1
|
Neetu, Ramya TNC. A comparative study of the efficacy of alginate lyases in the presence of metal ions elevated in the cystic fibrosis lung milieu. Biochem Biophys Rep 2024; 40:101821. [PMID: 39286289 PMCID: PMC11404220 DOI: 10.1016/j.bbrep.2024.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Pseudomonas aeruginosa, a common cause of morbidity in cystic fibrosis, chronically infects the patient's lungs by forming an alginate-containing biofilm. Alginate lyases are polysaccharide lyases that lyse alginate and are, therefore, potential biofilm-disruptive agents. However, cystic fibrosis sputum contains high levels of metals such as iron and zinc. The efficacy of alginate lyases under these conditions of elevated metal concentrations has not been categorically determined. Here, we have assessed the enzyme activity of two exolytic and five endolytic alginate lyases in the presence of metal ions (Fe2+, Zn2+, Mn2+, Mg2+, Ca2+, Ni2+, Cu2+) elevated in the cystic fibrosis lung milieu. Several of these alginate lyases exhibited increased activity in the presence of Ca2+, and the polysaccharide lyase family 7 members studied here exhibited decreased activity in the presence of Zn2+. The enzyme activity of the PL7 alginate lyases from Cellulophaga algicola (CaAly/CaFLDAly) and Vibrio sp. (VspAlyVI) was not affected in the presence of a mix of all the above-mentioned metal ions at the elevated concentrations found in the cystic fibrosis lung milieu. Specific alginate lyases might, therefore, retain the ability to degrade the alginate-containing Pseudomonas biofilm in the presence of metal ions elevated in the cystic fibrosis lung milieu.
Collapse
Affiliation(s)
- Neetu
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
2
|
Tsopanakis V, Anastasiadou E, Mikkelsen MD, Meyer AS, Pavlidis IV. Identification and characterization of a novel thermostable PL7 alginate lyase from a submarine volcanic metagenomic library. Enzyme Microb Technol 2024; 180:110486. [PMID: 39038418 DOI: 10.1016/j.enzmictec.2024.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Seaweed biomass is as an abundant and renewable source of complex polysaccharides, including alginate which has a variety of applications. A sustainable method for exploiting alginate towards the production of valuable oligosaccharides is through enzymatic processing, using alginate lyases. Industrial refinement methods demand robust enzymes. Metagenomic libraries from extreme environments are a new source of unique enzymes with great industrial potential. Herein we report the identification of a new thermostable alginate lyase with only 58 % identity to known sequences, identified by mining a metagenomic library obtained from the hydrothermal vents of the volcano Kolumbo in the Aegean Sea (Kolumbo Alginate Lyase, KAlLy). Sequence analysis and biochemical characterization of KAlLy showed that this new alginate lyase is a Polysaccharide Lyase of family 7 (PL7) enzyme with endo- and exo-action on alginate and poly-mannuronic acid, with high activity at 60°C (56 ± 8 U/mg) and high thermostability (half-life time of 30 h at 50°C). The response surface methodology analysis revealed that the reaction optimum conditions with poly-mannuronic acid as substrate are 44°C, pH of 5.5 with 440 mM NaCl. This novel alginate lyase is a valuable addition to the toolbox of alginate modifying enzymes, due to its diverse sequence and its good thermal stability.
Collapse
Affiliation(s)
- Vasileios Tsopanakis
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion 70013, Greece
| | - Elena Anastasiadou
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion 70013, Greece
| | - Maria D Mikkelsen
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology Section, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion 70013, Greece.
| |
Collapse
|
3
|
Huang JP, Yun ST, Zhao JX, Wang XT, Wang XC, Guo XY, San DM, Zhou YX. The two-step strategy for enhancing the specific activity and thermostability of alginate lyase AlyG2 with mechanism for improved thermostability. Int J Biol Macromol 2024; 273:132685. [PMID: 38823749 DOI: 10.1016/j.ijbiomac.2024.132685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/01/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
To overcome the trade-off challenge encountered in the engineering of alginate lyase AlyG2 from Seonamhaeicola algicola Gy8T and to expand its potential industrial applications, we devised a two-step strategy encompassing activity enhancement followed by thermal stability engineering. To enhance the specific activity of efficient AlyG2, we strategically substituted residues with bulky steric hindrance proximal to the active pocket with glycine or alanine. This led to the generation of three promising positive mutants, with particular emphasis on the T91S mutant, exhibiting a 1.91-fold specific activity compared to the wild type. To mitigate the poor thermal stability of T91S, mutants with negative ΔΔG values in the thermal flexibility region were screened out. Notably, the S72Ya mutant not only displayed 17.96 % further increase in specific activity but also exhibited improved stability compared to T91S, manifesting as a remarkable 30.97 % increase in relative activity following a 1-hour incubation at 42 °C. Furthermore, enhanced kinetic stability was observed. To gain deeper insights into the mechanism underlying the enhanced thermostability of the S72Ya mutant, we conducted molecular dynamics simulations, principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. The results unveiled a reduction in the flexibility of the surface loop, a stronger correlation dynamic and a narrower motion subspace in S72Ya system, along with the formation of more stable hydrogen bonds. Collectively, our findings suggest amino acids substitutions resulting in smaller side chains proximate to the active site can positively impact enzyme activity, while reducing the flexibility of surface loops emerges as a pivotal factor in conferring thermal stability. These insights offer valuable guidance and a framework for the engineering of other enzyme types.
Collapse
Affiliation(s)
- Jin-Ping Huang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shuai-Ting Yun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jin-Xin Zhao
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Xue-Ting Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xiao-Chen Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xiang-Yi Guo
- SDU-ANU joint science college, Shandong University, Weihai, Shandong 264209, China
| | - Dong-Mei San
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai, Shandong 264209, China
| |
Collapse
|
4
|
Chen Y, Ci F, Jiang H, Meng D, Hamouda HI, Liu C, Quan Y, Chen S, Bai X, Zhang Z, Gao X, Balah MA, Mao X. Catalytic properties characterization and degradation mode elucidation of a polyG-specific alginate lyase OUC-FaAly7. Carbohydr Polym 2024; 333:121929. [PMID: 38494211 DOI: 10.1016/j.carbpol.2024.121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Polymerized guluronates (polyG)-specific alginate lyase with lower polymerized mannuronates (polyM)-degrading activity, superior stability, and clear action mode is a powerful biotechnology tool for the preparation of AOSs rich in M blocks. In this study, we expressed and characterized a polyG-specific alginate lyase OUC-FaAly7 from Formosa agariphila KMM3901. OUC-FaAly7 belonging to polysaccharide lyase (PL) family 7 had highest activity (2743.7 ± 20.3 U/μmol) at 45 °C and pH 6.0. Surprisingly, its specific activity against polyG reached 8560.2 ± 76.7 U/μmol, whereas its polyM-degrading activity was nearly 0 within 10 min reaction. Suggesting that OUC-FaAly7 was a strict polyG-specific alginate lyase. Importantly, OUC-FaAly7 showed a wide range of temperature adaptations and remarkable temperature and pH stability. Its relative activity between 20 °C and 45 °C reached >90 % of the maximum activity. The minimum identifiable substrate of OUC-FaAly7 was guluronate tetrasaccharide (G4). Action process and mode showed that it was a novel alginate lyase digesting guluronate hexaose (G6), guluronate heptaose (G7), and polymerized guluronates, with the preferential generation of unsaturated guluronate pentasaccharide (UG5), although which could be further degraded into unsaturated guluronate disaccharide (UG3) and trisaccharide (UG2). This study contributes to illustrating the catalytic properties, substrate recognition, and action mode of novel polyG-specific alginate lyases.
Collapse
Affiliation(s)
- Yimiao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Fangfang Ci
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Weihai Institute for Food and Drug Control, Chuangxin Road 166-6, Torch Hi-tech Science Park, Weihai 264200, China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China.
| | - Di Meng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Yongyi Quan
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Suxue Chen
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Xinxue Bai
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Zhaohui Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Mohamed A Balah
- Plant Protection Department, Desert Research Center, Cairo 11753, Egypt
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China; Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
5
|
Fu Z, Zhang F, Wang H, Tang L, Yu W, Han F. A "Pro-Asp-Thr" Amino Acid Repeat from Vibrio sp. QY108 Alginate Lyase Exhibits Alginate-Binding Capacity and Enhanced Soluble Expression and Thermostability. Int J Mol Sci 2024; 25:5801. [PMID: 38891987 PMCID: PMC11171654 DOI: 10.3390/ijms25115801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Alginate lyases cleave the 1,4-glycosidic bond of alginate by eliminating sugar molecules from its bond. While earlier reported alginate lyases were primarily single catalytic domains, research on multi-module alginate lyases has been lfiguimited. This study identified VsAly7A, a multi-module alginate lyase present in Vibrio sp. QY108, comprising a "Pro-Asp-Thr(PDT)" fragment and two PL-7 catalytic domains (CD I and CD II). The "PDT" fragment enhances the soluble expression level and increases the thermostability and binding affinity to the substrate. Moreover, CD I exhibited greater catalytic efficiency than CD II. The incorporation of PDT-CD I resulted in an increase in the optimal temperature of VsAly7A, whereas CD II displayed a preference for polyG degradation. The multi-domain structure of VsAly7A provides a new idea for the rational design of alginate lyase, whilst the "PDT" fragment may serve as a fusion tag in the soluble expression of recombinant proteins.
