1
|
Yuan K, Huo Z, Zhang YN, Guo Z, Chang Y, Jin Y, Gao L, Zhang T, Li Y, Ma Q, Gao X. Enhancing the amination activity of meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by modifying the crucial residue His154 for deamination. J Biotechnol 2024; 393:1-6. [PMID: 39032700 DOI: 10.1016/j.jbiotec.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
During the deamination and amination processes of meso-diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum (StDAPDH), residue R71 was observed to display distinct functions. H154 has been proposed as a basic residue that facilitates water molecules to attack the D-chiral carbon of meso-DAP during deamination. Inspired by the phenomenon of R71, the effects of H154 during deamination and amination were investigated in this study with the goal of enhancing the amination activities of StDAPDH. Single site saturation mutagenesis indicated that almost all of the H154 mutants completely lost their deamination activity towards meso-DAP. However, some H154 variants showed enhanced kcat/Km values towards pyruvic acid and other bulky 2-keto acids, such as 2-oxovaleric acid, 4-methyl-2-oxopentanoic acid, 2-ketobutyric acid, and 3-methyl-2-oxobutanoic acid. When combined with the previously reported W121L/H227I mutant, triple mutants with significantly improved kcat/Km values (2.4-, 2.5-, 2.5-, and 4.0-fold) towards these 2-keto acids were obtained. Despite previous attempts, mutations at the H154 site did not yield the desired results. Moreover, this study not only recognizes the distinctive impact of H154 on both the deamination and amination reactions, but also provides guidance for further high-throughput screening in protein engineering and understanding the catalytic mechanism of StDAPDH.
Collapse
Affiliation(s)
- Kehao Yuan
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Zongchao Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ya Ning Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Zuran Guo
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yucan Chang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yunming Jin
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Lining Gao
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Tong Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Qinyuan Ma
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China; Joint Institute of Synthetic Biology and Engineering Biotechnology, Shandong University of Technology and JINCHENG PHARMA, Zibo 255000, China
| | - Xiuzhen Gao
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
2
|
Wu T, Wei W, Gao C, Wu J, Gao C, Chen X, Liu L, Song W. Synthesis of C-N bonds by nicotinamide-dependent oxidoreductase: an overview. Crit Rev Biotechnol 2024:1-25. [PMID: 39229892 DOI: 10.1080/07388551.2024.2390082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 09/05/2024]
Abstract
Compounds containing chiral C-N bonds play a vital role in the composition of biologically active natural products and small pharmaceutical molecules. Therefore, the development of efficient and convenient methods for synthesizing compounds containing chiral C-N bonds is a crucial area of research. Nicotinamide-dependent oxidoreductases (NDOs) emerge as promising biocatalysts for asymmetric synthesis of chiral C-N bonds due to their mild reaction conditions, exceptional stereoselectivity, high atom economy, and environmentally friendly nature. This review aims to present the structural characteristics and catalytic mechanisms of various NDOs, including imine reductases/ketimine reductases, reductive aminases, EneIRED, and amino acid dehydrogenases. Additionally, the review highlights protein engineering strategies employed to modify the stereoselectivity, substrate specificity, and cofactor preference of NDOs. Furthermore, the applications of NDOs in synthesizing essential medicinal chemicals, such as noncanonical amino acids and chiral amine compounds, are extensively examined. Finally, the review outlines future perspectives by addressing challenges and discussing the potential of utilizing NDOs to establish efficient biosynthesis platforms for C-N bond synthesis. In conclusion, NDOs provide an economical, efficient, and environmentally friendly toolbox for asymmetric synthesis of C-N bonds, thus contributing significantly to the field of pharmaceutical chemical development.
Collapse
Affiliation(s)
- Tianfu Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Wu T, Chen Y, Wei W, Song W, Wu J, Wen J, Hu G, Li X, Gao C, Chen X, Liu L. Mechanism-Guided Computational Design Drives meso-Diaminopimelate Dehydrogenase to Efficient Synthesis of Aromatic d-amino Acids. ACS Synth Biol 2024; 13:1879-1892. [PMID: 38847341 DOI: 10.1021/acssynbio.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Aromatic d-amino acids (d-AAs) play a pivotal role as important chiral building blocks and key intermediates in fine chemical and drug synthesis. Meso-diaminopimelate dehydrogenase (DAPDH) serves as an excellent biocatalyst in the synthesis of d-AAs and their derivatives. However, its strict substrate specificity and the lack of efficient engineering methods have hindered its widespread application. Therefore, this study aims to elucidate the catalytic mechanism underlying DAPDH from Proteus vulgaris (PvDAPDH) through the examination of its crystallographic structure, computational simulations of potential energies and molecular dynamics simulations, and site-directed mutagenesis. Mechanism-guided computational design showed that the optimal mutant PvDAPDH-M3 increased specific activity and catalytic efficiency (kcat/Km) for aromatic keto acids up to 124-fold and 92.4-fold, respectively, compared to that of the wild type. Additionally, it expanded the substrate scope to 10 aromatic keto acid substrates. Finally, six high-value-added aromatic d-AAs and their derivatives were synthesized using a one-pot three-enzyme cascade reaction, exhibiting a good conversion rate ranging from 32 to 84% and excellent stereoselectivity (enantiomeric excess >99%). These findings provide a potential synthetic pathway for the green industrial production of aromatic d-AAs.
Collapse
Affiliation(s)
- Tianfu Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yihan Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Wang F, Qi H, Li H, Ma X, Gao X, Li C, Lu F, Mao S, Qin HM. State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. Crit Rev Biotechnol 2024; 44:495-513. [PMID: 37160372 DOI: 10.1080/07388551.2023.2193861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 05/11/2023]
Abstract
D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hongbin Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Huimin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xuanzhen Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xin Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuhong Mao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hui-Min Qin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
5
|
Araseki H, Sugishima N, Chisuga T, Nakano S. Development of an Enzyme Cascade System for the Synthesis of Enantiomerically Pure D-Amino Acids Utilizing Ancestral L-Amino Acid Oxidase. Chembiochem 2024; 25:e202400036. [PMID: 38385659 DOI: 10.1002/cbic.202400036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
Enantiomerically pure D-amino acids hold significant potential as precursors for synthesizing various fine chemicals, including peptide-based drugs and other pharmaceuticals. This study focuses on establishing an enzymatic cascade system capable of converting various L-amino acids into their D-isomers. The system integrates four enzymes: ancestral L-amino acid oxidase (AncLAAO-N4), D-amino acid dehydrogenase (DAADH), D-glucose dehydrogenase (GDH), and catalase. AncLAAO-N4 initiates the process by converting L-amino acids to corresponding keto acids, which are then stereo-selectively aminated to D-amino acids by DAADH using NADPH and NH4Cl. Concurrently, any generated H2O2 is decomposed into O2 and H2O by catalase, while GDH regenerates NADPH from D-glucose. Optimization of reaction conditions and substrate concentrations enabled the successful synthesis of five D-amino acids, including a D-Phe derivative, three D-Trp derivatives, and D-phenylglycine, all with high enantiopurity (>99 % ee) at a preparative scale (>100 mg). This system demonstrates a versatile approach for producing a diverse array of D-amino acids.
