McAtamney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Casey Heaney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Itzel Lizama-Chamu
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
3
|
Teng T, Liang J, Wu Z, Jin P, Zhang D. Different phenanthrene degraders between free-cell mediated and biochar-immobilization assisted soil bioaugmentation as identified by RNA-based stable isotope probing (RNA-SIP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161139. [PMID: 36572297 DOI: 10.1016/j.scitotenv.2022.161139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Bioaugmentation (BA) is an effective approach to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soils, and biochar is frequently used to enhance PAH degradation performance. In this study, phenanthrene (PHE) degradation behavior and active degraders in a petroleum-contaminated soil were investigated and compared between free-cell mediated and biochar-immobilization assisted bioaugmentation. Biochar-immobilization assisted bioaugmentation (BA-IPB) introduced PHE degraders immobilized on biochar and effectively promoted PHE degradation, achieving higher PHE removal efficiencies within 24 h (~58 %) than free-cell mediated bioaugmentation (BA-FPB, ~39 %). Soil microbial community structure significantly changed in both BA-FPB and BA-IPB treatments. Through RNA-stable isotope probing (SIP), 14 and 11 bacterial lineages responsible for in situ PHE degradation were identified in BA-FPB and BA-IPB treatments, respectively. ASV_17 in BA-FPB treatment was Rhodococcus in the exogenous bacterial mixture; in contrast, none of exogenous bacteria were involved in PHE degradation in BA-IPB treatment. Methylobacterium (ASV_186), Xanthomonas (ASV_41), Kroppenstedtia (ASV_205), Scopulibacillus (ASV_243), Bautia (ASV_356), and Lactobacillus (ASV_376) were identified as PHE degraders for the first time. Our findings expanded the knowledge of the active PHE degraders and underlying mechanisms in bioaugmentation process, and suggested biochar-immobilization assisted bioaugmentation as a promising strategy for the bioremediation of PAH contaminated soils.
Collapse
Affiliation(s)
- Tingting Teng
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Jidong Liang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China.
| | - Zijun Wu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Pengkang Jin
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, Xi'an 710000, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China
| |
Collapse
|
4
|
Kalpana S, Lin WY, Wang YC, Fu Y, Lakshmi A, Wang HY. Antibiotic Resistance Diagnosis in ESKAPE Pathogens-A Review on Proteomic Perspective. Diagnostics (Basel) 2023; 13:1014. [PMID: 36980322 PMCID: PMC10047325 DOI: 10.3390/diagnostics13061014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic resistance has emerged as an imminent pandemic. Rapid diagnostic assays distinguish bacterial infections from other diseases and aid antimicrobial stewardship, therapy optimization, and epidemiological surveillance. Traditional methods typically have longer turn-around times for definitive results. On the other hand, proteomic studies have progressed constantly and improved both in qualitative and quantitative analysis. With a wide range of data sets made available in the public domain, the ability to interpret the data has considerably reduced the error rates. This review gives an insight on state-of-the-art proteomic techniques in diagnosing antibiotic resistance in ESKAPE pathogens with a future outlook for evading the "imminent pandemic".
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| | | | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA
| | - Amrutha Lakshmi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan
| |
Collapse
|
5
|
Bai Y, Guo Z, Pereira FC, Wagner M, Cheng JX. Mid-Infrared Photothermal-Fluorescence In Situ Hybridization for Functional Analysis and Genetic Identification of Single Cells. Anal Chem 2023; 95:2398-2405. [PMID: 36652555 PMCID: PMC9893215 DOI: 10.1021/acs.analchem.2c04474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Simultaneous identification and metabolic analysis of microbes with single-cell resolution and high throughput are necessary to answer the question of "who eats what, when, and where" in complex microbial communities. Here, we present a mid-infrared photothermal-fluorescence in situ hybridization (MIP-FISH) platform that enables direct bridging of genotype and phenotype. Through multiple improvements of MIP imaging, the sensitive detection of isotopically labeled compounds incorporated into proteins of individual bacterial cells became possible, while simultaneous detection of FISH labeling with rRNA-targeted probes enabled the identification of the analyzed cells. In proof-of-concept experiments, we showed that the clear spectral red shift in the protein amide I region due to incorporation of 13C atoms originating from 13C-labeled glucose can be exploited by MIP-FISH to discriminate and identify 13C-labeled bacterial cells within a complex human gut microbiome sample. The presented methods open new opportunities for single-cell structure-function analyses for microbiology.
Collapse
Affiliation(s)
- Yeran Bai
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States,Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Zhongyue Guo
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States,Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| | - Fátima C. Pereira
- Centre
for Microbiology and Environmental Systems Science, Department of
Microbiology and Ecosystem Science, University
of Vienna, Vienna 1030, Austria
| | - Michael Wagner
- Centre
for Microbiology and Environmental Systems Science, Department of
Microbiology and Ecosystem Science, University
of Vienna, Vienna 1030, Austria,Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark,
| | - Ji-Xin Cheng
- Department
of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States,Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States,Photonics
Center, Boston University, Boston, Massachusetts 02215, United States,
| |
Collapse
|
6
|
Jameson E, Taubert M, Angel R, Coyotzi S, Chen Y, Eyice Ö, Schäfer H, Murrell JC, Neufeld JD, Dumont MG. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms. Methods Mol Biol 2023; 2555:261-282. [PMID: 36306091 DOI: 10.1007/978-1-0716-2795-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13C, 18O, or 15N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labelled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labelled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labelling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, or even metagenomes and metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labelled microorganisms. Analysis of labelled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allowed using labelled substrates at environmentally relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies, leading to further breakthroughs in our understanding of novel microbial populations and elucidation of the metabolic function of complex microbial communities. In this chapter, we provide protocols for obtaining labelled DNA, RNA, and proteins that can be used for downstream omics-based analyses.
Collapse
Affiliation(s)
- Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Martin Taubert
- Aquatic Geochemistry, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Roey Angel
- Soil & Water Research Infrastructure and Institute of Soil Biology, Biology Centre CAS, České Budějovice, Czechia
| | - Sara Coyotzi
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Özge Eyice
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
7
|
Hyperglycemia and cancer in human lung carcinoma by means of Raman spectroscopy and imaging. Sci Rep 2022; 12:18561. [PMID: 36329066 PMCID: PMC9633797 DOI: 10.1038/s41598-022-21483-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Raman spectroscopy and Raman imaging were used to identify the biochemical and structural features of human cancer lung cells (CCL-185) and the cancer cells supplemented with glucose and deuterated glucose at normal and hyperglycemia conditions. We found that isotope substitution of glucose by deuterated glucose allows to separate de novo lipid synthesis from exogenous uptake of lipids obtained from the diet. We demonstrated that glucose is largely utilized for de novo lipid synthesis. Our results provide a direct evidence that high level of glucose decreases the metabolism via oxidative phosphorylation in mitochondria in cancer cells and shifts the metabolism to glycolysis via Warburg effect. It suggests that hyperglycemia is a factor that may contribute to a more malignant phenotype of cancer cells by inhibition of oxidative phosphorylation and apoptosis.
Collapse
|
8
|
Jing X, Gong Y, Pan H, Meng Y, Ren Y, Diao Z, Mu R, Xu T, Zhang J, Ji Y, Li Y, Wang C, Qu L, Cui L, Ma B, Xu J. Single-cell Raman-activated sorting and cultivation (scRACS-Culture) for assessing and mining in situ phosphate-solubilizing microbes from nature. ISME COMMUNICATIONS 2022; 2:106. [PMID: 37938284 PMCID: PMC9723661 DOI: 10.1038/s43705-022-00188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023]
Abstract
Due to the challenges in detecting in situ activity and cultivating the not-yet-cultured, functional assessment and mining of living microbes from nature has typically followed a 'culture-first' paradigm. Here, employing phosphate-solubilizing microbes (PSM) as model, we introduce a 'screen-first' strategy that is underpinned by a precisely one-cell-resolution, complete workflow of single-cell Raman-activated Sorting and Cultivation (scRACS-Culture). Directly from domestic sewage, individual cells were screened for in-situ organic-phosphate-solubilizing activity via D2O intake rate, sorted by the function via Raman-activated Gravity-driven Encapsulation (RAGE), and then cultivated from precisely one cell. By scRACS-Culture, pure cultures of strong organic PSM including Comamonas spp., Acinetobacter spp., Enterobacter spp. and Citrobacter spp., were derived, whose phosphate-solubilizing activities in situ are 90-200% higher than in pure culture, underscoring the importance of 'screen-first' strategy. Moreover, employing scRACS-Seq for post-RACS cells that remain uncultured, we discovered a previously unknown, low-abundance, strong organic-PSM of Cutibacterium spp. that employs secretary metallophosphoesterase (MPP), cell-wall-anchored 5'-nucleotidase (encoded by ushA) and periplasmic-membrane located PstSCAB-PhoU transporter system for efficient solubilization and scavenging of extracellular phosphate in sewage. Therefore, scRACS-Culture and scRACS-Seq provide an in situ function-based, 'screen-first' approach for assessing and mining microbes directly from the environment.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Huihui Pan
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yishang Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Zhidian Diao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Runzhi Mu
- Qingdao Zhang Cun River Water Co., Ltd, Qingdao, Shandong, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
- Qingdao Single-Cell Biotechnology Co., Ltd, Qingdao, Shandong, China
| | - Yuandong Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Chen Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Energy Institute, Qingdao, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China
| | - Lingyun Qu
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, Shandong, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shandong Energy Institute, Qingdao, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong, China.
