1
|
Nemati A, Askari Badouei M, Hashemi Tabar G, Morabito S, Dadvar A. Molecular and in silico analyses for detection of Shiga toxin-producing Escherichia coli (STEC) and highly pathogenic enterohemorrhagic Escherichia coli (EHEC) using genetic markers located on plasmid, O Island 57 and O Island 71. BMC Vet Res 2024; 20:413. [PMID: 39272082 PMCID: PMC11396403 DOI: 10.1186/s12917-024-04251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Due to the diversity of Shiga toxin-producing Escherichia coli (STEC) isolates, detecting highly pathogenic strains in foodstuffs is challenging. Currently, reference protocols for STEC rely on the molecular detection of eae and the stx1 and/or stx2 genes, followed by the detection of serogroup-specific wzx or wzy genes related to the top 7 serogroups. However, these screening methods do not distinguish between samples in which a STEC possessing both determinants are present and those containing two or more organisms, each containing one of these genes. This study aimed to evaluate ecf1, Z2098, Z2099, and nleA genes as single markers and their combinations (ecf1/Z2098, ecf1/Z2099, ecf1/nleA, Z2098/Z2099, Z2098/nleA, and Z2099/nleA) as genetic markers to detect potentially pathogenic STEC by the polymerase chain reaction (PCR) in 96 animal samples, as well as in 52 whole genome sequences of human samples via in silico PCR analyses. RESULTS In animal isolates, Z2098 and Z2098/Z2099 showed a strong association with the detected top 7 isolates, with 100% and 69.2% of them testing positive, respectively. In human isolates, Z2099 was detected in 95% of the top 7 HUS isolates, while Z2098/Z2099 and ecf1/Z2099 were detected in 87.5% of the top 7 HUS isolates. CONCLUSIONS Overall, using a single gene marker, Z2098, Z2099, and ecf1 are sensitive targets for screening the top 7 STEC isolates, and the combination of Z2098/Z2099 offers a more targeted initial screening method to detect the top 7 STEC isolates. Detecting non-top 7 STEC in both animal and human samples proved challenging due to inconsistent characteristics associated with the genetic markers studied.
Collapse
Affiliation(s)
- Ali Nemati
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Azadi Square, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad Campus, P.O. Box: 9177948974, 0513, 3880 5642, Tel, Iran.
| | - Gholamreza Hashemi Tabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Stefano Morabito
- European Union Reference Laboratory (EURL) for Escherichia coli including Shiga toxin-producing E. coli (STEC), Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Ali Dadvar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Onyeka LO, Adesiyun AA, Ismail A, Allam M, Keddy KH, Thompson PN. Evidence for Horizontal Transmission and Recirculation of Shiga Toxin-Producing Escherichia coli in the Beef Production Chain in South Africa Using Whole Genome Sequencing. Pathogens 2024; 13:732. [PMID: 39338923 PMCID: PMC11434950 DOI: 10.3390/pathogens13090732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
We used whole genome sequencing (WGS) as an epidemiologic surveillance tool to elucidate the transmission dynamics of Shiga toxin-producing Escherichia coli (STEC) strains along the beef production chain in South Africa. Isolates were obtained from a cattle farm, abattoirs and retail outlets. Isolates were analysed using WGS on a MiSeq platform (Illumina, San Diego, CA, USA) and phylogenetic analysis was carried out. Of the 85 isolates, 39% (33) carried the stx gene and 61% (52) had lost the stx gene. The prevalence of stx subtypes was as follows; stx1a 55% (18/33), stx1b 52% (17/33), stx2a 55% (18/33), stx2b 27% (9/33), stx2dB 30% (10/33) and stx2d1A 15% (5/33). Thirty-five different serogenotypes were detected, of which 65% (56) were flagellar H-antigens and 34% (29) were both O-antigens and flagellar H-antigens. We identified 50 different sequence types (STs), and only nine of the isolates were assigned to three different clonal complexes. Core genome phylogenetic analysis revealed genetic relatedness, and isolates clustered mainly according to their STs and serogenotypes regardless of stx subtypes. This study provides evidence of horizontal transmission and recirculation of STEC strains in Gauteng province and demonstrates that every stage of the beef production chain plays a significant role in STEC entry into the food chain.
Collapse
Affiliation(s)
- Libby Obumneke Onyeka
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike 440101, Abia State, Nigeria
| | - Abiodun A Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Karen H Keddy
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Peter N Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
3
|
Zhang H, Hu X, Ma Z, Zhen X, Tong P, Zhai G, Zhang S, Zhang W. Isolation and characterization of a relatively broad-spectrum phage against Escherichia coli. Arch Microbiol 2024; 206:197. [PMID: 38555551 DOI: 10.1007/s00203-024-03923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Multiple pathogenic types or serotypes restrict treatment for colibacillosis. In addition, rising antibiotic resistance has heightened public awareness to prevent and control pathogenic Escherichia coli. The bacteriophage is a viable technique to treat colibacillosis as an alternative to antibiotics. In this study, PH444, a relatively broad-spectrum obligate lytic phage, was screened from 48 Shiga toxin-producing Escherichia coli (STEC) phages isolated from farm manure samples and sewage samples in order to conduct genome-wide analysis, biological characterization, and a bacterial challenge experiment in milk. The results demonstrated that PH444 was a T7-like phage with a double-stranded DNA of 115,111 bp that belongs to the Kuravirus and was stable at temperatures between 4 and 50 °C and a pH range of 3 to 11. After adding PH444, the bacterial load in milk could be reduced from 3 × 103 PFU/ mL to zero within 1 h. In consideration of the biological properties of phage PH444, it was, therefore, demonstrated that PH444 has the potential to be used in phage biocontrol.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China
| | - Xiapei Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhengxing Ma
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China
| | - Xiangkuan Zhen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Panpan Tong
- College of Animal Medical, Xinjiang Uygur Autonomous Region, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Guangxi Zhai
- Wuhu Qingshui White Meat Wholesale Market Co., LTD, Wuhu, 241000, China
| | - Shuang Zhang
- Department of Food and Biology Engineering, Wuhu Institute of Technology, Wuhu, 241003, China.