Collapse
Affiliation(s)
- Hayato Araseki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Narumi Sugishima
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Taichi Chisuga
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
| | - Shogo Nakano
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan for S.N
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
6
|
Tian S, Zhao G, Lv G, Wu C, Su R, Wang F, Wang Z, Liu Y, Chen N, Li Y. Efficient Fermentative Production of d-Alanine and Other d-Amino Acids by Metabolically Engineered Corynebacterium glutamicum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8039-8051. [PMID: 38545740 DOI: 10.1021/acs.jafc.4c00914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
d-Amino acids (d-AAs) have wide applications in industries such as pharmaceutical, food, and cosmetics due to their unique properties. Currently, the production of d-AAs has relied on chemical synthesis or enzyme catalysts, and it is challenging to produce d-AAs via direct fermentation from glucose. We observed that Corynebacterium glutamicum exhibits a remarkable tolerance to high concentrations of d-Ala, a crucial characteristic for establishing a successful fermentation process. By optimizing meso-diaminopilmelate dehydrogenases in different C. glutamicum strains and successively deleting l-Ala biosynthetic pathways, we developed an efficient d-Ala fermentation system. The d-Ala titer was enhanced through systems metabolic engineering, which involved strengthening glucose assimilation and pyruvate supply, reducing the formation of organic acid byproducts, and attenuating the TCA cycle. During fermentation in a 5-L bioreactor, a significant accumulation of l-Ala was observed in the broth, which was subsequently diminished by introducing an l-amino acid deaminase. Ultimately, the engineered strain DA-11 produced 85 g/L d-Ala with a yield of 0.30 g/g glucose, accompanied by an optical purity exceeding 99%. The fermentation platform has the potential to be extended for the synthesis of other d-AAs, as demonstrated by the production of d-Val and d-Glu.
Collapse
Affiliation(s)
- Siyu Tian
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Guihong Zhao
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Gengcheng Lv
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Rui Su
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yuexiang Liu
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| |
Collapse
|
7
|
Tan Y, Gao C, Song W, Wei W, Liu J, Gao C, Guo L, Chen X, Liu L, Wu J. Rational Design of Meso-Diaminopimelate Dehydrogenase with Enhanced Reductive Amination Activity for Efficient Production of d- p-Hydroxyphenylglycine. Appl Environ Microbiol 2023; 89:e0010923. [PMID: 37070978 PMCID: PMC10231207 DOI: 10.1128/aem.00109-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the pharmaceutical industry. In this study, a tri-enzyme cascade for the production of d-HPG from l-HPG was designed. However, the amination activity of Prevotella timonensis meso-diaminopimelate dehydrogenase (PtDAPDH) toward 4-hydroxyphenylglyoxylate (HPGA) was identified as the rate-limiting step. To overcome this issue, the crystal structure of PtDAPDH was solved, and a "binding pocket and conformation remodeling" strategy was developed to improve the catalytic activity toward HPGA. The best variant obtained, PtDAPDHM4, exhibited a catalytic efficiency (kcat/Km) that was 26.75-fold higher than that of the wild type. This improvement was due to the enlarged substrate-binding pocket and enhanced hydrogen bond networks around the active center; meanwhile, the increased number of interdomain residue interactions drove the conformation distribution toward the closed state. Under optimal transformation conditions, PtDAPDHM4 produced 19.8 g/L d-HPG from 40 g/L racemate DL-HPG in a 3 L fermenter within 10 h, with 49.5% conversion and >99% enantiomeric excess. Our study provides an efficient three-enzyme cascade pathway for the industrial production of d-HPG from racemate DL-HPG. IMPORTANCE d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the synthesis of antimicrobial compounds. d-HPG is mainly produced via chemical and enzymatic approaches, and enzymatic asymmetric amination employing diaminopimelate dehydrogenase (DAPDH) is considered an attractive method. However, the low catalytic activity of DAPDH toward bulky 2-keto acids limits its applications. In this study, we identified a DAPDH from Prevotella timonensis and created a mutant, PtDAPDHM4, which exhibited a catalytic efficiency (kcat/Km) toward 4-hydroxyphenylglyoxylate that was 26.75-fold higher than that of the wild type. The novel strategy developed in this study has practical value for the production of d-HPG from inexpensive racemate DL-HPG.
Collapse
Affiliation(s)
- Yang Tan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
9
|
Semi-Rational Design of Diaminopimelate Dehydrogenase from Symbiobacterium thermophilum Improved Its Activity toward Hydroxypyruvate for D-serine Synthesis. Catalysts 2023. [DOI: 10.3390/catal13030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
D-serine plays an essential role in the field of medicine and cosmetics. Diaminopimelate dehydrogenase (DAPDH) is a kind of oxidoreductase that can reduce keto acid into the corresponding D-amino acid. Because of its high stereoselectivity and lack of by-product production, DAPDH has become the preferred enzyme for the efficient one-step synthesis of D-amino acids. However, the types of DAPDH with a reductive amination function reported so far are limited. Although the DAPDH from Symbiobacterium thermophilum (StDAPDH) demonstrates reductive amination activity toward a series of macromolecular keto acids, activity toward hydroxypyruvate (HPPA) for D-serine synthesis has not been reported. In this study, we investigated the activity of the available StDAPDH/H227V toward HPPA by measuring the desired product D-serine. After homologous structure modeling and docking analysis concerning the substrate-binding pocket, four residues, D92, D122, M152, and N253, in the active pocket were predicted for catalyzing HPPA. Through single-point saturation mutation and iterative mutation, a mutant D92E/D122W/M152S was obtained with an 8.64-fold increase in enzyme activity, exhibiting a specific activity of 0.19 U/mg and kcat value of 3.96 s−1 toward HPPA. Using molecular dynamics simulation, it was speculated that the increase in enzyme activity might be related to the change in substrate pocket size and the enhancement of the interactions between the substrate and key residues.
