1
|
Williamson AJ, Binet M, Sergeant C. Radionuclide biogeochemistry: from bioremediation toward the treatment of aqueous radioactive effluents. Crit Rev Biotechnol 2024; 44:698-716. [PMID: 37258417 DOI: 10.1080/07388551.2023.2194505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 10/07/2022] [Accepted: 01/29/2023] [Indexed: 06/02/2023]
Abstract
Civilian and military nuclear programs of several nations over more than 70 years have led to significant quantities of heterogenous solid, organic, and aqueous radioactive wastes bearing actinides, fission products, and activation products. While many physicochemical treatments have been developed to remediate, decontaminate and reduce waste volumes, they can involve high costs (energy input, expensive sorbants, ion exchange resins, chemical reducing/precipitation agents) or can lead to further secondary waste forms. Microorganisms can directly influence radionuclide solubility, via sorption, accumulation, precipitation, redox, and volatilization pathways, thus offering a more sustainable approach to remediation or effluent treatments. Much work to date has focused on fundamentals or laboratory-scale remediation trials, but there is a paucity of information toward field-scale bioremediation and, to a lesser extent, toward biological liquid effluent treatments. From the few biostimulation studies that have been conducted at legacy weapon production/test sites and uranium mining and milling sites, some marked success via bioreduction and biomineralisation has been observed. However, rebounding of radionuclide mobility from (a)biotic scale-up factors are often encountered. Radionuclide, heavy metal, co-contaminant, and/or matrix effects provide more challenging conditions than traditional industrial wastewater systems, thus innovative solutions via indirect interactions with stable element biogeochemical cycles, natural or engineered cultures or communities of metal and irradiation tolerant strains and reactor design inspirations from existing metal wastewater technologies, are required. This review encompasses the current state of the art in radionuclide biogeochemistry fundamentals and bioremediation and establishes links toward transitioning these concepts toward future radioactive effluent treatments.
Collapse
Affiliation(s)
| | - Marie Binet
- EDF R&D, LNHE (Laboratoire National d'Hydraulique et Environnement), Chatou, France
| | | |
Collapse
|
2
|
Duborská E, Vojtková H, Matulová M, Šeda M, Matúš P. Microbial involvement in iodine cycle: mechanisms and potential applications. Front Bioeng Biotechnol 2023; 11:1279270. [PMID: 38026895 PMCID: PMC10643221 DOI: 10.3389/fbioe.2023.1279270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Stable iodine isotopes are essential for humans as they are necessary for producing thyroid gland hormones. However, there are hazardous radioactive iodine isotopes that are emitted into the environment through radioactive waste generated by nuclear power plants, nuclear weapon tests, and medical practice. Due to the biophilic character of iodine radionuclides and their enormous biomagnification potential, their elimination from contaminated environments is essential to prevent the spread of radioactive pollution in ecosystems. Since microorganisms play a vital role in controlling iodine cycling and fate in the environment, they also can be efficiently utilized in solving the issue of contamination spread. Thus, this paper summarizes all known on microbial processes that are involved in iodine transformation to highlight their prospects in remediation of the sites contaminated with radioactive iodine isotopes.
Collapse
Affiliation(s)
- Eva Duborská
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, Ostrava, Czechia
| | - Michaela Matulová
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovakia
- Radioactive Waste Repository Authority (SÚRAO), Praha, Czechia
| | - Martin Šeda
- Department of Applied Chemistry, Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czechia
| | - Peter Matúš
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Kaplan DI, Nichols R, Xu C, Lin P, Yeager C, Santschi PH. Large seasonal fluctuations of groundwater radioiodine speciation and concentrations in a riparian wetland in South Carolina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151548. [PMID: 34780820 DOI: 10.1016/j.scitotenv.2021.151548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Recent studies evaluating multiple years of groundwater radioiodine (129I) concentration in a riparian wetland located in South Carolina, USA identified strong seasonal concentration fluctuations, such that summer concentrations were much greater than winter concentrations. These fluctuations were observed only in the wetlands but not in the upland portion of the plume and only with 129I, and not with other contaminants of anthropogenic origin: nitrate/nitrite, strontium-90, technecium-99, tritium, or uranium. This unexplained observation was hypothesized to be the result of strongly coupled processes involving hydrology, water temperature, microbiology, and chemistry. To test this hypothesis, an extensive historical groundwater database was evaluated, and additional measurements of total iodine and iodine speciation were made from recently collected samples. During the summer, the water table decreased by as much as 0.7 m, surface water temperature increased by as much as 15 °C, and total iodine concentrations were consistently greater (up to 680%) than the following winter months. Most of the additional iodine observed in the summer could be attributed to proportional gains in organo-iodine, and not iodide or iodate. Furthermore, 129I concentrations were observed to be two-orders-of-magnitude greater at the bottom of the upland aquifer than at the top. A coupled hydrological and biogeochemical conceptual model is proposed to tie these observations together. First, as the surface water temperature increased during the summer, microbial activity was enhanced, which in turn stimulated the formation of mobile organo-I. Hydrological processes were also likely involved in the observed iodine seasonal changes: (1) as the water table decreased in summer, the remaining upland water entering the wetland was comprised of a greater proportion of water containing elevated iodine concentrations from the low depths, and (2) water flow paths in summer changed such that the wells intercepted more of the contaminant plume and less of the diluting rainwater (due to evapotranspiration) and streamwater (as the lower levels promote a predominantly recharging system). These results underscore the importance of coupled processes influencing contaminant concentrations, and the need to assess seasonal contaminant variations to optimize long-term monitoring programs of wetlands.