Collapse
Affiliation(s)
- Zheng Fu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fengchao Zhang
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hainan Wang
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Luyao Tang
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Feng Han
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
6
|
Dong J, Cui Y, Qu X. Metabolism mechanism of glycosaminoglycans by the gut microbiota: Bacteroides and lactic acid bacteria: A review. Carbohydr Polym 2024; 332:121905. [PMID: 38431412 DOI: 10.1016/j.carbpol.2024.121905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glycosaminoglycans (GAGs), as a class of biopolymers, play pivotal roles in various biological metabolisms such as cell signaling, tissue development, cell apoptosis, immune modulation, and growth factor activity. They are mainly present in the colon in free forms, which are essential for maintaining the host's health by regulating the colonization and proliferation of gut microbiota. Therefore, it is important to explain the specific members of the gut microbiota for GAGs' degradation and their enzymatic machinery in vivo. This review provides an outline of GAGs-utilizing entities in the Bacteroides, highlighting their polysaccharide utilization loci (PULs) and the enzymatic machinery involved in chondroitin sulfate (CS) and heparin (Hep)/heparan sulfate (HS). While there are some variations in GAGs' degradation among different genera, we analyze the reputed GAGs' utilization clusters in lactic acid bacteria (LAB), based on recent studies on GAGs' degradation. The enzymatic machinery involved in Hep/HS and CS metabolism within LAB is also discussed. Thus, to elucidate the precise mechanisms utilizing GAGs by diverse gut microbiota will augment our understanding of their effects on human health and contribute to potential therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Jiahuan Dong
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| |
Collapse
|
7
|
Wang P, Cai Y, Zhong H, Chen R, Yi Y, Ye Y, Li L. Expression and Characterization of an Efficient Alginate Lyase from Psychromonas sp. SP041 through Metagenomics Analysis of Rotten Kelp. Genes (Basel) 2024; 15:598. [PMID: 38790228 PMCID: PMC11121350 DOI: 10.3390/genes15050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Alginate is derived from brown algae, which can be cultivated in large quantities. It can be broken down by alginate lyase into alginate oligosaccharides (AOSs), which exhibit a higher added value and better bioactivity than alginate. In this study, metagenomic technology was used to screen for genes that code for high-efficiency alginate lyases. The candidate alginate lyase gene alg169 was detected from Psychromonas sp. SP041, the most abundant species among alginate lyase bacteria on selected rotten kelps. The alginate lyase Alg169 was heterologously expressed in Escherichia coli BL21 (DE3), Ni-IDA-purified, and characterized. The optimum temperature and pH of Alg169 were 25 °C and 7.0, respectively. Metal ions including Mn2+, Co2+, Ca2+, Mg2+, Ni2+, and Ba2+ led to significantly increased enzyme activity. Alg169 exhibited a pronounced dependence on Na+, and upon treatment with Mn2+, its activity surged by 687.57%, resulting in the highest observed enzyme activity of 117,081 U/mg. Bioinformatic analysis predicted that Alg169 would be a double-domain lyase with a molecular weight of 65.58 kDa. It is a bifunctional enzyme with substrate specificity to polyguluronic acid (polyG) and polymannuronic acid (polyM). These results suggest that Alg169 is a promising candidate for the efficient manufacturing of AOSs from brown seaweed.
Collapse
Affiliation(s)
- Ping Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| | - Yi Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.C.); (R.C.)
| | - Hua Zhong
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Ruiting Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.C.); (R.C.)
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (Y.C.); (R.C.)
| | - Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| |
Collapse
|
8
|
Bian F, Liang XY, Wang M, Sun ZZ, Xie BB. Comparative molecular dynamics simulations provided insights into the mechanisms of cold-adaption of alginate lyases from the PL7 family. Extremophiles 2024; 28:24. [PMID: 38598094 DOI: 10.1007/s00792-024-01340-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Alginate is an important polysaccharide that is abundant in the marine environments, including the Polar Regions, and bacterial alginate lyases play key roles in its degradation. Many reported alginate lyases show characteristics of cold-adapted enzymes, including relatively low temperature optimum of activities (Topt) and low thermal stabilities. However, the cold-adaption mechanisms of alginate lyases remain unclear. Here, we studied the cold-adaptation mechanisms of alginate lyases by comparing four members of the PL7 family from different environments: AlyC3 from the Arctic ocean (Psychromonas sp. C-3), AlyA1 from the temperate ocean (Zobellia galactanivorans), PA1167 from the human pathogen (Pseudomonas aeruginosa PAO1), and AlyQ from the tropic ocean (Persicobacter sp. CCB-QB2). Sequence comparison and comparative molecular dynamics (MD) simulations revealed two main strategies of cold adaptation. First, the Arctic AlyC3 and temperate AlyA1 increased the flexibility of the loops close to the catalytic center by introducing insertions at these loops. Second, the Arctic AlyC3 increased the electrostatic attractions with the negatively charged substrate by introducing a high portion of positively charged lysine at three of the insertions mentioned above. Furthermore, our study also revealed that the root mean square fluctuation (RMSF) increased greatly when the temperature was increased to Topt or higher, suggesting the RMSF increase temperature as a potential indicator of the cold adaptation level of the PL7 family. This study provided new insights into the cold-adaptation mechanisms of bacterial alginate lyases and the marine carbon cycling at low temperatures.
Collapse
Affiliation(s)
- Fei Bian
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Xiao-Yue Liang
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Meng Wang
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhong-Zhi Sun
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Bin-Bin Xie
- Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
9
|
Zhang X, Tang Y, Gao F, Xu X, Chen G, Li Y, Wang L. Low-cost and efficient strategy for brown algal hydrolysis: Combination of alginate lyase and cellulase. BIORESOURCE TECHNOLOGY 2024; 397:130481. [PMID: 38395233 DOI: 10.1016/j.biortech.2024.130481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.
Collapse
Affiliation(s)
- Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongqi Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Feng Gao
- Qingdao Vland Biotech Company Group, Qingdao 266061, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao 266061, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Gu X, Fu L, Wang Z, Cao Z, Zhao L, Seswita-Zilda D, Zhang A, Zhang Q, Li J. A Novel Bifunctional Alginate Lyase and Antioxidant Activity of the Enzymatic Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4116-4126. [PMID: 38372665 DOI: 10.1021/acs.jafc.3c08638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Alginate lyase Aly448, a potential new member of the polysaccharide lyase (PL) 7 family, which was cloned and identified from the macroalgae-associated bacterial metagenomic library, showed bifunctionality. The molecular docking results revealed that Aly448 has two completely different binding sites for alginate (polyMG), poly-α-l-guluronic acid (polyG), and poly-β-d-mannuronic acid (polyM) substrates, respectively, which might be the molecular basis for the enzyme's bifunctionality. Truncational results confirmed that predicted key residues affected the bifunctionality of Aly448, but did not wholly explain. Besides, Aly448 presented excellent biochemical characteristics, such as higher thermal stability and pH tolerance. Degradation of polyMG, polyM, and polyG substrates by Aly448 produced tetrasaccharide (DP4), disaccharide (DP2), and galactose (DP1), which exhibited excellent antioxidant activity. These findings provide novel insights into the substrate recognition mechanism of bifunctional alginate lyases and pave a new path for the exploitation of natural antioxidant agents.
Collapse
Affiliation(s)
- Xiaoqian Gu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Liping Fu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhiyan Wang
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhe Cao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Luying Zhao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Dewi Seswita-Zilda
- Research Center for Deep Sea, Earth Sciences and Maritime Research Organization, National Research and Innovation Agency (BRIN), Jl. Pasir Putih Raya, Pademangan, North Jakarta City, Jakarta 14430, Indonesia
| | - Ao Zhang
- Chemical Engineering Institute, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian Zhang
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jiang Li
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
11
|
Zhang YS, Zhang YQ, Zhao XM, Liu XL, Qin QL, Liu NH, Xu F, Chen XL, Zhang YZ, Li PY. Metagenomic insights into the dynamic degradation of brown algal polysaccharides by kelp-associated microbiota. Appl Environ Microbiol 2024; 90:e0202523. [PMID: 38259074 PMCID: PMC10880675 DOI: 10.1128/aem.02025-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.