Collapse
|
10
|
Ma Q, Wang X, Luan F, Han P, Zheng X, Yin Y, Zhang X, Zhang Y, Gao X. Functional Studies on an Indel Loop between the Subtypes of meso-Diaminopimelate Dehydrogenase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qinyuan Ma
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xiaoxiao Wang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Fang Luan
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Ping Han
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xue Zheng
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yanmiao Yin
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xianghe Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Yàning Zhang
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Xiuzhen Gao
- School of Life Science and Medicine, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
11
|
Engineering Novel ( R)-Selective Transaminase for Efficient Symmetric Synthesis of d-Alanine. Appl Environ Microbiol 2022; 88:e0006222. [PMID: 35465694 DOI: 10.1128/aem.00062-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
d-Alanine belongs to nonessential amino acids that have diverse applications in the fields of food and health care. (R)-transaminase [(R)-TA]-catalyzed asymmetric amination of pyruvate is a feasible alternative for the synthesis of d-alanine, but low catalytic efficiency and thermostability limit enzymatic utilization. In this work, several potential (R)-TAs were discovered using NCBI database mining synchronously with enzymatic structure-function analysis, among which Capronia epimyces TA (CeTA) showed the highest activity for amination of pyruvate using (R)-α-methylbenzylamine as the donor. Furthermore, enzymatic residues surrounding a large catalysis pocket were subjected to saturation and combinatorial mutagenesis, and positive mutant F113T showed dramatic improvement in activity and thermostability. Molecular modeling indicated that the substitution of phenylalanine with threonine afforded alleviation of steric hindrance in the pocket and induced formation of additional hydrogen bonds with neighboring residues. Finally, using recombinant cells containing F113T as a biocatalyst, the conversion yield of amination of 100 mM pyruvate to d-alanine achieved up to 95.2%, which seemed to be the highest level in the literature regarding synthesis of d-alanine using TAs. The inherent characteristics rendered CeTA F113T a promising platform for efficient preparation of d-alanine operating with high productivity. IMPORTANCE d-Alanine is an important compound with many valuable applications. Its asymmetric synthesis employing (R)-ω-TA is considered an attractive choice. According to the stereoselectivity, ω-TAs have either (R)- or (S)-enantiopreference. There has been a variety of literature regarding screening, characterizing, and molecular modification of (S)-ω-TAs; in contrast, the research about (R)-ω-TA has lagged behind. In this work, we identify several (R)-ω-TAs and succeeded in creating mutant F113T, which showed not only better efficiency toward pyruvate but also higher thermostability compared with the original enzyme. The obtained original enzymes and positive mutants displayed important application value for pushing symmetric synthesis of d-alanine to a higher level.
Collapse
|
12
|
Lu C, Zhang S, Song W, Liu J, Chen X, Liu L, Wu J. Efficient Synthesis of D‐Phenylalanine from L‐Phenylalanine via a Tri‐Enzymatic Cascade Pathway. ChemCatChem 2021. [DOI: 10.1002/cctc.202100237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cui Lu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 (P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Sheng Zhang
- Tianrui Chemical Co.,Ltd Department of Chemistry Quzhou 324400 (P. R. China
| | - Wei Song
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 (P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 (P. R. China
| | - Jing Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 (P. R. China
| |
Collapse
|
13
|
Tan X, Zhang S, Song W, Liu J, Gao C, Chen X, Liu L, Wu J. A multi-enzyme cascade for efficient production of D-p-hydroxyphenylglycine from L-tyrosine. BIORESOUR BIOPROCESS 2021; 8:41. [PMID: 38650231 PMCID: PMC10991500 DOI: 10.1186/s40643-021-00394-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
In this study, a four-enzyme cascade pathway was developed and reconstructed in vivo for the production of D-p-hydroxyphenylglycine (D-HPG), a valuable intermediate used to produce β-lactam antibiotics and in fine-chemical synthesis, from L-tyrosine. In this pathway, catalytic conversion of the intermediate 4-hydroxyphenylglyoxalate by meso-diaminopimelate dehydrogenase from Corynebacterium glutamicum (CgDAPDH) was identified as the rate-limiting step, followed by application of a mechanism-guided "conformation rotation" strategy to decrease the hydride-transfer distance d(C6HDAP-C4NNADP) and increase CgDAPDH activity. Introduction of the best variant generated by protein engineering (CgDAPDHBC621/D120S/W144S/I169P with 5.32 ± 0.85 U·mg-1 specific activity) into the designed pathway resulted in a D-HPG titer of 42.69 g/L from 50-g/L L-tyrosine in 24 h, with 92.5% conversion, 71.5% isolated yield, and > 99% enantiomeric excess in a 3-L fermenter. This four-enzyme cascade provides an efficient enzymatic approach for the industrial production of D-HPG from cheap amino acids.
Collapse
Affiliation(s)
- Xu Tan
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Sheng Zhang
- Zhejiang Tianrui Chemical Co., Ltd, Quzhou, 324400, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
14
|
Zhang DP, Jing XR, Wu LJ, Fan AW, Nie Y, Xu Y. Highly selective synthesis of D-amino acids via stereoinversion of corresponding counterpart by an in vivo cascade cell factory. Microb Cell Fact 2021; 20:11. [PMID: 33422055 PMCID: PMC7797136 DOI: 10.1186/s12934-020-01506-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND D-Amino acids are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. However, establishing a universal biocatalyst for the general synthesis of D-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we developed an efficient in vivo biocatalysis system for the synthesis of D-amino acids from L-amino acids by the co-expression of membrane-associated L-amino acid deaminase obtained from Proteus mirabilis (LAAD), meso-diaminopimelate dehydrogenases obtained from Symbiobacterium thermophilum (DAPDH), and formate dehydrogenase obtained from Burkholderia stabilis (FDH), in recombinant Escherichia coli. RESULTS To generate the in vivo cascade system, three strategies were evaluated to regulate enzyme expression levels, including single-plasmid co-expression, double-plasmid co-expression, and double-plasmid MBP-fused co-expression. The double-plasmid MBP-fused co-expression strain Escherichia coli pET-21b-MBP-laad/pET-28a-dapdh-fdh, exhibiting high catalytic efficiency, was selected. Under optimal conditions, 75 mg/mL of E. coli pET-21b-MBP-laad/pET-28a-dapdh-fdh whole-cell biocatalyst asymmetrically catalyzed the stereoinversion of 150 mM L-Phe to D-Phe, with quantitative yields of over 99% ee in 24 h, by the addition of 15 mM NADP+ and 300 mM ammonium formate. In addition, the whole-cell biocatalyst was used to successfully stereoinvert a variety of aromatic and aliphatic L-amino acids to their corresponding D-amino acids. CONCLUSIONS The newly constructed in vivo cascade biocatalysis system was effective for the highly selective synthesis of D-amino acids via stereoinversion.