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Detection of Food-Borne Pathogenic Microorganisms Engineering Research Center of Wuhu, Wuhu, 241000, China.
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China.
| |
Collapse
|
4
|
Burns L, Le Mauff F, Gruenheid S. Direct evidence of host-mediated glycosylation of NleA and its dependence on interaction with the COPII complex. Gut Microbes 2024; 16:2305477. [PMID: 38298145 PMCID: PMC10841024 DOI: 10.1080/19490976.2024.2305477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Non-LEE-encoded Effector A (NleA) is a type III secreted effector protein of enterohaemorrhagic and enteropathogenic Escherichia coli as well as the related mouse pathogen Citrobacter rodentium. NleA translocation into host cells is essential for virulence. We previously published several lines of evidence indicating that NleA is modified by host-mediated mucin-type O-linked glycosylation, the first example of a bacterial effector protein modified in this way. In this study, we use lectins to provide direct evidence for the modification of NleA by O-linked glycosylation and determine that the interaction of NleA with the COPII complex is necessary for this modification to occur.
Collapse
Affiliation(s)
- Lindsay Burns
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - François Le Mauff
- Infectious Disease and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Glyco-NET Integrated Services, Microbial Glycomic Node, Montreal, QC, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Alotaibi K, Khan AA. Prevalence and Molecular Characterization of Shiga Toxin-Producing Escherichia coli from Food and Clinical Samples. Pathogens 2023; 12:1302. [PMID: 38003767 PMCID: PMC10675443 DOI: 10.3390/pathogens12111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the most prominent food-borne pathogens in humans. The current study aims to detect and to analyze the virulence factors, antibiotic resistance, and plasmid profiles for forty-six STEC strains, isolated from clinical and food strains. Pulsed-field gel electrophoresis (PFGE) was used to determine the genetic relatedness between different serotypes and sources of samples. The clinical samples were found to be resistant to Nb (100%), Tet (100%), Amp (20%), SXT (15%), and Kan (15%) antibiotics. In contrast, the food strains were found to be resistant to Nb (100%), Tet (33%), Amp (16.6%), and SXT (16.6%) antibiotics. The PFGE typing of the forty-six isolates was grouped into more than ten clusters, each with a similarity between 30% and 70%. Most of the isolates were found positive for more than five virulence genes (eae, hlyA, stx1, stx2, stx2f, stx2c, stx2e, stx2, nelB, pagC, sen, toxB, irp, efa, and efa1). All the isolates carried different sizes of the plasmids. The isolates were analyzed for plasmid replicon type by PCR, and 72.5% of the clinical isolates were found to contain X replicon-type plasmid, 50% of the clinical isolates contained FIB replicon-type plasmid, and 17.5% of the clinical isolates contained Y replicon-type plasmid. Three clinical isolates contained both I1 and Hi1 replicon-type plasmid. Only two food isolates contained B/O and W replicon-type plasmid. These results indicate that STEC strains have diverse clonal populations among food and clinical strains that are resistant to several antimicrobials. In conclusion, our findings indicate that food isolates of STEC strains harbor virulence, antimicrobial resistance, plasmid replicon typing determinants like those of other STEC strains from clinical strains. These results suggest that these strains are unique and may contribute to the virulence of the isolates. Therefore, surveillance and characterization of STEC strains can provide useful information about the prevalence of STEC in food and clinical sources. Furthermore, it will help to identify STEC serotypes that are highly pathogenic to humans and may emerge as a threat to public health.
Collapse
Affiliation(s)
- Khulud Alotaibi
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA;
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Ashraf A. Khan
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA;
| |
Collapse
|
6
|
Bonino MP, Crivelli XB, Petrina JF, Galateo S, Gomes TAT, Navarro A, Cundon C, Broglio A, Sanin M, Bentancor A. Detection and analysis of Shiga toxin producing and enteropathogenic Escherichia coli in cattle from Tierra del Fuego, Argentina. Braz J Microbiol 2023; 54:1257-1266. [PMID: 37041346 PMCID: PMC10235289 DOI: 10.1007/s42770-023-00958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
Shiga toxin producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) are pathovars that affect mainly infants' health. Cattle are the main reservoir of STEC. Uremic hemolytic syndrome and diarrheas can be found at high rates in Tierra del Fuego (TDF). This study aimed to establish the prevalence of STEC and EPEC in cattle at slaughterhouses in TDF and to analyze the isolated strains. Out of 194 samples from two slaughterhouses, STEC prevalence was 15%, and EPEC prevalence was 5%. Twenty-seven STEC strains and one EPEC were isolated. The most prevalent STEC serotypes were O185:H19 (7), O185:H7 (6), and O178:H19 (5). There were no STEC eae + strains (AE-STEC) or serogroup O157 detected in this study. The prevalent genotype was stx2c (10/27) followed by stx1a/stx2hb (4/27). Fourteen percent of the strains presented at least one stx non-typeable subtype (4/27). Shiga toxin production was detected in 25/27 STEC strains. The prevalent module for the Locus of Adhesion and Autoaggregation (LAA) island was module III (7/27). EPEC strain was categorized as atypical and with the ability to cause A/E lesion. The ehxA gene was present in 16/28 strains, 12 of which were capable of producing hemolysis. No hybrid strains were detected in this work. Antimicrobial susceptibility tests showed that all strains were resistant to ampicillin and 20/28 were resistant to aminoglycosides. No statistical differences could be seen in the detection of STEC or EPEC either by slaughterhouse location or by production system (extensive grass or feedlot). The rate of STEC detection was lower than the one reported for the rest of Argentina. STEC/EPEC relation was 3 to 1. This is the first study on cattle from TDF as reservoir for strains that are potentially pathogenic to humans.