| |
Collapse
|
9
|
Jing X, Gong Y, Xu T, Davison PA, MacGregor-Chatwin C, Hunter CN, Xu L, Meng Y, Ji Y, Ma B, Xu J, Huang WE. Revealing CO 2-Fixing SAR11 Bacteria in the Ocean by Raman-Based Single-Cell Metabolic Profiling and Genomics. BIODESIGN RESEARCH 2022; 2022:9782712. [PMID: 37850122 PMCID: PMC10521720 DOI: 10.34133/2022/9782712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 10/19/2023] Open
Abstract
The majority of marine microbes remain uncultured, which hinders the identification and mining of CO2-fixing genes, pathways, and chassis from the oceans. Here, we investigated CO2-fixing microbes in seawater from the euphotic zone of the Yellow Sea of China by detecting and tracking their 13C-bicarbonate (13C-HCO3-) intake via single-cell Raman spectra (SCRS) analysis. The target cells were then isolated by Raman-activated Gravity-driven Encapsulation (RAGE), and their genomes were amplified and sequenced at one-cell resolution. The single-cell metabolism, phenotype and genome are consistent. We identified a not-yet-cultured Pelagibacter spp., which actively assimilates 13C-HCO3-, and also possesses most of the genes encoding enzymes of the Calvin-Benson cycle for CO2 fixation, a complete gene set for a rhodopsin-based light-harvesting system, and the full genes necessary for carotenoid synthesis. The four proteorhodopsin (PR) genes identified in the Pelagibacter spp. were confirmed by heterologous expression in E. coli. These results suggest that hitherto uncultured Pelagibacter spp. uses light-powered metabolism to contribute to global carbon cycling.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Paul A. Davison
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Craig MacGregor-Chatwin
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - La Xu
- Disease and Fishery Drugs Research Center, Marine Biology Institute of Shandong Province, Qingdao, ShandongChina
| | - Yu Meng
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Single-Cell Biotechnology, Ltd, Qingdao, ShandongChina
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, UK
| |
Collapse
|
10
|
Cui D, Kong L, Wang Y, Zhu Y, Zhang C. In situ identification of environmental microorganisms with Raman spectroscopy. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100187. [PMID: 36158754 PMCID: PMC9488013 DOI: 10.1016/j.ese.2022.100187] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 05/28/2023]
Abstract
Microorganisms in natural environments are crucial in maintaining the material and energy cycle and the ecological balance of the environment. However, it is challenging to delineate environmental microbes' actual metabolic pathways and intraspecific heterogeneity because most microorganisms cannot be cultivated. Raman spectroscopy is a culture-independent technique that can collect molecular vibration profiles from cells. It can reveal the physiological and biochemical information at the single-cell level rapidly and non-destructively in situ. The first part of this review introduces the principles, advantages, progress, and analytical methods of Raman spectroscopy applied in environmental microbiology. The second part summarizes the applications of Raman spectroscopy combined with stable isotope probing (SIP), fluorescence in situ hybridization (FISH), Raman-activated cell sorting and genomic sequencing, and machine learning in microbiological studies. Finally, this review discusses expectations of Raman spectroscopy and future advances to be made in identifying microorganisms, especially for uncultured microorganisms.
Collapse
Affiliation(s)
- Dongyu Cui
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanqing Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, 200062, China
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, University of Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, 200062, China
| |
Collapse
|
11
|
Ge X, Pereira FC, Mitteregger M, Berry D, Zhang M, Hausmann B, Zhang J, Schintlmeister A, Wagner M, Cheng JX. SRS-FISH: A high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc Natl Acad Sci U S A 2022; 119:e2203519119. [PMID: 35727976 PMCID: PMC9245642 DOI: 10.1073/pnas.2203519119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
One of the biggest challenges in microbiome research in environmental and medical samples is to better understand functional properties of microbial community members at a single-cell level. Single-cell isotope probing has become a key tool for this purpose, but the current detection methods for determination of isotope incorporation into single cells do not allow high-throughput analyses. Here, we report on the development of an imaging-based approach termed stimulated Raman scattering-two-photon fluorescence in situ hybridization (SRS-FISH) for high-throughput metabolism and identity analyses of microbial communities with single-cell resolution. SRS-FISH offers an imaging speed of 10 to 100 ms per cell, which is two to three orders of magnitude faster than achievable by state-of-the-art methods. Using this technique, we delineated metabolic responses of 30,000 individual cells to various mucosal sugars in the human gut microbiome via incorporation of deuterium from heavy water as an activity marker. Application of SRS-FISH to investigate the utilization of host-derived nutrients by two major human gut microbiome taxa revealed that response to mucosal sugars tends to be dominated by Bacteroidales, with an unexpected finding that Clostridia can outperform Bacteroidales at foraging fucose. With high sensitivity and speed, SRS-FISH will enable researchers to probe the fine-scale temporal, spatial, and individual activity patterns of microbial cells in complex communities with unprecedented detail.
Collapse
Affiliation(s)
- Xiaowei Ge
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215
| | - Fátima C. Pereira
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
| | - Matthias Mitteregger
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
| | - Meng Zhang
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Jing Zhang
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215
| | - Arno Schintlmeister
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, 1030 Vienna, Austria
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Photonics Center, Boston University, Boston, MA 02215
| |
Collapse
|
12
|
Campos C, Ruiz LAM, Fragoso‐Soriano R, Sato‐Berrú RY, Hernández‐Pérez E, Fernández FJ. Surface‐enhanced Raman spectroscopy and ultrastructural analysis of penicillin‐producing
Penicillium rubens
strains. J Microsc 2022; 286:22-30. [DOI: 10.1111/jmi.13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Carolina Campos
- Department of Health Sciences Universidad Autónoma Metropolitana‐Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina Mexico City Iztapalapa 09340 Mexico
| | - Luis Alberto Moreno Ruiz
- Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, C.P. Mexico City 07738 Mexico
| | - Rogelio Fragoso‐Soriano
- Department of Physics CINVESTAV‐IPN Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Mexico City Mexico
| | - Roberto Y. Sato‐Berrú
- Instituto de Ciencias Aplicadas y Tecnología Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria A.P. 70–186, Delegación Coyoacán, C.P. Mexico City 04510 Mexico
| | - Elizabeth Hernández‐Pérez
- Department of Health Sciences Universidad Autónoma Metropolitana‐Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina Mexico City Iztapalapa 09340 Mexico
| | - Francisco J. Fernández
- Department of Biotechnology Universidad Autónoma Metropolitana‐Iztapalapa Av. San Rafael Atlixco 186, Col. Vicentina Iztapalapa 09340 Mexico
| |
Collapse
|
13
|
Wang Y, Xu J, Cui D, Kong L, Chen S, Xie W, Zhang C. Classification and Identification of Archaea Using Single-Cell Raman Ejection and Artificial Intelligence: Implications for Investigating Uncultivated Microorganisms. Anal Chem 2021; 93:17012-17019. [PMID: 34910467 DOI: 10.1021/acs.analchem.1c03495] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Archaea can produce special cellular components such as polyhydroxyalkanoates, carotenoids, rhodopsin, and ether lipids, which have valuable applications in medicine and green energy production. Most of the archaeal species are uncultivated, posing challenges to investigating their biomarker components and biochemical properties. In this study, we applied Raman spectroscopy to examine the biological characteristics of nine archaeal isolates, including halophilic archaea (Haloferax larsenii, Haloarcula argentinensis, Haloferax mediterranei, Halomicrobium mukohataei, Halomicrobium salinus, Halorussus sp., Natrinema gari), thermophilic archaea (Sulfolobus acidocaldarius), and marine group I (MGI) archaea (Nitrosopumilus maritimus). Linear discriminant analysis of the Raman spectra allowed visualization of significant separations among the nine archaeal isolates. Machine-learning classification models based on support vector machine achieved accuracies of 88-100% when classifying the nine archaeal species. The predicted results were validated by DNA sequencing analysis of cells isolated from the mixture by Raman-activated cell sorting. Raman spectra of uncultured archaea (MGII) were also obtained based on Raman spectroscopy and fluorescence in situ hybridization. The results combining multiple Raman-based techniques indicated that MGII may have the ability to produce lipids distinct from other archaeal species. Our study provides a valuable approach for investigating and classifying archaea, especially uncultured species, at the single-cell level.