Collapse
Affiliation(s)
- Dan-Ping Zhang
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Xiao-Ran Jing
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Lun-Jie Wu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - An-Wen Fan
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yao Nie
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
- Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
15
|
Characterization of an NAD(P) +-dependent meso-diaminopimelate dehydrogenase from Thermosyntropha lipolytica. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140476. [PMID: 32599299 DOI: 10.1016/j.bbapap.2020.140476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022]
Abstract
meso-Diaminopimelate dehydrogenase (meso-DAPDH) catalyzes the reversible NADP+-dependent oxidative deamination of meso-2,6-diaminopimelate (meso-DAP) to produce l-2-amino-6-oxopimelate. meso-DAPDH is divided into two major clusters, types I and II, based on substrate specificity and structural characteristic. Here, we describe a novel type II meso-DAPDH from Thermosyntropha lipolytica (TlDAPDH). The gene encoding a putative TlDAPDH was expressed in Escherichia coli cells, and then the enzyme was purified 7.3-fold to homogeneity from the crude cell extract. The molecule of TlDAPDH seemed to form a hexamer, which is the typical structural characteristic of type II meso-DAPDHs. The purified enzyme exhibited oxidative deamination activity toward meso-DAP with both NADP+ and NAD+ as coenzymes. TlDAPDH exhibited reductive amination activity of corresponding 2-oxo acid to produce d-amino acid. In particular, the productivities for d-aspartate and d-glutamate have not been reported in the type II enzymes. The optimum pH and temperature for oxidative deamination of meso-DAP were 10.5 and 55°C, respectively. TlDAPDH retained more than 80% of its activity after incubation for 30 min at temperatures between 50°C and 65°C and in the pH range of 4.5-9.5. Moreover, the coenzyme and substrate recognition mechanisms of TlDAPDH were elucidated based on a multiple sequence alignment and the homology model. The results of these analyses suggested that the molecular mechanisms for coenzyme and substrate recognition of TlDAPDH were similar to those of meso-DAPDH from S. thermophilum, which is the representative type II enzyme. Based on the kinetic characteristics and structural comparison, TlDAPDH was considered to be a novel type II meso-DAPDH.
Collapse
|
16
|
Akita H, Nakamichi Y, Morita T, Matsushika A. Identification and functional characterization of NAD(P) + -dependent meso-diaminopimelate dehydrogenase from Numidum massiliense. Microbiologyopen 2020; 9:e1059. [PMID: 32485072 PMCID: PMC7424261 DOI: 10.1002/mbo3.1059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
meso‐Diaminopimelate dehydrogenase (meso‐DAPDH) catalyzes the reversible NADP+‐dependent oxidative deamination of meso‐2,6‐diaminopimelate (meso‐DAP) to produce l‐2‐amino‐6‐oxopimelate. Moreover, d‐amino acid dehydrogenase (d‐AADHs) derived from protein‐engineered meso‐DAPDH is useful for one‐step synthesis of d‐amino acids with high optical purity. Here, we report the identification and functional characterization of a novel NAD(P)+‐dependent meso‐DAPDH from Numidum massiliense (NmDAPDH). After the gene encoding the putative NmDAPDH was expressed in recombinant Escherichia coli cells, the enzyme was purified 4.0‐fold to homogeneity from the crude extract through five purification steps. Although the previously known meso‐DAPDHs use only NADP+ as a coenzyme, NmDAPDH was able to use both NADP+ and NAD+ as coenzymes. When NADP+ was used as a coenzyme, NmDAPDH exhibited an approximately 2 times higher kcat/Km value toward meso‐DAP than that of meso‐DAPDH from Symbiobacterium thermophilum (StDAPDH). NmDAPDH also catalyzed the reductive amination of corresponding 2‐oxo acids to produce acidic d‐amino acids such as d‐aspartate and d‐glutamate. The optimum pH and temperature for the oxidative deamination of meso‐DAP were about 10.5 and 75°C, respectively. Like StDAPDH, NmDAPDH exhibited high stability: it retained more than 75% of its activity after 30 min at 60°C (pH 7.2) or at pHs ranging from 5.5 to 13.0 (50°C). Alignment of the amino acid sequences of NmDAPDH and the known meso‐DAPDHs suggested NmDAPDH has a hexameric structure. Given its specificity for both NADP+ and NAD+, high stability, and a broad range of reductive amination activity toward 2‐oxo acids, NmDAPDH appears to offer advantages for engineering a more effective d‐AADH.
Collapse
Affiliation(s)
- Hironaga Akita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Yusuke Nakamichi
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akinori Matsushika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
17
|
Pollegioni L, Rosini E, Molla G. Advances in Enzymatic Synthesis of D-Amino Acids. Int J Mol Sci 2020; 21:E3206. [PMID: 32369969 PMCID: PMC7247363 DOI: 10.3390/ijms21093206] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023] Open
Abstract
In nature, the D-enantiomers of amino acids (D-AAs) are not used for protein synthesis and during evolution acquired specific and relevant physiological functions in different organisms. This is the reason for the surge in interest and investigations on these "unnatural" molecules observed in recent years. D-AAs are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. In past years, a number of methods have been devised to produce D-AAs based on enantioselective enzymes. With the aim to increase the D-AA derivatives generated, to improve the intrinsic atomic economy and cost-effectiveness, and to generate processes at low environmental impact, recent studies focused on identification, engineering and application of enzymes in novel biocatalytic processes. The aim of this review is to report the advances in synthesis of D-AAs gathered in the past few years based on five main classes of enzymes. These enzymes have been combined and thus applied to multi-enzymatic processes representing in vitro pathways of alternative/exchangeable enzymes that allow the generation of an artificial metabolism for D-AAs synthetic purposes.