Collapse
Affiliation(s)
- Maria Paz Bonino
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ximena Blanco Crivelli
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Juan Facundo Petrina
- Departamento de Epidemiología, Ministerio de Salud de Tierra del Fuego, Ushuaia, Argentina
| | - Sebastian Galateo
- Dirección de Fiscalización Sanitaria, Ministerio de Salud de Tierra del Fuego, Ushuaia, Argentina
| | | | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Cecilia Cundon
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Alicia Broglio
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Sanin
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| | - Adriana Bentancor
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Instituto de Investigaciones en Epidemiología Veterinaria, Cátedra de Microbiología, Buenos Aires, Argentina
| |
Collapse
|
7
|
Vorimore F, Jaudou S, Tran ML, Richard H, Fach P, Delannoy S. Combination of whole genome sequencing and supervised machine learning provides unambiguous identification of eae-positive Shiga toxin-producing Escherichia coli. Front Microbiol 2023; 14:1118158. [PMID: 37250024 PMCID: PMC10213463 DOI: 10.3389/fmicb.2023.1118158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction The objective of this study was to develop, using a genome wide machine learning approach, an unambiguous model to predict the presence of highly pathogenic STEC in E. coli reads assemblies derived from complex samples containing potentially multiple E. coli strains. Our approach has taken into account the high genomic plasticity of E. coli and utilized the stratification of STEC and E. coli pathogroups classification based on the serotype and virulence factors to identify specific combinations of biomarkers for improved characterization of eae-positive STEC (also named EHEC for enterohemorrhagic E.coli) which are associated with bloody diarrhea and hemolytic uremic syndrome (HUS) in human. Methods The Machine Learning (ML) approach was used in this study on a large curated dataset composed of 1,493 E. coli genome sequences and 1,178 Coding Sequences (CDS). Feature selection has been performed using eight classification algorithms, resulting in a reduction of the number of CDS to six. From this reduced dataset, the eight ML models were trained with hyper-parameter tuning and cross-validation steps. Results and discussion It is remarkable that only using these six genes, EHEC can be clearly identified from E. coli read assemblies obtained from in silico mixtures and complex samples such as milk metagenomes. These various combinations of discriminative biomarkers can be implemented as novel marker genes for the unambiguous EHEC characterization from different E. coli strains mixtures as well as from raw milk metagenomes.
Collapse
Affiliation(s)
- Fabien Vorimore
- ANSES, Laboratory for Food Safety, Genomics Platform IdentyPath, Maisons-Alfort, France
| | - Sandra Jaudou
- ANSES, Laboratory for Food Safety, Genomics Platform IdentyPath, Maisons-Alfort, France
- ANSES, Laboratory for Food Safety, COLiPATH Unit, Maisons-Alfort, France
| | - Mai-Lan Tran
- ANSES, Laboratory for Food Safety, Genomics Platform IdentyPath, Maisons-Alfort, France
- ANSES, Laboratory for Food Safety, COLiPATH Unit, Maisons-Alfort, France
| | - Hugues Richard
- Bioinformatics Unit, Genome Competence Center (MF1), Robert Koch Institute, Berlin, Germany
| | - Patrick Fach
- ANSES, Laboratory for Food Safety, Genomics Platform IdentyPath, Maisons-Alfort, France
- ANSES, Laboratory for Food Safety, COLiPATH Unit, Maisons-Alfort, France
| | - Sabine Delannoy
- ANSES, Laboratory for Food Safety, Genomics Platform IdentyPath, Maisons-Alfort, France
- ANSES, Laboratory for Food Safety, COLiPATH Unit, Maisons-Alfort, France
| |
Collapse
|
8
|
Burns L, Giannakopoulou N, Zhu L, Xu YZ, Khan RH, Bekal S, Schurr E, Schmeing TM, Gruenheid S. The bacterial virulence factor NleA undergoes host-mediated O-linked glycosylation. Mol Microbiol 2023; 119:161-173. [PMID: 36196760 DOI: 10.1111/mmi.14989] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
Abstract
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) are gastrointestinal pathogens responsible for severe diarrheal illness. EHEC and EPEC form "attaching and effacing" lesions during colonization and, upon adherence, inject proteins directly into host intestinal cells via the type III secretion system (T3SS). Injected bacterial proteins have a variety of functions but generally alter host cell biology to favor survival and/or replication of the pathogen. Non-LEE-encoded effector A (NleA) is a T3SS-injected effector of EHEC, EPEC, and the related mouse pathogen Citrobacter rodentium. Studies in mouse models indicate that NleA has an important role in bacterial virulence. However, the mechanism by which NleA contributes to disease remains unknown. We have determined that the following translocation into host cells, a serine and threonine-rich region of NleA is modified by host-mediated mucin-type O-linked glycosylation. Surprisingly, this region was not present in several clinical EHEC isolates. When expressed in C. rodentium, a non-modifiable variant of NleA was indistinguishable from wildtype NleA in an acute mortality model but conferred a modest increase in persistence over the course of infection in mixed infections in C57BL/6J mice. This is the first known example of a bacterial effector being modified by host-mediated O-linked glycosylation. Our data also suggests that this modification may confer a selective disadvantage to the bacteria during in vivo infection.
Collapse
Affiliation(s)
- Lindsay Burns
- McGill Research Centre on Complex Traits and Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Natalia Giannakopoulou
- McGill Research Centre on Complex Traits and Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Lei Zhu
- McGill Research Centre on Complex Traits and Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Yong Zhong Xu
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre and McGill International TB Centre, Department of Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Rufaida H Khan
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada.,Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Sadjia Bekal
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Erwin Schurr
- Program in Infectious Diseases and Global Health, The Research Institute of the McGill University Health Centre and McGill International TB Centre, Department of Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - T Martin Schmeing
- Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, Québec, Canada.,Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Samantha Gruenheid
- McGill Research Centre on Complex Traits and Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
9
|
Popov G, Fiebig-Comyn A, Syriste L, Little DJ, Skarina T, Stogios PJ, Birstonas S, Coombes BK, Savchenko A. Distinct Molecular Features of NleG Type 3 Secreted Effectors Allow for Different Roles during Citrobacter rodentium Infection in Mice. Infect Immun 2023; 91:e0050522. [PMID: 36511702 PMCID: PMC9872709 DOI: 10.1128/iai.00505-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022] Open
Abstract
The NleGs are the largest family of type 3 secreted effectors in attaching and effacing (A/E) pathogens, such as enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli, and Citrobacter rodentium. NleG effectors contain a conserved C-terminal U-box domain acting as a ubiquitin protein ligase and target host proteins via a variable N-terminal portion. The specific roles of these effectors during infection remain uncertain. Here, we demonstrate that the three NleG effectors-NleG1Cr, NleG7Cr, and NleG8Cr-encoded by C. rodentium DBS100 play distinct roles during infection in mice. Using individual nleGCr knockout strains, we show that NleG7Cr contributes to bacterial survival during enteric infection while NleG1Cr promotes the expression of diarrheal symptoms and NleG8Cr contributes to accelerated lethality in susceptible mice. Furthermore, the NleG8Cr effector contains a C-terminal PDZ domain binding motif that enables interaction with the host protein GOPC. Both the PDZ domain binding motif and the ability to engage with host ubiquitination machinery via the intact U-box domain proved to be necessary for NleG8Cr function, contributing to the observed phenotype during infection. We also establish that the PTZ binding motif in the EHEC NleG8 (NleG8Ec) effector, which shares 60% identity with NleG8Cr, is engaged in interactions with human GOPC. The crystal structure of the NleG8Ec C-terminal peptide in complex with the GOPC PDZ domain, determined to 1.85 Å, revealed a conserved interaction mode similar to that observed between GOPC and eukaryotic PDZ domain binding motifs. Despite these common features, nleG8Ec does not complement the ΔnleG8Cr phenotype during infection, revealing functional diversification between these NleG effectors.