Collapse
Affiliation(s)
- Yi Wang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Dongyu Cui
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Xie
- School of Marine Science, Sun Yat-sen University, Zhuhai 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen 518055, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510000, China.,Shanghai Sheshan National Geophysical Observatory, Shanghai 200000, China
| |
Collapse
|
14
|
Using Stable Isotope Probing and Raman Microspectroscopy To Measure Growth Rates of Heterotrophic Bacteria. Appl Environ Microbiol 2021; 87:e0146021. [PMID: 34495689 DOI: 10.1128/aem.01460-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The suitability of stable isotope probing (SIP) and Raman microspectroscopy to measure growth rates of heterotrophic bacteria at the single-cell level was evaluated. Label assimilation into Escherichia coli biomass during growth on a complex 13C-labeled carbon source was monitored in time course experiments. 13C incorporation into various biomolecules was measured by spectral "red shifts" of Raman-scattered emissions. The 13C- and 12C-isotopologues of the amino acid phenylalanine (Phe) proved to be quantitatively accurate reporter molecules of cellular isotopic fractional abundances (fcell). Values of fcell determined by Raman microspectroscopy and independently by isotope ratio mass spectrometry (IRMS) over a range of isotopic enrichments were statistically indistinguishable. Progressive labeling of Phe in E. coli cells among a range of 13C/12C organic substrate admixtures occurred predictably through time. The relative isotopologue abundances of Phe determined by Raman spectral analysis enabled the accurate calculation of bacterial growth rates as confirmed independently by optical density (OD) measurements. The results demonstrate that combining SIP and Raman microspectroscopy can be a powerful tool for studying bacterial growth at the single-cell level on defined or complex organic 13C carbon sources, even in mixed microbial assemblages. IMPORTANCE Population growth dynamics and individual cell growth rates are the ultimate expressions of a microorganism's fitness under its environmental conditions, whether natural or engineered. Natural habitats and many industrial settings harbor complex microbial assemblages. Their heterogeneity in growth responses to existing and changing conditions is often difficult to grasp by standard methodologies. In this proof-of-concept study, we tested whether Raman microspectroscopy can reliably quantify the assimilation of isotopically labeled nutrients into E. coli cells and enable the determination of individual growth rates among heterotrophic bacteria. Raman-derived growth rate estimates were statistically indistinguishable from those derived by standard optical density measurements of the same cultures. Raman microspectroscopy can also be combined with methods for phylogenetic identification. We report the development of Raman-based techniques that enable researchers to directly link genetic identity to functional traits and rate measurements of single cells within mixed microbial assemblages, currently a major technical challenge in microbiological research.
Collapse
|
15
|
Wang J, Lin K, Hu H, Qie X, Huang WE, Cui Z, Gong Y, Song Y. In Vitro Anticancer Drug Sensitivity Sensing through Single-Cell Raman Spectroscopy. BIOSENSORS-BASEL 2021; 11:bios11080286. [PMID: 34436088 PMCID: PMC8392728 DOI: 10.3390/bios11080286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022]
Abstract
Traditional in vitro anticancer drug sensitivity testing at the population level suffers from lengthy procedures and high false positive rates. To overcome these defects, we built a confocal Raman microscopy sensing system and proposed a single-cell approach via Raman-deuterium isotope probing (Raman-DIP) as a rapid and reliable in vitro drug efficacy evaluation method. Raman-DIP detected the incorporation of deuterium into the cell, which correlated with the metabolic activity of the cell. The human non-small cell lung cancer cell line HCC827 and human breast cancer cell line MCF-7 were tested against eight different anticancer drugs. The metabolic activity of cancer cells could be detected as early as 12 h, independent of cell growth. Incubation of cells in 30% heavy water (D2O) did not show any negative effect on cell viability. Compared with traditional methods, Raman-DIP could accurately determine the drug effect, meanwhile, it could reduce the testing period from 72–144 h to 48 h. Moreover, the heterogeneity of cells responding to anticancer drugs was observed at the single-cell level. This proof-of-concept study demonstrated the potential of Raman-DIP to be a reliable tool for cancer drug discovery and drug susceptibility testing.
Collapse
Affiliation(s)
- Jingkai Wang
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Kaicheng Lin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Huijie Hu
- Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xingwang Qie
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Zhisong Cui
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yan Gong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yizhi Song
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
16
|
Cahn JKB, Piel J. Anwendungen von Einzelzellmethoden in der mikrobiellen Naturstoffforschung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201900532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jackson K. B. Cahn
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| | - Jörn Piel
- Institut für Mikrobiologie Eidgenössische Technische Hochschule Zürich (ETH) 8093 Zürich Schweiz
| |
Collapse
|
17
|
One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE). mSystems 2021; 6:e0018121. [PMID: 34042466 PMCID: PMC8269212 DOI: 10.1128/msystems.00181-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Soil harbors arguably the most metabolically and genetically heterogeneous microbiomes on Earth, yet establishing the link between metabolic functions and genome at the precisely one-cell level has been difficult. Here, for mock microbial communities and then for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) platform, which identifies, sorts, and sequences precisely one bacterial cell via its anabolic (incorporating D from heavy water) and physiological (carotenoid-containing) functions. We showed that (i) metabolically active cells from numerically rare soil taxa, such as Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp., and Pseudomonas spp., can be readily identified and sorted based on D2O uptake, and their one-cell genome coverage can reach ∼93% to allow high-quality genome-wide metabolic reconstruction; (ii) similarly, carotenoid-containing cells such as Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., and Pedobacter spp. were identified and one-cell genomes were generated for tracing the carotenoid-synthetic pathways; and (iii) carotenoid-producing cells can be either metabolically active or inert, suggesting culture-based approaches can miss many such cells. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at exactly one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems. IMPORTANCE Soil is home to an enormous and complex microbiome that features arguably the highest genomic diversity and metabolic heterogeneity of cells on Earth. Their in situ metabolic activities drive many natural processes of pivotal ecological significance or underlie industrial production of numerous valuable bioactivities. However, pinpointing “who is doing what” in a soil microbiome, which consists of mainly yet-to-be-cultured species, has remained a major challenge. Here, for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) method, which identifies, sorts, and sequences at the resolution of precisely one microbial cell via its catabolic and anabolic functions. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems.
Collapse
|
18
|
Yi X, Song Y, Xu X, Peng D, Wang J, Qie X, Lin K, Yu M, Ge M, Wang Y, Zhang D, Yang Q, Wang M, Huang WE. Development of a Fast Raman-Assisted Antibiotic Susceptibility Test (FRAST) for the Antibiotic Resistance Analysis of Clinical Urine and Blood Samples. Anal Chem 2021; 93:5098-5106. [PMID: 33728890 DOI: 10.1021/acs.analchem.0c04709] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human health is at great risk due to the spreading of antimicrobial resistance (AMR). The lengthy procedure of conventional antimicrobial susceptibility testing (AST) usually requires a few days. We developed a fast Raman-assisted antibiotic susceptibility test (FRAST), which detects single bacterial metabolic activity in the presence of antibiotics, using Raman single-cell spectroscopy. It was found that single-cell Raman spectra (SCRS) would show a clear and distinguishable Raman band at the "silent zone" (2000-2300 cm-1), due to the active incorporation of deuterium from heavy water (D2O) by antibiotic-resistant bacteria. This pilot study has compared the FRAST and the conventional AST for six clinical standard quality controls (four Gram-negative and two Gram-positive bacteria strains) in response to 38 antibiotics. In total, 3200 treatments have been carried out and approximately 64 000 SCRS have been acquired for FRAST analysis. The result showed an overall agreement of 88.0% between the FRAST and the conventional AST assay. The gram-staining classification based on the linear discriminant analysis (LDA) model of SCRS was developed, seamlessly coupling with the FRAST to further reduce the turnaround time. We applied the FRAST to real clinical analysis for nine urinary infectious samples and three sepsis samples. The results were consistent with MALDI-TOF identification and the conventional AST. Under the optimal conditions, the "sample to report" of the FRAST could be reduced to 3 h for urine samples and 21 h for sepsis samples. The FRAST provides fast and reliable susceptibility tests, which could speed up microbiological analysis for clinical practice and facilitate antibiotic stewardship.
