1
|
Hu NN, Wang ZQ, Zhang SJ, Wang ZZ, Chen XX. Characterization of larval gut microbiota of two endoparasitoid wasps associated with their common host, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae). Microbiol Spectr 2024; 12:e0120824. [PMID: 39248477 PMCID: PMC11448028 DOI: 10.1128/spectrum.01208-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 09/10/2024] Open
Abstract
Insect gut microbes play important roles in digestion, metabolism, development, and environmental adaptation. Parasitoid wasps are one of the most important biological control agents in pest control, while the gut microbial species compositions and the associated functions have been poorly investigated. Two endoparasitoid wasps, Cotesia vestalis and Diadromus collaris, parasitize the larval stage and pupal stage of the diamondback moth, Plutella xylostella, respectively. Using whole-genome shotgun metagenomic sequencing, we characterized the gut microbial composition, diversity, and potential functional roles associated with the two parasitoid wasp larvae. The results reveal that Proteobacteria and Firmicutes are the dominant phyla in the gut of C. vestalis and D. collaris larvae, with Rhizobium and Enterococcus being the dominant genera. The putative microbial functions associated with the two parasitoid wasps might play a virtual role in assisting in consuming the host's nutritional composition. The enriched CAZymes family genes are primarily involved in the degradation and synthesis of chitin. Despite the richness of microbial species and communities, the microbes species and the microbial community structure exhibit significant similarity between the two parasitoid wasps and between the parasitoid wasp and the host P. xylostella. Notably, the prevalence of the genus Enterococcus shared among them suggests a possible link of gut microbes between the host and their associated parasitoids. Our study offers insights into the gut microbe-based interactions between the host and parasitoid wasps for the first time, potentially paving the way for the development of an ecologically friendly biocontrol strategy against the pest P. xylostella.IMPORTANCEEndoparasitoid wasps spend the majority of their lifespan within their host and heavily rely on the host's nutrition for survival. There is limited understanding regarding the composition and physiological impacts of gut microbial communities in parasitoid wasps, particularly during the larval stage, which is directly linked to the host. Based on a thorough characterization of the gut microbe and comprehensive comparative analysis, we found the microbial species of the larval parasitoid wasp Cotesia vestalis and the pupal parasitoid wasp Diadromus collaris were similar, sharing 159 genera and 277 species, as were the microbial community structure. Certain of the dominant microbial strains of the two parasitoid wasps were similar to that of their host Plutella xylostella larvae, revealing host insect may affect the microbial community of the parasitoid wasps. The putative microbial functions associated with the parasitoid wasp larvae play an important role in dietary consumption.
Collapse
Affiliation(s)
- Na-na Hu
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zi-qi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Si-jie Zhang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhi-zhi Wang
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology and Breeding, Zhejiang University, Hangzhou, China
| | - Xue-xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou, China
- State Key Lab of Rice Biology and Breeding, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Kumari A, Choudhary JS, Thakur AK, Banra S, Oraon PK, Kumari K, Sahu SK, Albeshr MF. Substantially altered bacterial diversity associated with developmental stages of litchi stink bug, Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae). Heliyon 2024; 10:e32384. [PMID: 38961890 PMCID: PMC11219338 DOI: 10.1016/j.heliyon.2024.e32384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
The mutualistic symbiotic relationship between insects and bacteria greatly influences the growth and development of host insects. Tessaratoma javanica (Thunberg) (Hemiptera: Tessaratomidae), also referred to as the litchi stink bug, has recently been established as an important insect pest of Litchi chinensis Sonn. and causes substantial yield loss in India. To design effective and environmentally safe management strategies, an understanding of the diversity and functions of microbiota harbored across the development stages is very important. The assessment of the diversity of development-associated bacteria in T. javanica and their predicted functions was conducted using 16S rRNA gene sequences obtained by the Illumina MiSeq technology. The result showed that taxonomic analysis of associated bacteria in different developmental stages includes a total of 46 phyla, encompassing 139 classes, 271 orders, 474 families, and 893 genera of bacteria. All developmental stages of T. javanica shared a total of 42.82 percent of operational taxonomic units (OTUs), with a 97 % similarity threshold. Alpha diversity indices showed maximum species richness in the egg and adult stages. The phyla Proteobacteria followed by Firmicutes, Bacteriodetes, and Actinobacteria, exhibited the highest levels of abundance across all the developmental stages of T. javanica. Microbiota were most different between the egg and the 4th nymphal stage (χ2 = 711.67) and least different between the 2nd and 4th nymphal instars (χ2 = 44.45). The predicted functions of the microbiota associated with T. javanica are mainly involved in amino acid metabolism, cell motility, cellular processes and signaling, glycan biosynthesis and metabolism, lipid metabolism, and membrane transport. The present study documentation and information on symbiotic bacteria across T. javanica life stages will prompt the development of novel biological management strategies.
Collapse
Affiliation(s)
- Anita Kumari
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Jaipal Singh Choudhary
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, Jharkhand, 834010, India
| | - Anand Kumar Thakur
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Sushmita Banra
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Priti Kumari Oraon
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Kanika Kumari
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Subhash Kumar Sahu
- University Department of Zoology, Ranchi University, Ranchi, Jharkhand, 834008, India
| | - Mohammed Fahad Albeshr
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Kline O, Joshi NK. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. J Xenobiot 2024; 14:753-771. [PMID: 38921652 PMCID: PMC11204611 DOI: 10.3390/jox14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators.
Collapse
Affiliation(s)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Hui TKL, Lo ICN, Wong KKW, Tsang CTT, Tsang LM. Metagenomic analysis of gut microbiome illuminates the mechanisms and evolution of lignocellulose degradation in mangrove herbivorous crabs. BMC Microbiol 2024; 24:57. [PMID: 38350856 PMCID: PMC10863281 DOI: 10.1186/s12866-024-03209-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Sesarmid crabs dominate mangrove habitats as the major primary consumers, which facilitates the trophic link and nutrient recycling in the ecosystem. Therefore, the adaptations and mechanisms of sesarmid crabs to herbivory are not only crucial to terrestrialization and its evolutionary success, but also to the healthy functioning of mangrove ecosystems. Although endogenous cellulase expressions were reported in crabs, it remains unknown if endogenous enzymes alone can complete the whole lignocellulolytic pathway, or if they also depend on the contribution from the intestinal microbiome. We attempt to investigate the role of gut symbiotic microbes of mangrove-feeding sesarmid crabs in plant digestion using a comparative metagenomic approach. RESULTS Metagenomics analyses on 43 crab gut samples from 23 species of mangrove crabs with different dietary preferences revealed a wide coverage of 127 CAZy families and nine KOs targeting lignocellulose and their derivatives in all species analyzed, including predominantly carnivorous species, suggesting the crab gut microbiomes have lignocellulolytic capacity regardless of dietary preference. Microbial cellulase, hemicellulase and pectinase genes in herbivorous and detritivorous crabs were differentially more abundant when compared to omnivorous and carnivorous crabs, indicating the importance of gut symbionts in lignocellulose degradation and the enrichment of lignocellulolytic microbes in response to diet with higher lignocellulose content. Herbivorous and detritivorous crabs showed highly similar CAZyme composition despite dissimilarities in taxonomic profiles observed in both groups, suggesting a stronger selection force on gut microbiota by functional capacity than by taxonomy. The gut microbiota in herbivorous sesarmid crabs were also enriched with nitrogen reduction and fixation genes, implying possible roles of gut microbiota in supplementing nitrogen that is deficient in plant diet. CONCLUSIONS Endosymbiotic microbes play an important role in lignocellulose degradation in most crab species. Their abundance is strongly correlated with dietary preference, and they are highly enriched in herbivorous sesarmids, thus enhancing their capacity in digesting mangrove leaves. Dietary preference is a stronger driver in determining the microbial CAZyme composition and taxonomic profile in the crab microbiome, resulting in functional redundancy of endosymbiotic microbes. Our results showed that crabs implement a mixed mode of digestion utilizing both endogenous and microbial enzymes in lignocellulose degradation, as observed in most of the more advanced herbivorous invertebrates.
Collapse
Affiliation(s)
- Tom Kwok Lun Hui
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Irene Ching Nam Lo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Karen Ka Wing Wong
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chandler Tsz To Tsang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ling Ming Tsang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
5
|
Curwen AE, Still RL, Angell JW, Eady PE, Millson SH, Staton GJ, Evans NJ, Duncan JS, Cotter SC, Clegg SR. A reduced potential for lameness bacterial transmission by Lucilia sericata larvae and flies through metamorphosis. Res Vet Sci 2023; 163:104967. [PMID: 37572417 DOI: 10.1016/j.rvsc.2023.104967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Lameness in sheep is one of the most serious issues on farms in the UK and worldwide, affecting over 90% of all UK sheep flocks. Despite its severity and prevalence, there are knowledge gaps regarding transmission routes of bacterial pathogens associated with infectious lameness in sheep. As larvae of Lucilia sericata are commonly found on foot lesions on lame sheep, it was hypothesised that the flies or their larvae could harbour lameness associated bacteria. This study examined the gut contents of larvae obtained from the foot lesions of lame sheep and compared them to control larvae collected from infested cat food on the same farm. Of particular interest, were the presence of three different bacterial genera associated with lameness; Fusobacterium necrophorum, Dichelobacter nodosus and Treponema spp., for which viability was also investigated. Larvae were cultured In vitro and some allowed to metamorphose into flies before specific PCR assays were carried out on the gut contents. Results showed a significant association between the bacteria on the feet of the sheep and those within the larvae. Although the gut contents of all larvae found on sheep feet contained one or more of the lameness bacteria, none of the bacteria were recovered from the adult flies, suggesting a level of gut remodelling during metamorphosis. Interestingly, Treponema spp. and Fusobacterium spp. were viable when isolated from gut contents of larvae. Maintenance of infection from larvae to fly did not occur. However, it still remains important to control both disease and insect populations of farms to maintain animal welfare.