Collapse
Affiliation(s)
- Yi-Shuo Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Qi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiang-Ming Zhao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Lei Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ning-Hua Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Joint Research Center for Marine Microbiol Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
- Joint Research Center for Marine Microbiol Science and Technology, Shandong University and Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Cui Y, Yang M, Liu N, Wang S, Sun Y, Sun G, Mou H, Zhou D. Computer-Aided Rational Design Strategy to Improve the Thermal Stability of Alginate Lyase AlyMc. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3055-3065. [PMID: 38298105 DOI: 10.1021/acs.jafc.3c07215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Alginate lyase degrades alginate by the β-elimination mechanism to produce unsaturated alginate oligosaccharides (UAOS), which have better bioactivities than saturated AOS. Enhancing the thermal stability of alginate lyases is crucial for their industrial applications. In this study, a feasible and efficient rational design strategy was proposed by combining the computer-aided ΔΔG value calculation with the B-factor analysis. Two thermal stability-enhanced mutants, Q246V and K249V, were obtained by site-directed mutagenesis. Particularly, the t1/2, 50 °C for mutants Q246V and K249V was increased from 2.36 to 3.85 and 3.65 h, respectively. Remarkably, the specific activities of Q246V and K249V were enhanced to 2.41- and 2.96-fold that of alginate lyase AlyMc, respectively. Structural analysis and molecular dynamics simulations suggested that mutations enhanced the hydrogen bond networks and the overall rigidity of the molecular structure. Notably, mutant Q246V exhibited excellent thermal stability among the PL-7 alginate lyase family, especially considering the heightened enzymatic activity. Moreover, the rational design strategy used in this study can effectively improve the thermal stability of enzymes and has important significance in advancing applications of alginate lyase.
Collapse
Affiliation(s)
- Yongyan Cui
- College of Food Science, Ocean University of Shanghai, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Min Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Shanshan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Guohui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Deqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
13
|
Xu H, Gao Q, Li L, Su T, Ming D. How alginate lyase produces quasi-monodisperse oligosaccharides: A normal-mode-based docking and molecular dynamics simulation study. Carbohydr Res 2024; 536:109022. [PMID: 38242069 DOI: 10.1016/j.carres.2024.109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Oligosaccharide degradation products of alginate (AOS) hold significant potential in diverse fields, including pharmaceuticals, health foods, textiles, and agricultural production. Enzymatic alginate degradation is appealing due to its mild conditions, predictable activity, high yields, and controllability. However, the alginate degradation often results in a complex mixture of oligosaccharides, necessitating costly purification to isolate highly active oligosaccharides with a specific degree of polymerization (DP). Addressing this, our study centers on the alginate lyase AlyB from Vibrio Splendidus OU02, which uniquely breaks down alginate into mono-distributed trisaccharides. This enzyme features a polysaccharide lyase family 7 domain (PL-7) and a CBM32 carbohydrate-binding module connected by a helical structure. Through normal-mode-based docking and all-atom molecular simulations, we demonstrate that AlyB's substrate and product specificities are influenced by the spatial conformation of the catalytic pocket and the flexibility of its structure. The helically attached CBM is pivotal in releasing trisaccharides, which is crucial for avoiding further degradation. This study sheds light on AlyB's specificity and efficiency and contributes to the evolving field of enzyme design for producing targeted oligosaccharides, with significant implications for various bioindustries.
Collapse
Affiliation(s)
- Hengyue Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China; Now Studying in the State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Qi Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China
| | - Lu Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China
| | - Ting Su
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China.
| |
Collapse
|
14
|
Du M, Li X, Qi W, Li Y, Wang L. Identification and characterization of a critical loop for the high activity of alginate lyase VaAly2 from the PL7_5 subfamily. Front Microbiol 2024; 14:1333597. [PMID: 38282736 PMCID: PMC10811132 DOI: 10.3389/fmicb.2023.1333597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
As the major component in the cell wall of brown algae, alginates are degradable by alginate lyases via β-elimination. Alginate lyases can be categorized into various polysaccharide lyase (PL) families, and PL7 family alginate lyases are the largest group and can be divided into six subfamilies. However, the major difference among different PL7 subfamilies is not fully understood. In this work, a marine alginate lyase, VaAly2, from Vibrio alginolyticus ATCC 17749 belonging to the PL7_5 subfamily was identified and characterized. It displayed comparatively high alginolytic activities toward different alginate substrates and functions as a bifunctional lyase. Molecular docking and biochemical analysis suggested that VaAly2 not only contains a key catalyzing motif (HQY) conserved in the PL7 family but also exhibits some specific characters limited in the PL7_5 subfamily members, such as the key residues and a long loop1 structure around the active center. Our work provides insight into a loop structure around the center site which plays an important role in the activity and substrate binding of alginate lyases belonging to the PL7_5 subfamily.
Collapse
Affiliation(s)
- Muxuan Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weipeng Qi
- Foshan Haitian (Gaoming) Flavoring & Food Co., Ltd., Foshan, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Xiao Z, Li K, Li T, Zhang F, Xue J, Zhao M, Yin H. Characterization and Mechanism Study of a Novel PL7 Family Exolytic Alginate Lyase from Marine Bacteria Vibrio sp. W13. Appl Biochem Biotechnol 2024; 196:68-84. [PMID: 37099125 DOI: 10.1007/s12010-023-04483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Alginate lyase can degrade alginate into oligosaccharides through β-elimination for various biological, biorefinery, and agricultural purposes. Here, we report a novel PL7 family exolytic alginate lyase VwAlg7A from marine bacteria Vibrio sp. W13 and achieve the heterologous expression in E. coli BL21 (DE3). VwAlg7A is 348aa with a calculated molecular weight of 36 kDa, containing an alginate lyase 2 domain. VwAlg7A exhibits specificity towards poly-guluronate. The optimal temperature and pH of VwAlg7A are 30 °C and 7.0, respectively. The activity of VwAlg7A can be significantly inhibited by the Ni2+, Zn2+, and NaCl. The Km and Vmax of VwAlg7A are 36.9 mg/ml and 395.6 μM/min, respectively. The ESI and HPAEC-PAD results indicate that VwAlg7A cleaves the sugar bond in an exolytic mode. Based on the molecular docking and mutagenesis results, we further confirmed that R98, H169, and Y303 are important catalytic residues.
Collapse
Affiliation(s)
- Zhongbin Xiao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fanxing Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Jiayi Xue
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Miao Zhao
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
16
|
Jiang J, Jiang Z, Yan Q, Han S, Yang S. Biochemical characterization of a novel bifunctional alginate lyase from Microbulbifer arenaceous. Protein Expr Purif 2024; 213:106372. [PMID: 37717719 DOI: 10.1016/j.pep.2023.106372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Bio‒production of alginate oligosaccharides (AOSs), a type of functional food additive, is a promising way for green utilization of algae, in which alginate hydrolyzing enzymes play a key role. A novel alginate lyase gene (MiAly17A) from a marine bacterium Microbulbifer arenaceous was heterologously expressed in E. coli. The coding sequence of the gene shared the highest identity of 86% with a polysaccharide lyase (PL) family 17 alginate lyase (AlgL17) from Microbulbifer sp. ALW1. The recombinant enzyme (MiAly17A) was purified and biochemically characterized. MiAly17A showed maximal enzyme activity at 40 °C and pH 7.5, respectively. It was stable at the temperatures below 35 °C and within pH 5.0-8.0. The enzyme activities were increased by 5.3 and 5.6 folds in the presence of 100 mM of K+ and Na+, respectively. MiAly17A was bifunctional and could hydrolyze sodium alginate to release unsaturated monosaccharides and oligosaccharides with degrees of polymerization (DP) 2-7. The enzyme catalyzed the cleavage of glycosidic bonds from the non-reducing ends and the backbone of the tested oligosaccharides (DP ≥ 4), exhibiting both exolytic and endo-lytic activities. Moreover, MiAly17A was used for the production of alginate oligosaccharides from sodium alginate, and the highest conversion ratio of 68% was obtained. The unique properties may possess the enzyme great potential for preparation of alginate oligosaccharides.
Collapse
Affiliation(s)
- Jun Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Susu Han
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
17
|
Shu Z, Wang G, Liu F, Xu Y, Sun J, Hu Y, Dong H, Zhang J. Genome Sequencing-Based Mining and Characterization of a Novel Alginate Lyase from Vibrio alginolyticus S10 for Specific Production of Disaccharides. Mar Drugs 2023; 21:564. [PMID: 37999388 PMCID: PMC10672080 DOI: 10.3390/md21110564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Alginate oligosaccharides prepared by alginate lyases attracted great attention because of their desirable biological activities. However, the hydrolysis products are always a mixture of oligosaccharides with different degrees of polymerization, which increases the production cost because of the following purification procedures. In this study, an alginate lyase, Alg4755, with high product specificity was identified, heterologously expressed, and characterized from Vibrio alginolyticus S10, which was isolated from the intestine of sea cucumber. Alg4755 belonged to the PL7 family with two catalytic domains, which was composed of 583 amino acids. Enzymatic characterization results show that the optimal reaction temperature and pH of Alg4755 were 35 °C and 8.0, respectively. Furthermore, Alg4755 was identified to have high thermal and pH stability. Moreover, the final hydrolysis products of sodium alginate catalyzed by Alg4755 were mainly alginate disaccharides with a small amount of alginate trisaccharides. The results demonstrate that alginate lyase Alg4755 could have a broad application prospect because of its high product specificity and desirable catalytic properties.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China;
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
| | - Gongming Wang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Fang Liu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.S.)