Collapse
Affiliation(s)
- Xiaofei Yi
- Shanghai D-band Medical Instrument Co., Shanghai 201802, China
| | - Yizhi Song
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Di Peng
- Shanghai D-band Medical Instrument Co., Shanghai 201802, China
| | - Jingkai Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
| | - Xingwang Qie
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Kaicheng Lin
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Miao Yu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
| | - Mingfeng Ge
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Yun Wang
- Shanghai D-band Medical Instrument Co., Shanghai 201802, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Qiwen Yang
- Department of clinical laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, P. R. China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ Oxford, U.K
| |
Collapse
|
19
|
Cahn JKB, Piel J. Opening up the Single-Cell Toolbox for Microbial Natural Products Research. Angew Chem Int Ed Engl 2021; 60:18412-18428. [PMID: 30748086 DOI: 10.1002/anie.201900532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The diverse microbes that produce natural products represent an important source of novel therapeutics, drug leads, and scientific tools. However, the vast majority have not been grown in axenic culture and are members of complex communities. While meta-'omic methods such as metagenomics, -transcriptomics, and -proteomics reveal collective molecular features of this "microbial dark matter", the study of individual microbiome members can be challenging. To address these limits, a number of techniques with single-bacterial resolution have been developed in the last decade and a half. While several of these are embraced by microbial ecologists, there has been less use by researchers interested in mining microbes for natural products. In this review, we discuss the available and emerging techniques for targeted single-cell analysis with a particular focus on applications to the discovery and study of natural products.
Collapse
Affiliation(s)
- Jackson K B Cahn
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| | - Jörn Piel
- Instit. of Microbiol., Eidgenössische Technische Hochschule Zürich (ETH), 8093, Zurich, Switzerland
| |
Collapse
|
20
|
Shahsavari E, Rouch D, Khudur LS, Thomas D, Aburto-Medina A, Ball AS. Challenges and Current Status of the Biological Treatment of PFAS-Contaminated Soils. Front Bioeng Biotechnol 2021; 8:602040. [PMID: 33490051 PMCID: PMC7817812 DOI: 10.3389/fbioe.2020.602040] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are Synthetic Organic Compounds (SOCs) which are of current concern as they are linked to a myriad of adverse health effects in mammals. They can be found in drinking water, rivers, groundwater, wastewater, household dust, and soils. In this review, the current challenge and status of bioremediation of PFAs in soils was examined. While several technologies to remove PFAS from soil have been developed, including adsorption, filtration, thermal treatment, chemical oxidation/reduction and soil washing, these methods are expensive, impractical for in situ treatment, use high pressures and temperatures, with most resulting in toxic waste. Biodegradation has the potential to form the basis of a cost-effective, large scale in situ remediation strategy for PFAS removal from soils. Both fungal and bacterial strains have been isolated that are capable of degrading PFAS; however, to date, information regarding the mechanisms of degradation of PFAS is limited. Through the application of new technologies in microbial ecology, such as stable isotope probing, metagenomics, transcriptomics, and metabolomics there is the potential to examine and identify the biodegradation of PFAS, a process which will underpin the development of any robust PFAS bioremediation technology.
Collapse
Affiliation(s)
| | - Duncan Rouch
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Leadin S Khudur
- School of Science, RMIT University, Bundoora, VIC, Australia
| | - Duncan Thomas
- School of Science, RMIT University, Bundoora, VIC, Australia
| | | | - Andrew S Ball
- School of Science, RMIT University, Bundoora, VIC, Australia.,ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
21
|
Khan H, Liu M, Kayani MUR, Ahmad S, Liang J, Bai X. DNA phosphorothioate modification facilitates the dissemination of mcr-1 and bla NDM-1 in drinking water supply systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115799. [PMID: 33162214 DOI: 10.1016/j.envpol.2020.115799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The mechanism driving the dissemination of antibiotic resistance genes (ARGs) in drinking water supply systems (DWSSs) with multiple barriers remains poorly understood despite several recent efforts. Phosphorothioate (PT) modifications, governed by dndABCDE genes, occur naturally in various bacteria and involve the incorporation of sulfur into the DNA backbone. PT is regarded as a mild antioxidant in vivo and is known to provide protection against bacterial genomes. We combined quantitative polymerase chain reaction, metagenomic, and network analyses for the water treatment process and laboratory-scale experiments for chlorine treatment using model strains to determine if DNA PT modification occurred in DWSS and facilitated the dissemination of mobilized colistin resistance-1 (mcr-1) and New Delhi metallo-β-lactamase-1 (blaNDM-1) in DWSS. Our results indicated that the relative abundance of dndB increased in the effluent, compared with the influent, in the water treatment plants. Presence of dndB copies had a positive correlation with the concentration of chloramine disinfectant. Network analysis revealed Bdellovibrio as a potential host for MCR genes, NDM genes, and dndB in the DWSS. E. coli DH10B (Wild-type with the dndABCDE gene cluster and ΔdndB) model strains were used to investigate resistance to chlorine treatment at the concentration range of 0.5-3 mg/L. The resistance of the wild-type strain increased with increasing concentration of chlorine. DNA PT modification protected MCR- and NDM-carrying bacteria from chloramine disinfection during the water treatment process. The higher relative abundance of ARGs in the effluent of the water treatment plants may be due to the resistance of DNA PT modification to chloramine disinfection, thereby causing the enrichment of genera carrying MCR, NDM, and dndB. This study provides a new understanding on the mechanism of ARG dissemination in DWSS, which will help to improve the performance of drinking water treatment to control the risk associated with antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Hira Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Mingkun Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Masood Ur Rehman Kayani
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai, 2000025, PR China
| | - Shakeel Ahmad
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
22
|
Locke A, Fitzgerald S, Mahadevan-Jansen A. Advances in Optical Detection of Human-Associated Pathogenic Bacteria. Molecules 2020; 25:E5256. [PMID: 33187331 PMCID: PMC7696695 DOI: 10.3390/molecules25225256] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial infection is a global burden that results in numerous hospital visits and deaths annually. The rise of multi-drug resistant bacteria has dramatically increased this burden. Therefore, there is a clinical need to detect and identify bacteria rapidly and accurately in their native state or a culture-free environment. Current diagnostic techniques lack speed and effectiveness in detecting bacteria that are culture-negative, as well as options for in vivo detection. The optical detection of bacteria offers the potential to overcome these obstacles by providing various platforms that can detect bacteria rapidly, with minimum sample preparation, and, in some cases, culture-free directly from patient fluids or even in vivo. These modalities include infrared, Raman, and fluorescence spectroscopy, along with optical coherence tomography, interference, polarization, and laser speckle. However, these techniques are not without their own set of limitations. This review summarizes the strengths and weaknesses of utilizing each of these optical tools for rapid bacteria detection and identification.
Collapse
Affiliation(s)
- Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sean Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
23
|
An intracellular silver deposition method for targeted detection and chemical analysis of uncultured microorganisms. Syst Appl Microbiol 2020; 43:126086. [PMID: 32414515 DOI: 10.1016/j.syapm.2020.126086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/31/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Abstract
The vast majority of environmental bacteria remain uncultured, despite two centuries of effort in cultivating microorganisms. Our knowledge of their physiology and metabolic activity depends to a large extent on methods capable of analyzing single cells. Bacterial identification is a key step required by all currently used single-cell imaging techniques and is typically performed by means of fluorescent labeling. However, fluorescent cells cannot be visualized by ion- and electron microscopy and thus only correlative, indirect, cell identification is possible. Here we present a new method of bacterial identification by in situ hybridization coupled to the deposition of elemental silver nanoparticles (silver-DISH). We show that hybridized cells containing silver can be directly visualized by light microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, secondary ion mass spectrometry (nanoSIMS), and confocal Raman micro-spectroscopy. Silver-DISH did not alter the isotopic (13C) and elemental composition of stable-isotope probed cells more than other available hybridization methods, making silver-DISH suitable for broad applications in stable-isotope labeling studies. Additionally, we demonstrate that silver-DISH can induce a surface-enhanced Raman scattering (SERS) effect, amplifying the Raman signal of biomolecules inside bacterial cells. This makes silver-DISH the only currently available method that is capable of delivering a SERS-active substrate inside specifically targeted microbial cells.