Collapse
Affiliation(s)
- Daniel I Kaplan
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - Ralph Nichols
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - Chen Xu
- Department of Marine Sciences, Texas A&M University, Galveston, TX 77551, United States
| | - Peng Lin
- Department of Marine Sciences, Texas A&M University, Galveston, TX 77551, United States
| | - Chris Yeager
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Peter H Santschi
- Department of Marine Sciences, Texas A&M University, Galveston, TX 77551, United States
| |
Collapse
|
4
|
Xu C, Lin P, Garimella R, Li D, Xing W, Patterson NE, Kaplan DI, Yeager CM, Hatcher PG, Santschi PH. 1H- 13C heteronuclear single quantum coherence NMR evidence for iodination of natural organic matter influencing organo-iodine mobility in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152546. [PMID: 34973322 DOI: 10.1016/j.scitotenv.2021.152546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The complex biogeochemical behavior of iodine (I) isotopes and their interaction with natural organic matter (NOM) pose a challenge for transport models. Here, we present results from iodination experiments with humic acid (HA) and fulvic acid (FA) using 1H-13C heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy. Even though not a quantitative approach, 1H-13C HSQC NMR corroborated that iodination of NOM occurs primarily through aromatic electrophilic substitution of proton by I, and also revealed how iodination chemically alters HA and FA in a manner that potentially affects the mobility of iodinated NOM in the environment. Three types of iodination experiments were conducted with HA and FA: a) non-enzymatic iodination by IO3- (pH 3) and I- (pH 4 and 7), b) addition of lactoperoxidase to promote I--iodination in the presence of the co-substrate, H2O2 (pH 7), and c) addition of laccase for facilitating I--iodination in the presence of O2, with or without a mediator (pH 4). When mediators or H2O2 were present, extracellular oxidases and peroxidases enhanced I- incorporation into NOM by between 54% and 3400%. Iodination of HA, which was less than that of FA, enhanced HA's stability (inferred from increases in aliphatic compounds, decreases in carbohydrate moieties, and thus increased molecular hydrophobicity) yet reduced HA's tendency to incorporate more iodine. As such, HA is expected to act more as a sink for iodine in the environment. In contrast, iodination of FA appeared to generate additional iodine binding sites, which resulted in greater iodine uptake capability and enhanced mobility (inferred from decreases in aliphatic compounds, increases in carbohydrates, and thus decreases in molecular hydrophobicity). These results indicate that certain NOM moieties may enhance while others may inhibit radioiodine mobility in the aqueous environment.
Collapse
Affiliation(s)
- Chen Xu
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States.
| | - Peng Lin
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States
| | | | - Dien Li
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - Wei Xing
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States
| | - Nicole E Patterson
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States
| | - Daniel I Kaplan
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - Chris M Yeager
- Los Alamos National Laboratory, Los Alamos, NM 87545, United States
| | - Patrick G Hatcher
- Department of Chemistry, Old Dominion University, Norfolk, VA 23529, United States
| | - Peter H Santschi
- Department of Marine Science, Texas A & M University at Galveston, Galveston, TX 77551, United States
| |
Collapse
|
5
|
Microbial Community Composition Correlates with Metal Sorption in an Ombrotrophic Boreal Bog: Implications for Radionuclide Retention. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbial communities throughout the 6.5 m depth profile of a boreal ombrotrophic bog were characterized using amplicon sequencing of archaeal, fungal, and bacterial marker genes. Microbial populations and their relationship to oxic and anoxic batch sorption of radionuclides (using radioactive tracers of I, Se, Cs, Ni, and Ag) and the prevailing metal concentrations in the natural bog was investigated. The majority of the detected archaea belonged to the Crenarchaeota, Halobacterota, and Thermoplasmatota, whereas the fungal communities consisted of Ascomycota, Basidiomycota, and unclassified fungi. The bacterial communities consisted mostly of Acidobacteriota, Proteobacteria, and Chloroflexi. The occurrence of several microbial genera were found to statistically significantly correlate with metal concentrations as well as with Se, Cs, I, and Ag batch sorption data. We suggest that the metal concentrations of peat, gyttja, and clay layers affect the composition of the microbial populations in these nutrient-low conditions and that particularly parts of the bacterial and archaeal communities tolerate high concentrations of potentially toxic metals and may concurrently contribute to the total retention of metals and radionuclides in this ombrotrophic environment. In addition, the varying metal concentrations together with chemical, mineralogical, and physical factors may contribute to the shape of the total archaeal and bacterial populations and most probably shifts the populations for more metal resistant genera.
Collapse
|
6
|
Opazo MC, Coronado-Arrázola I, Vallejos OP, Moreno-Reyes R, Fardella C, Mosso L, Kalergis AM, Bueno SM, Riedel CA. The impact of the micronutrient iodine in health and diseases. Crit Rev Food Sci Nutr 2020; 62:1466-1479. [DOI: 10.1080/10408398.2020.1843398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ma. Cecilia Opazo
- Laboratorio de Endocrino-Inmunología, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Endocrine-Immunology Laboratory, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Irenice Coronado-Arrázola
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Moreno-Reyes
- Erasme Hospital, Department of Nuclear Medicine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Carlos Fardella
- Millennium Institute on Immunology and Immunotherapy (IMII). Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Translational Research in Endocrinology (CETREN-UC), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Mosso
- Millennium Institute on Immunology and Immunotherapy (IMII). Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Laboratorio de Endocrino-Inmunología, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Endocrine-Immunology Laboratory, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
7
|
Moore RC, Pearce CI, Morad JW, Chatterjee S, Levitskaia TG, Asmussen RM, Lawter AR, Neeway JJ, Qafoku NP, Rigali MJ, Saslow SA, Szecsody JE, Thallapally PK, Wang G, Freedman VL. Iodine immobilization by materials through sorption and redox-driven processes: A literature review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:132820. [PMID: 31982189 DOI: 10.1016/j.scitotenv.2019.06.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Radioiodine-129 (129I) in the subsurface is mobile and limited information is available on treatment technologies. Scientific literature was reviewed to compile information on materials that could potentially be used to immobilize 129I through sorption and redox-driven processes, with an emphasis on ex-situ processes. Candidate materials to immobilize 129I include iron minerals, sulfur-based materials, silver-based materials, bismuth-based materials, ion exchange resins, activated carbon, modified clays, and tailored materials (metal organic frameworks (MOFS), layered double hydroxides (LDHs) and aerogels). Where available, compiled information includes material performance in terms of (i) capacity for 129I uptake; (ii) long-term performance (i.e., solubility of a precipitated phase); (iii) technology maturity; (iv) cost; (v) available quantity; (vi) environmental impact; (vii) ability to emplace the technology for in situ use at the field-scale; and (viii) ex situ treatment (for media extracted from the subsurface or secondary waste streams). Because it can be difficult to compare materials due to differences in experimental conditions applied in the literature, materials will be selected for subsequent standardized batch loading tests.