Collapse
Affiliation(s)
| | | | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy; (L.P.); (E.R.)
| |
Collapse
|
18
|
Altered Cofactor Preference of Thermostable StDAPDH by a Single Mutation at K159. Int J Mol Sci 2020; 21:ijms21051788. [PMID: 32150965 PMCID: PMC7084900 DOI: 10.3390/ijms21051788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022] Open
Abstract
D-amino acid production from 2-keto acid by reductive amination is an attractive pathway because of its high yield and environmental safety. StDAPDH, a meso-diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum, was the first meso-DAPDH to show amination of 2-keto acids. Furthermore, StDAPDH shows excellent thermostability compared to other meso-DAPDHs. However, the cofactor of StDAPDH is NADP(H), which is less common than NAD(H) in industrial applications. Therefore, cofactor engineering for StDAPDH is needed. In this study, the highly conserved cofactor binding sites around the adenosine moiety of NADPH were targeted to determine cofactor specificity. Lysine residues within a loop were found to be critical for the cofactor specificity of StDAPDH. Replacement of lysine with arginine resulted in the activity of pyruvic acid with NADH as the cofactor. The affinity of K159R to pyruvic acid was equal with NADH or NADPH as the cofactor, regardless of the mutation. Molecular dynamics simulations revealed that the large steric hindrance of arginine and the interaction of the salt bridge between NADH and arginine may have restricted the free movement of NADH, which prompted the formation of a stable active conformation of mutant K159R. These results provide further understanding of the catalytic mechanism of StDAPDH and guidance for the cofactor engineering of StDAPDH.
Collapse
|
19
|
Zhou H, Meng L, Yin X, Liu Y, Xu G, Wu J, Wu M, Yang L. Artificial Biocatalytic Cascade with Three Enzymes in One Pot for Asymmetric Synthesis of Chiral Unnatural Amino Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haisheng Zhou
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Lijun Meng
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Xinjian Yin
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Yayun Liu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Gang Xu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Jianping Wu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Mianbin Wu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Lirong Yang
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| |
Collapse
|
20
|
Gao X, Ma Q, Chen M, Dong M, Pu Z, Zhang X, Song Y. Insight into the Highly Conserved and Differentiated Cofactor-Binding Sites of meso-Diaminopimelate Dehydrogenase StDAPDH. J Chem Inf Model 2019; 59:2331-2338. [PMID: 30807172 DOI: 10.1021/acs.jcim.8b00879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
meso-Diaminopimelate dehydrogenase ( meso-DAPDH) is a good candidate for one-step synthesis of d-amino acid from 2-keto acids. Our previous research revealed the classification of meso-DAPDH family and showed that type II meso-DAPDH, such as the meso-DAPDH from Symbiobacterium thermophilum (StDAPDH), could catalyze reductive amination. In this article, seven residues of StDAPDH, which are highly conserved in each subfamily but are different between two subfamilies, were targeted to explore the relationships between structure and function. Determination of kinetic parameters showed that the amino acid residues, including P69, K159, V68, S90, V14, and V156, played very important roles in the catalytic function of StDAPDH. Molecular dynamics simulation revealed that these point mutations reduced the productive conformations by the newly formed or eliminated interactions between the residues and ligands. These results strengthen our understanding of the catalytic mechanism and evolution of meso-DAPDH and can aid future endeavors in enzyme engineering.
Collapse
Affiliation(s)
- Xiuzhen Gao
- School of Life Science , Shandong University of Technology , Zibo 255000 , People's Republic of China
| | - Qinyuan Ma
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science &Technology), Ministry of Education, Tianjin Key Lab of Industrial Microbiology, College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Meiling Chen
- School of Agricultural Engineering and Food Science , Shandong University of Technology , Zibo 255000 , People's Republic of China
| | - Miaomiao Dong
- School of Life Science , Shandong University of Technology , Zibo 255000 , People's Republic of China
| | - Zhongji Pu
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Xianhai Zhang
- School of Life Science , Shandong University of Technology , Zibo 255000 , People's Republic of China
| | - Yuanda Song
- School of Agricultural Engineering and Food Science , Shandong University of Technology , Zibo 255000 , People's Republic of China
| |
Collapse
|
21
|
Xu JZ, Ruan HZ, Liu LM, Wang LP, Zhang WG. Overexpression of thermostable meso-diaminopimelate dehydrogenase to redirect diaminopimelate pathway for increasing L-lysine production in Escherichia coli. Sci Rep 2019; 9:2423. [PMID: 30787467 PMCID: PMC6382763 DOI: 10.1038/s41598-018-37974-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 11/29/2022] Open
Abstract
Dehydrogenase pathway, one of diaminopimelate pathway, is important to the biosynthesis of L-lysine and peptidoglycan via one single reaction catalyzed by meso-diaminopimelate dehydrogenase (DapDH). In this study, the thermostable DapDH was introduced into diaminopimelate pathway that increased the final titer (from 71.8 to 119.5 g/L), carbon yield (from 35.3% to 49.1%) and productivity (from 1.80 to 2.99 g/(L∙h)) of L-lysine by LATR12-2∆rpiB::ddhSt in fed-batch fermentation. To do this, the kinetic properties and the effects of different DapDHs on L-lysine production were investigated, and the results indicated that overexpression of StDapDH in LATR12-2 was beneficial to construct an L-lysine producer with good productive performance because it exhibited the best of kinetic characteristics and optimal temperature as well as thermostability in reductive amination. Furthermore, ammonium availability was optimized, and found that 20 g/L of (NH4)2SO4 was the optimal ammonium concentration for improving the efficiency of L-lysine production by LATR12-2∆rpiB::ddhSt. Metabolomics analysis showed that introducing the StDapDH significantly enhanced carbon flux into pentose phosphate pathway and L-lysine biosynthetic pathway, thus increasing the levels of NADPH and precursors for L-lysine biosynthesis. This is the first report of a rational modification of diaminopimelate pathway that improves the efficiency of L-lysine production through overexpression of thermostable DapDH in E. coli.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Hao-Zhe Ruan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Li-Ming Liu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Lu-Ping Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| |