Collapse
Affiliation(s)
- Alice E Curwen
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 8DB, UK; School of Veterinary Medicine and Science, University of Nottingham, Leicestershire, UK
| | - Rebecca L Still
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 8DB, UK
| | - Joseph W Angell
- Wern Vets CYF, Department of Research and Innovation, Unit 11, Lon Parcwr Industrial Estate, Ruthin, Denbighshire LL15 1NJ, UK; Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Neston CH64 7TE, UK
| | - Paul E Eady
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 8DB, UK
| | - Stefan H Millson
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 8DB, UK
| | - Gareth J Staton
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Neston CH64 7TE, UK
| | - Nicholas J Evans
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Neston CH64 7TE, UK
| | - Jennifer S Duncan
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Neston CH64 7TE, UK
| | - Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 8DB, UK
| | - Simon R Clegg
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 8DB, UK; Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Neston CH64 7TE, UK.
| |
Collapse
|
6
|
Wu W, Lei JN, Mao Q, Tian YZ, Shan HW, Chen JP. Distribution, Vertical Transmission, and Cooperative Mechanisms of Obligate Symbiotic Bacteria in the Leafhopper Maiestas dorsalis (Hemiptera, Cicadellidea). INSECTS 2023; 14:710. [PMID: 37623420 PMCID: PMC10455556 DOI: 10.3390/insects14080710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Many insects rely on ancient symbiotic bacterial associations for essential nutrition. Auchenorrhyncha commonly harbor two obligate symbionts: Sulcia (Bacteroidetes) and a proteobacterial partner that supplies essential amino acids lacking in their plant-sap diets. In this study focusing on Maiestas dorsalis, we investigated the distribution and vertical transmission of two obligate symbiotic bacteria, Sulcia and Nasuia, within the leafhopper. Sulcia primarily inhabits the external region of the bacteriome, while Nasuia is restricted to the internal region. Both symbionts progressively infiltrate the ovary through the epithelial plug, ultimately reaching the developing primary oocyte. Furthermore, co-phylogenetic analysis suggests a close correlation between the evolution of Auchenorrhyncha insects and the presence of their obligate symbiotic bacteria. Genomic analysis further unveiled the extreme genome reduction of the obligate symbiotic bacteria, with Sulcia retaining genes involved in basic cellular processes and limited energy synthesis, while Nasuia exhibited further gene loss in replication, transcription, translation, and energy synthesis. However, both symbionts retained the genes for synthesizing the essential amino acids required by the host insect. Our study highlights the coevolutionary dynamics between Sulcia, proteobacterial partners, and their insect hosts, shedding light on the intricate nutritional interactions and evolutionary adaptations in Auchenorrhyncha insects.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | | | | | | | | | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Blanton AG, Perkins S, Peterson BF. In vitro assays reveal inherently insecticide-tolerant termite symbionts. Front Physiol 2023; 14:1134936. [PMID: 37501931 PMCID: PMC10368989 DOI: 10.3389/fphys.2023.1134936] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: Termite symbionts are well known for conferring a myriad of benefits to their hosts. Bacterial symbionts are repeatedly associated with increased fitness, nutritional supplementation, pathogen protection, and proper development across insect taxa. In addition, several recent studies link bacterial symbionts to reduced insecticide efficacy. This has important implications both in pest control management and environmental bioremediation efforts. Insects' guts may be a valuable resource for microbes with broad application given their unique niches and metabolic diversity. Though insecticide resistance in termites is considered unlikely due to their life history, the close association of termites with a multitude of bacteria raises the question: is there potential for symbiont-mediated pesticide tolerance in termites? Methods and results: We identified a candidate that could grow in minimal medium containing formulated pesticide. This bacterial isolate was then subjected to continuous culture and subsequently demonstrated improved performance in the presence of pesticide. Isolates subjected to continuous culture were then grown at a range of concentrations from 1-10X the formulation rate. After constant exposure for several generations, isolates grew significantly better. Conclusion: Here we demonstrate that naïve insect hosts can harbor symbionts with inherent insecticide tolerance capable of rapid adaptation to increasing insecticide concentrations overtime. This has broad implications for both pest control and environmental cleanup of residual pesticides.
Collapse
|
8
|
Cornwallis CK, van 't Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. Symbioses shape feeding niches and diversification across insects. Nat Ecol Evol 2023; 7:1022-1044. [PMID: 37202501 PMCID: PMC10333129 DOI: 10.1038/s41559-023-02058-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/20/2023]
Abstract
For over 300 million years, insects have relied on symbiotic microbes for nutrition and defence. However, it is unclear whether specific ecological conditions have repeatedly favoured the evolution of symbioses, and how this has influenced insect diversification. Here, using data on 1,850 microbe-insect symbioses across 402 insect families, we found that symbionts have allowed insects to specialize on a range of nutrient-imbalanced diets, including phloem, blood and wood. Across diets, the only limiting nutrient consistently associated with the evolution of obligate symbiosis was B vitamins. The shift to new diets, facilitated by symbionts, had mixed consequences for insect diversification. In some cases, such as herbivory, it resulted in spectacular species proliferation. In other niches, such as strict blood feeding, diversification has been severely constrained. Symbioses therefore appear to solve widespread nutrient deficiencies for insects, but the consequences for insect diversification depend on the feeding niche that is invaded.
Collapse
Affiliation(s)
| | - Anouk van 't Padje
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Jacintha Ellers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Malin Klein
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Raphaella Jackson
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - E Toby Kiers
- Amsterdam Institute for Life and Environment, section Ecology and Evolution, Vrije Universiteit, Amsterdam, the Netherlands
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, UK
| | - Lee M Henry
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Kim D, Pérez-Carrascal OM, DeSousa C, Jung DK, Bohley S, Wijaya L, Trang K, Khoury S, Shapira M. Microbiome remodeling through bacterial competition and host behavior enables rapid adaptation to environmental toxins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545768. [PMID: 37646003 PMCID: PMC10462140 DOI: 10.1101/2023.06.21.545768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Human activity is altering the environment in a rapid pace, challenging the adaptive capacities of genetic variation within animal populations. Animals also harbor extensive gut microbiomes, which play diverse roles in host health and fitness and may help expanding host capabilities. The unprecedented scale of human usage of xenobiotics and contamination with environmental toxins describes one challenge against which bacteria with their immense biochemical diversity would be useful, by increasing detoxification capacities. To explore the potential of bacteria-assisted rapid adaptation, we used Caenorhabditis elegans worms harboring a defined microbiome, and neomycin as a model toxin, harmful for the worm host and neutralized to different extents by some microbiome members. Worms raised in the presence of neomycin showed delayed development and decreased survival but were protected when colonized by neomycin-resistant members of the microbiome. Two distinct mechanisms facilitated this protection: gut enrichment driven by altered bacterial competition for the strain best capable of modifying neomycin; and host avoidance behavior, which depended on the conserved JNK homolog KGB-1, enabling preference and acquisition of neomycin-protective bacteria. We further tested the consequences of adaptation, considering that enrichment for protective strains may represent dysbiosis. We found that neomycin-adapted gut microbiomes caused increased susceptibility to infection as well as an increase in gut lipid storage, suggesting metabolic remodeling. Our proof-of-concept experiments support the feasibility of bacteria-assisted host adaptation and suggest that it may be prevalent. The results also highlight trade-offs between toxin adaptation and other traits of fitness.
Collapse
Affiliation(s)
- Dan Kim
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | | | - Catherin DeSousa
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Da Kyung Jung
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Seneca Bohley
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Lila Wijaya
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Kenneth Trang
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Sarah Khoury
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Michael Shapira
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
10
|
Huang Q, Shan HW, Chen JP, Wu W. Diversity and Dynamics of Bacterial Communities in the Digestive and Excretory Systems across the Life Cycle of Leafhopper, Recilia dorsalis. INSECTS 2023; 14:545. [PMID: 37367361 DOI: 10.3390/insects14060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Recilia dorsalis is a notorious rice pest that harbors numerous symbiotic microorganisms. However, the structure and dynamics of bacterial communities in various tissues of R. dorsalis throughout its life cycle remain unclear. In this study, we used high-throughput sequencing technology to analyze the bacterial communities in the digestive, excretory, and reproductive systems of R. dorsalis at different developmental stages. The results showed that the initial microbiota in R. dorsalis mostly originated from vertical transmission via the ovaries. After the second-instar nymphs, the diversity of bacterial communities in the salivary gland and Malpighian tubules gradually decreased, while the midgut remained stable. Principal coordinate analysis revealed that the structure of bacterial communities in R. dorsalis was primarily influenced by the developmental stage, with minimal variation in bacterial species among different tissues but significant variation in bacterial abundance. Tistrella was the most abundant bacterial genus in most developmental stages, followed by Pantoea. The core bacterial community in R. dorsalis continuously enriched throughout development and contributed primarily to food digestion and nutrient supply. Overall, our study enriches our knowledge of the bacterial community associated with R. dorsalis and provides clues for developing potential biological control technologies against this rice pest.
Collapse
Affiliation(s)
- Qiuyan Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Yue R, Chen H, Xu X, Xia Y, Sun Y, Xia M, Xia D, Sun B. Maternal and infantile gut mycobiome during the weaning period in free ranging Tibetan macaques ( Macaca thibetana). Ecol Evol 2023; 13:e10108. [PMID: 37214608 PMCID: PMC10196218 DOI: 10.1002/ece3.10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Gut microbiome is critical to the health of mammals. Many previous studies have revealed the gut bacterial microbiomes of mother and infant changed significantly during the weaning period. However, little is known concerning the gut mycobiome of wild primates. Here, we examined the variations on gut mycobiome between weaning and post-weaning for both mother and infant in wild-living Tibetan macaques (Macaca thibetana). Our results showed that the gut mycobiomes of mother and infant were dominated by two phyla Ascomycota and Basidiomycota. For both mother and infant, the ASV richness of gut mycobiome remained relatively steady from weaning to post-weaning periods, while the Shannon indexes increased significant in weaning compared to post-weaning periods. However, no significant difference between mother and infant ASV richness and Shannon indexes during weaning and post-weaning periods respectively. Compared to mothers, we found that much more known taxa of gut fungi were enriched in weaning or post-weaning periods of infants. In particular, we found that the dominant genus Aspergillus was enriched in infants during weaning period. Furthermore, we found that the relative abundance of plant pathogens were significantly higher in the post-weaning period than in the weaning period for infants. Our results indicated that weaning events could affect the gut mycobiome significantly for both mothers and infant in Tibetan macaques, which had a stronger effect on the gut mycobiome of infant monkeys than on their mothers.