Collapse
Affiliation(s)
- Georgy Popov
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Aline Fiebig-Comyn
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Lukas Syriste
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dustin J. Little
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| | - Sarah Birstonas
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Vélez MV, Colello R, Etcheverría AI, Padola NL. [Shiga toxin producing Escherichia coli: the challenge of adherence to survive]. Rev Argent Microbiol 2023; 55:100-107. [PMID: 35676186 DOI: 10.1016/j.ram.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/05/2021] [Accepted: 04/19/2022] [Indexed: 10/18/2022] Open
Abstract
Shiga Toxin-producing Escherichia coli (STEC) is recognized as being responsible for a large number of foodborne illnesses around the world. The pathogenicity of STEC has been related to Stx toxins. However, the ability of STEC to colonize the host and other surfaces can be essential for developing its pathogenicity. Different virulence profiles detected in STEC could cause the emergence of strains carrying new genes codified in new pathogenicity islands linked to metabolism and adherence. Biofilm formation is a spontaneous mechanism whereby STEC strains resist in a hostile environment being able to survive and consequently infect the host through contaminated food and food contact surfaces. Biofilm formation shows intra-and inter-serotype variability, and its formation does not depend only on the microorganisms involved. Other factors related to the environment (such as pH, temperature) and the surface (stainless steel and polystyrene) influence biofilm expression. The «One Health» concept implies the interrelation between public, animal, and environmental health actors to ensure food safety, prevent cross-contamination and resistance to sanitizers, highlighting the need to identify emerging pathogens through new molecular markers of rapid detection that involve STEC strains carrying the Locus of Enterocyte Effacement or Locus of Adhesion and Autoaggregation.
Collapse
Affiliation(s)
- M V Vélez
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina
| | - R Colello
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina
| | - A I Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina
| | - N L Padola
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, CIVETAN-CONICET-CIC-UNCPBA, Tandil, Argentina.
| |
Collapse
|
11
|
Occurrence, Serotypes and Virulence Characteristics of Shiga-Toxin-Producing Escherichia coli Isolates from Goats on Communal Rangeland in South Africa. Toxins (Basel) 2022; 14:toxins14050353. [PMID: 35622599 PMCID: PMC9147823 DOI: 10.3390/toxins14050353] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli is a foodborne pathogen commonly associated with human disease characterized by mild or bloody diarrhea hemorrhagic colitis and hemolytic uremic syndrome. This study investigated the occurrence of STEC in fecal samples of 289 goats in South Africa using microbiological culture and PCR. Furthermore, 628 goat STEC isolates were characterized by serotype (O:H) and major virulence factors by PCR. STEC was found in 80.2% (232/289) of goat fecal samples. Serotyping of 628 STEC isolates revealed 63 distinct serotypes including four of the major top seven STEC serogroups which were detected in 12.1% (35/289) of goats: O157:H7, 2.7% (8/289); O157:H8, 0.3%, (1/289); O157:H29, 0.3% (1/289); O103:H8, 7.6% (22/289); O103:H56, 0.3% (1/289); O26:H2, 0.3% (1/289); O111:H8, 0.3% (1/289) and 59 non-O157 STEC serotypes. Twenty-four of the sixty-three serotypes were previously associated with human disease. Virulence genes were distributed as follows: stx1, 60.6% (381/628); stx2, 72.7% (457/628); eaeA, 22.1% (139/628) and hlyA, 78.0% (490/628). Both stx1 and stx2 were found in 33.4% (210/628) of isolates. In conclusion, goats in South Africa are a reservoir and potential source of diverse STEC serotypes that are potentially virulent for humans. Further molecular characterization will be needed to fully assess the virulence potential of goat STEC isolates and their capacity to cause disease in humans.
Collapse
|
12
|
Gonzalez J, Cadona JS, Zotta CM, Lavayén S, Vidal R, Padola NL, Sanso AM, Bustamante AV. Genetic features of verotoxigenic Escherichia coli O157:H7 isolated from clinical cases of Argentina and Chile. Microbes Infect 2021; 24:104883. [PMID: 34474180 DOI: 10.1016/j.micinf.2021.104883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
We aimed to compare the genetic diversity existing in VTEC O157:H7 strains isolated from cases of human disease from Argentina and Chile. For it, 76 strains were studied in relation to the distribution of genes encoding virulence factors and subtyped by lineage-specific polymorphisms (LSPA-6), and phylogroups assignment. Our results show the almost exclusive circulation of VTEC O157:H7 isolates belonging to lineage I/II, associated with hypervirulent strains, and to the phylogroup E and, on the other hand, genetic diversity present among Argentinean and Chilean strains analyzed, mainly in relation to putative virulence determinants and nle profiles.