Collapse
Affiliation(s)
- Robert C Moore
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, WA, United States of America.
| | - Joseph W Morad
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Sayandev Chatterjee
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Robert M Asmussen
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Amanda R Lawter
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - James J Neeway
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Nikolla P Qafoku
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Mark J Rigali
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Sarah A Saslow
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Jim E Szecsody
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | | | - Guohui Wang
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Vicky L Freedman
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| |
Collapse
|
8
|
Satoh Y, Imai S. Evaluation of dissolution flux of iodine from brackish lake sediments under different temperature and oxygenic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135920. [PMID: 31865086 DOI: 10.1016/j.scitotenv.2019.135920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Dissolution flux of iodine from aquatic sediments in a brackish lake (Lake Obuchi), facing the Pacific Ocean and adjacent to a nuclear fuel reprocessing plant in northeast Japan, was evaluated using incubation experiments on sediment core samples. The experiments were performed under three different temperatures (29, 17, and 6 °C) and oxygenic (air flow, N2 gas flow, and untreated) conditions for 48 h. The total dissolved iodine (TDI) concentration (i.e., the sum of iodide, iodate, and dissolved organic iodine, DOI) increased under all temperatures and oxygenic conditions in the first 6 h of incubation. From 6 to 27 h, noticeable increases in TDI concentration only occurred at high temperatures. Dissolution fluxes of iodine estimated by linear regression analysis of the measured TDI concentration in the first 6 h were always higher than those estimated in the first 27 h. This result indicates that dissolution flux of iodine should be evaluated through short-term (within several hours) incubation experiments because absorption reactions which transport iodine from the overlying water back to the sediment become active in the long-term. No substantial difference in dissolution flux, estimated by TDI concentration, was observed under different oxygenic conditions in the first 6 h. However, dissolution flux increased significantly with an increase in temperature. Increases in flux and temperature were significantly and positively correlated (R2 = 0.90), suggesting that temperature was the dominant factor that regulated iodine flux during the incubation. Changes in TDI concentration at all temperatures and oxygenic conditions corresponded to those in iodide concentration, indicating that iodide was the main form of iodine dissolved from the sediments. In later stages of the experiments, from 27 to 48 h, the TDI concentration in overlying water increased only at high temperature, while concentrations at medium and low temperatures remained constant or decreased. In particular, oxic experiments showed substantial decreases in iodide concentration at medium and low temperatures. This suggests that oxic conditions promote the absorption of iodine from the overlying water to the sediments. Finally, the dissolution flux of radioiodine (iodine-129) from the sediments of Lake Obuchi to the overlying water was estimated by combining these results with data from earlier studies. The results suggest that only 0.006% of the iodine-129 accumulated in the sediments is released through dissolution to the overlying water per year, suggesting that this radioactive isotope is essentially stable in the sediments.
Collapse
Affiliation(s)
- Yuhi Satoh
- Department of Radioecology, Institute for Environmental Sciences (IES), 1-7 Rokkasho, Aomori 039-3212, Japan.
| | - Shoko Imai
- Department of Radioecology, Institute for Environmental Sciences (IES), 1-7 Rokkasho, Aomori 039-3212, Japan.
| |
Collapse
|
9
|
Neeway JJ, Kaplan DI, Bagwell CE, Rockhold ML, Szecsody JE, Truex MJ, Qafoku NP. A review of the behavior of radioiodine in the subsurface at two DOE sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:466-475. [PMID: 31323591 DOI: 10.1016/j.scitotenv.2019.07.146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Multiple processes affect the fate of the radioactive isotope 129I in the environment. Primary categories of these processes include electron transfer reactions mediated by minerals and microbes, adsorption to sediments, interactions with organic matter, co-precipitation, and volatilization. A description of dominant biogeochemical processes is provided to describe the interrelationship of these processes and the associated iodine chemical species. The majority of the subsurface iodine fate and transport studies in the United States have been conducted at U.S. Department of Energy (DOE) sites where radioisotopes of iodine are present in the environment and stored waste. The DOE Hanford Site and Savannah River Site (SRS) are used to illustrate how the iodine species and dominant processes at a site are controlled by the prevailing site biogeochemical conditions. These sites differ in terms of climate (arid vs. sub-tropical), major geochemical parameters (e.g., pH ~7.5 vs. 4), and mineralogy (carbonate vs. Fe/Al oxide dominated). The iodine speciation and dominant processes at a site also have implications for selection and implementation of suitable remedy approaches for 129I.