Collapse
Affiliation(s)
- Ran Yue
- School of Resource and Environmental EngineeringAnhui UniversityHefeiChina
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral EcologyAnhui UniversityHefeiChina
| | - Huijuan Chen
- School of Resource and Environmental EngineeringAnhui UniversityHefeiChina
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral EcologyAnhui UniversityHefeiChina
| | - Xiaojuan Xu
- School of Life SciencesHefei Normal UniversityHefeiChina
| | - Yingna Xia
- School of Resource and Environmental EngineeringAnhui UniversityHefeiChina
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral EcologyAnhui UniversityHefeiChina
| | - Yu Sun
- School of Resource and Environmental EngineeringAnhui UniversityHefeiChina
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral EcologyAnhui UniversityHefeiChina
| | - Mengyi Xia
- School of Resource and Environmental EngineeringAnhui UniversityHefeiChina
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral EcologyAnhui UniversityHefeiChina
| | - Dongpo Xia
- School of Life SciencesAnhui UniversityHefeiChina
| | - Binghua Sun
- School of Resource and Environmental EngineeringAnhui UniversityHefeiChina
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral EcologyAnhui UniversityHefeiChina
| |
Collapse
|
12
|
Li M, Zhu M, Quan W, Huang W, Liu X, Zhang C, Lu B, Xiao X, Liu Z. Acteoside palliates d-galactose induced cognitive impairment by regulating intestinal homeostasis. Food Chem 2023; 421:135978. [PMID: 37094395 DOI: 10.1016/j.foodchem.2023.135978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/26/2023]
Abstract
Acteoside, an important phenylethanol glycoside, is the main active component in Osmanthus fragrans flower. Our previous study found that acteoside showed high antiaging effect but its absorption rate was low. We speculated acteoside palliated aging-related cognitive impairment before being absorbed, that was intestinal homeostasis underlie the antiaging effect of acteoside. In this study, acteoside was confirmed to palliate cognitive impairment in d-galactose induced aging mice. Acteoside treatment dramatically reduced oxidative stress, alleviated intestinal inflammation, restored intestinal mucosal barrier, rebuilt gut microbiome structure and upregulated gut microbiome metabolites short-chain fatty acids (SCFAs) and amino acids (AAs). Furthermore, antibiotic treatment revealed that the antiaging ability of acteoside was abolished in microbiota depleted mice, which offered direct evidence for the essential role of gut microbiota in the attenuation of cognitive impairment of acteoside. Together, our study indicated that acteoside palliated cognitive impairment by regulating intestinal homeostasisand acteoside intake might be a promising nutritional intervention in prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Maiquan Li
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wei Quan
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Weisu Huang
- Department of Applied Technology, Zhejiang Economic and Trade Polytechnic, Hangzhou 310018, China
| | - Xia Liu
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Can Zhang
- College of Food Science and Technology, Hunan Provincial Key Laboratory of Food Science and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xing Xiao
- Hunan Provincial People's Hospital, Changsha 410128, China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
13
|
Intersection between parental investment, transgenerational immunity, and termite sociality in the face of disease: a theoretical approach. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03128-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Sapkota R, Scharf ME. Intercolony Comparisons of Gut Microbiome Composition From Lab Reared Eastern Subterranean Termites (Blattodea: Rhinotermitidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:9. [PMID: 35381082 PMCID: PMC8982785 DOI: 10.1093/jisesa/ieac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Termites are social insects living in colonies composed of worker, soldier, and reproductive castes. Termite hindguts are inhabited by all three domains of life- Eukarya (protists), Bacteria, and Archaea. These gut microorganisms are horizontally and vertically transferred by nestmates and reproductives, respectively. Prior evidence suggests that every colony potentially has a different gut microbiome that was transferred vertically and horizontally over time. However, we do not know if different colonies reared in the laboratory on the same diet will ultimately demonstrate similar microbial composition and structure. Therefore, we looked at gut bacteria in Eastern subterranean termite (Reticulitermes flavipes) colonies that were reared in the laboratory with identical diets and rearing conditions. Based on16S rRNA gene sequencing, the observed features, and Shannon's diversity were significantly different between the colonies while differences in Pielou evenness and Faith phylogenetic diversity were not statistically significant. In addition, the microbial community structures were significantly different between colonies. Based on ANCOM (Analysis of Composition of Microbiomes), the taxa Elizabethkingia (Bacteroidetes: Flavobacteriales) and Chryseobacterium (Bacteroidetes: Flavobacteriales) were differentially abundant between the colonies. These results suggest that providing the exact same diet and rearing environment for >2 yr cannot result in identical gut microbiomes between termite colonies.
Collapse
Affiliation(s)
- R Sapkota
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - M E Scharf
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Sapkota R, Nakatsu CH, Scharf ME. Regulation of host phenotypic plasticity by gut symbiont communities in the eastern subterranean termite (Reticulitermes flavipes). J Exp Biol 2021; 224:272131. [PMID: 34515310 DOI: 10.1242/jeb.242553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022]
Abstract
Termites are eusocial insects that host a range of prokaryotic and eukaryotic gut symbionts and can differentiate into a range of caste phenotypes. Soldier caste differentiation from termite workers follows two successive molts (worker-presoldier-soldier) that are driven at the endocrine level by juvenile hormone (JH). Although physiological and eusocial mechanisms tied to JH signaling have been studied, the role of gut symbionts in the caste differentiation process is poorly understood. Here, we used the JH analog methoprene in combination with the antibiotic kanamycin to manipulate caste differentiation and gut bacterial loads in Reticulitermes flavipes termites via four bioassay treatments: kanamycin, methoprene, kanamycin+methoprene, and an untreated (negative) control. Bioassay results demonstrated a significantly higher number of presoldiers in the methoprene treatment, highest mortality in kanamycin+methoprene treatment, and significantly reduced protist numbers in all treatments except the untreated control. Bacterial 16S rRNA gene sequencing provided alpha and beta diversity results that mirrored bioassay findings. From ANCOM analysis, we found that several bacterial genera were differentially abundant among treatments. Finally, follow-up experiments showed that if methoprene and kanamycin or untreated termites are placed together, zero or rescued presoldier initiation, respectively, occurs. These findings reveal that endogenous JH selects for symbiont compositions required to successfully complete presoldier differentiation. However, if the gut is voided before the influx of JH, it cannot select for the necessary symbionts that are crucial for molting. Based on these results, we are able to provide a novel example of linkages between gut microbial communities and host phenotypic plasticity.
Collapse
Affiliation(s)
- Rajani Sapkota
- Department of Entomology, Purdue University, West Lafayette IN 47907, USA
| | - Cindy H Nakatsu
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette IN 47907, USA
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|
16
|
Bayen S, Roy S, Chakraborti D, Mukhopadhyay A, Hazarika LK, Pramanik P, Borchetia S, Mukherjee S. Mutualistic relation of termites with associated microbes for their harmonious survival. Symbiosis 2021. [DOI: 10.1007/s13199-021-00809-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Zhu Y, Li Y, Yang H, He K, Tang K. Establishment of Gut Microbiome During Early Life and Its Relationship With Growth in Endangered Crested Ibis ( Nipponia nippon). Front Microbiol 2021; 12:723682. [PMID: 34434183 PMCID: PMC8382091 DOI: 10.3389/fmicb.2021.723682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota during early life could influence host fitness in vertebrates. Studies on how gut microbiota colonize the gut in birds using frequent sampling during early developmental stages and how shifts in microbiota diversity influence host growth are lacking. Here, we examine the microbiome profiles of 151 fecal samples from 14 young crested ibis (Nipponia nippon), an endangered bird species, collected longitudinally across 13 time points during the early stages of development and investigated their correlation with host growth. Gut diversity showed a non-linear change during development, which involved multiple colonization and extinction events, mainly associated with Proteobacteria and Firmicutes. Gut microbiota in young crested ibis became more similar with increasing age. In addition, gut microbiota exhibited a strong temporal structure and two specific developmental stages; the beginning of the latter stage coincided with the introduction of fresh loach, with a considerable increase in the relative abundance of Fusobacteria and several Firmicutes, which may be involved in lipid metabolism. Crested ibis chick growth rate was negatively correlated with gut microbiota diversity and negatively associated with the abundance of Halomonadaceae, Streptococci, Corynebacteriaceae, and Dietziaceae. Our findings highlight the importance of frequent sampling when studying microbiome development during early stages of development of vertebrates. The role of microbial diversity in host growth during the early stages of development of birds warrants further investigations.
Collapse
Affiliation(s)
- Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yudong Li
- Sichuan Province Laboratory for Natural Resources Protection and Sustainable Utilization, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Haiqiong Yang
- Emei Breeding Center for Crested Ibis, Emei, Chengdu, China
| | - Ke He
- College of Animal Sciences and Technology, Zhejiang A&F University, Hangzhou, China
| | - Keyi Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
18
|
García Hernández E, Berg MP, Van Oosten AR, Smit C, Falcão Salles J. Linking Bacterial Communities Associated with the Environment and the Ecosystem Engineer Orchestia gammarellus at Contrasting Salt Marsh Elevations. MICROBIAL ECOLOGY 2021; 82:537-548. [PMID: 33420910 PMCID: PMC8384807 DOI: 10.1007/s00248-020-01656-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The digestive tract of animals harbors microbiota important for the host's fitness and performance. The interaction between digestive tract bacteria and soil animal hosts is still poorly explored despite the importance of soil fauna for ecosystem processes. In this study, we investigated the interactions between the bacterial communities from the digestive tract of the litter-feeding, semi-terrestrial crustacean Orchestia gammarellus and those obtained from the environment; these organisms thrive in, i.e., soil and plant litter from salt marshes. We hypothesized that elevation is an important driver of soil and litter bacterial communities, which indirectly (via ingested soil and litter bacteria) influences the bacterial communities in the digestive tract of O. gammarellus. Indeed, our results revealed that elevation modulated soil and litter bacterial community composition along with soil organic matter content and the C:N ratio. Soil and plant litter differed in alpha diversity indexes (richness and diversity), and in the case of plant litter, both indexes increased with elevation. In contrast, elevation did not affect the composition of bacterial communities associated with O. gammarellus' digestive tract, suggesting selection by the host, despite the fact that a large component of the bacterial community was also detected in external sources. Importantly, Ca. Bacilloplasma and Vibrio were highly prevalent and abundant in the host. The taxonomic comparison of Ca. Bacilloplasma amplicon sequence variants across the host at different elevations suggested a phylogenetic divergence due to host habitat (i.e., marine or semi-terrestrial), thus supporting their potential functional role in the animal physiology. Our study sheds light on the influence of the environment on soil animal-bacteria interactions and provides insights into the resilience of the O. gammarellus-associated bacteria to increased flooding frequency.