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Yang Hu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.S.)
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Hao Dong
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.S.)
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jian Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| |
Collapse
|
18
|
Li L, Zhu B, Yao Z, Jiang J. Directed preparation, structure-activity relationship and applications of alginate oligosaccharides with specific structures: A systematic review. Food Res Int 2023; 170:112990. [PMID: 37316063 DOI: 10.1016/j.foodres.2023.112990] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
The alginate oligosaccharides (AOS) possess versatile activities (such as antioxidant, anti-inflammatory, antitumor, and immune-regulatory activities) and have been the research topic in marine bioresource utilization fields. The degree of polymerization (DP) and the β-D-mannuronic acid (M)/α-L-guluronic acid (G)-units ratio strongly affect the functionality of AOS. Therefore, directed preparation of AOS with specific structures is essential for expanding the applications of alginate polysaccharides and has been the research topic in the marine bioresource field. Alginate lyases could efficiently degrade alginate and specifically produce AOS with specific structures. Therefore, enzymatic preparation of AOS with specific structures has drawn increasing attention. Herein, we systematically summarized the current research progress on the structure-function relation of AOS and focuses on the application of the enzymatic properties of alginate lyase to the specific preparation of various types of AOS. At the same time, current challenges and opportunities for AOS applications are presented to guide and improve the preparation and application of AOS in the future.
Collapse
Affiliation(s)
- Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao 266400, China
| |
Collapse
|
19
|
Zhang J, Zhuo X, Wang Q, Ji H, Chen H, Hao H. Effects of Different Nitrogen Levels on Lignocellulolytic Enzyme Production and Gene Expression under Straw-State Cultivation in Stropharia rugosoannulata. Int J Mol Sci 2023; 24:10089. [PMID: 37373235 DOI: 10.3390/ijms241210089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Stropharia rugosoannulata has been used in environmental engineering to degrade straw in China. The nitrogen and carbon metabolisms are the most important factors affecting mushroom growth, and the aim of this study was to understand the effects of different nitrogen levels on carbon metabolism in S. rugosoannulata using transcriptome analysis. The mycelia were highly branched and elongated rapidly in A3 (1.37% nitrogen). GO and KEGG enrichment analyses revealed that the differentially expressed genes (DEGs) were mainly involved in starch and sucrose metabolism; nitrogen metabolism; glycine, serine and threonine metabolism; the MAPK signaling pathway; hydrolase activity on glycosyl bonds; and hemicellulose metabolic processes. The activities of nitrogen metabolic enzymes were highest in A1 (0.39% nitrogen) during the three nitrogen levels (A1, A2 and A3). However, the activities of cellulose enzymes were highest in A3, while the hemicellulase xylanase activity was highest in A1. The DEGs associated with CAZymes, starch and sucrose metabolism and the MAPK signaling pathway were also most highly expressed in A3. These results suggested that increased nitrogen levels can upregulate carbon metabolism in S. rugosoannulata. This study could increase knowledge of the lignocellulose bioconversion pathways and improve biodegradation efficiency in Basidiomycetes.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xinyi Zhuo
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hao Ji
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 200090, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 200090, China
| | - Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
20
|
Dang BT, Ramaraj R, Huynh KPH, Le MV, Tomoaki I, Pham TT, Hoang Luan V, Thi Le Na P, Tran DPH. Current application of seaweed waste for composting and biochar: A review. BIORESOURCE TECHNOLOGY 2023; 375:128830. [PMID: 36878373 DOI: 10.1016/j.biortech.2023.128830] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
To address the origins of ocean acidification, seaweed aquaculture is emerging as a key biosequestration strategy. Nevertheless, seaweed biomass is involved in developing food and animal feed, whereas seaweed waste from commercial hydrocolloid extraction is dumped in landfills, which together limit the carbon cycle and carbon sequestration. This work sought to evaluate the production, properties, and applications of seaweed compost and biochar to strengthen the "carbon sink" implications of aquaculture sectors. Due to their unique characteristics, the production of seaweed-derived biochar and compost, as well as their existing applications, are distinct when compared to terrestrial biomass. This paper outlines the benefits of composting and biochar production as well as proposes ideas and perspectives to overcome technical shortcomings. If properly synchronized, progression in the aquaculture sector, composting, and biochar production, potentially promote various Sustainable Development Goals.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| | | | - Ky-Phuong-Ha Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Minh-Vien Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Itayama Tomoaki
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Tan-Thi Pham
- Faculty of Applied Sciences, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Van Hoang Luan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Pham Thi Le Na
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Duyen P H Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan, ROC
| |
Collapse
|
21
|
Enhancement of Inhibition of the Pseudomonas sp. Biofilm Formation on Bacterial Cellulose-Based Wound Dressing by the Combined Action of Alginate Lyase and Gentamicin. Int J Mol Sci 2023; 24:ijms24054740. [PMID: 36902169 PMCID: PMC10002595 DOI: 10.3390/ijms24054740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Bacterial biofilms generally contribute to chronic infections, including wound infections. Due to the antibiotic resistance mechanisms protecting bacteria living in the biofilm, they are a serious problem in the wound healing process. To accelerate the wound healing process and avoid bacterial infection, it is necessary to select the appropriate dressing material. In this study, the promising therapeutic properties of alginate lyase (AlgL) immobilised on BC membranes for protecting wounds from Pseudomonas aeruginosa infection were investigated. The AlgL was immobilised on never dried BC pellicles via physical adsorption. The maximum adsorption capacity of AlgL was 6.0 mg/g of dry BC, and the equilibrium was reached after 2 h. The adsorption kinetics was studied, and it has been proven that the adsorption was consistent with Langmuir isotherm. In addition, the impact of enzyme immobilisation on bacterial biofilm stability and the effect of simultaneous immobilisation of AlgL and gentamicin on the viability of bacterial cells was investigated. The obtained results showed that the AlgL immobilisation significantly reduced the amount of polysaccharides component of the P. aeruginosa biofilm. Moreover, the biofilm disruption by AlgL immobilised on BC membranes exhibited synergism with the gentamicin, resulting in 86.5% more dead P. aeruginosa PAO-1 cells.
Collapse
|
22
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2023; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Mannuronan C-5 Epimerases: Review of Activity Assays, Enzyme Characteristics, Structure, and Mechanism. Catalysts 2022. [DOI: 10.3390/catal13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mannuronan C-5 epimerases (ManC5-Es) are produced by brown algae and some bacteria, such as Azotobacter and some Pseudomonas species. It can convert the transformation of β-D-mannuronic acid (M) to α-L-guluronic acid (G) in alginate with different patterns of epimerization. Alginate with different compositions and monomer sequences possess different properties and functions, which have been utilized in industries for various purposes. Therefore, ManC5-Es are key enzymes that are involved in the modifications of alginate for fuel, chemical, and industrial applications. Focusing on ManC5-Es, this review introduces and summarizes the methods of ManC5-Es activity assay especially the most widely used nuclear magnetic resonance spectroscopy method, characterization of the ManC5-Es from different origins especially the research progress of its enzymatic properties and product block distributions, and the catalytic mechanism of ManC5-E based on the resolved enzyme structures. Additionally, some potential future research directions are also outlooked.
Collapse
|
24
|
Identification and Characterization of a New Cold-Adapted and Alkaline Alginate Lyase TsAly7A from Thalassomonas sp. LD5 Produces Alginate Oligosaccharides with High Degree of Polymerization. Mar Drugs 2022; 21:md21010006. [PMID: 36662179 PMCID: PMC9864975 DOI: 10.3390/md21010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Alginate oligosaccharides (AOS) and their derivatives become popular due to their favorable biological activity, and the key to producing functional AOS is to find efficient alginate lyases. This study showed one alginate lyase TsAly7A found in Thalassomonas sp. LD5, which was predicted to have excellent industrial properties. Bioinformatics analysis and enzymatic properties of recombinant TsAly7A (rTsAly7A) were investigated. TsAly7A belonged to the fifth subfamily of polysaccharide lyase family 7 (PL7). The optimal temperature and pH of rTsAly7A was 30 °C and 9.1 in Glycine-NaOH buffer, respectively. The pH stability of rTsAly7A under alkaline conditions was pretty good and it can remain at above 90% of the initial activity at pH 8.9 in Glycine-NaOH buffer for 12 h. In the presence of 100 mM NaCl, rTsAly7A showed the highest activity, while in the absence of NaCl, 50% of the highest activity was observed. The rTsAly7A was an endo-type alginate lyase, and its end-products of alginate degradation were unsaturated oligosaccharides (degree of polymerization 2-6). Collectively, the rTsAly7A may be a good industrial production tool for producing AOS with high degree of polymerization.