Collapse
|
24
|
Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol 2020; 18:241-256. [PMID: 32055027 DOI: 10.1038/s41579-020-0323-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
The function of cells in their native habitat often cannot be reliably predicted from genomic data or from physiology studies of isolates. Traditional experimental approaches to study the function of taxonomically and metabolically diverse microbiomes are limited by their destructive nature, low spatial resolution or low throughput. Recently developed technologies can offer new insights into cellular function in natural and human-made systems and how microorganisms interact with and shape the environments that they inhabit. In this Review, we provide an overview of these next-generation physiology approaches and discuss how the non-destructive analysis of cellular phenotypes, in combination with the separation of the target cells for downstream analyses, provide powerful new, complementary ways to study microbiome function. We anticipate that the widespread application of next-generation physiology approaches will transform the field of microbial ecology and dramatically improve our understanding of how microorganisms function in their native environment.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Rachel L Spietz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| |
Collapse
|
25
|
Yang Y, Gao Y, Chen Y, Li S, Zhan A. Interactome‐based abiotic and biotic impacts on biodiversity of plankton communities in disturbed wetlands. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuzhan Yang
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
| | - Yangchun Gao
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yiyong Chen
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Shiguo Li
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Aibin Zhan
- Research Center for Eco‐Environmental Sciences Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
26
|
Yang Y, Gao Y, Huang X, Ni P, Wu Y, Deng Y, Zhan A. Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:290-299. [PMID: 30445416 DOI: 10.1016/j.envpol.2018.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 05/07/2023]
Abstract
Anthropogenic activity-mediated nutrient pollution, especially nitrogen enrichment, poses one of the major threats to river ecosystems. However, it remains unclear how and to which extent it affects aquatic microbial communities, especially in heavily polluted rivers. In this study, a significant environmental gradient, particularly nitrogen gradient, was observed along a wastewater receiving river, the North Canal River (NCR). The pollution level was highest, moderate, and lowest in the up-, middle, and down-streams, respectively. The community composition of bacterioplankton transitioned from being Betaproteobacteria-dominated upstream to Gammaproteobacteria-dominated downstream. Copiotrophic groups, such as Polynucleobacter (Betaproteobacteria) and Hydrogenophaga (Betaproteobacteria), were dominant in the upstream. Multiple statistical analyses indicated that total nitrogen (TN) was the most important factor driving the adaptive shifts of community structure. Analyses of co-occurrence networks showed that the complexity of networks was disrupted in the up- and middle streams, while enhanced in the downstream. Our findings here suggested that microbial interactions were reduced in response to the aggravation of nutrient pollution. Similar to these changes, we observed significant dissimilarity of composition of functional groups, with highest abundance of nitrogen metabolism members under the highest level of nitrogen enrichment. Further analyses indicated that most of these functional groups belonged to Betaproteobacteria, suggesting the potential coupling of community composition and function diversity. In summary, adaptive shifts of bacterioplankton community composition, as well as species interactions, occurred in response to nutrient pollution in highly polluted water bodies.
Collapse
Affiliation(s)
- Yuzhan Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yueni Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ye Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
27
|
Taylor GT. Windows into Microbial Seascapes: Advances in Nanoscale Imaging and Application to Marine Sciences. ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:465-490. [PMID: 30134123 DOI: 10.1146/annurev-marine-121916-063612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geochemical cycles of all nonconservative elements are mediated by microorganisms over nanometer spatial scales. The pelagic seascape is known to possess microstructure imposed by heterogeneous distributions of particles, polymeric gels, biologically important chemicals, and microbes. While indispensable, most traditional oceanographic observational approaches overlook this heterogeneity and ignore subtleties, such as activity hot spots, symbioses, niche partitioning, and intrapopulation phenotypic variations, that can provide a deeper mechanistic understanding of planktonic ecosystem function. As part of the movement toward cultivation-independent tools in microbial oceanography, techniques to examine the ecophysiology of individual populations and their role in chemical transformations at spatial scales relevant to microorganisms have been developed. This review presents technologies that enable geochemical and microbiological interrogations at spatial scales ranging from 0.02 to a few hundred micrometers, particularly focusing on atomic force microscopy, nanoscale secondary ion mass spectrometry, and confocal Raman microspectroscopy and introducing promising approaches for future applications in marine sciences.
Collapse
Affiliation(s)
- Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
28
|
Ghori NUH, Moreira-Grez B, Vuong P, Waite I, Morald T, Wise M, Whiteley AS. RNA Stable Isotope Probing (RNA-SIP). Methods Mol Biol 2019; 2046:31-44. [PMID: 31407294 DOI: 10.1007/978-1-4939-9721-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stable isotope probing is a combined molecular and isotopic technique used to probe the identity and function of uncultivated microorganisms within environmental samples. Employing stable isotopes of common elements such as carbon and nitrogen, RNA-SIP exploits an increase in the buoyant density of RNA caused by the active metabolism and incorporation of heavier mass isotopes into the RNA after cellular utilization of labeled substrates pulsed into the community. Labeled RNAs are subsequently separated from unlabeled RNAs by density gradient centrifugation followed by identification of the RNAs by sequencing. Therefore, RNA stable isotope probing is a culture-independent technique that provides simultaneous information about microbiome community, composition and function. This chapter presents the detailed protocol for performing an RNA-SIP experiment, including the formation, ultracentrifugation, and fractional analyses of stable isotope-labeled RNAs extracted from environmental samples.
Collapse
Affiliation(s)
- Noor-Ul-Huda Ghori
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Benjamin Moreira-Grez
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Paton Vuong
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Ian Waite
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Tim Morald
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia
| | - Michael Wise
- Department of Computer Science and Engineering, The University of Western Australia, Perth, WA, Australia
| | - Andrew S Whiteley
- Molecular Microbial Ecology Group, The UWA School of Agriculture and Enviornment (SAgE), The University of Western Australia, Crawley, WA, Australia. .,Faculty of Science, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
29
|
Cui L, Yang K, Zhu YG. Stable Isotope-Labeled Single-Cell Raman Spectroscopy Revealing Function and Activity of Environmental Microbes. Methods Mol Biol 2019; 2046:95-107. [PMID: 31407299 DOI: 10.1007/978-1-4939-9721-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microorganisms play a key role in driving the global element (C, N, H, P, and S) cycling. However, the function and activity of environmental microbes remain largely elusive because the vast majority of them are yet uncultured. Recent achievements in single cell stable isotope-labeled Raman spectroscopy enable direct investigation of function and activity of individual microbes in complex environmental communities. Here, this protocol describes a workflow to investigate environmental microbes in soil and water by combining 15N, 2D, and 13C stable isotope labeling with different single-cell Raman techniques, including normal Raman, resonance Raman (RR), and surface-enhanced Raman spectroscopy (SERS). Their applications in investigating functional bacteria driving the N and C cycles, and metabolically active cells are described.
Collapse
Affiliation(s)
- Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
30
|
Bradford LM, Vestergaard G, Táncsics A, Zhu B, Schloter M, Lueders T. Transcriptome-Stable Isotope Probing Provides Targeted Functional and Taxonomic Insights Into Microaerobic Pollutant-Degrading Aquifer Microbiota. Front Microbiol 2018; 9:2696. [PMID: 30483229 PMCID: PMC6243674 DOI: 10.3389/fmicb.2018.02696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
While most studies using RNA-stable isotope probing (SIP) to date have focused on ribosomal RNA, the detection of 13C-labeled mRNA has rarely been demonstrated. This approach could alleviate some of the major caveats of current non-target environmental “omics.” Here, we demonstrate the feasibility of total RNA-SIP in an experiment where hydrocarbon-degrading microbes from a BTEX-contaminated aquifer were studied in microcosms with 13C-labeled toluene under microoxic conditions. From the total sequencing reads (∼30 mio. reads per density-resolved RNA fraction), an average of 1.2% of reads per sample were identified as non-rRNA, including mRNA. Members of the Rhodocyclaceae (including those related to Quatrionicoccus spp.) were most abundant and enriched in 13C-rRNA, while well-known aerobic degraders such as Pseudomonas spp. remained unlabeled. Transcripts related to cell motility, secondary metabolite formation and xenobiotics degradation were highly labeled with 13C. mRNA of phenol hydroxylase genes were highly labeled and abundant, while other transcripts of toluene-activation were not detected. Clear labeling of catechol 2,3-dioxygenase transcripts supported previous findings that some of these extradiol dioxygenases were adapted to low oxygen concentrations. We introduce a novel combination of total RNA-SIP with calculation of transcript-specific enrichment factors (EFs) in 13C-RNA, enabling a targeted approach to process-relevant gene expression in complex microbiomes.