Collapse
Affiliation(s)
- Edisa García Hernández
- Microbial Community Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| | - Matty P Berg
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - A Raoul Van Oosten
- Department of Ecological Sciences, Section Animal Ecology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christian Smit
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
19
|
Genomes of Gut Bacteria from Nasonia Wasps Shed Light on Phylosymbiosis and Microbe-Assisted Hybrid Breakdown. mSystems 2021; 6:6/2/e01342-20. [PMID: 33824199 PMCID: PMC8547009 DOI: 10.1128/msystems.01342-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Phylosymbiosis is a cross-system trend whereby microbial community relationships recapitulate the host phylogeny. In Nasonia parasitoid wasps, phylosymbiosis occurs throughout development, is distinguishable between sexes, and benefits host development and survival. Moreover, the microbiome shifts in hybrids as a rare Proteus bacterium in the microbiome becomes dominant. The larval hybrids then catastrophically succumb to bacterium-assisted lethality and reproductive isolation between the species. Two important questions for understanding phylosymbiosis and bacterium-assisted lethality in hybrids are (i) do the Nasonia bacterial genomes differ from other animal isolates and (ii) are the hybrid bacterial genomes the same as those in the parental species? Here, we report the cultivation, whole-genome sequencing, and comparative analyses of the most abundant gut bacteria in Nasonia larvae, Providencia rettgeri and Proteus mirabilis. Characterization of new isolates shows Proteus mirabilis forms a more robust biofilm than Providencia rettgeri and that, when grown in coculture, Proteus mirabilis significantly outcompetes Providencia rettgeri. Providencia rettgeri genomes from Nasonia are similar to each other and more divergent from pathogenic, human associates. Proteus mirabilis from Nasonia vitripennis, Nasonia giraulti, and their hybrid offspring are nearly identical and relatively distinct from human isolates. These results indicate that members of the larval gut microbiome within Nasonia are most similar to each other, and the strain of the dominant Proteus mirabilis in hybrids is resident in parental species. Holobiont interactions between shared, resident members of the wasp microbiome and the host underpin phylosymbiosis and hybrid breakdown. IMPORTANCE Animal and plant hosts often establish intimate relationships with their microbiomes. In varied environments, closely related host species share more similar microbiomes, a pattern termed phylosymbiosis. When phylosymbiosis is functionally significant and beneficial, microbial transplants between host species and host hybridization can have detrimental consequences on host biology. In the Nasonia parasitoid wasp genus, which contains a phylosymbiotic gut community, both effects occur and provide evidence for selective pressures on the holobiont. Here, we show that bacterial genomes in Nasonia differ from other environments and harbor genes with unique functions that may regulate phylosymbiotic relationships. Furthermore, the bacteria in hybrids are identical to those in parental species, thus supporting a hologenomic tenet that the same members of the microbiome and the host genome impact phylosymbiosis, hybrid breakdown, and speciation.
Collapse
|
20
|
Gao X, Li W, Luo J, Zhang L, Ji J, Zhu X, Wang L, Zhang K, Zhang S, Cui J. DNA sequencing reveals bacterial communities in midgut and other parts of the larvae of Spodoptera exigua Hubner (Lepidoptera: Noctuidae). FEMS Microbiol Lett 2021; 367:5697957. [PMID: 31909810 DOI: 10.1093/femsle/fnaa002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota has been suggested as an important component of host defense. However, microbiota in other parts of the body have rarely been characterized. In our present work, we give a detailed view of the body of Spodoptera exigua larvae, the midgut with intestinal contents (MG), midgut excluding intestinal contents (PM), intestinal contents (IC) and remaining parts excluding the MG (RM), with the objective of revealing the complexity of microorganisms and comparing the biodiversity of the S. exigua larvae-associated microbiota. Our results provide the first evidence that third and fifth larvae samples of S. exigua were dominated by members of the phyla Firmicutes and Proteobacteria. In addition, there were no obvious differences in relative abundances of microbiota among MG, PM and RM at the phylum level. MG3 and MG5 (nearly RM5) harbored the richest microbial community, with much higher abundance of Halomonas, Pseudomonas and Methylobacterium, respectively. Intestinal contents contained the lowest diversity and highest abundance of Enterococcus. Knowledge of the bacteria in a major herbivorous insect, such as S. exigua, can facilitate the acquisition of special biological resources for agricultural pest control.
Collapse
Affiliation(s)
- Xueke Gao
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Wendan Li
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China
| | - Junyu Luo
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China
| | - Lijuan Zhang
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jichao Ji
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiangzhen Zhu
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China
| | - Li Wang
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China
| | - Kaixin Zhang
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China
| | - Shuai Zhang
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinjie Cui
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, 4550001, Zhengzhou, China.,Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| |
Collapse
|
21
|
Li Y, Schal C, Pan X, Huang Y, Zhang F. Effects of Antibiotics on the Dynamic Balance of Bacteria and Fungi in the Gut of the German Cockroach. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2666-2678. [PMID: 32968762 DOI: 10.1093/jee/toaa205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The German cockroach, Blattella germanica (L.) (Blattaria: Blattidae) harbored diverse microorganisms in the digestive tract, including bacteria, fungi, viruses, archaea, and protozoa. This diverse community maintains a relatively stable balance. Some bacteria have been confirmed to play crucial roles in the insect's physiology, biochemistry, and behavior. Antibiotics can effectively eliminate bacteria and disrupt the balance of gut microbiota, but the time-course of this process, the structure of the new microbial community, and the dynamics of re-assemblage of a bacterial community after antibiotic treatment have not been investigated. In the present study, antibiotic (levofloxacin and gentamicin) ingestion reduced bacterial diversity and abundance in the cockroach gut. Within 14 d of discontinuing antibiotic treatment, the number of culturable gut bacteria returned to its original level. However, the composition of the new bacterial community with greater abundance of antibiotic-resistant Enterococcus and Dysgonomonas was significantly different from the original community. Network analysis showed that antibiotic treatment made the interaction between bacteria and fungi closer and stronger in the cockroach gut during the recovery of gut microorganisms. The study on the composition change, recovery rules, and interaction dynamics between gut bacteria and fungi after antibiotic treatment are helpful to explore gut microbes' colonization and interaction with insects, which contributes to the selection of stable core gut bacteria as biological carriers of paratransgenesis for controlling Blattella germanica.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Xiaoyuan Pan
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| | - Yanhong Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Food Ferment Industry Research and Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, 41 Jiefang Road, People's Republic of China
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People of Republic of China
| |
Collapse
|
22
|
Cini A, Meriggi N, Bacci G, Cappa F, Vitali F, Cavalieri D, Cervo R. Gut microbial composition in different castes and developmental stages of the invasive hornet Vespa velutina nigrithorax. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140873. [PMID: 32758760 DOI: 10.1016/j.scitotenv.2020.140873] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 05/16/2023]
Abstract
Social insects are successful animal invaders. Their survival and success, and in some cases also their impact on invaded ecosystem functioning, is often mediated by symbiosis with microorganisms. Here, we report a comprehensive comparative characterization of the gut microbial communities of different castes and developmental stages of the invasive hornet Vespa velutina nigrithorax. The species recently colonized Europe, becoming a high ecological and economic concern, as it threatens pollinator survival and competes with native hornet species. We used targeted meta-genomics to describe the yeasts and bacteria gut communities of individuals of different reproductive phenotypes (workers and future queens), life stages (larvae, newly emerged individuals and adults) and colony non-living samples (nest paper and larval faeces). Bacilli, Gammaproteobacteria, Actinobacteria, Alphaproteobacteria were the most abundant classes of bacteria, and Saccharomycetes, Dothideomycetes, Tremellomycetes and Eurotiomycetes were the most represented yeast classes. We found that the microbial compositions significantly differ across developmental stages and castes, with yeast and bacterial communities switching in frequency and abundance during ontogeny and according to reproductive phenotype. Moreover, the gut microbial communities poorly mirror those found in the nest, suggesting that hornets possess a specific microbial signature. Our results provide the first metagenomic resource of the microbiome of V. velutina in Europe and suggest the importance of considering life stages, reproductive phenotypes and nest influence in order to obtain a comprehensive picture of social insect microbial communities.
Collapse
Affiliation(s)
- Alessandro Cini
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London WC1E 6BT, UK.
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| | - Francesco Vitali
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy; Institute of Biology and Agrarian Biotechnology, National Research Council (IBBA-CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy.
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano, 50019 Firenze, Italy
| |
Collapse
|
23
|
Negroni MA, Segers FHID, Vogelweith F, Foitzik S. Immune challenge reduces gut microbial diversity and triggers fertility-dependent gene expression changes in a social insect. BMC Genomics 2020; 21:816. [PMID: 33225893 PMCID: PMC7682046 DOI: 10.1186/s12864-020-07191-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
Background The gut microbiome can influence life history traits associated with host fitness such as fecundity and longevity. In most organisms, these two life history traits are traded-off, while they are positively linked in social insects. In ants, highly fecund queens can live for decades, while their non-reproducing workers exhibit much shorter lifespans. Yet, when fertility is induced in workers by death or removal of the queen, worker lifespan can increase. It is unclear how this positive link between fecundity and longevity is achieved and what role the gut microbiome and the immune system play in this. To gain insights into the molecular regulation of lifespan in social insects, we investigated fat body gene expression and gut microbiome composition in workers of the ant Temnothorax rugatulus in response to an experimental induction of fertility and an immune challenge. Results Fertile workers upregulated several molecular repair mechanisms, which could explain their extended lifespan. The immune challenge altered the expression of several thousand genes in the fat body, including many immune genes, and, interestingly, this transcriptomic response depended on worker fertility. For example, only fertile, immune-challenged workers upregulated genes involved in the synthesis of alpha-ketoglutarate, an immune system regulator, which extends the lifespan in Caenorhabditis elegans by down-regulating the TOR pathway and reducing oxidant production. Additionally, we observed a dramatic loss in bacterial diversity in the guts of the ants within a day of the immune challenge. Yet, bacterial density did not change, so that the gut microbiomes of many immune challenged workers consisted of only a single or a few bacterial strains. Moreover, the expression of immune genes was linked to the gut microbiome composition, suggesting that the ant host can regulate the microbiome in its gut. Conclusions Immune system flare-ups can have negative consequence on gut microbiome diversity, pointing to a previously underrated cost of immunity. Moreover, our results provide important insights into shifts in the molecular regulation of fertility and longevity associated with insect sociality.
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Francisca H I D Segers
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,Department for Applied Bioinformatics, Inst. of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Fanny Vogelweith
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,M2i Biocontrol, Parnac, France
| | - Susanne Foitzik
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| |
Collapse
|
24
|
Slowinski S, Ramirez I, Narayan V, Somayaji M, Para M, Pi S, Jadeja N, Karimzadegan S, Pees B, Shapira M. Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance. Microorganisms 2020; 8:microorganisms8111781. [PMID: 33202910 PMCID: PMC7697855 DOI: 10.3390/microorganisms8111781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
Animals and plants host diverse communities of microorganisms, and these microbiotas have been shown to influence host life history traits. Much has been said about the benefits that host-associated microbiotas bestow on the host. However, life history traits often demonstrate tradeoffs among one another. Raising Caenorhabditis elegans nematodes in compost microcosms emulating their natural environment, we examined how complex microbiotas affect host life history traits. We show that soil microbes usually increase the host development rate but decrease host resistance to heat stress, suggesting that interactions with complex microbiotas may mediate a tradeoff between host development and stress resistance. What element in these interactions is responsible for these effects is yet unknown, but experiments with live versus dead bacteria suggest that such effects may depend on bacterially provided signals.