Collapse
Affiliation(s)
- James J Neeway
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Daniel I Kaplan
- Savannah River National Laboratory, Aiken, SC, United States of America
| | | | - Mark L Rockhold
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - James E Szecsody
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Michael J Truex
- Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Nikolla P Qafoku
- Pacific Northwest National Laboratory, Richland, WA, United States of America.
| |
Collapse
|
10
|
Li D, Xu C, Yeager CM, Lin P, Xing W, Schwehr KA, Chen N, Arthur Z, Kaplan DI, Santschi PH. Molecular Interaction of Aqueous Iodine Species with Humic Acid Studied by I and C K-Edge X-ray Absorption Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12416-12424. [PMID: 31553176 DOI: 10.1021/acs.est.9b03682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iodine-129 is one of three key risk drivers at several US Department of Energy waste management sites. Natural organic matter (NOM) is thought to play important roles in the immobilization of aqueous iodide (I-) and iodate (IO3-) in the environment, but molecular interactions between NOM and iodine species are poorly understood. In this work, we investigated iodine and carbon speciation in three humic acid (HA)-I systems using I K-edge XANES and EXAFS and C K-edge XANES spectroscopy: (1) I- in the presence of laccase (an oxidase enzyme) and a mediator, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in a pH 4 buffer, (2) I- in the presence of lactoperoxidase (LPO) and H2O2 in a pH 7 buffer, and (3) IO3- in a pH 3 groundwater. Both oxidase and peroxidase systems could oxidize I- to I2 or hypoiodide (HOI) leading to organo-I formation. However, the laccase-ABTS mediator was the most effective and enhanced I- uptake by HA up to 13.5 mg/g, compared to 1.9 mg/g for the LPO-H2O2. IO3- was abiotically reduced to I2 or HOI leading to an organo-I formation. Pathways for HA iodination include covalent modification of aromatic-type rings by I2 / HOI or iodine incorporation into newly formed benzoquinone species arising from the oxidation of phenolic C species. This study improves our molecular-level understanding of NOM-iodine interactions and stresses the important role that mediators may play in the enzymatic reactions between iodine and NOM.
Collapse
Affiliation(s)
- Dien Li
- Savannah River National Laboratory , Aiken , South Carolina 29808 , United States
| | - Chen Xu
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| | - Chris M Yeager
- Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Peng Lin
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| | - Wei Xing
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| | - Kathleen A Schwehr
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| | - Ning Chen
- Canadian Light Source Inc. , Saskatoon , Saskatchewan S7N 2V3 , Canada
| | - Zachary Arthur
- Canadian Light Source Inc. , Saskatoon , Saskatchewan S7N 2V3 , Canada
| | - Daniel I Kaplan
- Savannah River National Laboratory , Aiken , South Carolina 29808 , United States
| | - Peter H Santschi
- Department of Marine Science, Texas A & M University at Galveston , Galveston , Texas 77551 , United States
| |
Collapse
|
11
|
Duborská E, Urík M, Bujdoš M, Matulová M. Influence of physicochemical properties of various soil types on iodide and iodate sorption. CHEMOSPHERE 2019; 214:168-175. [PMID: 30265923 DOI: 10.1016/j.chemosphere.2018.09.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Studies that deal with iodine mobility in uncontaminated agricultural soils are scarce and unique. Therefore, in this article, we have evaluated the sorption behavior of two most abundant naturally occurring inorganic iodine species - iodide and iodate - in several soil types. Our results showed that the sorption process is extremely slow with equilibrium achieved after ten days. The sorption of both iodine species is well described by Freundlich isotherm. The affinity of iodine for all investigated soils in the observed concentration range is relatively low. Our results showed that besides iodine speciation, sorption efficiency is highly dependent on soil types and their characteristics. While in mineral soils with low organic carbon content iodide sorption is dominant, organic rich soils are more favorable for iodate sorption. Organic carbon, clay content, pH and the abundance of iron, aluminum and manganese oxides and hydroxides showed to be the most important soil properties controlling iodine sorption. Our results provide new insight into the complex iodine behavior and retention in soils. This is crucial for better understanding of iodine mobility and the ability to enter the food chain.
Collapse
Affiliation(s)
- Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovak Republic.
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovak Republic.
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovak Republic
| | - Michaela Matulová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovak Republic
| |
Collapse
|
12
|
Santschi PH, Xu C, Zhang S, Schwehr KA, Lin P, Yeager CM, Kaplan DI. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 171:226-233. [PMID: 28286302 DOI: 10.1016/j.jenvrad.2017.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds that are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed here that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. More importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.
Collapse
Affiliation(s)
| | - C Xu
- Texas A&M-Galveston, Galveston, TX, USA
| | - S Zhang
- Texas A&M-Galveston, Galveston, TX, USA
| | | | - P Lin
- Texas A&M-Galveston, Galveston, TX, USA
| | - C M Yeager
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - D I Kaplan
- Savannah River National Laboratory, Aiken, SC, USA
| |
Collapse
|
13
|
Unno Y, Tsukada H, Takeda A, Takaku Y, Hisamatsu S. Soil-soil solution distribution coefficient of soil organic matter is a key factor for that of radioiodide in surface and subsurface soils. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 169-170:131-136. [PMID: 28110200 DOI: 10.1016/j.jenvrad.2017.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
We investigated the vertical distribution of the soil-soil-solution distribution coefficients (Kd) of 125I, 137Cs, and 85Sr in organic-rich surface soil and organic-poor subsurface soil of a pasture and an urban forest near a spent-nuclear-fuel reprocessing plant in Rokkasho, Japan. Kd of 137Cs was highly correlated with water-extractable K+. Kd of 85Sr was highly correlated with water-extractable Ca2+ and SOC. Kd of 125I- was low in organic-rich surface soil, high slightly below the surface, and lowest in the deepest soil. This kinked distribution pattern differed from the gradual decrease of the other radionuclides. The thickness of the high-125I-Kd middle layer (i.e., with high radioiodide retention ability) differed between sites. Kd of 125I- was significantly correlated with Kd of soil organic carbon. Our results also showed that the layer thickness is controlled by the ratio of Kd-OC between surface and subsurface soils. This finding suggests that the addition of SOC might prevent further radioiodide migration down the soil profile. As far as we know, this is the first report to show a strong correlation of a soil characteristic with Kd of 125I-. Further study is needed to clarify how radioiodide is retained and migrates in soil.