Collapse
|
25
|
Zhang YH, Chen YY, Zhuang XY, Xiao Q, Chen J, Chen FQ, Yang QM, Weng HF, Fang BS, Xiao AF. A Novel κ-Carrageenase from Marine Bacterium Rhodopirellula sallentina SM41: Heterologous Expression, Biochemical Characterization and Salt-Tolerance Mechanism Investigation. Mar Drugs 2022; 20:md20120783. [PMID: 36547930 PMCID: PMC9783963 DOI: 10.3390/md20120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
κ-carrageenases are members of the glycoside hydrolase family 16 (GH16) that hydrolyze sulfated galactans in red algae, known as κ-carrageenans. In this study, a novel κ-carrageenase gene from the marine bacterium Rhodopirellula sallentina SM41 (RsCgk) was discovered via the genome mining approach. There are currently no reports on κ-carrageenase from the Rhodopirellula genus, and RsCgk shares a low identity (less than 65%) with κ- carrageenase from other genera. The RsCgk was heterologously overexpressed in Escherichia coli BL21 and characterized for its enzymatic properties. RsCgk exhibited maximum activity at pH 7.0 and 40 °C, and 50% of its initial activity was retained after incubating at 30 °C for 2 h. More than 70% of its activity was maintained after incubation at pH 6.0-8.0 and 4 °C for 24 h. As a marine derived enzyme, RsCgk showed excellent salt tolerance, retaining full activity in 1.2 M NaCl, and the addition of NaCl greatly enhanced its thermal stability. Mass spectrometry analysis of the RsCgk hydrolysis products revealed that the enzyme had high degradation specificity and mainly produced κ-carrageenan disaccharide. Comparative molecular dynamics simulations revealed that the conformational changes of tunnel-forming loops under salt environments may cause the deactivation or stabilization of RsCgk. Our results demonstrated that RsCgk could be utilized as a potential tool enzyme for efficient production of κ-carrageenan oligosaccharides under high salt conditions.
Collapse
Affiliation(s)
- Yong-Hui Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
- Correspondence: (Y.-H.Z.); (A.-F.X.); Tel.: +86-592-6181487 (Y.-H.Z.); +86-592-6180075 (A.-F.X.)
| | - Yi-Ying Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Xiao-Yan Zhuang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Qiong Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Jun Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Fu-Quan Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Qiu-Ming Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Hui-Fen Weng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Bai-Shan Fang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361021, China
| | - An-Feng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
- Correspondence: (Y.-H.Z.); (A.-F.X.); Tel.: +86-592-6181487 (Y.-H.Z.); +86-592-6180075 (A.-F.X.)
| |
Collapse
|
26
|
Sun XM, Xue Z, Sun ML, Zhang Y, Zhang YZ, Fu HH, Zhang YQ, Wang P. Characterization of a Novel Alginate Lyase with Two Alginate Lyase Domains from the Marine Bacterium Vibrio sp. C42. Mar Drugs 2022; 20:md20120746. [PMID: 36547893 PMCID: PMC9781882 DOI: 10.3390/md20120746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Alginate is abundant in the cell walls of brown algae. Alginate lyases can degrade alginate, and thus play an important role in the marine carbon cycle and industrial production. Currently, most reported alginate lyases contain only one functional alginate lyase domain. AlyC8 is a putative alginate lyase with two alginate lyase domains (CD1 and CD2) from the marine alginate-degrading strain Vibrio sp. C42. To characterize AlyC8 and its two catalytic domains, AlyC8 and its two catalytic domain-deleted mutants, AlyC8-CD1 and AlyC8-CD2, were expressed in Escherichia coli. All three proteins have noticeable activity toward sodium alginate and exhibit optimal activities at pH 8.0-9.0 and at 30-40 °C, demonstrating that both CD1 and CD2 are functional. However, CD1 and CD2 showed opposite substrate specificity. The differences in substrate specificity and degradation products of alginate between the mutants and AlyC8 demonstrate that CD1 and CD2 can act synergistically to enable AlyC8 to degrade various alginate substrates into smaller oligomeric products. Moreover, kinetic analysis indicated that AlyC8-CD1 plays a major role in the degradation of alginate by AlyC8. These results demonstrate that AlyC8 is a novel alginate lyase with two functional catalytic domains that are synergistic in alginate degradation, which is helpful for a better understanding of alginate lyases and alginate degradation.
Collapse
Affiliation(s)
- Xiao-Meng Sun
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Center, Shandong University, Qingdao 266237, China
- Life Science College, Shandong Normal University, Jinan 250014, China
| | - Zhao Xue
- Life Science College, Shandong Normal University, Jinan 250014, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yi Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Hui-Hui Fu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Center, Shandong University, Qingdao 266237, China
- Correspondence: (Y.-Q.Z.); (P.W.)
| | - Peng Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- Correspondence: (Y.-Q.Z.); (P.W.)
| |
Collapse
|
27
|
Zhou L, Meng Q, Zhang R, Jiang B, Liu X, Chen J, Zhang T. Characterization of a Novel Polysaccharide Lyase Family 5 Alginate Lyase with PolyM Substrate Specificity. Foods 2022; 11:3527. [PMID: 36360141 PMCID: PMC9655155 DOI: 10.3390/foods11213527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 09/19/2023] Open
Abstract
Alginate lyases (ALyases) have been widely applied in enzymatically degrading alginate for the preparation of alginate oligosaccharides (AOS), which possess a range of excellent physiological benefits including immunoregulatory, antivirus, and antidiabetic properties. Among the characterized ALyases, the number of ALyases with strict substrate specificity which possess potential in directed preparation of AOS is quite small. ALyases of polysaccharides lyase (PL) 5 family have been reported to perform poly-β-D-mannuronic acid (Poly-M) substrate specificity. However, there have been fewer studies with a comprehensive characterization and comparison of PL 5 family ALyases. In this study, a putative PL 5 family ALyase PMD was cloned from Pseudomonas mendocina and expressed in Escherichia coli. The novel ALyase presented maximum activity at 30 °C and pH 7.0. PMD displayed pH stability properties under the range of pH 5 to pH 9, which retained more than 80% relative activity, even when incubated for 48 h. Product analysis indicated that PMD might be an endolytic ALyase with strict Poly M substrate specificity and yield disaccharide and trisaccharide as main products. In addition, residues K58, R66, Y248, and R344 were proposed to be the potential key residues for catalysis via site-directed mutation. Detailed characterization of PMD and comprehensive comparisons could supply some different information about properties of PL 5 ALyases which might be helpful for its application in the directed production of AOS.
Collapse
Affiliation(s)
- Licheng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qing Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Ran Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd., Weihai 264333, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Deng C, Zhao M, Zhao Q, Zhao L. Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides. Carbohydr Polym 2022; 300:120254. [DOI: 10.1016/j.carbpol.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
29
|
Wang J, Liu Z, Pan X, Wang N, Li L, Du Y, Li J, Li M. Structural and Biochemical Analysis Reveals Catalytic Mechanism of Fucoidan Lyase from Flavobacterium sp. SA-0082. Mar Drugs 2022; 20:md20080533. [PMID: 36005536 PMCID: PMC9410043 DOI: 10.3390/md20080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Fucoidans represent a type of polyanionic fucose-containing sulfated polysaccharides (FCSPs) that are cleaved by fucoidan-degrading enzymes, producing low-molecular-weight fucoidans with multiple biological activities suitable for pharmacological use. Most of the reported fucoidan-degrading enzymes are glycoside hydrolases, which have been well studied for their structures and catalytic mechanisms. Little is known, however, about the rarer fucoidan lyases, primarily due to the lack of structural information. FdlA from Flavobacterium sp. SA-0082 is an endo-type fucoidan-degrading enzyme that cleaves the sulfated fuco-glucuronomannan (SFGM) through a lytic mechanism. Here, we report nine crystal structures of the catalytic N-terminal domain of FdlA (FdlA-NTD), in both its wild type (WT) and mutant forms, at resolutions ranging from 1.30 to 2.25 Å. We show that the FdlA-NTD adopts a right-handed parallel β-helix fold, and possesses a substrate binding site composed of a long groove and a unique alkaline pocket. Our structural, biochemical, and enzymological analyses strongly suggest that FdlA-NTD utilizes catalytic residues different from other β-helix polysaccharide lyases, potentially representing a novel polysaccharide lyase family.
Collapse
Affiliation(s)
- Juanjuan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zebin Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College of Life Science, Capital Normal University, Beijing 100101, China
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, Capital Normal University, Beijing 100101, China
| | - Ning Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Legong Li
- College of Life Science, Capital Normal University, Beijing 100101, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (J.L.); (M.L.)
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.L.); (M.L.)
| |
Collapse
|
30
|
Determination of oligosaccharide product distributions of PL7 alginate lyases by their structural elements. Commun Biol 2022; 5:782. [PMID: 35918517 PMCID: PMC9345997 DOI: 10.1038/s42003-022-03721-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Alginate lyases can be used to produce well-defined alginate oligosaccharides (AOSs) because of their specificities for AOS products. A large number of alginate lyases have been recorded in the CAZy database; however, the majority are annotated-only alginate lyases that include little information on their products, thus limiting their applications. Here, we establish a simple and experiment-saving approach to predict product distributions for PL7 alginate lyases through extensive structural biology, bioinformatics and biochemical studies. Structural study on several PL7 alginate lyases reveals that two loops around the substrate binding cleft determine product distribution. Furthermore, a database containing the loop information of all annotated-only single-domain PL7 alginate lyases is constructed, enabling systematic exploration of the association between loop and product distribution. Based on these results, a simplified loop/product distribution relationship is proposed, giving us information on product distribution directly from the amino acid sequence. Characterization of PL7 alginate lyase structure and products enables a bioinformatics approach to predict product distribution from the amino acid sequence.