Collapse
Affiliation(s)
- Samuel Slowinski
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
- Department of Biology, 4223 Biology-Psychology Bldg., University of Maryland, College Park, MD 20742, USA
- Correspondence: (S.S.); (M.S.)
| | - Isabella Ramirez
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Vivek Narayan
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Medha Somayaji
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Maya Para
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Sarah Pi
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Niharika Jadeja
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Siavash Karimzadegan
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Barbara Pees
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
| | - Michael Shapira
- Department of Integrative Biology, 3040 Valley Life Sciences Building, University of California, Berkeley, CA 94720-3140, USA; (I.R.); (V.N.); (M.S.); (M.P.); (S.P.); (N.J.); (S.K.); (B.P.)
- Correspondence: (S.S.); (M.S.)
| |
Collapse
|
25
|
Oberpaul M, Zumkeller CM, Culver T, Spohn M, Mihajlovic S, Leis B, Glaeser SP, Plarre R, McMahon DP, Hammann P, Schäberle TF, Glaeser J, Vilcinskas A. High-Throughput Cultivation for the Selective Isolation of Acidobacteria From Termite Nests. Front Microbiol 2020; 11:597628. [PMID: 33240253 PMCID: PMC7677567 DOI: 10.3389/fmicb.2020.597628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
Abstract
Microbial communities in the immediate environment of socialized invertebrates can help to suppress pathogens, in part by synthesizing bioactive natural products. Here we characterized the core microbiomes of three termite species (genus Coptotermes) and their nest material to gain more insight into the diversity of termite-associated bacteria. Sampling a healthy termite colony over time implicated a consolidated and highly stable microbiome, pointing toward the fact that beneficial bacterial phyla play a major role in termite fitness. In contrast, there was a significant shift in the composition of the core microbiome in one nest during a fungal infection, affecting the abundance of well-characterized Streptomyces species (phylum Actinobacteria) as well as less-studied bacterial phyla such as Acidobacteria. High-throughput cultivation in microplates was implemented to isolate and identify these less-studied bacterial phylogenetic group. Amplicon sequencing confirmed that our method maintained the bacterial diversity of the environmental samples, enabling the isolation of novel Acidobacteriaceae and expanding the list of cultivated species to include two strains that may define new species within the genera Terracidiphilus and Acidobacterium.
Collapse
Affiliation(s)
- Markus Oberpaul
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Celine M. Zumkeller
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Tanja Culver
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Marius Spohn
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Sanja Mihajlovic
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Benedikt Leis
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Stefanie P. Glaeser
- Institute of Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Rudy Plarre
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | - Dino P. McMahon
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
- Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Peter Hammann
- Sanofi-Aventis Deutschland GmbH, R&D Integrated Drug Discovery, Hoechst Industrial Park, Frankfurt am Main, Germany
| | - Till F. Schäberle
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | - Jens Glaeser
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
26
|
Ruuskanen S, Rainio MJ, Gómez-Gallego C, Selenius O, Salminen S, Collado MC, Saikkonen K, Saloniemi I, Helander M. Glyphosate-based herbicides influence antioxidants, reproductive hormones and gut microbiome but not reproduction: A long-term experiment in an avian model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115108. [PMID: 32768925 DOI: 10.1016/j.envpol.2020.115108] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 05/27/2023]
Abstract
Controversial glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. GBH residues in the wild, in animal and human food may expose non-target organisms to health risks, yet the developmental and cumulative effects of GBHs on physiology and reproduction remain poorly understood. We present the first long-term study on the effects of subtoxic GBH exposure (160 mg/kg) on multiple key physiological biomarkers (cellular oxidative status and neurotransmitters), gut microbiome, reproductive hormones, and reproduction in an avian model. We experimentally exposed in Japanese quail females and males (Coturnix japonica) to GBHs and respective controls from the age of 10 days-52 weeks. GBH exposure decreased hepatic activity of an intracellular antioxidant enzyme (catalase), independent of sex, but did not influence other intracellular oxidative stress biomarkers or neurotransmitter enzyme (acetylcholinesterase). GBH exposure altered overall gut microbiome composition, especially at a younger age and in females, and suppressed potentially beneficial microbes at an early age. Many of the microbial groups increased in frequency from 12 to 28 weeks under GBH exposure. GBH exposure decreased male testosterone levels both at sexual maturity and at 52 weeks of exposure, but did not clearly influence reproduction in either sex (maturation, testis size or egg production). Future studies are needed to characterize the effects on reproductive physiology in more detail. Our results suggest that cumulative GBH exposure may influence health and reproduction-related traits, which is important in predicting their effects on wild populations and global poultry industry.
Collapse
Affiliation(s)
| | | | - Carlos Gómez-Gallego
- University of Eastern Finland, Finland; Functional Foods Forum, University of Turku, Finland
| | - Otto Selenius
- Department of Biology, University of Turku, Finland; Functional Foods Forum, University of Turku, Finland
| | | | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | | | | | | |
Collapse
|
27
|
Turjeman S, Corl A, Wolfenden A, Tsalyuk M, Lublin A, Choi O, Kamath PL, Getz WM, Bowie RCK, Nathan R. Migration, pathogens and the avian microbiome: A comparative study in sympatric migrants and residents. Mol Ecol 2020; 29:4706-4720. [PMID: 33001530 DOI: 10.1111/mec.15660] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Animals generally benefit from their gastrointestinal microbiome, but the factors that influence the composition and dynamics of their microbiota remain poorly understood. Studies of nonmodel host species can illuminate how microbiota and their hosts interact in natural environments. We investigated the role of migratory behaviour in shaping the gut microbiota of free-ranging barn swallows (Hirundo rustica) by studying co-occurring migrant and resident subspecies sampled during the autumn migration at a migratory bottleneck. We found that within-host microbial richness (α-diversity) was similar between migrant and resident microbial communities. In contrast, we found that microbial communities (β-diversity) were significantly different between groups regarding both microbes present and their relative abundances. Compositional differences were found for 36 bacterial genera, with 27 exhibiting greater abundance in migrants and nine exhibiting greater abundance in residents. There was heightened abundance of Mycoplasma spp. and Corynebacterium spp. in migrants, a pattern shared by other studies of migratory species. Screens for key regional pathogens revealed that neither residents nor migrants carried avian influenza viruses and Newcastle disease virus, suggesting that the status of these diseases did not underlie observed differences in microbiome composition. Furthermore, the prevalence and abundance of Salmonella spp., as determined from microbiome data and cultural assays, were both low and similar across the groups. Overall, our results indicate that microbial composition differs between migratory and resident barn swallows, even when they are conspecific and sympatrically occurring. Differences in host origins (breeding sites) may result in microbial community divergence, and varied behaviours throughout the annual cycle (e.g., migration) could further differentiate compositional structure as it relates to functional needs.
Collapse
Affiliation(s)
- Sondra Turjeman
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ammon Corl
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Wolfenden
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miriam Tsalyuk
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Lublin
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Olivia Choi
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME, USA
| | - Wayne M Getz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.,School Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, USA.,Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Duplouy A, Minard G, Saastamoinen M. The gut bacterial community affects immunity but not metabolism in a specialist herbivorous butterfly. Ecol Evol 2020; 10:8755-8769. [PMID: 32884655 PMCID: PMC7452788 DOI: 10.1002/ece3.6573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Plant tissues often lack essential nutritive elements and may contain a range of secondary toxic compounds. As nutritional imbalance in food intake may affect the performances of herbivores, the latter have evolved a variety of physiological mechanisms to cope with the challenges of digesting their plant-based diet. Some of these strategies involve living in association with symbiotic microbes that promote the digestion and detoxification of plant compounds or supply their host with essential nutrients missing from the plant diet. In Lepidoptera, a growing body of evidence has, however, recently challenged the idea that herbivores are nutritionally dependent on their gut microbial community. It is suggested that many of the herbivorous Lepidopteran species may not host a resident microbial community, but rather a transient one, acquired from their environment and diet. Studies directly testing these hypotheses are however scarce and come from an even more limited number of species.By coupling comparative metabarcoding, immune gene expression, and metabolomics analyses with experimental manipulation of the gut microbial community of prediapause larvae of the Glanville fritillary butterfly (Melitaea cinxia, L.), we tested whether the gut microbial community supports early larval growth and survival, or modulates metabolism or immunity during early stages of development.We successfully altered this microbiota through antibiotic treatments and consecutively restored it through fecal transplants from conspecifics. Our study suggests that although the microbiota is involved in the up-regulation of an antimicrobial peptide, it did not affect the life history traits or the metabolism of early instars larvae.This study confirms the poor impact of the microbiota on diverse life history traits of yet another Lepidoptera species. However, it also suggests that potential eco-evolutionary host-symbiont strategies that take place in the gut of herbivorous butterfly hosts might have been disregarded, particularly how the microbiota may affect the host immune system homeostasis.
Collapse
Affiliation(s)
- Anne Duplouy
- Department of Biology, Biodiversity UnitLund UniversityLundSweden
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
| | - Guillaume Minard
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
- Laboratory of Microbial EcologyUMR CNRS 5557UMR INRA 1418University Claude Bernard Lyon 1VilleurbanneFrance
| | - Marjo Saastamoinen
- Research Centre for Ecological changes, Organismal and Evolutionary Biology Research ProgramFaculty of Environmental and Biological SciencesUniversity of HelsinkiHelsinkiFinland
- Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
29
|
Jahnes BC, Sabree ZL. Nutritional symbiosis and ecology of host-gut microbe systems in the Blattodea. CURRENT OPINION IN INSECT SCIENCE 2020; 39:35-41. [PMID: 32109859 DOI: 10.1016/j.cois.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/31/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Cockroaches and termites (Order: Blattodea) have been the subject of substantial research attention for over a century due, in part, to a subset of them having a strong propensity to cohabitate with humans and their structures. Recent research has led to numerous insights into their behavior, physiology, and ecology, as well as their ability to harbor taxonomically diverse microbial communities within their digestive systems, which include taxa that contribute to host growth and development. Further, recent investigations into the physiological and behavioral adaptations that enable recalcitrant polysaccharide digestion and the maintenance of microbial symbionts in cockroaches and termites suggests that symbionts contribute significantly to nutrient provisioning and processing.