Collapse
Affiliation(s)
- Juliana Gonzalez
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina.
| | - Jimena Soledad Cadona
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Claudio Marcelo Zotta
- Servicio Bacteriología, Departamento Laboratorio del Instituto Nacional de Epidemiología "Dr. Juan H. Jara" (INE) -Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán" (ANLIS)- Ministerio de Salud de la Nación Argentina
| | - Silvina Lavayén
- Servicio Bacteriología, Departamento Laboratorio del Instituto Nacional de Epidemiología "Dr. Juan H. Jara" (INE) -Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán" (ANLIS)- Ministerio de Salud de la Nación Argentina
| | - Roberto Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Nora Lía Padola
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Andrea Mariel Sanso
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| | - Ana Victoria Bustamante
- Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Buenos Aires, Argentina
| |
Collapse
|
13
|
Kawase J, Hirai S, Yokoyama E, Hayashi F, Kurosaki M, Kawakami Y, Fukuma A, Sakai T, Kotani M, Asakura H. Phylogeny, Prevalence, and Shiga Toxin (Stx) Production of Clinical Escherichia coli O157 Clade 2 Strains Isolated in Shimane Prefecture, Japan. Curr Microbiol 2020; 78:265-273. [PMID: 33095293 DOI: 10.1007/s00284-020-02252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
This study investigated the genetic and pathogenic variation of the subgroups of clade 2 strains of Shiga toxin (Stx)-producing Escherichia coli (STEC) O157. A total of 111 strains of STEC O157 isolated in Shimane prefecture, Japan, were classified in clade 2 (n = 39), clade 3 (n = 16), clade 4/5 (n = 3), clade 7 (n = 14), clade 8 (n = 17), and clade 12 (n = 22) by single-nucleotide polymorphism analysis and lineage-specific polymorphism assay-6. These results showed a distinct difference from our previous study in which clade 3 strains were the most prevalent strains in three other prefectures in Japan, indicating that the clade distribution of O157 strains was different in different geographic areas in Japan. Phylogenetic analysis using insertion sequence (IS) 629 distribution data showed that clade 2 strains formed two clusters, designated 2a and 2b. Stx2 production by cluster 2b strains was significantly higher than by cluster 2a strains (P < 0.01). In addition, population genetic analysis of the clade 2 strains showed significant linkage disequilibrium in the IS629 distribution of the strains in clusters 2a and 2b (P < 0.05). The ΦPT values calculated using the IS629 distribution data indicated that strains in clusters 2a and 2b were genetically different (P < 0.001). Cluster 2b strains are a highly pathogenic phylogenetic group and their geographic spread may be a serious public health concern.
Collapse
Affiliation(s)
- Jun Kawase
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan.
| | - Shinichiro Hirai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama City, Tokyo, 208-0011, Japan
| | - Eiji Yokoyama
- Division of Bacteriology, Chiba Prefectural Institute of Public Health, 666-2 Nitona, Chuo, Chiba City, Chiba, 260-8715, Japan
| | - Fumi Hayashi
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Morito Kurosaki
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Yuta Kawakami
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Aiko Fukuma
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Tomotake Sakai
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Mayuko Kotani
- Division of Bacteriology, Shimane Prefectural Institute of Public Health and Environmental Science, 582 Nishihamasada, Matsue City, Shimane, 690-0122, Japan
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki City, Kanagawa, 210-9501, Japan
| |
Collapse
|
14
|
Hamilton D, Cullinan J. A practical composite risk score for the development of Haemolytic Uraemic Syndrome from Shiga toxin-producing Escherichia coli. Eur J Public Health 2020; 29:861-868. [PMID: 31326985 DOI: 10.1093/eurpub/ckz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Haemolytic Uraemic Syndrome (HUS) is a serious complication of Shiga toxin-producing Escherichia coli (STEC) infection and the key reason why intensive health protection against STEC is required. However, although many potential risk factors have been identified, accurate estimation of risk of HUS from STEC remains challenging. Therefore, we aimed to develop a practical composite score to promptly estimate the risk of developing HUS from STEC. METHODS This was a retrospective cohort study where data for all confirmed STEC infections in Ireland during 2013-15 were subjected to statistical analysis with respect to predicting HUS. Multivariable logistic regression was used to develop a composite risk score, segregating risk of HUS into 'very low risk' (0-0.4%), 'low risk' (0.5-0.9%), 'medium risk' (1.0-4.4%), 'high risk' (4.5-9.9%) and 'very high risk' (10.0% and over). RESULTS There were 1397 STEC notifications with complete information regarding HUS, of whom 5.1% developed HUS. Young age, vomiting, bloody diarrhoea, Shiga toxin 2, infection during April to November, and infection in Eastern and North-Eastern regions of Ireland, were all statistically significant independent predictors of HUS. Demonstration of a risk gradient provided internal validity to the risk score: 0.2% in the cohort with 'very low risk' (1/430), 1.1% with 'low risk' (2/182), 2.3% with 'medium risk' (8/345), 3.1% with 'high risk' (3/98) and 22.2% with 'very high risk' (43/194) scores, respectively, developed HUS. CONCLUSION We have developed a composite risk score which may be of practical value, once externally validated, in prompt estimation of risk of HUS from STEC infection.
Collapse
Affiliation(s)
| | - John Cullinan
- Discipline of Economics, National University of Ireland, Galway, Ireland
| |
Collapse
|
15
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
16
|
Virulence Characteristics and Antibiotic Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Diverse Sources. Antibiotics (Basel) 2020; 9:antibiotics9090587. [PMID: 32911679 PMCID: PMC7559023 DOI: 10.3390/antibiotics9090587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen that causes several gastrointestinal ailments in humans across the world. STEC’s ability to cause ailment is attributed to the presence of a broad range of known and putative virulence factors (VFs) including those that encode Shiga toxins. A total of 51 E. coli strains belonging to serogroups O26, O45, O103, O104, O113, O121, O145, and O157 were tested for the presence of nine VFs via PCR and for their susceptibility to 17 frequently used antibiotics using the disc diffusion method. The isolates belonged to eight different serotypes, including eight O serogroups and 12 H types. The frequency of the presence of key VFs were stx1 (76.47%), stx2 (86.27%), eae (100%), ehxA (98.03%), nleA (100%), ureC (94.11%), iha (96.07%), subA (9.80%), and saa (94.11%) in the E. coli strains. All E. coli strains carried seven or more distinct VFs and, among these, four isolates harbored all tested VFs. In addition, all E. coli strains had a high degree of antibiotic resistance and were multidrug resistant (MDR). These results show a high incidence frequency of VFs and heterogeneity of VFs and MDR profiles of E. coli strains. Moreover, half of the E. coli isolates (74.5%) were resistant to > 9 classes of antibiotics (more than 50% of the tested antibiotics). Thus, our findings highlight the importance of appropriate epidemiological and microbiological surveillance and control measures to prevent STEC disease in humans worldwide.