Collapse
Affiliation(s)
- Yusuke Unno
- Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan.
| | - Hirofumi Tsukada
- Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| | - Akira Takeda
- Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| | - Yuichi Takaku
- Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| | - Shun'ichi Hisamatsu
- Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| |
Collapse
|
14
|
Yeager CM, Amachi S, Grandbois R, Kaplan DI, Xu C, Schwehr KA, Santschi PH. Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:83-136. [PMID: 29050668 DOI: 10.1016/bs.aambs.2017.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iodine is a biophilic element that is important for human health, both as an essential component of several thyroid hormones and, on the other hand, as a potential carcinogen in the form of radioiodine generated by anthropogenic nuclear activity. Iodine exists in multiple oxidation states (-1, 0, +1, +3, +5, and +7), primarily as molecular iodine (I2), iodide (I-), iodate [Formula: see text] , or organic iodine (org-I). The mobility of iodine in the environment is dependent on its speciation and a series of redox, complexation, sorption, precipitation, and microbial reactions. Over the last 15years, there have been significant advances in iodine biogeochemistry, largely spurred by renewed interest in the fate of radioiodine in the environment. We review the biogeochemistry of iodine, with particular emphasis on the microbial processes responsible for volatilization, accumulation, oxidation, and reduction of iodine, as well as the exciting technological potential of these fascinating microorganisms and enzymes.
Collapse
|
15
|
Lusa M, Lehto J, Aromaa H, Knuutinen J, Bomberg M. Uptake of radioiodide by Paenibacillus sp., Pseudomonas sp., Burkholderia sp. and Rhodococcus sp. isolated from a boreal nutrient-poor bog. J Environ Sci (China) 2016; 44:26-37. [PMID: 27266299 DOI: 10.1016/j.jes.2015.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/22/2015] [Accepted: 08/06/2015] [Indexed: 06/06/2023]
Abstract
Radionuclides, like radioiodine ((129)I), may escape deep geological nuclear waste repositories and migrate to the surface ecosystems. In surface ecosystems, microorganisms can affect their movement. Iodide uptake of six bacterial strains belonging to the genera Paenibacillus, Pseudomonas, Burkholderia and Rhodococcus isolated from an acidic boreal nutrient-poor bog was tested. The tests were run in four different growth media at three temperatures. All bacterial strains removed iodide from the solution with the highest efficiency shown by one of the Paenibacillus strains with >99% of iodide removed from the solution in one of the used growth media. Pseudomonas, Rhodococcus and one of the two Paenibacillus strains showed highest iodide uptake in 1% yeast extract with maximum values for the distribution coefficient (Kd) ranging from 90 to 270L/kg DW. The Burkholderia strain showed highest uptake in 1% Tryptone (maximum Kd 170L/kg DW). The Paenibacillus strain V0-1-LW showed exceptionally high uptake in 0.5% peptone +0.25% yeast extract broth (maximum Kd>1,000,000L/kg DW). Addition of 0.1% glucose to the 0.5% peptone +0.25% yeast extract broth reduced iodide uptake at 4°C and 20°C and enhanced iodide uptake at 37°C compared to the uptake without glucose. This indicates that the uptake of glucose and iodide may be competing processes in these bacteria. We estimated that in in situ conditions of the bog, the bacterial uptake of iodide accounts for approximately 0.1%-0.3% of the total sorption of iodide in the surface, subsurface peat, gyttja and clay layers.
Collapse
Affiliation(s)
- Merja Lusa
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland.
| | - Jukka Lehto
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| | - Hanna Aromaa
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| | - Jenna Knuutinen
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, 02044 Espoo, Finland
| |
Collapse
|
16
|
Lusa M, Bomberg M, Aromaa H, Knuutinen J, Lehto J. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 143:110-122. [PMID: 25752706 DOI: 10.1016/j.jenvrad.2015.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH.
Collapse
Affiliation(s)
- M Lusa
- Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland.
| | - M Bomberg
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044, VTT, Finland
| | - H Aromaa
- Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
| | - J Knuutinen
- Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
| | - J Lehto
- Laboratory of Radiochemistry, Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Finland
| |
Collapse
|
17
|
Kaplan DI, Denham ME, Zhang S, Yeager C, Xu C, Schwehr KA, Li HP, Ho YF, Wellman D, Santschi PH. Radioiodine Biogeochemistry and Prevalence in Groundwater. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2014; 44:2287-2335. [PMID: 25264421 PMCID: PMC4160254 DOI: 10.1080/10643389.2013.828273] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
129I is commonly either the top or among the top risk drivers, along with 99Tc, at radiological waste disposal sites and contaminated groundwater sites where nuclear material fabrication or reprocessing has occurred. The risk stems largely from 129I having a high toxicity, a high bioaccumulation factor (90% of all the body's iodine concentrates in the thyroid), a high inventory at source terms (due to its high fission yield), an extremely long half-life (16M years), and rapid mobility in the subsurface environment. Another important reason that 129I is a key risk driver is that there is uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define 129I mass balance and flux at sites, but cannot predict accurately its response to changes in the environment. As a consequence of some of these characteristics, 129I has a very low drinking water standard, which is set at 1 pCi/L, the lowest of all radionuclides in the Federal Register. Recently, significant advancements have been made in detecting iodine species at ambient groundwater concentrations, defining the nature of the organic matter and iodine bond, and quantifying the role of naturally occurring sediment microbes to promote iodine oxidation and reduction. These recent studies have led to a more mechanistic understanding of radioiodine biogeochemistry. The objective of this review is to describe these advances and to provide a state of the science of radioiodine biogeochemistry relevant to its fate and transport in the terrestrial environment and provide information useful for making decisions regarding the stewardship and remediation of 129I contaminated sites. As part of this review, knowledge gaps were identified that would significantly advance the goals of basic and applied research programs for accelerating 129I environmental remediation and reducing uncertainty associated with disposal of 129I waste. Together the information gained from addressing these knowledge gaps will not alter the observation that 129I is primarily mobile, but it will likely permit demonstration that the entire 129I pool in the source term is not moving at the same rate and some may be tightly bound to the sediment, thereby smearing the modeled 129I peak and reducing maximum calculated risk.