Collapse
Affiliation(s)
- Benjamin C Jahnes
- Department of Microbiology, Ohio State University, 105 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Zakee L Sabree
- Department of Microbiology, Ohio State University, 105 Biological Sciences Building, 484 W. 12th Avenue, Columbus, OH, 43210, USA; Department of Evolution, Ecology and Organismal Biology, Ohio State University, 300 Aronoff Laboratory, 318 W. 12th Avenue, Columbus OH, 43210, USA.
| |
Collapse
|
30
|
Abstract
Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members. Bumble bees are important pollinators in natural and agricultural ecosystems. Their social colonies are founded by individual queens, which, as the predominant reproductive females of colonies, contribute to colony function through worker production and fitness through male and new queen production. Therefore, queen health is paramount, but even though there has been an increasing emphasis on the role of gut microbiota for animal health, there is limited information on the gut microbial dynamics of bumble bee queens. Employing 16S rRNA amplicon sequencing and quantitative PCR, we investigate how the adult life stage and physiological state influence a queen’s gut bacterial community diversity and composition in unmated, mated, and ovipositing queens of Bombus lantschouensis. We found significant shifts in total gut microbe abundance and microbiota composition across queen states. There are specific compositional signatures associated with different stages, with unmated and ovipositing queens showing the greatest similarity in composition and mated queens being distinct. The bacterial genera Gilliamella, Snodgrassella, and Lactobacillus were relatively dominant in unmated and ovipositing queens, with Bifidobacterium dominant in ovipositing queens only. Bacillus, Lactococcus, and Pseudomonas increased following queen mating. Intriguingly, however, further analysis of unmated queens matching the mated queens in age showed that changes are independent of the act of mating. Our study is the first to explore the gut microbiome of bumble bee queens across key life stages from adult eclosion to egg laying and provides useful information for future studies of the function of gut bacteria in queen development and colony performance. IMPORTANCE Bumble bee queens undergo a number of biological changes as they transition through adult emergence, mating, overwintering, foraging, and colony initiation including egg laying. Therefore, they represent an important system to understand the link between physiological, behavioral, and environmental changes and host-associated microbiota. It is plausible that the bumble bee queen gut bacteria play a role in shaping the ability of the queen to survive environmental extremes and reproduce, due to long-established coevolutionary relationships between the host and microbiome members.
Collapse
|
31
|
Segers FHID, Kaltenpoth M, Foitzik S. Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecol Evol 2019; 9:13450-13467. [PMID: 31871657 PMCID: PMC6912891 DOI: 10.1002/ece3.5801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high-throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long-term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.
Collapse
Affiliation(s)
- Francisca H. I. D. Segers
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)FrankfurtGermany
- Behavioural Ecology and Social EvolutionInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
- Present address:
Applied Bioinformatics GroupInstitute of Cell Biology & NeuroscienceGoethe UniversityFrankfurtGermany
| | - Martin Kaltenpoth
- Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| | - Susanne Foitzik
- Evolutionary EcologyInstitute of Organismic and Molecular EvolutionJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
32
|
McDonald RC, Watts JEM, Schreier HJ. Effect of Diet on the Enteric Microbiome of the Wood-Eating Catfish Panaque nigrolineatus. Front Microbiol 2019; 10:2687. [PMID: 31849863 PMCID: PMC6895002 DOI: 10.3389/fmicb.2019.02687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Wood is consistently found in high levels in the gastrointestinal tract of the Amazonian catfish Panaque nigrolineatus, which, depending on environmental conditions, can switch between xylivorous and detritivorous dietary strategies. This is highly unusual among primary wood consumers and provides a unique system to examine the effect of dietary change in a xylivorous system. In this study, microbiome and predictive metagenomic analyses were performed for P. nigrolineatus fed either wood alone or a less refractory mixed diet containing wood and plant nutrition. While diet had an impact on enteric bacterial community composition, there was a high degree of interindividual variability. Members of the Proteobacteria and Planctomycetes were ubiquitous and dominated most communities; Bacteroidetes, Fusobacteria, Actinobacteria, and Verrucomicrobia also contributed in a tissue and diet-specific manner. Although predictive metagenomics revealed functional differences between communities, the relative abundance of predicted lignocellulose-active enzymes remained similar across diets. The microbiomes from both diets appeared highly adapted for hemicellulose hydrolysis as the predicted metagenomes contained several classes of hemicellulases and lignin-modifying enzymes. Enteric communities from both diets appeared to lack the necessary cellobiohydrolases for efficient cellulose hydrolysis, suggesting that cellobiose is not the primary source of dietary carbon for the fish. Our findings suggest that the P. nigrolineatus gut environment selects for an enteric community based on function, rather than a vertically transferred symbiotic relationship. This functional selection strategy may provide an advantage to an organism that switches between dietary strategies to survive a highly variable environment.
Collapse
Affiliation(s)
- Ryan C. McDonald
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Joy E. M. Watts
- Department of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Harold J. Schreier
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, United States
- Department of Marine Biotechnology, University of Maryland, Baltimore County, Baltimore, MD, United States
| |
Collapse
|
33
|
Guégan M, Minard G, Tran FH, Tran Van V, Dubost A, Valiente Moro C. Short-term impacts of anthropogenic stressors on Aedes albopictus mosquito vector microbiota. FEMS Microbiol Ecol 2019; 94:5101426. [PMID: 30239661 DOI: 10.1093/femsec/fiy188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022] Open
Abstract
Recent studies have highlighted the potential role of microbiota in the biology of the Aedes albopictus mosquito vector. This species is highly anthropogenic and exhibits marked ecological plasticity, with a resulting high potential to colonize a wide range of habitats-including anthropized areas-under various climatic conditions. We put forward the hypothesis that climate and anthropogenic activities, such as the use of antibiotics in agriculture and human medicine, might affect the mosquito-associated bacterial community. We thus studied the additive impact of a temperature decrease and antibiotic ingestion on the temporal dynamics of Ae. albopictus survival and its associated bacterial communities. The results showed no effects of disturbances on mosquito survival. However, short-term temperature impacts on bacterial diversity were observed, while both the community structure and bacterial diversity were affected by early antibiotic ingestion. The genera Elizabethkingia, Chryseobacterium and Wolbachia, as well as an unclassified member of the Bacteroidales order were particularly affected. Antibiotics negatively impacted Elizabethkingia abundance, while Chryseobacterium was completely eliminated following both disturbances, to the benefit of Wolbachia and the unclassified Bacteroidales species. These results generated fresh insight into the effects of climate and anthropogenic activities such as the use of antibiotics on mosquito microbiota.
Collapse
Affiliation(s)
- Morgane Guégan
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Guillaume Minard
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Florence-Hélène Tran
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Van Tran Van
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Audrey Dubost
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| | - Claire Valiente Moro
- Université de Lyon, Ecologie microbienne, UMR CNRS 5557, UMR INRA 1418, VetAgro Sup, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
34
|
Hale VL, Tan CL, Niu K, Yang Y, Zhang Q, Knight R, Amato KR. Gut microbiota in wild and captive Guizhou snub-nosed monkeys, Rhinopithecus brelichi. Am J Primatol 2019; 81:e22989. [PMID: 31106872 DOI: 10.1002/ajp.22989] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/14/2019] [Accepted: 04/21/2019] [Indexed: 12/30/2022]
Abstract
Many colobine species-including the endangered Guizhou snub-nosed monkey (Rhinopithecus brelichi) are difficult to maintain in captivity and frequently exhibit gastrointestinal (GI) problems. GI problems are commonly linked to alterations in the gut microbiota, which lead us to examine the gut microbial communities of wild and captive R. brelichi. We used high-throughput sequencing of the 16S rRNA gene to compare the gut microbiota of wild (N = 7) and captive (N = 8) R. brelichi. Wild monkeys exhibited increased gut microbial diversity based on the Chao1 but not Shannon diversity metric and greater relative abundances of bacteria in the Lachnospiraceae and Ruminococcaceae families. Microbes in these families digest complex plant materials and produce butyrate, a short chain fatty acid critical to colonocyte health. Captive monkeys had greater relative abundances of Prevotella and Bacteroides species, which degrade simple sugars and carbohydrates, like those present in fruits and cornmeal, two staples of the captive R. brelichi diet. Captive monkeys also had a greater abundance of Akkermansia species, a microbe that can thrive in the face of host malnutrition. Taken together, these findings suggest that poor health in captive R. brelichi may be linked to diet and an altered gut microbiota.
Collapse
Affiliation(s)
- Vanessa L Hale
- Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Chia L Tan
- LVDI International, San Marcos, California.,Nonhuman Primate Conservation and Research Institute, Tongren University, Tongren, Guizhou, China
| | - Kefeng Niu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Yeqin Yang
- Nonhuman Primate Conservation and Research Institute, Tongren University, Tongren, Guizhou, China
| | - Qikun Zhang
- Hangzhou KaiTai Biotechnology Co., Ltd, Hangzhou, China
| | - Rob Knight
- Pediatrics, University of California San Diego, La Jolla, California.,Computer Science and Engineering, University of California San Diego, La Jolla, California
| | | |
Collapse
|
35
|
Ravenscraft A, Kish N, Peay K, Boggs C. No evidence that gut microbiota impose a net cost on their butterfly host. Mol Ecol 2019; 28:2100-2117. [PMID: 30803091 PMCID: PMC6525022 DOI: 10.1111/mec.15057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Abstract
Gut microbes are believed to play a critical role in most animal life, yet fitness effects and cost–benefit trade‐offs incurred by the host are poorly understood. Unlike most hosts studied to date, butterflies largely acquire their nutrients from larval feeding, leaving relatively little opportunity for nutritive contributions by the adult's microbiota. This provides an opportunity to measure whether hosting gut microbiota comes at a net nutritional price. Because host and bacteria may compete for sugars, we hypothesized that gut flora would be nutritionally neutral to adult butterflies with plentiful food, but detrimental to semistarved hosts, especially when at high density. We held field‐caught adult Speyeria mormonia under abundant or restricted food conditions. Because antibiotic treatments did not generate consistent variation in their gut microbiota, we used interindividual variability in bacterial loads and operational taxonomic unit abundances to examine correlations between host fitness and the abdominal microbiota present upon natural death. We detected strikingly few relationships between microbial flora and host fitness. Neither total bacterial load nor the abundances of dominant bacterial taxa were related to butterfly fecundity, egg mass or egg chemical content. Increased abundance of a Commensalibacter species did correlate with longer host life span, while increased abundance of a Rhodococcus species correlated with shorter life span. Contrary to our expectations, these relationships were unchanged by food availability to the host and were unrelated to reproductive output. Our results suggest the butterfly microbiota comprises parasitic, commensal and beneficial taxa that together do not impose a net reproductive cost, even under caloric stress.