Collapse
|
17
|
Pintara A, Jennison A, Rathnayake IU, Mellor G, Huygens F. Core and Accessory Genome Comparison of Australian and International Strains of O157 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2020; 11:566415. [PMID: 33013798 PMCID: PMC7498637 DOI: 10.3389/fmicb.2020.566415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen, and serotype O157:H7 is typically associated with severe disease. Australian STEC epidemiology differs from many other countries, as severe outbreaks and HUS cases appear to be more often associated with non-O157 serogroups. It is not known why Australian strains of O157 STEC might differ in virulence to international strains. Here we investigate the reduced virulence of Australian strains. Multiple genetic analyses were performed, including SNP-typing, to compare the core genomes of the Australian to the international isolates, and accessory genome analysis to determine any significant differences in gene presence/absence that could be associated with their phenotypic differences in virulence. The most distinct difference between the isolates was the absence of the stx2a gene in all Australian isolates, with few other notable differences observed in the core and accessory genomes of the O157 STEC isolates analyzed in this study. The presence of stx1a in most Australian isolates was another notable observation. Acquisition of stx2a seems to coincide with the emergence of highly pathogenic STEC. Due to the lack of other notable genotypic differences observed between Australian and international isolates characterized as highly pathogenic, this may be further evidence that the absence of stx2a in Australian O157 STEC could be a significant characteristic defining its mild virulence. Further work investigating the driving force(s) behind Stx prophage loss and acquisition is needed to determine if this potential exists in Australian O157 isolates.
Collapse
Affiliation(s)
- Alexander Pintara
- Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amy Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Irani U. Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Glen Mellor
- CSIRO Animal, Food and Health Sciences, Archerfield, QLD, Australia
| | - Flavia Huygens
- Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
18
|
Singh P, Cubillos G, Kirshteyn G, Bosilevac JM. High-resolution melting real-time PCR assays for detection of Escherichia coli O26 and O111 strains possessing Shiga toxin genes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Topalcengiz Z, Jeamsripong S, Spanninger PM, Persad AK, Wang F, Buchanan RL, LeJEUNE J, Kniel KE, Jay-Russell MT, Danyluk MD. Survival of Shiga Toxin-Producing Escherichia coli in Various Wild Animal Feces That May Contaminate Produce. J Food Prot 2020; 83:1420-1429. [PMID: 32299095 DOI: 10.4315/jfp-20-046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/15/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Domestic and wild animal intrusions are identified as a food safety risk during fresh produce production. The purpose of this study was to evaluate the survival of Shiga toxin-producing Escherichia coli (STEC) in cattle, feral pig, waterfowl, deer, and raccoon feces from sources in California, Delaware, Florida, and Ohio. Fecal samples were inoculated with a cocktail of rifampin-resistant STEC serotypes (O103, O104, O111, O145, and O157) (104 to 106 CFU/g of feces). Inoculated feces were held at ambient temperature. Populations of surviving cells were monitored throughout 1 year (364 days), with viable populations being enumerated by spread plating and enrichment when the bacteria were no longer detected by plating. Representative colonies were collected at various time intervals based on availability from different locations to determine the persistence of surviving STEC serotypes. Over the 364-day storage period, similar survival trends were observed for each type of animal feces from all states except for cattle and deer feces from Ohio. STEC populations remained the highest in cattle and deer feces from all states between days 28 and 364, except for those from Ohio. Feral pig, waterfowl, and raccoon feces had populations of STEC of <1.0 log CFU/g starting from day 112 in feces from all states. E. coli O103 and O104 were the predominant serotypes throughout the entire storage period in feces from all animals and from all states. The survival of both O157 and non-O157 STEC strains in domesticated and wild animal feces indicates a potential risk of contamination from animal intrusion. HIGHLIGHTS
Collapse
Affiliation(s)
- Zeynal Topalcengiz
- Department of Food Engineering, Faculty of Engineering and Architecture, Muş Alparslan University, Muş 49250, Turkey (ORCID: https://orcid.org/0000-0002-2113-7319 [Z.T.]).,Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA
| | - Saharuetai Jeamsripong
- Western Institute for Food Safety and Security, University of California Davis, Davis, California 95618, USA.,ORCID: https://orcid.org/0000-0001-7332-1647 [S.J.].,Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patrick M Spanninger
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Anil K Persad
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Eric Williams Medical Sciences Complex, Mount Hope, Trinidad and Tobago (ORCID: https://orcid.org/0000-0002-1306-325X [A.K.P.]).,Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Fei Wang
- Department of Nutrition and Food Science and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA
| | - Robert L Buchanan
- Department of Nutrition and Food Science and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA.,(ORCID: https://orcid.org/0000-0002-7604-4048 [R.L.B.])
| | - Jeff LeJEUNE
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716, USA
| | - Michele T Jay-Russell
- Western Institute for Food Safety and Security, University of California Davis, Davis, California 95618, USA.,ORCID: https://orcid.org/0000-0001-9849-8086 [M.T.J.R.]
| | - Michelle D Danyluk
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, USA.,(ORCID: https://orcid.org/0000-0001-5780-7911 [M.D.D.])