Collapse
|
31
|
Long L, Hu Q, Wang X, Li H, Li Z, Jiang Z, Ni H, Li Q, Zhu Y. A bifunctional exolytic alginate lyase from Microbulbifer sp. ALW1 with salt activation and calcium-dependent catalysis. Enzyme Microb Technol 2022; 161:110109. [PMID: 35939899 DOI: 10.1016/j.enzmictec.2022.110109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
Alginate lyases can depolymerize alginate to oligomers with potential applications in many fields. Here a new alginate lyase, namely AlgL6, was characterized from Microbulbifer sp. ALW1, phylogenetically classified into the polysaccharide lyase family 6 (PL6). The recombinant alginate lyase AlgL6 exerted enzymatic activities towards polymannuronate, polyguluronate, and sodium alginate in an exolytic manner. AlgL6 had an optimum temperature of 35 °C and good stability at 30 °C or below. Its optimum pH was 8.0, and it had good stability over the pH range of 5.0-9.0. AlgL6 exhibited excellent halo-stability against Na+, and its activity can be increased up to about 1.8 times by 0.5 M NaCl. AlgL6 also showed strong stability in the presence of some nonionic detergents such as Tween 20 and Tween 80. The degradation products of sodium alginate by AlgL6 exhibited more effective antioxidant activities than the undigested polysaccharides. Structure analysis illustrated the catalytic mechanism defined by the coordination of the acid/base residues Arg269 and Lys248 of AlgL6. The replacement of Ca2+-interacting amino acid residues in AlgL6 and depletion of Ca2+ suggested the involvement of Ca2+ in the enzyme's catalytic activity. These properties of AlgL6 supply support to its industrial application for development of alginate bioresource.
Collapse
Affiliation(s)
- Liufei Long
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingsong Hu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xinxia Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hebin Li
- Xiamen Medical College, Xiamen 361023, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
32
|
Sha L, Huang M, Huang X, Huang Y, Shao E, Guan X, Huang Z. Cloning and Characterization of a Novel Endo-Type Metal-Independent Alginate Lyase from the Marine Bacteria Vibrio sp. Ni1. Mar Drugs 2022; 20:md20080479. [PMID: 35892947 PMCID: PMC9331746 DOI: 10.3390/md20080479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 02/04/2023] Open
Abstract
The applications of alginate lyase are diverse, but efficient commercial enzymes are still unavailable. In this study, a novel alginate lyase with high activity was obtained from the marine bacteria Vibrio sp. Ni1. The ORF of the algB gene has 1824 bp, encoding 607 amino acids. Homology analysis shows that AlgB belongs to the PL7 family. There are two catalytic domains with the typical region of QIH found in AlgB. The purified recombinant enzyme of AlgB shows highest activity at 35 °C, pH 8.0, and 50 mmol/L Tris-HCl without any metal ions. Only K+ slightly enhances the activity, while Fe2+ and Cu2+ strongly inhibit the activity. The AlgB preferred polyM as substrate. The end products of enzymatic mixture are DP2 and DP3, without any metal ion to assist them. This enzyme has good industrial application prospects.
Collapse
Affiliation(s)
- Li Sha
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (M.H.); (Y.H.)
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minghai Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (M.H.); (Y.H.)
| | - Xiaonan Huang
- Fuzhou Ocean and Fisheries Technology Center, Fuzhou 350007, China;
| | - Yongtong Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (M.H.); (Y.H.)
| | - Ensi Shao
- National Engineering Research Center of Juncao Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiong Guan
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhipeng Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.S.); (M.H.); (Y.H.)
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: ; Tel.: +86-591-83789259
| |
Collapse
|
33
|
Characterization of Distinct Biofilm Cell Subpopulations and Implications in Quorum Sensing and Antibiotic Resistance. mBio 2022; 13:e0019122. [PMID: 35695457 PMCID: PMC9239111 DOI: 10.1128/mbio.00191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacteria change phenotypically in response to their environment. Free swimming cells transition to biofilm communities that promote cellular cooperativity and resistance to stressors and antibiotics. We uncovered three subpopulations of cells with diverse phenotypes from a single-species Pseudomonas aeruginosa PA14 biofilm, and used a series of steps to isolate, characterize, and map these cell subpopulations in a biofilm. The subpopulations were distinguishable by size and morphology using dynamic light scattering (DLS) and scanning electron microscopy (SEM). Additionally, growth and dispersal of biofilms originating from each cell subpopulation exhibited contrasting responses to antibiotic challenge. Cell subpopulation surface charges were distinctly different, which led us to examine the ionizable surface molecules associated with each subpopulation using mass spectrometry. Matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of cell subpopulations revealed ions unique to each subpopulation of cells that significantly co-localized with ions associated with quorum sensing. Transcript levels of algR, lasR, and rhlI in subpopulations isolated from biofilms differed from levels in planktonic stationary and mid-log cell subpopulations. These studies provide insight into diverse phenotypes, morphologies, and biochemistries of PA14 cell subpopulations for potential applications in combating bacterial pathogenesis, with medical, industrial, and environmental complications.
Collapse
|
34
|
Barzkar N, Sheng R, Sohail M, Jahromi ST, Babich O, Sukhikh S, Nahavandi R. Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules 2022; 27:3375. [PMID: 35684316 PMCID: PMC9181867 DOI: 10.3390/molecules27113375] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 3995, Iran
| | - Ruilong Sheng
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal;
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecology Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas 9145, Iran;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia; (O.B.); (S.S.)
| | - Reza Nahavandi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj 8361, Iran;
| |
Collapse
|
35
|
Lu S, Na K, Wei J, Zhang L, Guo X. Alginate oligosaccharides: The structure-function relationships and the directional preparation for application. Carbohydr Polym 2022; 284:119225. [PMID: 35287920 DOI: 10.1016/j.carbpol.2022.119225] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/02/2023]
Abstract
Alginate oligosaccharides (AOS) are degradation products of alginate extracted from brown algae. With low molecular weight, high water solubility, and good biological activity, AOS present anti-inflammatory, antimicrobial, antioxidant, and antitumor properties. They also exert growth-promoting effects in animals and plants. Three types of AOS, mannuronate oligosaccharides (MAOS), guluronate oligosaccharides (GAOS), and heterozygous mannuronate and guluronate oligosaccharides (HAOS), can be produced from alginate by enzymatic hydrolysis. Thus far, most studies on the applications and biological activities of AOS have been based mainly on a hybrid form of HAOS. To improve the directional production of AOS for practical applications, systematic studies on the structures and related biological activities of AOS are needed. This review provides a summary of current understanding of structure-function relationships and advances in the production of AOS. The current challenges and opportunities in the application of AOS is suggested to guide the precise application of AOS in practice.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Kai Na
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Jiani Wei
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, No. 182, Minyuan Road, Hongshan District, Wuhan City, Hubei Province 430074, China.
| |
Collapse
|
36
|
Li Z, Huang X, Guo Y, Zhang C, Yang L, Du X, Ni H, Wang X, Zhu Y. Toward Understanding the Alginate Catabolism in Microbulbifer sp. ALW1 by Proteomics Profiling. Front Bioeng Biotechnol 2022; 10:829428. [PMID: 35372316 PMCID: PMC8967155 DOI: 10.3389/fbioe.2022.829428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/18/2022] Open
Abstract
The bacterial strain of Microbulbifer sp. ALW1 has demonstrated visible ability of degrading the cell wall of Laminaria japonica, and biochemical characterization has been performed on some individual enzymes to elucidate its genetic basis. However, it still remains elusive how strain ALW1 successfully breaks down the major cell wall component alginate polysaccharide and colonizes on its marine host. In this study, a mass spectrometry-based quantitative analysis of the extracellular and intracellular proteomes was introduced to elucidate the alginate degradation pathway in ALW1 strain. Mass spectrometry and biochemical assays indicated that strain ALW1 could effectively degrade alginate polysaccharide into disaccharides and trisaccharides within 12 h. Proteome analysis identified 156 and 1,047 proteins exclusively localized in extracellular and intracellular compartments, respectively, with 1,086 protein identities of dual localization. Functional annotation of the identified proteins suggested the involvement of diverse catalytic enzymes and non-catalytic molecules for the cleavage and metabolism of alginate polysaccharide. A simplified pathway was constructed to demonstrate the extracellular digestion, active transport, and intracellular conversion of alginate polysaccharide and its fragmented oligosaccharides, casting a picture of genetic loci controlling alginate catabolism by ALW1 strain. This study aims to provide a guide for utilization and genetic manipulation of the bacterial strain ALW1 for efficient alginate oligosaccharides production by fermentation.