Collapse
|
22
|
Zhang D, Jing X, Zhang W, Nie Y, Xu Y. Highly selective synthesis of d-amino acids from readily available l-amino acids by a one-pot biocatalytic stereoinversion cascade. RSC Adv 2019; 9:29927-29935. [PMID: 35531513 PMCID: PMC9072125 DOI: 10.1039/c9ra06301c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
d-Amino acids are key intermediates required for the synthesis of important pharmaceuticals. However, establishing a universal enzymatic method for the general synthesis of d-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we constructed and optimized a cascade enzymatic route involving l-amino acid deaminase and d-amino acid dehydrogenase for the biocatalytic stereoinversions of l-amino acids into d-amino acids. Using l-phenylalanine (l-Phe) as a model substrate, this artificial biocatalytic cascade stereoinversion route first deaminates l-Phe to phenylpyruvic acid (PPA) through catalysis involving recombinant Escherichia coli cells that express l-amino acid deaminase from Proteus mirabilis (PmLAAD), followed by stereoselective reductive amination with recombinant meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH) to produce d-phenylalanine (d-Phe). By incorporating a formate dehydrogenase-based NADPH-recycling system, d-Phe was obtained in quantitative yield with an enantiomeric excess greater than 99%. In addition, the cascade reaction system was also used to stereoinvert a variety of aromatic and aliphatic l-amino acids to the corresponding d-amino acids by combining the PmLAAD whole-cell biocatalyst with the StDAPDH variant. Hence, this method represents a concise and efficient route for the asymmetric synthesis of d-amino acids from the corresponding l-amino acids. An efficient one-pot biocatalytic cascade was developed for synthesis of d-amino acids from readily available l-amino acids via stereoinversion.![]()
Collapse
Affiliation(s)
- Danping Zhang
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Xiaoran Jing
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Wenli Zhang
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Yao Nie
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| | - Yan Xu
- School of Biotechnology
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
23
|
Wu W, Zhang Y, Liu D, Chen Z. Efficient mining of natural NADH-utilizing dehydrogenases enables systematic cofactor engineering of lysine synthesis pathway of Corynebacterium glutamicum. Metab Eng 2018; 52:77-86. [PMID: 30458240 DOI: 10.1016/j.ymben.2018.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 12/01/2022]
Abstract
Increasing the availability of NADPH is commonly used to improve lysine production by Corynebacterium glutamicum since 4 mol of NADPH are required for the synthesis of 1 mol of lysine. Alternatively, engineering of enzymes in lysine synthesis pathway to utilize NADH directly can also be explored for cofactor balance during lysine overproduction. To achieve such a goal, enzyme mining was used in this study to quickly identify a full set of NADH-utilizing dehydrogenases, namely aspartate dehydrogenase from Pseudomonas aeruginosa (PaASPDH), aspartate-semialdehyde dehydrogenase from Tistrella mobilis (TmASADH), dihydrodipicolinate reductase from Escherichia coli (EcDHDPR), and diaminopimelate dehydrogenase from Pseudothermotoga thermarum (PtDAPDH). This allowed us to systematically perturb cofactor utilization of lysine synthesis pathway of C. glutamicum for the first time. Individual overexpression of PaASPDH, TmASADH, EcDHDPR, and PtDAPDH in C. glutamicum LC298, a basic lysine producer, increased the production of lysine by 30.7%, 32.4%, 17.4%, and 36.8%, respectively. Combinatorial replacement of NADPH-dependent dehydrogenases in C. glutamicum ATCC 21543, a lysine hyperproducer, also resulted in significantly improved lysine production. The highest increase of lysine production (30.7%) was observed for a triple-mutant strain (27.7 g/L, 0.35 g/g glucose) expressing PaASPDH, TmASADH, and EcDHDPR. A quadruple-mutant strain expressing all of the four NADH-utilizing enzymes allowed high lysine production (24.1 g/L, 0.30 g/g glucose) almost independent of the oxidative pentose phosphate pathway. Collectively, our results demonstrated that a combination of enzyme mining and cofactor engineering was a highly efficient approach to improve lysine production. Similar strategies can be applied for the production of other amino acids or their derivatives.
Collapse
Affiliation(s)
- Wenjun Wu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ye Zhang
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
24
|
Akita H, Hayashi J, Sakuraba H, Ohshima T. Artificial Thermostable D-Amino Acid Dehydrogenase: Creation and Application. Front Microbiol 2018; 9:1760. [PMID: 30123202 PMCID: PMC6085447 DOI: 10.3389/fmicb.2018.01760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023] Open
Abstract
Many kinds of NAD(P)+-dependent L-amino acid dehydrogenases have been so far found and effectively used for synthesis of L-amino acids and their analogs, and for their sensing. By contrast, similar biotechnological use of D-amino acid dehydrogenase (D-AADH) has not been achieved because useful D-AADH has not been found from natural resources. Recently, using protein engineering methods, an NADP+-dependent D-AADH was created from meso-diaminopimelate dehydrogenase (meso-DAPDH). The artificially created D-AADH catalyzed the reversible NADP+-dependent oxidative deamination of D-amino acids to 2-oxo acids. The enzyme, especially thermostable one from thermophiles, was efficiently applicable to synthesis of D-branched-chain amino acids (D-BCAAs), with high yields and optical purity, and was useful for the practical synthesis of 13C- and/or 15N-labeled D-BCAAs. The enzyme also made it possible to assay D-isoleucine selectively in a mixture of isoleucine isomers. Analyses of the three-dimensional structures of meso-DAPDH and D-AADH, and designed mutations based on the information obtained made it possible to markedly enhance enzyme activity and to create D-AADH homologs with desired reactivity profiles. The methods described here may be an effective approach to artificial creation of biotechnologically useful enzymes.