Collapse
Affiliation(s)
- Lauren M Bradford
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gisle Vestergaard
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.,Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllö, Hungary
| | - Baoli Zhu
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Schloter
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllö, Hungary
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
31
|
Jing X, Gou H, Gong Y, Su X, Xu L, Ji Y, Song Y, Thompson IP, Xu J, Huang WE. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environ Microbiol 2018; 20:2241-2255. [PMID: 29727057 PMCID: PMC6849569 DOI: 10.1111/1462-2920.14268] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 11/30/2022]
Abstract
It is of great significance to understand CO2 fixation in the oceans. Using single cell Raman spectra (SCRS) as biochemical profiles, Raman activated cell ejection (RACE) was able to link phenotypes and genotypes of cells. Here, we show that mini‐metagenomic sequences from RACE can be used as a reference to reconstruct nearly complete genomes of key functional bacteria by binning shotgun metagenomic sequencing data. By applying this approach to 13C bicarbonate spiked seawater from euphotic zone of the Yellow Sea of China, the dominant bacteria Synechococcus spp. and Pelagibacter spp. were revealed and both of them contain carotenoid and were able to incorporate 13C into the cells at the same time. Genetic analysis of the reconstructed genomes suggests that both Synechococcus spp. and Pelagibacter spp. contained all genes necessary for carotenoid synthesis, light energy harvesting and CO2 fixation. Interestingly, the reconstructed genome indicates that Pelagibacter spp. harbored intact sets of genes for β‐carotene (precursor of retional), proteorhodopsin synthesis and anaplerotic CO2 fixation. This novel approach shines light on the role of marine ‘microbial dark matter’ in global carbon cycling, by linking yet‐to‐be‐cultured Synechococcus spp. and Pelagibacter spp. to carbon fixation and flow activities in situ.
Collapse
Affiliation(s)
- Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Honglei Gou
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolu Su
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - La Xu
- Disease and Fishery Drugs Research Center, Marine Biology Institute of Shandong Province, Qingdao, Shandong, People's Republic of China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yizhi Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
32
|
Li J, Luo C, Zhang D, Song M, Cai X, Jiang L, Zhang G. Autochthonous Bioaugmentation-Modified Bacterial Diversity of Phenanthrene Degraders in PAH-Contaminated Wastewater as Revealed by DNA-Stable Isotope Probing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2934-2944. [PMID: 29378393 DOI: 10.1021/acs.est.7b05646] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To reveal the mechanisms of autochthonous bioaugmentation (ABA) in wastewater contaminated with polycyclic aromatic hydrocarbons (PAHs), DNA-stable-isotope-probing (SIP) was used in the present study with the addition of an autochthonous microorganism Acinetobacter tandoii LJ-5. We found LJ-5 inoculum produced a significant increase in phenanthrene (PHE) mineralization, but LJ-5 surprisingly did not participate in indigenous PHE degradation from the SIP results. The improvement of PHE biodegradation was not explained by the engagement of LJ-5 but attributed to the remarkably altered diversity of PHE degraders. Of the major PHE degraders present in ambient wastewater ( Rhodoplanes sp., Mycobacterium sp., Xanthomonadaceae sp. and Enterobacteriaceae sp.), only Mycobacterium sp. and Enterobacteriaceae sp. remained functional in the presence of strain LJ-5, but five new taxa Bacillus, Paenibacillus, Ammoniphilus, Sporosarcina, and Hyphomicrobium were favored. Rhodoplanes, Ammoniphilus, Sporosarcina, and Hyphomicrobium were directly linked to, for the first time, indigenous PHE biodegradation. Sequences of functional PAH-RHDα genes from heavy fractions further proved the change in PHE degraders by identifying distinct PAH-ring hydroxylating dioxygenases between ambient degradation and ABA. Our findings indicate a new mechanism of ABA, provide new insights into the diversity of PHE-degrading communities, and suggest ABA as a promising in situ bioremediation strategy for PAH-contaminated wastewater.
Collapse
Affiliation(s)
- Jibing Li
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou , 510642 , China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Mengke Song
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou , 510642 , China
| | - Xixi Cai
- College of Resources and Environment , Fujian Agriculture and Forestry University , Fuzhou , 350002 , China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
33
|
Germond A, Kumar V, Ichimura T, Moreau J, Furusawa C, Fujita H, Watanabe TM. Raman spectroscopy as a tool for ecology and evolution. J R Soc Interface 2018; 14:rsif.2017.0174. [PMID: 28592661 PMCID: PMC5493802 DOI: 10.1098/rsif.2017.0174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022] Open
Abstract
Scientists are always on the lookout for new modalities of information which could reveal new biological features that are useful for deciphering the complexity of biological systems. Here, we introduce Raman spectroscopy as a prime candidate for ecology and evolution. To encourage the integration of this microscopy technique in the field of ecology and evolution, it is crucial to discuss first how Raman spectroscopy fits within the conceptual, technical and pragmatic considerations of ecology and evolution. In this paper, we show that the spectral information holds reliable indicators of intra- and interspecies variations, which can be related to the environment, selective pressures and fitness. Moreover, we show how the technical and pragmatic aspects of this modality (non-destructive, non-labelling, speed, relative low cost, etc.) enable it to be combined with more conventional methodologies. With this paper, we hope to open new avenues of research and extend the scope of available methodologies used in ecology and evolution.
Collapse
Affiliation(s)
- Arno Germond
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Vipin Kumar
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Taro Ichimura
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Jerome Moreau
- Université de Bourgogne Franche Comté, UMR CNRS 6656 Biogeosciences, Equipe Ecologie Evolutive, 6 Boulevard Gabriel, Dijon 21000, France
| | - Chikara Furusawa
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.,Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Hideaki Fujita
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.,WPI Immunology Frontier Research Center, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomonobu M Watanabe
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
34
|
Song Y, Cui L, López JÁS, Xu J, Zhu YG, Thompson IP, Huang WE. Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames River. Sci Rep 2017; 7:16648. [PMID: 29192181 PMCID: PMC5709456 DOI: 10.1038/s41598-017-16898-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 11/09/2022] Open
Abstract
The emergence and widespread distribution of antimicrobial resistant (AMR) bacteria has led to an increasing concern with respect to potential environmental and public health risks. Culture-independent and rapid identification of AMR bacteria in-situ in complex environments is important in understanding the role of viable but non-culturable and antibiotic persistent bacteria and in revealing potential pathogens without waiting for colony formation. In this study, a culture-independent and non-destructive phenotyping approach, so called Raman Deuterium Stable Isotope Probing (Raman-DIP), was developed to identify AMR bacteria in the River Thames. It is demonstrated that Raman-DIP was able to accurately identify resistant and susceptible bacteria within 24 hours. The work shows that, in the River Thames, the majority of the bacteria (76 ± 2%) were metabolically active, whilst AMR bacteria to carbenicillin, kanamycin and both two antibiotics were 35 ± 5%, 28 ± 3%, 25 ± 1% of the total bacterial population respectively. Raman activated cell ejection (RACE) was applied to isolate single AMR bacteria for the first time, linking AMR phenotype (reistance to antibiotics) and genotype (DNA sequence). The sequences of the RACE sorted cells indicate that they were potential human pathogens Aeromonas sp., Stenotrophomonas sp. and an unculturable bacterium. This work demonstrates Raman-DIP and RACE are effective culture-independent approach for rapid identification of AMR bacteria at the single cell level in their natural conditions.
Collapse
Affiliation(s)
- Yizhi Song
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
| | - Li Cui
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - José Ángel Siles López
- Chemical Engineering Department, University of Córdoba, Campus Universitario de Rabanales, Ctra. N-IV, km 396, building Marie Curie (C-3), CP/14071, Córdoba, Spain
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom.
| |
Collapse
|
35
|
Xu J, Zhu D, Ibrahim AD, Allen CCR, Gibson CM, Fowler PW, Song Y, Huang WE. Raman Deuterium Isotope Probing Reveals Microbial Metabolism at the Single-Cell Level. Anal Chem 2017; 89:13305-13312. [DOI: 10.1021/acs.analchem.7b03461] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jiabao Xu
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Di Zhu
- Kroto
Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Aliyu D. Ibrahim
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 7BL, United Kingdom
| | - Christopher C. R. Allen
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, Belfast BT9 7BL, United Kingdom
| | | | - Patrick W. Fowler
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Yizhi Song
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Wei E. Huang
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
- Kroto
Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
36
|
Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. THE ISME JOURNAL 2017; 11:1949-1963. [PMID: 28574490 PMCID: PMC5563950 DOI: 10.1038/ismej.2017.59] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/21/2022]
Abstract
More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and that have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.