Collapse
Affiliation(s)
- Zhipeng Li
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xiaoyi Huang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Yuxi Guo
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Chenghao Zhang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Liang Yang
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
| | - Xiping Du
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Xuchu Wang
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
- *Correspondence: Xuchu Wang, ; Yanbing Zhu,
| | - Yanbing Zhu
- College of Ocean Food and Biology Engineering, Jimei University, Xiame, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering Technology, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen, China
- *Correspondence: Xuchu Wang, ; Yanbing Zhu,
| |
Collapse
|
37
|
Xue Z, Sun XM, Chen C, Zhang XY, Chen XL, Zhang YZ, Fan SJ, Xu F. A Novel Alginate Lyase: Identification, Characterization, and Potential Application in Alginate Trisaccharide Preparation. Mar Drugs 2022; 20:159. [PMID: 35323458 PMCID: PMC8953905 DOI: 10.3390/md20030159] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Alginate oligosaccharides (AOS) have many biological activities and significant applications in prebiotics, nutritional supplements, and plant growth development. Alginate lyases have unique advantages in the preparation of AOS. However, only a limited number of alginate lyases have been so far reported to have potentials in the preparation of AOS with specific degrees of polymerization. Here, an alginate-degrading strain Pseudoalteromonasarctica M9 was isolated from Sargassum, and five alginate lyases were predicted in its genome. These putative alginate lyases were expressed and their degradation products towards sodium alginate were analyzed. Among them, AlyM2 mainly generated trisaccharides, which accounted for 79.9% in the products. AlyM2 is a PL6 lyase with low sequence identity (≤28.3%) to the characterized alginate lyases and may adopt a distinct catalytic mechanism from the other PL6 alginate lyases based on sequence alignment. AlyM2 is a bifunctional endotype lyase, exhibiting the highest activity at 30 °C, pH 8.0, and 0.5 M NaCl. AlyM2 predominantly produces trisaccharides from homopolymeric M block (PM), homopolymeric G block (PG), or sodium alginate, with a trisaccharide production of 588.4 mg/g from sodium alginate, indicating its promising potential in preparing trisaccharides from these polysaccharides.
Collapse
Affiliation(s)
- Zhao Xue
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
| | - Xiao-Meng Sun
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| | - Cui Chen
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| | - Yu-Zhong Zhang
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Shou-Jin Fan
- Life Science College, Shandong Normal University, Jinan 250014, China; (Z.X.); (X.-M.S.); (C.C.); (Y.-Z.Z.)
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-Y.Z.); (X.-L.C.)
| |
Collapse
|
38
|
Cao S, Li Q, Xu Y, Tang T, Ning L, Zhu B. Evolving strategies for marine enzyme engineering: recent advances on the molecular modification of alginate lyase. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:106-116. [PMID: 37073348 PMCID: PMC10077200 DOI: 10.1007/s42995-021-00122-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 05/03/2023]
Abstract
Alginate, an acidic polysaccharide, is formed by β-d-mannuronate (M) and α-l-guluronate (G). As a type of polysaccharide lyase, alginate lyase can efficiently degrade alginate into alginate oligosaccharides, having potential applications in the food, medicine, and agriculture fields. However, the application of alginate lyase has been limited due to its low catalytic efficiency and poor temperature stability. In recent years, various structural features of alginate lyase have been determined, resulting in modification strategies that can increase the applicability of alginate lyase, making it important to summarize and discuss the current evidence. In this review, we summarized the structural features and catalytic mechanisms of alginate lyase. Molecular modification strategies, such as rational design, directed evolution, conserved domain recombination, and non-catalytic domain truncation, are also described in detail. Lastly, the application of alginate lyase is discussed. This comprehensive summary can inform future applications of alginate lyases.
Collapse
Affiliation(s)
- Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Yinxiao Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Limin Ning
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
39
|
Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022; 14:pharmaceutics14020297. [PMID: 35214030 PMCID: PMC8874529 DOI: 10.3390/pharmaceutics14020297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Xuejiao Lei
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Hua Feng
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (J.K.); (M.X.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada
- Correspondence: (J.K.); (M.X.)
| |
Collapse
|
40
|
Wang M, Chen L, Lou Z, Yuan X, Pan G, Ren X, Wang P. Cloning and Characterization of a Novel Alginate Lyase from Paenibacillus sp. LJ-23. Mar Drugs 2022; 20:md20010066. [PMID: 35049921 PMCID: PMC8780880 DOI: 10.3390/md20010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
As a low molecular weight alginate, alginate oligosaccharides (AOS) exhibit improved water solubility, better bioavailability, and comprehensive health benefits. In addition, their biocompatibility, biodegradability, non-toxicity, non-immunogenicity, and gelling capability make them an excellent biomaterial with a dual curative effect when applied in a drug delivery system. In this paper, a novel alginate lyase, Algpt, was cloned and characterized from a marine bacterium, Paenibacillus sp. LJ-23. The purified enzyme was composed of 387 amino acid residues, and had a molecular weight of 42.8 kDa. The optimal pH of Algpt was 7.0 and the optimal temperature was 45 °C. The analysis of the conserved domain and the prediction of the three-dimensional structure indicated that Algpt was a novel alginate lyase. The dominant degradation products of Algpt on alginate were AOS dimer to octamer, depending on the incubation time, which demonstrated that Algpt degraded alginate in an endolytic manner. In addition, Algpt was a salt-independent and thermo-tolerant alginate lyase. Its high stability and wide adaptability endow Algpt with great application potential for the efficient preparation of AOS with different sizes and AOS-based products.
Collapse
|
41
|
Kawai S, Hashimoto W. 4-Deoxy-l- erythro-5-hexoseulose Uronate (DEH) and DEH Reductase: Key Molecule and Enzyme for the Metabolism and Utilization of Alginate. Molecules 2022; 27:338. [PMID: 35056653 PMCID: PMC8778563 DOI: 10.3390/molecules27020338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022] Open
Abstract
4-Deoxy-l-erythro-5-hexoseulose uronate (DEH), DEH reductase, and alginate lyase have key roles in the metabolism of alginate, a promising carbon source in brown macroalgae for biorefinery. In contrast to the widely reviewed alginate lyase, DEH and DEH reductase have not been previously reviewed. Here, we summarize the current understanding of DEH and DEH reductase, with emphasis on (i) the non-enzymatic and enzymatic formation and structure of DEH and its reactivity to specific amino groups, (ii) the molecular identification, classification, function, and structure, as well as the structural determinants for coenzyme specificity of DEH reductase, and (iii) the significance of DEH for biorefinery. Improved understanding of this and related fields should lead to the practical utilization of alginate for biorefinery.
Collapse
Affiliation(s)
- Shigeyuki Kawai
- Laboratory for Environmental Biotechnology, Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi 921-8836, Ishikawa, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji 611-0011, Kyoto, Japan
| |
Collapse
|
42
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
43
|
de Oliveira BFR, Lopes IR, Canellas ALB, Muricy G, Jackson SA, Dobson ADW, Laport MS. Genomic and in silico protein structural analyses provide insights into marine polysaccharide-degrading enzymes in the sponge-derived Pseudoalteromonas sp. PA2MD11. Int J Biol Macromol 2021; 191:973-995. [PMID: 34555402 DOI: 10.1016/j.ijbiomac.2021.09.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Active heterotrophic metabolism is a critical metabolic role performed by sponge-associated microorganisms, but little is known about their capacity to metabolize marine polysaccharides (MPs). Here, we investigated the genome of the sponge-derived Pseudoalteromonas sp. strain PA2MD11 focusing on its macroalgal carbohydrate-degrading potential. Carbohydrate-active enzymes (CAZymes) for the depolymerization of agar and alginate were found in PA2MD11's genome, including glycoside hydrolases (GHs) and polysaccharide lyases (PLs) belonging to families GH16, GH50 and GH117, and PL6 and PL17, respectively. A gene potentially encoding a sulfatase was also identified, which may play a role in the strain's ability to consume carrageenans. The complete metabolism of agar and alginate by PA2MD11 could also be predicted and was consistent with the results obtained in physiological assays. The polysaccharide utilization locus (PUL) potentially involved in the metabolism of agarose contained mobile genetic elements from other marine Gammaproteobacteria and its unusual larger size might be due to gene duplication events. Homology modelling and structural protein analyses of the agarases, alginate lyases and sulfatase depicted clear conservation of catalytic machinery and protein folding together with suitable industrially-relevant features. Pseudoalteromonas sp. PA2MD11 is therefore a source of potential MP-degrading biocatalysts for biorefinery applications and in the preparation of pharmacologically-active oligosaccharides.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil; School of Microbiology, University College Cork, T12 Y960 Cork, Ireland
| | - Isabelle Rodrigues Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil
| | - Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil
| | - Guilherme Muricy
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n°, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Stephen Anthony Jackson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland; Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland; Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Gao SK, Yin R, Wang XC, Jiang HN, Liu XX, Lv W, Ma Y, Zhou YX. Structure Characteristics, Biochemical Properties, and Pharmaceutical Applications of Alginate Lyases. Mar Drugs 2021; 19:628. [PMID: 34822499 PMCID: PMC8618178 DOI: 10.3390/md19110628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate, the most abundant polysaccharides of brown algae, consists of various proportions of uronic acid epimers α-L-guluronic acid (G) and β-D-mannuronic acid (M). Alginate oligosaccharides (AOs), the degradation products of alginates, exhibit excellent bioactivities and a great potential for broad applications in pharmaceutical fields. Alginate lyases can degrade alginate to functional AOs with unsaturated bonds or monosaccharides, which can facilitate the biorefinery of brown algae. On account of the increasing applications of AOs and biorefinery of brown algae, there is a scientific need to explore the important aspects of alginate lyase, such as catalytic mechanism, structure, and property. This review covers fundamental aspects and recent developments in basic information, structural characteristics, the structure-substrate specificity or catalytic efficiency relationship, property, molecular modification, and applications. To meet the needs of biorefinery systems of a broad array of biochemical products, alginate lyases with special properties, such as salt-activated, wide pH adaptation range, and cold adaptation are outlined. Withal, various challenges in alginate lyase research are traced out, and future directions, specifically on the molecular biology part of alginate lyases, are delineated to further widen the horizon of these exceptional alginate lyases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan-Xia Zhou
- Marine College, Shandong University, Weihai 264209, China; (S.-K.G.); (R.Y.); (X.-C.W.); (H.-N.J.); (X.-X.L.); (W.L.); (Y.M.)