Collapse
Affiliation(s)
- Hironaga Akita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Junji Hayashi
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University Biwako-Kusatsu Campus, Shiga, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
25
|
Li J, Chen X, Cui Y, Liu W, Feng J, Wu Q, Zhu D. Enzymatic synthesis of d-alanine from a renewable starting material by co-immobilized dehydrogenases. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Zhang Y, Ma Q, Dong M, Zhang X, Chen Y, Gao X, Song Y. Essential role of amino acid position 71 in substrate preference by meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum IAM14863. Enzyme Microb Technol 2018; 111:57-62. [PMID: 29421037 DOI: 10.1016/j.enzmictec.2018.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
Abstract
meso--Diaminopimelate dehydrogenase (meso-DAPDH) catalyzes the reversible oxidative deamination of the d-configuration of meso-2,6-diaminopimelate (meso-DAP) and is thought to have substrate specificity toward meso-DAP. The discovery of the meso-DAPDH from Symbiobacterium thermophilum IAM14863 (StDAPDH) revealed meso-DAPDH members with broad substrate specificity. In order to elucidate the substrate-preference mechanism of StDAPDH, it is necessary to identify the key residues related to this mechanism. Our previous work suggested that the non-active-site R71 of StDAPDH was related to substrate preference. Here, we report the key roles of the non-active site on the catalysis of StDAPDH. In order to explore the mechanism through which non-active-site R71 only affected the amination activity of StDAPDH, we performed molecular dynamic simulations and investigated the functional role of R71 in the type II meso-DAPDH StDAPDH. Site-directed mutagenesis with the allelic site A69 of CgDAPDH as a target proved that when replaced by Arg at position 71 of StDAPDH, the CgA69R mutant showed higher catalytic efficiencies toward a series of 2-keto acids, ranging from 1.2- to 1.5-fold. These findings provide some guidelines for improving our understanding of the broad substrate specificity of StDAPDH.
Collapse
Affiliation(s)
- Yanan Zhang
- School of Life Science, Shandong University of Technology, Zibo 255000, People's Republic of China
| | - Qinyuan Ma
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, People's Republic of China; Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Miaomiao Dong
- School of Life Science, Shandong University of Technology, Zibo 255000, People's Republic of China
| | - Xianhai Zhang
- School of Life Science, Shandong University of Technology, Zibo 255000, People's Republic of China
| | - Yichu Chen
- School of Life Science, Shandong University of Technology, Zibo 255000, People's Republic of China
| | - Xiuzhen Gao
- School of Life Science, Shandong University of Technology, Zibo 255000, People's Republic of China.
| | - Yuanda Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, People's Republic of China
| |
Collapse
|
27
|
Cheng X, Chen X, Feng J, Wu Q, Zhu D. Structure-guided engineering ofmeso-diaminopimelate dehydrogenase for enantioselective reductive amination of sterically bulky 2-keto acids. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01426d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure-guided reshaping the substrate-binding pocket of ameso-diaminopimelate dehydrogenase (StDAPDH) led to a mutant W121L/H227I, which catalyzed the enantioselective reductive amination of some sterically bulky 2-keto acids.
Collapse
Affiliation(s)
- Xinkuan Cheng
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| | - Xi Chen
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| | - Jinhui Feng
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| | - Qiaqing Wu
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| | - Dunming Zhu
- University of Chinese Academy of Sciences
- Beijing 100049
- PR China
- National Engineering Laboratory for Industrial Enzymes and
- Tianjin Engineering Research Center of Biocatalytic Technology
| |
Collapse
|
28
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
29
|
Gong R, Yao P, Chen X, Feng J, Wu Q, Lau PCK, Zhu D. Accessing d
-Valine Synthesis by Improved Variants of Bacterial Cyclohexylamine Oxidase. ChemCatChem 2017. [DOI: 10.1002/cctc.201701229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Gong
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P.R. China
- University of Chinese Academy of Sciences; No.19(A) Yuquan Road, Shijingshan District Beijing 100049 P.R. China
| | - Peiyuan Yao
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P.R. China
| | - Xi Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P.R. China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P.R. China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P.R. China
| | - Peter C. K. Lau
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P.R. China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Engineering Research Center of Biocatalytic Technology; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 P.R. China
| |
Collapse
|
30
|
Chen X, Cui Y, Cheng X, Feng J, Wu Q, Zhu D. Highly Atom Economic Synthesis of d-2-Aminobutyric Acid through an In Vitro Tri-enzymatic Catalytic System. ChemistryOpen 2017; 6:534-540. [PMID: 28794949 PMCID: PMC5542762 DOI: 10.1002/open.201700093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 11/11/2022] Open
Abstract
d-2-Aminobutyric acid is an unnatural amino acid serving as an important intermediate in pharmaceutical production. Developing a synthetic method that uses cheaper starting materials and produces less by-product is a pressing demand. A tri-enzymatic catalytic system, which is composed of l-threonine ammonia lyase (l-TAL), d-amino acid dehydrogenase (d-AADH), and formate dehydrogenase (FDH), has thus been developed for the synthesis of d-2-aminobutyric acid with high optical purity. In this cascade reaction, the readily available l-threonine serves as the starting material, carbon dioxide and water are the by-products. d-2-Aminobutyric acid was obtained with >90 % yield and >99 % enantioselective excess, even without adding external ammonia, demonstrating that the ammonia from the first reaction can serve as the amino donor for the reductive amination step. This multi-enzymatic system provides an attractive method with high atomic economy for the synthesis of d-α-amino acids from the corresponding l-α-amino acids, which are readily produced by fermentation.
Collapse
Affiliation(s)
- Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Xinkuan Cheng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China.,University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin 300308 P.R. China.,University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
31
|
Structure-Based Engineering of an Artificially Generated NADP +-Dependent d-Amino Acid Dehydrogenase. Appl Environ Microbiol 2017; 83:AEM.00491-17. [PMID: 28363957 DOI: 10.1128/aem.00491-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/22/2017] [Indexed: 01/13/2023] Open
Abstract
A stable NADP+-dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericusmeso-diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 μmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 μmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP+ and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains.IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d-amino acids, but all include tedious steps. The use of NAD(P)+-dependent d-amino acid dehydrogenase (DAADH) makes single-step production of d-amino acids from oxo-acid analogs and ammonia possible. We recently succeeded in creating a stable DAADH and demonstrated that it is applicable for one-step synthesis of d-amino acids, such as d-leucine and d-isoleucine. As the next step, the creation of an enzyme exhibiting different substrate specificity and higher catalytic efficiency is a key to the further development of d-amino acid production. In this study, we succeeded in creating a novel mutant exhibiting extremely high catalytic activity for phenylpyruvate amination. Structural insight into the mutant will be useful for further improvement of DAADHs.