Collapse
Affiliation(s)
- Esther Singer
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Michael Wagner
- University of Vienna, Department of Microbial Ecology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
37
|
Doud DFR, Woyke T. Novel approaches in function-driven single-cell genomics. FEMS Microbiol Rev 2017; 41:538-548. [PMID: 28591840 PMCID: PMC5812545 DOI: 10.1093/femsre/fux009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/21/2017] [Indexed: 12/27/2022] Open
Abstract
Deeper sequencing and improved bioinformatics in conjunction with single-cell and metagenomic approaches continue to illuminate undercharacterized environmental microbial communities. This has propelled the 'who is there, and what might they be doing' paradigm to the uncultivated and has already radically changed the topology of the tree of life and provided key insights into the microbial contribution to biogeochemistry. While characterization of 'who' based on marker genes can describe a large fraction of the community, answering 'what are they doing' remains the elusive pinnacle for microbiology. Function-driven single-cell genomics provides a solution by using a function-based screen to subsample complex microbial communities in a targeted manner for the isolation and genome sequencing of single cells. This enables single-cell sequencing to be focused on cells with specific phenotypic or metabolic characteristics of interest. Recovered genomes are conclusively implicated for both encoding and exhibiting the feature of interest, improving downstream annotation and revealing activity levels within that environment. This emerging approach has already improved our understanding of microbial community functioning and facilitated the experimental analysis of uncharacterized gene product space. Here we provide a comprehensive review of strategies that have been applied for function-driven single-cell genomics and the future directions we envision.
Collapse
Affiliation(s)
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
38
|
Li J, Luo C, Song M, Dai Q, Jiang L, Zhang D, Zhang G. Biodegradation of Phenanthrene in Polycyclic Aromatic Hydrocarbon-Contaminated Wastewater Revealed by Coupling Cultivation-Dependent and -Independent Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3391-3401. [PMID: 28181806 DOI: 10.1021/acs.est.6b04366] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The indigenous microorganisms responsible for degrading phenanthrene (PHE) in polycyclic aromatic hydrocarbons (PAHs)-contaminated wastewater were identified by DNA-based stable isotope probing (DNA-SIP). In addition to the well-known PHE degraders Acinetobacter and Sphingobium, Kouleothrix and Sandaracinobacter were found, for the first time, to be directly responsible for indigenous PHE biodegradation. Additionally, a novel PHE degrader, Acinetobacter tandoii sp. LJ-5, was identified by DNA-SIP and direct cultivation. This is the first report and reference to A. tandoii involved in the bioremediation of PAHs-contaminated water. A PAH-RHDα gene involved in PHE metabolism was detected in the heavy fraction of 13C treatment, but the amplification of PAH-RHDα gene failed in A. tandoii LJ-5. Instead, the strain contained catechol 1,2-dioxygenase and the alpha/beta subunits of protocatechuate 3,4-dioxygenase, indicating use of the β-ketoadipate pathway to degrade PHE and related aromatic compounds. These findings add to our current knowledge on microorganisms degrading PHE by combining cultivation-dependent and cultivation-independent approaches and provide deeper insight into the diversity of indigenous PHE-degrading communities.
Collapse
Affiliation(s)
- Jibing Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing, 100039, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Qing Dai
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
- University of Chinese Academy of Sciences , Beijing, 100039, China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University , Lancaster, LA1 4YQ, United Kingdom
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, China
| |
Collapse
|
39
|
Jameson E, Taubert M, Coyotzi S, Chen Y, Eyice Ö, Schäfer H, Murrell JC, Neufeld JD, Dumont MG. DNA-, RNA-, and Protein-Based Stable-Isotope Probing for High-Throughput Biomarker Analysis of Active Microorganisms. Methods Mol Biol 2017; 1539:57-74. [PMID: 27900684 DOI: 10.1007/978-1-4939-6691-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stable-isotope probing (SIP) enables researchers to target active populations within complex microbial communities, which is achieved by providing growth substrates enriched in heavy isotopes, usually in the form of 13C, 18O, or 15N. After growth on the substrate and subsequent extraction of microbial biomarkers, typically nucleic acids or proteins, the SIP technique is used for the recovery and analysis of isotope-labeled biomarkers from active microbial populations. In the years following the initial development of DNA- and RNA-based SIP, it was common practice to characterize labeled populations by targeted gene analysis. Such approaches usually involved fingerprint-based analyses or sequencing of clone libraries containing 16S rRNA genes or functional marker gene amplicons. Although molecular fingerprinting remains a valuable approach for rapid confirmation of isotope labeling, recent advances in sequencing technology mean that it is possible to obtain affordable and comprehensive amplicon profiles, metagenomes, or metatranscriptomes from SIP experiments. Not only can the abundance of microbial groups be inferred from metagenomes, but researchers can bin, assemble, and explore individual genomes to build hypotheses about the metabolic capabilities of labeled microorganisms. Analysis of labeled mRNA is a more recent advance that can provide independent metatranscriptome-based analysis of active microorganisms. The power of metatranscriptomics is that mRNA abundance often correlates closely with the corresponding activity of encoded enzymes, thus providing insight into microbial metabolism at the time of sampling. Together, these advances have improved the sensitivity of SIP methods and allow the use of labeled substrates at ecologically relevant concentrations. Particularly as methods improve and costs continue to drop, we expect that the integration of SIP with multiple omics-based methods will become prevalent components of microbial ecology studies, leading to further breakthroughs in our understanding of novel microbial populations and elucidation of the metabolic function of complex microbial communities. In this chapter we provide protocols for obtaining labeled DNA, RNA, and proteins that can be used for downstream omics-based analyses.
Collapse
Affiliation(s)
- Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Martin Taubert
- Institute of Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Sara Coyotzi
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Özge Eyice
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Marc G Dumont
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
40
|
Müller DB, Vogel C, Bai Y, Vorholt JA. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu Rev Genet 2016; 50:211-234. [DOI: 10.1146/annurev-genet-120215-034952] [Citation(s) in RCA: 408] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel B. Müller
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Christine Vogel
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| | - Yang Bai
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland;
| |
Collapse
|
41
|
Song Y, Kaster AK, Vollmers J, Song Y, Davison PA, Frentrup M, Preston GM, Thompson IP, Murrell JC, Yin H, Hunter CN, Huang WE. Single-cell genomics based on Raman sorting reveals novel carotenoid-containing bacteria in the Red Sea. Microb Biotechnol 2016; 10:125-137. [PMID: 27748032 PMCID: PMC5270752 DOI: 10.1111/1751-7915.12420] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 07/19/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022] Open
Abstract
Cell sorting coupled with single-cell genomics is a powerful tool to circumvent cultivation of microorganisms and reveal microbial 'dark matter'. Single-cell Raman spectra (SCRSs) are label-free biochemical 'fingerprints' of individual cells, which can link the sorted cells to their phenotypic information and ecological functions. We employed a novel Raman-activated cell ejection (RACE) approach to sort single bacterial cells from a water sample in the Red Sea based on SCRS. Carotenoids are highly diverse pigments and play an important role in phototrophic bacteria, giving strong and distinctive Raman spectra. Here, we showed that individual carotenoid-containing cells from a Red Sea sample were isolated based on the characteristic SCRS. RACE-based single-cell genomics revealed putative novel functional genes related to carotenoid and isoprenoid biosynthesis, as well as previously unknown phototrophic microorganisms including an unculturable Cyanobacteria spp. The potential of Raman sorting coupled to single-cell genomics has been demonstrated.
Collapse
Affiliation(s)
- Yizhi Song
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Anne-Kristin Kaster
- Leibniz Institute DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - John Vollmers
- Leibniz Institute DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Yanqing Song
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paul A Davison
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Martinique Frentrup
- Leibniz Institute DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstrasse 7 B, 38124, Braunschweig, Germany
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
42
|
Kniggendorf AK, Nogueira R, Kelb C, Schadzek P, Meinhardt-Wollweber M, Ngezahayo A, Roth B. Confocal Raman microscopy and fluorescent in situ hybridization - A complementary approach for biofilm analysis. CHEMOSPHERE 2016; 161:112-118. [PMID: 27423128 DOI: 10.1016/j.chemosphere.2016.06.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/24/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
We combine confocal Raman microscopy (CRM) of wet samples with subsequent Fluorescent in situ hybridization (FISH) without significant limitations to either technique for analyzing the same sample of a microbial community on a cell-to-cell basis. This combination of techniques allows a much deeper, more complete understanding of complex environmental samples than provided by either technique alone. The minimalistic approach is based on laboratory glassware with micro-engravings for reproducible localization of the sample at cell scale combined with a fixation and de- and rehydration protocol for the respective techniques. As proof of concept, we analyzed a floc of nitrifying activated sludge, demonstrating that the sample can be tracked with cell-scale precision over different measurements and instruments. The collected information includes the microbial content, spatial shape, variant chemical compositions of the floc matrix and the mineral microparticles embedded within. In addition, the direct comparison of CRM and FISH revealed a difference in reported cell size due to the different cell components targeted by the respective technique. To the best of our knowledge, this is the first report of a direct cell-to-cell comparison of confocal Raman microscopy and Fluorescent in situ hybridization analysis performed on the same sample. An adaptation of the method to include native samples as a starting point is planned for the near future. The micro-engraving approach itself also opens up the possibility of combining other, functionally incompatible techniques as required for further in-depth investigations of low-volume samples.