Collapse
Affiliation(s)
- D. I. Kaplan
- Savannah River National Laboratory, Aiken, SC, USA
- Address correspondence to D. I. Kaplan, Savannah River National Laboratory, Building 773–43A, Room 215, Aiken, SC29808, USA. E-mail:
| | - M. E. Denham
- Savannah River National Laboratory, Aiken, SC, USA
| | - S. Zhang
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - C. Yeager
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - C. Xu
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - K. A. Schwehr
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - H. P. Li
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - Y. F. Ho
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| | - D. Wellman
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - P. H. Santschi
- Department of Marine Sciences, Texas A&M University, Galveston, TX, USA
| |
Collapse
|
18
|
Phatarphekar A, Buss JM, Rokita SE. Iodotyrosine deiodinase: a unique flavoprotein present in organisms of diverse phyla. MOLECULAR BIOSYSTEMS 2014; 10:86-92. [PMID: 24153409 DOI: 10.1039/c3mb70398c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iodide is required for thyroid hormone synthesis in mammals and other vertebrates. The role of both iodide and iodinated tyrosine derivatives is currently unknown in lower organisms, yet the presence of a key enzyme in iodide conservation, iodotyrosine deiodinase (IYD), is suggested by genomic data from a wide range of multicellular organisms as well as some bacteria. A representative set of these genes has now been expressed, and the resulting enzymes all catalyze reductive deiodination of diiodotyrosine with kcat/Km values within a single order of magnitude. This implies a physiological presence of iodotyrosines (or related halotyrosines) and a physiological role for their turnover. At least for Metazoa, IYD should provide a new marker for tracing the evolutionary development of iodinated amino acids as regulatory signals through the tree of life.
Collapse
Affiliation(s)
- Abhishek Phatarphekar
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
19
|
Kaplan DI, Zhang S, Roberts KA, Schwehr K, Xu C, Creeley D, Ho YF, Li HP, Yeager CM, Santschi PH. Radioiodine concentrated in a wetland. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2014; 131:57-61. [PMID: 24075117 DOI: 10.1016/j.jenvrad.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/22/2013] [Accepted: 09/05/2013] [Indexed: 06/02/2023]
Abstract
Most subsurface environmental radioactivity contamination is expected to eventually resurface in riparian zones, or wetlands. There are a number of extremely sharp biogeochemical interfaces in wetlands that could alter radionuclide speciation and promote accumulation. The objective of this study was to determine if a wetland concentrated (129)I emanating from a former waste disposal basin located on the Savannah River Site (SRS) in South Carolina, USA. Additionally, studies were conducted to evaluate the role of sediment organic matter in immobilizing the radioiodine. Groundwater samples were collected along a 0.7-km transect away from the seepage basin and in the downstream wetlands. The samples were analyzed for (129)I speciation (iodide (I(-)), iodate (IO3(-)), and organo-I). Groundwater (129)I concentrations in many locations in the wetlands (as high as 59.9 Bq L(-1)(129)I) were greatly elevated with respect to the source term (5.9 Bq L(-1)(129)I). (129)I concentration profiles in sediment cores were closely correlated to organic matter concentrations (r(2) = 0.992; n = 5). While the sediment organic matter promoted the uptake of (129)I to the wetland sediment, it also promoted the formation of a soluble organic fraction: 74% of the wetland groundwater (129)I could pass through a 1 kDa (<1 nm) membrane and only 26% of the (129)I was colloidal. Of that fraction that could pass through a 1 kDa membrane, 39% of the (129)I was organo-I. Therefore, while wetlands may be highly effective at immobilizing aqueous (129)I, they may also promote the formation of a low-molecular-weight organic species that does not partition to sediments. This study provides a rare example of radioactivity concentrations increasing rather than decreasing as it migrates from a point source and brings into question assumptions in risk models regarding continuous dilution of released contaminants.
Collapse
Affiliation(s)
| | - Saijin Zhang
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | | | - Kathy Schwehr
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Chen Xu
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Danielle Creeley
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Yi-Fang Ho
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Hsiu-Ping Li
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| | - Chris M Yeager
- Los Alamos National Laboratory (LANL), Los Alamos, NM, USA
| | - Peter H Santschi
- Department of Marine Science, Texas A&M University at Galveston, TX 77554, USA
| |
Collapse
|
20
|
Choung S, Um W, Kim M, Kim MG. Uptake mechanism for iodine species to black carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10349-10355. [PMID: 23941630 DOI: 10.1021/es401570a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.