Collapse
|
32
|
A Newly Determined Member of the meso-Diaminopimelate Dehydrogenase Family with a Broad Substrate Spectrum. Appl Environ Microbiol 2017; 83:AEM.00476-17. [PMID: 28341677 DOI: 10.1128/aem.00476-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/16/2017] [Indexed: 01/07/2023] Open
Abstract
meso-Diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum (StDAPDH) is the first member of the meso-DAPDH family known to catalyze the asymmetric reductive amination of 2-keto acids to produce d-amino acids. It is important to understand the catalytic mechanisms of StDAPDH and other enzymes in this family. In this study, based on an evolutionary analysis and examination of catalytic activity, the meso-DAPDH enzymes can be divided into two types. Type I showed highly preferable activity toward meso-diaminopimelate (meso-DAP), and type II exhibited obviously reversible amination activity with a broad substrate spectrum. StDAPDH belongs to type II. A quaternary structure analysis revealed that insertions/deletions (indels) and a loss of quaternary structure resulted in divergence among members of the meso-DAPDH family. A structure alignment of StDAPDH with a representative of type I, the meso-DAPDH from Corynebacterium glutamicum (CgDAPDH), indicated that they had the same folding. Based on sequence and conservation analyses, two amino acid residues of StDAPDH, R35 and R71, were found to be highly conserved within type II while also distinct from each other between the subtypes. Site mutagenesis studies identified R71 as a substrate preference-related residue of StDAPDH, which may serve as an indicator of the amination preference of type II. These results deepen the present understanding of the meso-DAPDH family and provide a solid foundation for the discovery and engineering of meso-DAPDH for d-amino acid biosynthesis.IMPORTANCE The l-form of amino acids is typically more abundant than the d-form. However, the d-form has many important pharmaceutical applications. meso-Diaminopimelate dehydrogenase (meso-DAPDH) from Symbiobacterium thermophilum (StDAPDH) was the first member of meso-DAPDH known to catalyze the amination of 2-keto acids to produce d-amino acids. Accordingly, we analyzed the evolution of meso-DAPDH proteins and found that they form two groups, i.e., type I proteins, which show high preference toward meso-diaminopimelate (meso-DAP), and type II proteins, which show a broad substrate spectrum. We examined the differences in sequence, ternary structure, and quaternary structure to determine the mechanisms underlying the functional differences between the type I and type II lineages. These results will facilitate the identification of additional meso-DAPDHs and may provide guidance to protein engineering studies for d-amino acid biosynthesis.
Collapse
|
33
|
Xu J, Han M, Ren X, Zhang W. Modification of aspartokinase III and dihydrodipicolinate synthetase increases the production of l-lysine in Escherichia coli. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
Akita H, Seto T, Ohshima T, Sakuraba H. Structural insight into the thermostable NADP(+)-dependent meso-diaminopimelate dehydrogenase from Ureibacillus thermosphaericus. ACTA ACUST UNITED AC 2015; 71:1136-46. [PMID: 25945579 DOI: 10.1107/s1399004715003673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/22/2015] [Indexed: 11/10/2022]
Abstract
Crystal structures of the thermostable meso-diaminopimelate dehydrogenase (DAPDH) from Ureibacillus thermosphaericus were determined for the enzyme in the apo form and in complex with NADP(+) and N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid. The main-chain coordinates of the enzyme showed notable similarity to those of Symbiobacterium thermophilum DAPDH. However, the subunit arrangement of U. thermosphaericus DAPDH (a dimer) was totally different from that of the S. thermophilum enzyme (a hexamer). Structural comparison with the dimeric enzyme from the mesophile Corynebacterium glutamicum revealed that the presence of large numbers of intrasubunit and intersubunit hydrophobic interactions, as well as the extensive formation of intersubunit ion-pair networks, were likely to be the main factors contributing to the higher thermostability of U. thermosphaericus DAPDH. This differs from S. thermophilum DAPDH, within which the unique hexameric assembly is likely to be responsible for its high thermostability. Analysis of the active site of U. thermosphaericus DAPDH revealed the key factors responsible for the marked difference in substrate specificity between DAPDH and the D-amino acid dehydrogenase recently created from DAPDH by introducing five point mutations [Akita et al. (2012). Biotechnol. Lett. 34, 1693-1699; 1701-1702].
Collapse
Affiliation(s)
- Hironaga Akita
- Applied Molecular Microbiology and Biomass Chemistry, Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Tomonari Seto
- Division of Rare Sugar Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
35
|
Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl Microbiol Biotechnol 2015; 99:3341-9. [DOI: 10.1007/s00253-015-6507-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
|
36
|
Liu W, Guo RT, Chen X, Li Z, Gao X, Huang CH, Wu Q, Feng J, Zhu D. Structural analysis reveals the substrate-binding mechanism for the expanded substrate specificity of mutant meso-diaminopimelate dehydrogenase. Chembiochem 2015; 16:924-9. [PMID: 25754803 DOI: 10.1002/cbic.201402632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Indexed: 01/19/2023]
Abstract
A meso-diaminopimelate dehydrogenase (DAPDH) from Clostridium tetani E88 (CtDAPDH) was found to have low activity toward the D-amino acids other than its native substrate. Site-directed mutagenesis similar to that carried out on the residues mutated by Vedha-Peters et al. resulted in a mutant enzyme with highly improved catalytic ability for the synthesis of D-amino acids. The crystal structures of the CtDAPDH mutant in apo form and in complex with meso-diaminopimelate (meso-DAP), D-leucine (D-leu), and 4-methyl-2-oxopentanoic acid (MOPA) were solved. meso-DAP was found in an area outside the catalytic cavity; this suggested a possible two-step substrate-binding mechanism for meso-DAP. D-leu and MOPA each bound both to Leu154 and to Gly155 in the open form of CtDAPDH, and structural analysis revealed the molecular basis for the expanded substrate specificity of the mutant meso-diaminopimelate dehydrogenases.
Collapse
Affiliation(s)
- Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308 (China)
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu W, Li Z, Huang CH, Guo RT, Zhao L, Zhang D, Chen X, Wu Q, Zhu D. Structural and Mutational Studies on the Unusual Substrate Specificity ofmeso-Diaminopimelate Dehydrogenase fromSymbiobacterium thermophilum. Chembiochem 2013; 15:217-22. [DOI: 10.1002/cbic.201300691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Indexed: 11/10/2022]
|
38
|
Engineering the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum by site saturation mutagenesis for D-phenylalanine synthesis. Appl Environ Microbiol 2013; 79:5078-81. [PMID: 23728814 DOI: 10.1128/aem.01049-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to enlarge the substrate binding pocket of the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum to accommodate larger 2-keto acids, four amino acid residues (Phe146, Thr171, Arg181, and His227) were targeted for site saturation mutagenesis. Among all mutants, the single mutant H227V had a specific activity of 2.39 ± 0.06 U · mg(-1), which was 35.1-fold enhancement over the wild-type enzyme.
Collapse
|