Collapse
Affiliation(s)
- Ann-Kathrin Kniggendorf
- Hannover Centre for Optical Technologies, Gottfried-Wilhelm-Leibniz Universität Hannover, Nienburger Str. 2, 30167 Hannover, Germany.
| | - Regina Nogueira
- Institut für Siedlungswasserwirtschaft und Abfalltechnik, Gottfried-Wilhelm-Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany.
| | - Christian Kelb
- Hannover Centre for Optical Technologies, Gottfried-Wilhelm-Leibniz Universität Hannover, Nienburger Str. 2, 30167 Hannover, Germany.
| | - Patrik Schadzek
- Institute for Biophysics, Gottfried-Wilhelm-Leibniz Universität Hannover, Herrenhäuser Str. 2, 30149 Hannover, Germany.
| | - Merve Meinhardt-Wollweber
- Hannover Centre for Optical Technologies, Gottfried-Wilhelm-Leibniz Universität Hannover, Nienburger Str. 2, 30167 Hannover, Germany.
| | - Anaclet Ngezahayo
- Institute for Biophysics, Gottfried-Wilhelm-Leibniz Universität Hannover, Herrenhäuser Str. 2, 30149 Hannover, Germany.
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Gottfried-Wilhelm-Leibniz Universität Hannover, Nienburger Str. 2, 30167 Hannover, Germany.
| |
Collapse
|
43
|
Wang Y, Song Y, Tao Y, Muhamadali H, Goodacre R, Zhou NY, Preston GM, Xu J, Huang WE. Reverse and Multiple Stable Isotope Probing to Study Bacterial Metabolism and Interactions at the Single Cell Level. Anal Chem 2016; 88:9443-9450. [DOI: 10.1021/acs.analchem.6b01602] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yun Wang
- Single
Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Yizhi Song
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| | - Yifan Tao
- Department
of Operative Dentistry and Endodontics, Guanghua School and Hospital
of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Howbeer Muhamadali
- School
of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Royston Goodacre
- School
of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Gail M. Preston
- Department
of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Jian Xu
- Single
Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Wei E. Huang
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, United Kingdom
| |
Collapse
|
44
|
Chakraborty J, Das S. Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16883-16903. [PMID: 27234838 DOI: 10.1007/s11356-016-6887-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Nutrition and pollution stress stimulate genetic adaptation in microorganisms and assist in evolution of diverse metabolic pathways for their survival on several complex organic compounds. Persistent organic pollutants (POPs) are highly lipophilic in nature and cause adverse effects to the environment and human health by biomagnification through the food chain. Diverse microorganisms, harboring numerous plasmids and catabolic genes, acclimatize to these environmentally unfavorable conditions by gene duplication, mutational drift, hypermutation, and recombination. Genetic aspects of some major POP catabolic genes such as biphenyl dioxygenase (bph), DDT 2,3-dioxygenase, and angular dioxygenase assist in degradation of biphenyl, organochlorine pesticides, and dioxins/furans, respectively. Microbial metagenome constitutes the largest genetic reservoir with miscellaneous enzymatic activities implicated in degradation. To tap the metabolic potential of microorganisms, recent techniques like sequence and function-based screening and substrate-induced gene expression are proficient in tracing out novel catabolic genes from the entire metagenome for utilization in enhanced biodegradation. The major endeavor of today's scientific world is to characterize the exact genetic mechanisms of microbes for bioremediation of these toxic compounds by excavating into the uncultured plethora. This review entails the effect of POPs on the environment and involvement of microbial catabolic genes for their removal with the advanced techniques of bioremediation.
Collapse
Affiliation(s)
- Jaya Chakraborty
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
45
|
Lueders T, Dumont MG, Bradford L, Manefield M. RNA-stable isotope probing: from carbon flow within key microbiota to targeted transcriptomes. Curr Opin Biotechnol 2016; 41:83-89. [PMID: 27269505 DOI: 10.1016/j.copbio.2016.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
Stable isotope probing of RNA has enthused researchers right from its first introduction in 2002. The concept of a labelling-based detection of process-targeted microbes independent of cellular replication or growth has allowed for a much more direct handle on functionally relevant microbiota than by labelling of other biomarkers. This has led to a widespread application of the technology, and breakthroughs in our understanding of carbon flow in natural microbiomes, autotrophic and heterotrophic physiologies, microbial food webs, host-microbe interactions and environmental biotechnology. Recent studies detecting labelled mRNA demonstrate that RNA-SIP is not limited to the analysis of rRNA, but is currently developing towards an approach for accessing targeted transcriptomes. In combination with next-generation sequencing and other methodological advances, RNA-SIP will continue to deliver invaluable insights into the functioning of microbial communities.
Collapse
Affiliation(s)
- Tillmann Lueders
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Groundwater Ecology, Neuherberg, Germany.
| | - Marc G Dumont
- Centre for Biological Sciences (CfBS), University of Southampton, Southampton, United Kingdom
| | - Lauren Bradford
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Groundwater Ecology, Neuherberg, Germany
| | - Mike Manefield
- Centre for Marine Bioinnovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
46
|
Wang Y, Huang WE, Cui L, Wagner M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol 2016; 41:34-42. [PMID: 27149160 DOI: 10.1016/j.copbio.2016.04.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/17/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
Microbial communities are essential for most ecosystem processes and interact in highly complex ways with virtually all eukaryotes. Thus, a detailed understanding of the function of such communities is a fundamental prerequisite for microbial ecologists, applied microbiologists and microbiome researchers. Using single cell Raman microspectroscopy, biochemical fingerprints of individual microbial cells can be obtained in an externally label-free and non-destructive manner. If combined with stable isotope probing (SIP), Raman spectroscopy can directly reveal functions of single microorganisms in their natural habitat. This review provides an update on various SIP-approaches suitable for combination with different Raman scattering techniques and illustrates how single cell Raman SIP can be directly combined with the omics-centric analysis pipelines to investigate microbial communities.
Collapse
Affiliation(s)
- Yun Wang
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics and Single Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom.
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry Meets Microbiology', University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
47
|
McIlvenna D, Huang WE, Davison P, Glidle A, Cooper J, Yin H. Continuous cell sorting in a flow based on single cell resonance Raman spectra. LAB ON A CHIP 2016; 16:1420-9. [PMID: 26974400 DOI: 10.1039/c6lc00251j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Single cell Raman spectroscopy measures a spectral fingerprint of the biochemistry of cells, and provides a powerful method for label-free detection of living cells without the involvement of a chemical labelling strategy. However, as the intrinsic Raman signals of cells are inherently weak, there is a significant challenge in discriminating and isolating cells in a flowing stream. Here we report an integrated Raman-microfluidic system for continuous sorting of a stream of cyanobacteria, Synechocystis sp. PCC6803. These carotenoid-containing microorganisms provide an elegant model system enabling us to determine the sorting accuracy using the subtly different resonance Raman spectra of microorganism cultured in a (12)C or (13)C carbon source. Central to the implementation of continuous flow sorting is the use of "pressure dividers" that eliminate fluctuations in flow in the detection region. This has enabled us to stabilise the flow profile sufficiently to allow automated operation with synchronisation of Raman acquisition, real-time classification and sorting at flow rates of ca. <100 μm s(-1), without the need to "trap" the cells. We demonstrate the flexibility of this approach in sorting mixed cell populations with the ability to achieve 96.3% purity of the selected cells at a speed of 0.5 Hz.
Collapse
Affiliation(s)
- David McIlvenna
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Paul Davison
- Kroto Research Institute, Department of Civil and Structural Engineering, North Campus, The University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| | - Andrew Glidle
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Jon Cooper
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
48
|
Cupples AM. Contaminant-Degrading Microorganisms Identified Using Stable Isotope Probing. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME JOURNAL 2016; 10:1925-38. [PMID: 26872039 PMCID: PMC5029171 DOI: 10.1038/ismej.2015.258] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023]
Abstract
The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched 13C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.
Collapse
|
50
|
Bioremediation of Hydrocarbons and Chlorinated Solvents in Groundwater: Characterisation, Design and Performance Assessment. SPRINGER PROTOCOLS HANDBOOKS 2016. [DOI: 10.1007/8623_2016_207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|