| |
Collapse
|
20
|
Guragain M, Smith GE, King DA, Bosilevac JM. Prevalence of Extreme Heat-Resistant Gram-Negative Bacteria Carried by U.S. Cattle at Harvest. J Food Prot 2020; 83:1438-1443. [PMID: 32299091 DOI: 10.4315/jfp-20-103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Prevalence of heat-resistant bacteria in beef poses a potential problem as thermal interventions are routinely used in beef processing to control contamination. Despite extreme heat-resistant (XHR) Escherichia coli having been isolated from a ground beef processing plant, there has not been a study to assess the prevalence of XHR E. coli among types of cattle. Therefore, this study used a screening assay for XHR gram-negative bacteria and its molecular determinant, the locus of heat resistance (LHR), on feces collected from U.S. cattle. Fecal samples were collected from fed (n = 538), cull dairy (n = 425), and cull beef (n = 475) cattle at nine regional beef processing plants located across the United States. Among the 1,438 cattle sampled from northern (n = 288), southern (n = 288), eastern (n = 287), western (n = 287), and central (n = 288) regions of the United States, 91 (6.3%) cattle showed presence of XHR bacteria, as evident by growth in MacConkey broth following heat treatment of 80°C for 15 min, in their feces. Heat-resistant bacteria (n = 140) were isolated from the 91 fecal samples. Prevalence of XHR bacteria was highest (11%) in cattle from the northern region. Ninety percent of the XHR isolates were identified as E. coli. Multiplex PCR of all 1,438 fecal samples showed that the LHR was absent in 40.7% of samples and intact in 18.7% of samples. Despite the higher prevalence of intact LHR from PCR analysis, only 11 samples (0.8%) were confirmed to contain bacteria with an intact LHR. The LHR was absent in 91% of XHR bacteria, and only 7.9% of XHR bacteria had intact LHR, suggesting a novel mechanism of heat resistance. By developing and using the screening assays, we established the prevalence of XHR bacteria (6.3%) and LHR+ bacteria (0.8%) in U.S. beef cattle. HIGHLIGHTS
Collapse
Affiliation(s)
- Manita Guragain
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur D, Clay Center, Nebraska 68933, USA.,ORCID: https://orcid.org/0000-0002-5266-1746 [M.G.]
| | - Gregory E Smith
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur D, Clay Center, Nebraska 68933, USA
| | - David A King
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur D, Clay Center, Nebraska 68933, USA
| | - Joseph M Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur D, Clay Center, Nebraska 68933, USA.,ORCID: https://orcid.org/0000-0002-0258-6581 [J.M.B.]
| |
Collapse
|
21
|
Ndegwa E, Alahmde A, Kim C, Kaseloo P, O'Brien D. Age related differences in phylogenetic diversity, prevalence of Shiga toxins, Intimin, Hemolysin genes and select serogroups of Escherichia. coli from pastured meat goats detected in a longitudinal cohort study. BMC Vet Res 2020; 16:266. [PMID: 32731899 PMCID: PMC7391229 DOI: 10.1186/s12917-020-02479-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background Little is known on significance, diversity and characteristics of gut E. coli in goats despite their importance as food animals globally. We characterized the temporal dynamics in diversity of E. coli in fecal samples from a cohort of goat kids and adult meat goats on pasture over a one-year period. Isolates were characterized based on phylogenetic grouping, virulence genes; shiga toxins 1 and 2 (Stx1&Stx2) (STEC), intimin (eaeA), hemolysin (hly) and select important sero-groups (026, 045, 0103, 0126 and 0146) using molecular methods. Results A total of 516 E. coli isolates were screened. Prevalence of virulence genes and STEC was 65 and 56% respectively. Prevalence of virulence genes and STEC was significantly higher in goat kids less than six months (76% /66%) than adults (48% /28%). Isolates with virulence profiles of two or more genes were also higher in young goat kids (50%) than adults (20%). Entero-pathogenic E. coli (EPEC-eaeA gene only) were mostly from pre-weaned goat kids while hly gene only isolates were significantly higher in adults. The stx1, stx2 and hly genes peaked around weaning (60, 63 and 52%) respectively. Goats kids were mostly hosts to group D (59%) while adults older than one year had B1 (75%) isolates. Group D isolates were most abundant at weaning (64%) and diarrhea samples (74%). Group B2 isolates overall (6%) were mostly detected around weaning (63%) while A isolates were 4% overall. Twenty-four isolates belonged to sero-groups 026, 0103 and 0146 with 70% of the isolates detected around weaning. Nineteen of these isolates were STEC with most harboring the stx1/stx2/hly/eae (25%) profile. Most belonged to O26 sero-group (75%) and phylogroup D (75%). Conclusion To our knowledge this is the first study to highlight longitudinal age related differences in E. coli phylogenetic diversity, abundance of virulence genes and select important sero-groups in goats. Differences detected suggest a possible role of age and weaning stress in influencing E. coli diversity in the gut of goats. The findings are relevant to both animal and public health to advise on further studies on caprine E. coli isolates as animal and human pathogens.
Collapse
Affiliation(s)
- Eunice Ndegwa
- Agricultural Research Station, Virginia State University, Petersburg, VA, 23806, USA.
| | - Aber Alahmde
- Department of Biology, Virginia State University, Petersburg, VA, 23806, USA
| | - Chyer Kim
- Agricultural Research Station, Virginia State University, Petersburg, VA, 23806, USA
| | - Paul Kaseloo
- Department of Biology, Virginia State University, Petersburg, VA, 23806, USA
| | - Dahlia O'Brien
- College of Agriculture, Virginia Cooperative Extension, Virginia State University, Petersburg, VA, 23806, USA
| |
Collapse
|
22
|
Cadona JS, Burgán J, González J, Bustamante AV, Sanso AM. Differential expression of the virulence gene nleB among Shiga toxin-producing Escherichia coli strains. Heliyon 2020; 6:e04277. [PMID: 32613131 PMCID: PMC7322132 DOI: 10.1016/j.heliyon.2020.e04277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic foodborne pathogen associated with hemolytic uremic syndrome (HUS) that vary in their ability to cause disease in humans. STEC represents a serious problem for public health and Argentina is the country with the highest HUS incidence worldwide. Non-LEE effector (nle) genes, present on pathogenicity islands (PAIs), encode translocated substrates of the type III secretion system (T3SS), which could have an important role in STEC virulence. Particularly, nleB is one of the main effector genes proposed as a virulence marker that is involved in the action of T3SS during the STEC infection. NleB inhibits the inflammatory response of the host cell allowing the bacteria to persist in the first stage of the infection. In order to identify the potential risk of STEC strains for public health, the aim of this study was to evaluate and compare basal nleB transcription of 24 STEC strains belonging to 10 serotypes isolated from cattle, food and patients. The results showed differences in nleB transcription among strains. Some non-O157:H7 strains presented transcription levels above the control, an O157:H7 HUS-producing strain. On the other hand, no significant differences were found in basal transcription levels associated with origin or serotype but differences were found between HUS and non-HUS strains. These differences in nleB transcription may be of importance in STEC pathogenesis and could help to differentiate high and low virulence STEC strains.