Collapse
Affiliation(s)
- Alison Ravenscraft
- Department of Biology, Stanford University, Stanford, California.,Rocky Mountain Biological Laboratory, Crested Butte, Colorado
| | - Nicole Kish
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,Department of Biological Sciences, University of South Carolina, Columbia, South Carolina
| | - Kabir Peay
- Department of Biology, Stanford University, Stanford, California
| | - Carol Boggs
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,Department of Biological Sciences, University of South Carolina, Columbia, South Carolina.,School of the Earth, Ocean & Environment, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
36
|
Potentials of termite mound soil bacteria in ecosystem engineering for sustainable agriculture. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-1439-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
37
|
Mathew S, Smatti MK, Al Ansari K, Nasrallah GK, Al Thani AA, Yassine HM. Mixed Viral-Bacterial Infections and Their Effects on Gut Microbiota and Clinical Illnesses in Children. Sci Rep 2019; 9:865. [PMID: 30696865 PMCID: PMC6351549 DOI: 10.1038/s41598-018-37162-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
Acute gastroenteritis remains a major cause of morbidity and mortality among young children worldwide. It accounts for approximately 1.34 million deaths annually in children younger than five years. Infection can be caused by viral, bacterial and/or parasitic microorganisms. Dysbiosis due to such infections could dramatically affect disease prognosis as well as development of chronic illness. The aim of this study was to analyze gut microbiome and clinical outcomes in young children suffering from viral or mixed viral-bacterial infection. We evaluated gut microbiota composition in children suffering from viral or mixed viral-bacterial infection with two major viruses rotavirus (RV) and norovirus (NoV) and two pathogenic bacteria [Enteroaggregative E. coli (EAEC), and Enteropathogenic E. coli (EPEC)]. We sequenced 16S ribosomal RNA (V4 region) genes using Illumina MiSeq in 70 hospitalized children suffering from gastroenteric infections plus nine healthy controls. The study summarized Operational Taxonomic Unit (OTU) abundances with the Bray-Curtis index and performed a non-metric multidimensional scaling analysis to visualize microbiome similarities. We used a permutational multivariate analyses of variance to test the significance of group differences. We also analyzed the correlation between microbiome changes and clinical outcomes. Our data demonstrated a significant increase in the severity score in children with viral-bacterial mixed infections compared to those with virus infections alone. Statistical analysis by overall relative abundance denoted lesser proportions of Bacteroides in the infected children, whereas Bifidobacteriaceae richness was more prominent in the bacterial-viral mixed infections. Pairwise differences of gut microbiota were significantly higher in RV + EAEC (P = 0.009) and NoV + EAEC (P = 0.009) co-infections, compared to EPEC mixed infection with both, RV (P = 0.045) and NoV (P = 0.188). Shannon diversity index showed considerable more variation in microbiome diversity in children infected with RV cohort compared to NoV cohort. Our results highlight that richness of Bifidobacteriaceae, which acts as probiotics, increased with the severity of the viral-bacterial mixed infections. As expected, significant reduction of relative numbers of Bacteroides was characterized in both RV and NoV infections, with more reduction observed in co-infection pathogenic E. coli. Although mixed infection with EAEC resulted in significant microbiota differences compared to viral infection only or mixed infection with EPEC, the clinical condition of the children were worsened with both pathogenic E.coli co-infections. Further, in comparison with RV cohort, augmented number of differential abundant pathogenic OTUs were peculiarly noticed only with NoV mixed infection.
Collapse
Affiliation(s)
- Shilu Mathew
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Khalid Al Ansari
- Pediatric Emergency Center, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.,Department of Biomedical Science, College of Health Science, Qatar University, Doha, 2713, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.,Department of Biomedical Science, College of Health Science, Qatar University, Doha, 2713, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar. .,Department of Biomedical Science, College of Health Science, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
38
|
Gut microbiota dynamics and functionality in Reticulitermes grassei after a 7-day dietary shift and ciprofloxacin treatment. PLoS One 2018; 13:e0209789. [PMID: 30590374 PMCID: PMC6307977 DOI: 10.1371/journal.pone.0209789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Gut microbial structure in animals depends on the host, dietary habits and local environment. A random event, dietary change or antibiotic treatment may alter the gut environment with possible repercussions for the bacterial community composition and functionality and ultimately host fitness. The present study was focused on the composition, structure and functionality of gut microbiota in Reticulitermes grassei and the data obtained was compared with sequence surveys of three other Reticulitermes species. Each Reticulitermes species had a significantly different bacterial gut microbiota (pairwise significance tests using the Kolmogorov-Smirnov test), but a similar pattern of distribution (P-test in weighted Unifrac). The core gut microbiota from the analyzed Reticulitermes species contained 16 bacterial operational taxonomic units. Enzymes (KO) were detected from 14 pathways related to carbohydrate metabolism. R. grassei and R. hesperus, based on relative abundance of KO, had the most similar carbohydrate pathway patterns. In addition, we described the gut microbiota and functionality pathways in R. grassei after a 7-day dietary shift and antibiotic (ciprofloxacin) treatment. Both factors, but above all the antibiotic, altered the relative abundance of certain microbial groups, although the changes were not statistically significant (P-test in weighted Unifrac). The cellulose diet enhanced the carbohydrate pathways related to propanoate, butanoate, ascorbate, and glyoxylate metabolism. The antibiotic treatment affected galactose metabolism, the citrate cycle and inositol phosphate metabolism. Those functional changes may be related to changes in the abundance of several bacterial groups. Our findings provide insights into the stability of the gut microbiota in R. grassei and a resilience response to dietary shift or antibiotic treatment disturbance after 7 days.
Collapse
|
39
|
Phalnikar K, Kunte K, Agashe D. Dietary and developmental shifts in butterfly-associated bacterial communities. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171559. [PMID: 29892359 PMCID: PMC5990769 DOI: 10.1098/rsos.171559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Bacterial communities associated with insects can substantially influence host ecology, evolution and behaviour. Host diet is a key factor that shapes bacterial communities, but the impact of dietary transitions across insect development is poorly understood. We analysed bacterial communities of 12 butterfly species across different developmental stages, using amplicon sequencing of the 16S rRNA gene. Butterfly larvae typically consume leaves of a single host plant, whereas adults are more generalist nectar feeders. Thus, we expected bacterial communities to vary substantially across butterfly development. Surprisingly, only few species showed significant dietary and developmental transitions in bacterial communities, suggesting weak impacts of dietary transitions across butterfly development. On the other hand, bacterial communities were strongly influenced by butterfly species and family identity, potentially due to dietary and physiological variation across the host phylogeny. Larvae of most butterfly species largely mirrored bacterial community composition of their diets, suggesting passive acquisition rather than active selection. Overall, our results suggest that although butterflies harbour distinct microbiomes across taxonomic groups and dietary guilds, the dramatic dietary shifts that occur during development do not impose strong selection to maintain distinct bacterial communities across all butterfly hosts.
Collapse
Affiliation(s)
| | | | - Deepa Agashe
- Authors for correspondence: Deepa Agashe e-mail:
| |
Collapse
|
40
|
Rosenberg E, Zilber-Rosenberg I. The hologenome concept of evolution after 10 years. MICROBIOME 2018; 6:78. [PMID: 29695294 PMCID: PMC5922317 DOI: 10.1186/s40168-018-0457-9] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/05/2018] [Indexed: 05/11/2023]
Abstract
The holobiont (host with its endocellular and extracellular microbiome) can function as a distinct biological entity, an additional organismal level to the ones previously considered, on which natural selection operates. The holobiont can function as a whole: anatomically, metabolically, immunologically, developmentally, and during evolution. Consideration of the holobiont with its hologenome as an independent level of selection in evolution has led to a better understanding of underappreciated modes of genetic variation and evolution. The hologenome is comprised of two complimentary parts: host and microbiome genomes. Changes in either genome can result in variations that can be selected for or against. The host genome is highly conserved, and genetic changes within it occur slowly, whereas the microbiome genome is dynamic and can change rapidly in response to the environment by increasing or reducing particular microbes, by acquisition of novel microbes, by horizontal gene transfer, and by mutation. Recent experiments showing that microbiota can play an initial role in speciation have been suggested as an additional mode of enhancing evolution. Some of the genetic variations can be transferred to offspring by a variety of mechanisms. Strain-specific DNA analysis has shown that at least some of the microbiota can be maintained across hundreds of thousands of host generations, implying the existence of a microbial core. We argue that rapid changes in the microbiome genome could allow holobionts to adapt and survive under changing environmental conditions thus providing the time necessary for the host genome to adapt and evolve. As Darwin wrote, "It is not the strongest of the species that survives but the most adaptable".
Collapse
Affiliation(s)
- Eugene Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Ilana Zilber-Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
41
|
Callens M, Watanabe H, Kato Y, Miura J, Decaestecker E. Microbiota inoculum composition affects holobiont assembly and host growth in Daphnia. MICROBIOME 2018; 6:56. [PMID: 29566771 PMCID: PMC5863831 DOI: 10.1186/s40168-018-0444-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/13/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Host-associated microbiota is often acquired by horizontal transmission of microbes present in the environment. It is hypothesized that differences in the environmental pool of colonizers can influence microbiota community assembly on the host and as such affect holobiont composition and host fitness. To investigate this hypothesis, the host-associated microbiota of the invertebrate eco(toxico)logical model Daphnia was experimentally disturbed using different concentrations of the antibiotic oxytetracycline. The community assembly and host-microbiota interactions when Daphnia were colonized by the disturbed microbiota were investigated by inoculating germ-free individuals with the microbiota. RESULTS Antibiotic-induced disturbance of the microbiota had a strong effect on the subsequent colonization of Daphnia by affecting ecological interactions between members of the microbiota. This resulted in differences in community assembly which, in turn, affected Daphnia growth. CONCLUSIONS These results show that the composition of the pool of colonizing microbiota can be an important structuring factor of the microbiota assembly on Daphnia, affecting holobiont composition and host growth. These findings contribute to a better understanding of how the microbial environment can shape the holobiont composition and affect host-microbiota interactions.