Collapse
Affiliation(s)
- Sungwook Choung
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH) , 77 Chongam-lo, Nam-gu, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
21
|
Xu C, Chen H, Sugiyama Y, Zhang S, Li HP, Ho YF, Chuang CY, Schwehr KA, Kaplan DI, Yeager C, Roberts KA, Hatcher PG, Santschi PH. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 449:244-252. [PMID: 23428755 DOI: 10.1016/j.scitotenv.2013.01.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
Major fractions of radioiodine ((129)I) are associated with natural organic matter (NOM) in the groundwater and surface soils of the Savannah River Site (SRS). Electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was applied to elucidate the interactions between inorganic iodine species (iodide and iodate) and a fulvic acid (FA) extracted from a SRS surface soil. Iodate is likely reduced to reactive iodine species by the lignin- and tannin-like compounds or the carboxylic-rich alicyclic molecules (CRAM), during which condensed aromatics and lignin-like compounds were generated. Iodide is catalytically oxidized into reactive iodine species by peroxides, while FA is oxidized by peroxides into more aliphatic and less aromatic compounds. Only 9% of the total identified organo-iodine compounds derived from molecules originally present in the FA, whereas most were iodine binding to newly-produced compounds. The resulting iodinated molecules were distributed in three regions in the van Krevelen diagrams, denoting unsaturated hydrocarbons, lignin and protein. Moreover, characteristics of these organo-iodine compounds, such as their relatively low O/C ratios (<0.2 or <0.4) and yet some degree of un-saturation close to that of lignin, have multiple important environmental implications concerning possibly less sterically-hindered aromatic ring system for iodine to get access to and a lower hydrophilicity of the molecules thus to retard their migration in the natural aquatic systems. Lastly, ~69% of the identified organo-iodine species contains nitrogen, which is presumably present as NH2 or HNCOR groups and a ring-activating functionality to favor the electrophilic substitution. The ESI-FTICR-MS technique provides novel evidence to better understand the reactivity and scavenging properties of NOM towards radioiodine and possible influence of NOM on (129)I migration.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, TX 77551, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li J, Wang Y, Xie X, Zhang L, Guo W. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:848-859. [PMID: 23478640 DOI: 10.1039/c3em30841c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
High iodine concentrations in groundwater have seldom been reported and there have been few systematic studies on high iodine groundwater worldwide. To better understand the sources and processes responsible for iodine enrichment in the groundwater of the Datong Basin, the hydrochemical characteristics of groundwater and geochemical features of aquifer sediments were studied. High iodine groundwater mainly occurs in the center of the Datong Basin with iodine concentrations ranging between 3.31 and 1890 μg L(-1). Most samples with iodine concentrations higher than 500 μg L(-1) are from wells with depths between 75 and 120 m. High pH and a reducing environment are favorable for iodine enrichment in the groundwater, with iodide as the dominant species that accounts for 63.2-99.3% of the total iodine. Sediment samples from a borehole specifically drilled for this study contain 0.18-1.46 mg kg(-1) iodine that is moderately correlated with total organic carbon (TOC). The results of sequential extraction experiments show that iodine is mostly bound to iron oxyhydroxides and organic matter in the sediments. The mobilization processes of iodine are proposed to include reductive dissolution of iron oxyhydroxides and transformations among iodide, iodate and organic iodine driven by microbial activities under alkaline and reducing conditions.
Collapse
Affiliation(s)
- Junxia Li
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| | | | | | | | | |
Collapse
|
23
|
Li HP, Yeager CM, Brinkmeyer R, Zhang S, Ho YF, Xu C, Jones WL, Schwehr KA, Otosaka S, Roberts KA, Kaplan DI, Santschi PH. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4837-44. [PMID: 22455542 DOI: 10.1021/es203683v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To develop an understanding of the role that microorganisms play in the transport of (129)I in soil-water systems, bacteria isolated from subsurface sediments were assessed for iodide oxidizing activity. Spent liquid medium from 27/84 bacterial cultures enhanced iodide oxidation 2-10 fold in the presence of H(2)O(2). Organic acids secreted by the bacteria were found to enhance iodide oxidation by (1) lowering the pH of the spent medium, and (2) reacting with H(2)O(2) to form peroxy carboxylic acids, which are extremely strong oxidizing agents. H(2)O(2)-dependent iodide oxidation increased exponentially from 8.4 to 825.9 μM with decreasing pH from 9 to 4. Organic acids with ≥2 carboxy groups enhanced H(2)O(2)-dependent iodide oxidation (1.5-15-fold) as a function of increasing pH above pH 6.0, but had no effect at pH ≤ 5.0. The results indicate that as pH decreases (≤5.0), increasing H(2)O(2) hydrolysis is the driving force behind iodide oxidation. However, at pH ≥ 6.0, spontaneous decomposition of peroxy carboxylic acids, generated from H(2)O(2) and organic acids, contributes significantly to iodide oxidation. The results reveal an indirect microbial mechanism, organic acid secretion coupled to H(2)O(2) production, that could enhance iodide oxidation and organo-iodine formation in soils and sediments.
Collapse
Affiliation(s)
- Hsiu-Ping Li
- Department of Marine Sciences, Texas A&M University, Galveston, Texas 77551, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Iodine from bacterial iodide oxidization by Roseovarius spp. inhibits the growth of other bacteria. Appl Microbiol Biotechnol 2012; 97:2173-82. [PMID: 22526798 DOI: 10.1007/s00253-012-4043-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
Abstract
Microbial activities in brine, seawater, or estuarine mud are involved in iodine cycle. To investigate the effects of the microbiologically induced iodine on other bacteria in the environment, a total of 13 bacteria that potentially participated in the iodide-oxidizing process were isolated from water or biofilm at a location containing 131 μg ml(-1) iodide. Three distinct strains were further identified as Roseovarius spp. based on 16 S rRNA gene sequences after being distinguished by restriction fragment length polymorphism analysis. Morphological characteristics of these three Roseovarius spp. varied considerably across and within strains. Iodine production increased with Roseovarius spp. growth when cultured in Marine Broth with 200 μg ml(-1) iodide (I(-)). When 10(6) CFU/ml Escherichia coli, Pseudomonas aeruginosa, and Bacillus pumilus were exposed to various concentrations of molecular iodine (I(2)), the minimum inhibitory concentrations (MICs) were 0.5, 1.0, and 1.0 μg ml(-1), respectively. However, fivefold increases in the MICs for Roseovarius spp. were obtained. In co-cultured Roseovarius sp. IOB-7 and E. coli in Marine Broth containing iodide (I(-)), the molecular iodine concentration was estimated to be 0.76 μg ml(-1) after 24 h and less than 50 % of E. coli was viable compared to that co-cultured without iodide. The growth inhibition of E. coli was also observed in co-cultures with the two other Roseovarius spp. strains when the molecular iodine concentration was assumed to be 0.52 μg ml(-1).