| |
Collapse
|
45
|
Xu F, Cha QQ, Zhang YZ, Chen XL. Degradation and Utilization of Alginate by Marine Pseudoalteromonas: a Review. Appl Environ Microbiol 2021; 87:e0036821. [PMID: 34160244 PMCID: PMC8357284 DOI: 10.1128/aem.00368-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alginate, which is mainly produced by brown algae and decomposed by heterotrophic bacteria, is an important marine organic carbon source. The genus Pseudoalteromonas contains diverse forms of heterotrophic bacteria that are widely distributed in marine environments and are an important group in alginate degradation. In this review, the diversity of alginate-degrading Pseudoalteromonas is introduced, and the characteristics of Pseudoalteromonas alginate lyases, including their sequences, enzymatic properties, structures, and catalytic mechanisms, and the synergistic effect of Pseudoalteromonas alginate lyases on alginate degradation are introduced. The acquisition of the alginate degradation capacity and the alginate utilization pathways of Pseudoalteromonas are also introduced. This paper provides a comprehensive overview of alginate degradation by Pseudoalteromonas, which will contribute to the understanding of the degradation and recycling of marine algal polysaccharides driven by marine bacteria.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
46
|
Zhang F, Fu Z, Tang L, Zhang Z, Han F, Yu W. Biochemical Characterization of a Novel Exo-Type PL7 Alginate Lyase VsAly7D from Marine Vibrio sp. QY108. Int J Mol Sci 2021; 22:8402. [PMID: 34445107 PMCID: PMC8395142 DOI: 10.3390/ijms22168402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
Brown algae is a kind of renewable resource for biofuels production. As the major component of carbohydrate in the cell walls of brown algae, alginate can be degraded into unsaturated monosaccharide by exo-type alginate lyases, then converted into 4-deoxy-L-erythro-5-hexoseulose uronate (DEH) by a non-enzyme reaction, which is an important raw material for the preparation of bioethanol. In our research, a novel exo-type alginate lyase, VsAly7D, belonging to the PL7 family was isolated from marine bacterium Vibrio sp. QY108 and recombinantly expressed in Escherichia coli. The purified VsAly7D demonstrated the highest activity at 35 °C, whereas it still maintained 46.5% and 83.1% of its initial activity at 20 °C and 30 °C, respectively. In addition, VsAly7D exhibited the maximum activity under alkaline conditions (pH 8.0), with the simultaneously remaining stability between pH 8.0 and 10.0. Compared with other reported exo-type enzymes, VsAly7D could efficiently degrade alginate, poly-β-D-mannuronate (polyM) and poly-α-L-guluronate (polyG) with highest specific activities (663.0 U/mg, 913.6 U/mg and 894.4 U/mg, respectively). These results showed that recombinant VsAly7D is a suitable tool enzyme for unsaturated alginate monosaccharide preparation and holds great promise for producing bioethanol from brown algae.
Collapse
Affiliation(s)
- Fengchao Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Zheng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Zhelun Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (F.Z.); (Z.F.); (L.T.); (Z.Z.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Qingdao 266003, China
| |
Collapse
|
47
|
Zhang L, Li X, Zhang X, Li Y, Wang L. Bacterial alginate metabolism: an important pathway for bioconversion of brown algae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:158. [PMID: 34275475 PMCID: PMC8286568 DOI: 10.1186/s13068-021-02007-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Brown macroalgae have attracted great attention as an alternative feedstock for biorefining. Although direct conversion of ethanol from alginates (major components of brown macroalgae cell walls) is not amenable for industrial production, significant progress has been made not only on enzymes involved in alginate degradation, but also on metabolic pathways for biorefining at the laboratory level. In this article, we summarise recent advances on four aspects: alginate, alginate lyases, different alginate-degrading systems, and application of alginate lyases and associated pathways. This knowledge will likely inspire sustainable solutions for further application of both alginate lyases and their associated pathways.
Collapse
Affiliation(s)
- Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
48
|
Zhang K, Yang Y, Wang W, Liu W, Lyu Q. Substrate-Binding Mode and Intermediate-Product Distribution Coguided Protein Design of Alginate Lyase AlyF for Altered End-Product Distribution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7190-7198. [PMID: 34133153 DOI: 10.1021/acs.jafc.1c02473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, we reported alginate lyase AlyF that predominantly produced trisaccharides (the trisaccharide content is 87.0%), and the determination of its substrate-binding mode facilitated its protein engineering for new product distribution. To clarify the relationship between the substrate-binding pocket and end-product distribution, the open binding pocket change was initially designed. The resulting F128T_W172R mutant of AlyF exhibited different intermediate-product distributions but still similar end-product distributions. However, these observations suggested that cleavage pattern changes for intermediate products might contribute to an altered end-product distribution. Structural analysis indicated that the sugar-binding affinity at subsite -2 should be redesigned to achieve this goal. Thus, residue Arg266, which is involved in sugar binding at subsite -2, was selected for site-saturation mutagenesis in the F128T_W172R mutant. The dominant end products of the F128T_W172R_R226H mutant were altered to disaccharides and trisaccharides (the disaccharide content increased to 40.5%).
Collapse
Affiliation(s)
- Keke Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weizhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
49
|
Li Q, Zheng L, Guo Z, Tang T, Zhu B. Alginate degrading enzymes: an updated comprehensive review of the structure, catalytic mechanism, modification method and applications of alginate lyases. Crit Rev Biotechnol 2021; 41:953-968. [PMID: 34015998 DOI: 10.1080/07388551.2021.1898330] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alginate, a kind of linear acidic polysaccharide, consists of α-L-guluronate (G) and β-D-mannuronate (M). Both alginate and its degradation products (alginate oligosaccharides) possess abundant biological activities such as antioxidant activity, antitumor activity, and antimicrobial activity. Therefore, alginate and alginate oligosaccharides have great value in food, pharmaceutical, and agricultural fields. Alginate lyase can degrade alginate into alginate oligosaccharides via the β-elimination reaction. It plays an important role in marine carbon recycling and the deep utilization of brown algae. Elucidating the structural features of alginate lyase can improve our knowledge of its catalytic mechanisms. With the development of structural analysis techniques, increasing numbers of alginate lyases have been characterized at the structural level. Hence, it is essential and helpful to summarize and discuss the up-to-date findings. In this review, we have summarized progress on the structural features and the catalytic mechanisms of alginate lyases. Furthermore, the molecular modification strategies and the applications of alginate lyases have also been discussed. This comprehensive information should be helpful to expand the applications of alginate lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zilong Guo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
50
|
Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydr Polym 2021; 267:118158. [PMID: 34119132 DOI: 10.1016/j.carbpol.2021.118158] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Alginate is a biopolymer used extensively in the food, pharmaceutical, and chemical industries. Alginate oligosaccharides (AOS) derived from alginate exhibit superior biological activities and therapeutic potential. Alginate lyases with characteristic substrate specificity can facilitate the production of a broad array of AOS with precise structure and functionality. By adopting innovative analytical tools in conjunction with focused clinical studies, the structure-bioactivity relationship of a number of AOS has been brought to light. This review covers fundamental aspects and recent developments in AOS research. Enzymatic and microbial processes involved in AOS production from brown algae and sequential steps involved in AOS structure elucidation are outlined. Biological mechanisms underlying the health benefits of AOS and their potential industrial and therapeutic applications are elaborated. Withal, various challenges in AOS research are traced out, and future directions, specifically on recombinant systems for AOS preparation, are delineated to further widen the horizon of these exceptional oligosaccharides.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|