Collapse
Affiliation(s)
- Martijn Callens
- Aquatic Biology, Science and Technology, IRF Life Sciences, KU Leuven, Campus Kortrijk, E. Sabbelaan 53, 8500, Kortrijk, Belgium
- Centre d'Ecologie Fonctionelle Evolutive, CNRS Montpellier, UMR 5175, 1919 route de Mende, 34293, Montpellier CEDEX 5, France
| | - Hajime Watanabe
- Bioenvironmental Science, Osaka University, Yamadaoka, Suita, Osaka, 565 0871, Japan
| | - Yasuhiko Kato
- Bioenvironmental Science, Osaka University, Yamadaoka, Suita, Osaka, 565 0871, Japan
| | - Jun Miura
- Bioenvironmental Science, Osaka University, Yamadaoka, Suita, Osaka, 565 0871, Japan
| | - Ellen Decaestecker
- Aquatic Biology, Science and Technology, IRF Life Sciences, KU Leuven, Campus Kortrijk, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
42
|
Rosas T, García-Ferris C, Domínguez-Santos R, Llop P, Latorre A, Moya A. Rifampicin treatment of Blattella germanica evidences a fecal transmission route of their gut microbiota. FEMS Microbiol Ecol 2018; 94:4794938. [DOI: 10.1093/femsec/fiy002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/08/2018] [Indexed: 02/04/2023] Open
|
43
|
Tikhe CV, Husseneder C. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community. Front Microbiol 2018; 8:2548. [PMID: 29354098 PMCID: PMC5759034 DOI: 10.3389/fmicb.2017.02548] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/08/2017] [Indexed: 12/25/2022] Open
Abstract
The Formosan subterranean termite; Coptotermes formosanus is nutritionally dependent on the complex and diverse community of bacteria and protozoa in their gut. Although, there have been many studies to decipher the taxonomic and functional diversity of bacterial communities in the guts of termites, their bacteriophages remain unstudied. We sequenced the metavirome of the guts of Formosan subterranean termite workers to study the diversity of bacteriophages and other associated viruses. Results showed that the termites harbor a virome in their gut comprised of varied and previously unknown bacteriophages. Between 87-90% of the predicted dsDNA virus genes by Metavir showed similarity to the tailed bacteriophages (Caudovirales). Many predicted genes from the virome matched to bacterial prophage regions. These data are suggestive of a virome dominated by temperate bacteriophages. We predicted the genomes of seven novel Caudovirales bacteriophages from the termite gut. Three of these predicted bacteriophage genomes were found in high proportions in all the three termite colonies tested. Two bacteriophages are predicted to infect endosymbiotic bacteria of the gut protozoa. The presence of these putative bacteriophages infecting endosymbionts of the gut protozoa, suggests a quadripartite relationship between the termites their symbiotic protozoa, endosymbiotic bacteria of the protozoa and their bacteriophages. Other than Caudovirales, ss-DNA virus related genes were also present in the termite gut. We predicted the genomes of 12 novel Microviridae phages from the termite gut and seven of those possibly represent a new proposed subfamily. Circovirus like genomes were also assembled from the termite gut at lower relative abundance. We predicted 10 novel circovirus genomes in this study. Whether these circoviruses infect the termites remains elusive at the moment. The functional and taxonomical annotations suggest that the termites may harbor a core virome comprised of the bacteriophages infecting endosymbionts of the gut protozoa.
Collapse
Affiliation(s)
- Chinmay V Tikhe
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| |
Collapse
|
44
|
Raulo A, Ruokolainen L, Lane A, Amato K, Knight R, Leigh S, Stumpf R, White B, Nelson KE, Baden AL, Tecot SR. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J Anim Ecol 2017; 87:388-399. [PMID: 29205327 DOI: 10.1111/1365-2656.12781] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023]
Abstract
Vertebrate gut microbiota form a key component of immunity and a dynamic link between an individual and the ecosystem. Microbiota might play a role in social systems as well, because microbes are transmitted during social contact and can affect host behaviour. Combining methods from behavioural and molecular research, we describe the relationship between social dynamics and gut microbiota of a group-living cooperative species of primate, the red-bellied lemur (Eulemur rubriventer). Specifically, we ask whether patterns of social contact (group membership, group size, position in social network, individual sociality) are associated with patterns of gut microbial composition (diversity and similarity) between individuals and across time. Red-bellied lemurs were found to have gut microbiota with slight temporal fluctuations and strong social group-specific composition. Contrary to expectations, individual sociality was negatively associated with gut microbial diversity. However, position within the social network predicted gut microbial composition. These results emphasize the role of the social environment in determining the microbiota of adult animals. Since social transmission of gut microbiota has the potential to enhance immunity, microbiota might have played an escalating role in the evolution of sociality.
Collapse
Affiliation(s)
- Aura Raulo
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Helsinki, Finland.,Department of Zoology, University of Oxford, Oxford, UK
| | - Lasse Ruokolainen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Avery Lane
- School of Anthropology, University of Arizona, Tucson, AZ, USA.,Department of Anthropology, Washington State University, Pullman, WA, USA
| | - Katherine Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA.,Department of Anthropology, University of Colorado, Boulder, CO, USA
| | - Rob Knight
- Departments of Pediatrics and Computer Science & Engineering, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Steven Leigh
- Department of Anthropology, University of Colorado, Boulder, CO, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Rebecca Stumpf
- Department of Anthropology, University of Colorado, Boulder, CO, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Bryan White
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.,Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | - Andrea L Baden
- Department of Anthropology, Hunter College of the City University of New York, New York, NY, USA.,Departments of Anthropology & Biology, The Graduate Center of City University of New York, New York, NY, USA.,The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA
| | - Stacey R Tecot
- School of Anthropology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
45
|
Jones JC, Fruciano C, Hildebrand F, Al Toufalilia H, Balfour NJ, Bork P, Engel P, Ratnieks FL, Hughes WO. Gut microbiota composition is associated with environmental landscape in honey bees. Ecol Evol 2017; 8:441-451. [PMID: 29321884 PMCID: PMC5756847 DOI: 10.1002/ece3.3597] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/27/2017] [Accepted: 10/08/2017] [Indexed: 01/07/2023] Open
Abstract
There is growing recognition that the gut microbial community regulates a wide variety of important functions in its animal hosts, including host health. However, the complex interactions between gut microbes and environment are still unclear. Honey bees are ecologically and economically important pollinators that host a core gut microbial community that is thought to be constant across populations. Here, we examined whether the composition of the gut microbial community of honey bees is affected by the environmental landscape the bees are exposed to. We placed honey bee colonies reared under identical conditions in two main landscape types for 6 weeks: either oilseed rape farmland or agricultural farmland distant to fields of flowering oilseed rape. The gut bacterial communities of adult bees from the colonies were then characterized and compared based on amplicon sequencing of the 16S rRNA gene. While previous studies have delineated a characteristic core set of bacteria inhabiting the honey bee gut, our results suggest that the broad environment that bees are exposed to has some influence on the relative abundance of some members of that microbial community. This includes known dominant taxa thought to have functions in nutrition and health. Our results provide evidence for an influence of landscape exposure on honey bee microbial community and highlight the potential effect of exposure to different environmental parameters, such as forage type and neonicotinoid pesticides, on key honey bee gut bacteria. This work emphasizes the complexity of the relationship between the host, its gut bacteria, and the environment and identifies target microbial taxa for functional analyses.
Collapse
Affiliation(s)
- Julia C Jones
- School of Life Sciences University of Sussex Brighton UK
| | - Carmelo Fruciano
- School of Earth Environment and Biological Sciences Queensland University of Technology Brisbane QLD Australia
| | - Falk Hildebrand
- European Molecular Biology Laboratory, Structural and Computational Biology Unit Heidelberg Germany
| | | | | | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit Heidelberg Germany.,Max Delbrück Centre for Molecular Medicine Berlin Germany.,Department of Bioinformatics University of Würzburg Würzburg Germany
| | - Philipp Engel
- Department of Fundamental Microbiology University of Lausanne Lausanne Switzerland
| | | | | |
Collapse
|
46
|
Bacteria encountered in raw insect, spider, scorpion, and centipede taxa including edible species, and their significance from the food hygiene point of view. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Chen SY, Tsai CN, Lee YS, Lin CY, Huang KY, Chao HC, Lai MW, Chiu CH. Intestinal microbiome in children with severe and complicated acute viral gastroenteritis. Sci Rep 2017; 7:46130. [PMID: 28397879 PMCID: PMC5387401 DOI: 10.1038/srep46130] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to evaluate the microbiota of children with severe or complicated acute viral gastroenteritis (AGE). To that end, next-generation sequencing (NGS) technology was used to sequence the 16S ribosomal RNA (16S rRNA) gene in 20 hospitalized pediatric patients with severe or complicated AGE and a further 20 otherwise healthy children; the fecal microbiome was then assessed. Comparative metagenomics data were analyzed by a Wilcoxon rank–sum test and hierarchical clustering analysis of bacterial reads. The statistical analyses showed a significantly decreased Shannon diversity index (entropy score) of the intestinal microbiota in patients with severe AGE compared with normal controls (P = 0.017) and patients with mild-to-moderate AGE (P = 0.011). The intestinal microbiota score of the 5 patients with rotavirus AGE was significantly lower than that of those with norovirus infection (P = 0.048). Greater richness in Campylobacteraceae (P = 0.0003), Neisseriaceae (P = 0.0115), Methylobacteriaceae (P = 0.0004), Sphingomonadaceae (P = 0.0221), and Enterobacteriaceae (P = 0.0451) was found in patients with complicated AGE compared with normal controls. The data suggest a significant reduction in intestinal microbial diversity in patients with severe AGE, particularly those with rotavirus infection.
Collapse
Affiliation(s)
- Shih-Yen Chen
- Division of Pediatric Gastroenterology, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chi-Neu Tsai
- Division of Pediatric Gastroenterology, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Min-Chuan University, Taoyuan, Taiwan
| | - Chun-Yuan Lin
- Department of Computer Science and Information Engineering, Chang Gung University College of Engineering, Taoyuan, Taiwan
| | - Kuan-Yeh Huang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsun-Ching Chao
- Division of Pediatric Gastroenterology, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ming-Wei Lai
- Division of Pediatric Gastroenterology, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
48
|
Macke E, Tasiemski A, Massol F, Callens M, Decaestecker E. Life history and eco-evolutionary dynamics in light of the gut microbiota. OIKOS 2017. [DOI: 10.1111/oik.03900] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emilie Macke
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | | | - François Massol
- Univ. Lille; CNRS UMR 8198 Evo-Eco-Paleo SPICI group Lille France
| | - Martijn Callens
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| | - Ellen Decaestecker
- Laboratory Aquatic Biology, KU Leuven (Kulak), Dept of Biology; E. Sabbelaan 53, BE-8500 Kortrijk Belgium
| |
Collapse
|
49
|
Effects of field conditions on fecal microbiota. J Microbiol Methods 2016; 130:180-188. [DOI: 10.1016/j.mimet.2016.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
|
50
|
Amato KR. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 159:S196-215. [PMID: 26808106 DOI: 10.1002/ajpa.22908] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research.
Collapse
|