Collapse
|
25
|
Xu C, Miller EJ, Zhang S, Li HP, Ho YF, Schwehr KA, Kaplan DI, Otosaka S, Roberts KA, Brinkmeyer R, Yeager CM, Santschi PH. Sequestration and remobilization of radioiodine (129I) by soil organic matter and possible consequences of the remedial action at Savannah River Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:9975-9983. [PMID: 22035296 DOI: 10.1021/es201343d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In order to investigate the distributions and speciation of (129)I (and (127)I) in a contaminated F-Area groundwater plume of the Savannah River Site that cannot be explained by simple transport models, soil resuspension experiments simulating surface runoff or stormflow and erosion events were conducted. Results showed that 72-77% of the newly introduced I(-) or IO(3)(-) were irreversibly sequestered into the organic-rich riparian soil, while the rest was transformed by the soil into colloidal and truly dissolved organo-iodine, resulting in (129)I remobilization from the soil greatly exceeding the 1 pCi/L drinking water permit. This contradicts the conventional view that only considers I(-) or IO(3)(-) as the mobile forms. Laboratory iodination experiments indicate that iodine likely covalently binds to aromatic structures of the soil organic matter (SOM). Under very acidic conditions, abiotic iodination of SOM was predominant, whereas under less acidic conditions (pH ≥5), microbial enzymatically assisted iodination of SOM was predominant. The organic-rich soil in the vadose zone of F-Area thus acts primarily as a "sink," but may also behave as a potentially important vector for mobile radioiodine in an on-off carrying mechanism. Generally the riparian zone provides as a natural attenuation zone that greatly reduces radioiodine release.
Collapse
Affiliation(s)
- Chen Xu
- Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A&M University, Building 3029, Galveston, Texas 77551, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Otosaka S, Schwehr KA, Kaplan DI, Roberts KA, Zhang S, Xu C, Li HP, Ho YF, Brinkmeyer R, Yeager CM, Santschi PH. Factors controlling mobility of 127I and 129I species in an acidic groundwater plume at the Savannah River Site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:3857-3865. [PMID: 21641630 DOI: 10.1016/j.scitotenv.2011.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/10/2011] [Accepted: 05/10/2011] [Indexed: 05/30/2023]
Abstract
In order to quantify changes in iodine speciation and to assess factors controlling the distribution and mobility of iodine at an iodine-129 ((129)I) contaminated site located at the U.S. Department of Energy's Savannah River Site (SRS), spatial distributions and transformation of (129)I and stable iodine ((127)I) species in groundwater were investigated along a gradient in redox potential (654 to 360 mV), organic carbon concentration (5 to 60 μmol L(-1)), and pH (pH 3.2 to 6.8). Total (129)I concentration in groundwater was 8.6±2.8 Bq L(-1) immediately downstream of a former waste seepage basin (well FSB-95DR), and decreased with distance from the seepage basin. (127)I concentration decreased similarly to that of (129)I. Elevated concentrations of (127)I or (129)I were not detected in groundwater collected from wells located outside of the mixed waste plume of this area. At FSB-95DR, the majority (55-86%) of iodine existed as iodide for both (127)I and (129)I. Then, as the iodide move down gradient, some of it transformed into iodate and organo-iodine. Considering that iodate has a higher K(d) value than iodide, we hypothesize that the production of iodate in groundwater resulted in the removal of iodine from the groundwater and consequently decreased concentrations of (127)I and (129)I in downstream areas. Significant amounts of organo-iodine species (30-82% of the total iodine) were also observed at upstream wells, including those outside the mixed waste plume. Concentrations of groundwater iodide decreased at a faster rate than organo-iodine along the transect from the seepage basin. We concluded that removal of iodine from the groundwater through the formation of high molecular weight organo-iodine species is complicated by the release of other more mobile organo-iodine species in the groundwater.
Collapse
Affiliation(s)
- Shigeyoshi Otosaka
- Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A&M University, Building 3029, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang S, Du J, Xu C, Schwehr KA, Ho YF, Li HP, Roberts KA, Kaplan DI, Brinkmeyer R, Yeager CM, Chang HS, Santschi PH. Concentration-dependent mobility, retardation, and speciation of iodine in surface sediment from the Savannah River Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5543-5549. [PMID: 21663237 DOI: 10.1021/es1040442] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Iodine occurs in multiple oxidation states in aquatic systems in the form of organic and inorganic species. This feature leads to complex biogeochemical cycling of stable iodine and its long-lived isotope, (129)I. In this study, we investigated the sorption, transport, and interconversion of iodine species by comparing their mobility in groundwaters at ambient concentrations of iodine species (10(-8) to 10(-7) M) to those at artificially elevated concentrations (78.7 μM), which often are used in laboratory analyses. Results demonstrate that the mobility of iodine species greatly depends on, in addition to the type of species, the iodine concentration used, presumably limited by the number of surface organic carbon binding sites to form covalent bonds. At ambient concentrations, iodide and iodate were significantly retarded (K(d) values as high as 49 mL g(-1)), whereas at concentrations of 78.7 μM, iodide traveled along with the water without retardation. Appreciable amounts of iodide during transport were retained in soils due to iodination of organic carbon, specifically retained by aromatic carbon. At high input concentration of iodate (78.7 μM), iodate was found to be reduced to iodide and subsequently followed the transport behavior of iodide. These experiments underscore the importance of studying iodine geochemistry at ambient concentrations and demonstrate the dynamic nature of their speciation during transport conditions.
Collapse
Affiliation(s)
- S Zhang
- Department of Marine Science, Texas A&M University, Galveston, Texas 77553, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|