Collapse
|
23
|
Sapountzis P, Segura A, Desvaux M, Forano E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8060877. [PMID: 32531983 PMCID: PMC7355788 DOI: 10.3390/microorganisms8060877] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Correspondence:
| | - Audrey Segura
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| |
Collapse
|
24
|
Dong P, Xiao T, Nychas GJE, Zhang Y, Zhu L, Luo X. Occurrence and characterization of Shiga toxin-producing Escherichia coli (STEC) isolated from Chinese beef processing plants. Meat Sci 2020; 168:108188. [PMID: 32470758 DOI: 10.1016/j.meatsci.2020.108188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 11/26/2022]
Abstract
In order to investigate the prevalence, O serogroup, virulence genes and antibiotic resistance of Shiga toxin-producing Escherichia coli (STEC) in two beef plants in China, a total of 600 samples collected from 6 sites (feces, hide, pre-evisceration carcasses, post-washing carcasses, chilled carcasses and meat, 50 samples per site in each plant) were screened for the existence of Shiga toxin-encoding genes by PCR. STEC strains in positives were isolated and characterized for serogroup and antibiotic sensitivity. The PCR prevalence rate in each site was 45.0%, 31.0%, 14.0%, 13.0%, 9.0% and 18.0%, respectively. Sixteen O serogroups including O157, O146 and O76 which are associated with disease were identified. The existence of both stx1 and stx2 genes was the most common among the isolated strains (42.3%). Among the overall 26 isolates, seven and three were resistant to at least three and ten antibiotics, indicating a high antibiotic resistance in STEC strains isolated from the study.
Collapse
Affiliation(s)
- Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Tongtong Xiao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
25
|
Montero DA, Del Canto F, Salazar JC, Céspedes S, Cádiz L, Arenas-Salinas M, Reyes J, Oñate Á, Vidal RM. Immunization of mice with chimeric antigens displaying selected epitopes confers protection against intestinal colonization and renal damage caused by Shiga toxin-producing Escherichia coli. NPJ Vaccines 2020; 5:20. [PMID: 32194997 PMCID: PMC7067774 DOI: 10.1038/s41541-020-0168-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause diarrhea and dysentery, which may progress to hemolytic uremic syndrome (HUS). Vaccination has been proposed as a preventive approach against STEC infection; however, there is no vaccine for humans and those used in animals reduce but do not eliminate the intestinal colonization of STEC. The OmpT, Cah and Hes proteins are widely distributed among clinical STEC strains and are recognized by serum IgG and IgA in patients with HUS. Here, we develop a vaccine formulation based on two chimeric antigens containing epitopes of OmpT, Cah and Hes proteins against STEC strains. Intramuscular and intranasal immunization of mice with these chimeric antigens elicited systemic and local long-lasting humoral responses. However, the class of antibodies generated was dependent on the adjuvant and the route of administration. Moreover, while intramuscular immunization with the combination of the chimeric antigens conferred protection against colonization by STEC O157:H7, the intranasal conferred protection against renal damage caused by STEC O91:H21. This preclinical study supports the potential use of this formulation based on recombinant chimeric proteins as a preventive strategy against STEC infections.
Collapse
Affiliation(s)
- David A Montero
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,2Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Del Canto
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan C Salazar
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sandra Céspedes
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leandro Cádiz
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio Arenas-Salinas
- 3Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - José Reyes
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ángel Oñate
- 4Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M Vidal
- 1Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,5Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Li X, Luo Q, Yu X, Zhang Y, Cao X, Li D. Diversity of Virulence Genes in Multidrug Resistant Escherichia coli from a Hospital in Western China. Infect Drug Resist 2019; 12:3817-3826. [PMID: 31824179 PMCID: PMC6901040 DOI: 10.2147/idr.s226072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/16/2019] [Indexed: 11/25/2022] Open
Abstract
Background Escherichia coli strains are the most commonly isolated bacteria in hospitals. The normally harmless commensal E. coli can become a highly adapted pathogen, capable of causing various diseases both in healthy and immunocompromised individuals, by acquiring a combination of mobile genetic elements. Our aim was to characterize E. coli strains from a hospital in western China to determine their virulence and antimicrobial resistance potential. Methods A total of 97 E. coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, and antimicrobial susceptibility tests were used in this study. Results The frequency of occurrence of the virulence genes fimC, irp2, fimH, fyuA, lpfA, hlyA, sat, and cnf1 in the E. coli isolates was 93.81, 92.78, 91.75, 84.54, 41.24, 32.99, 28.86, and 7.22%, respectively. Ninety-five (97.9%) isolates carried two or more different virulence genes. Of these, 44 (45.4%) isolates simultaneously harbored five virulence genes, 24 (24.7%) isolates harbored four virulence genes, and 17 (17.5%) isolates harbored six virulence genes. In addition, all E. coli isolates were multidrug resistant and had a high degree of antimicrobial resistance. Conclusion These results indicate a high frequency of occurrence and heterogeneity of virulence gene profiles among clinical multidrug resistant E. coli isolates. Therefore, appropriate surveillance and control measures are essential to prevent the further spread of these isolates in hospitals.
Collapse
Affiliation(s)
- Xue Li
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Qi Luo
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Xinyu Yu
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Yanling Zhang
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Xiaoyue Cao
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| | - Dan Li
- School of Medical Laboratory Science, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China.,Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-Origin Food, Chengdu Medical College, Chengdu, Sichuan 610500, People's Republic of China
| |
Collapse
|
27
|
Karama M, Mainga AO, Cenci-Goga BT, Malahlela M, El-Ashram S, Kalake A. Molecular profiling and antimicrobial resistance of Shiga toxin-producing Escherichia coli O26, O45, O103, O121, O145 and O157 isolates from cattle on cow-calf operations in South Africa. Sci Rep 2019; 9:11930. [PMID: 31417098 PMCID: PMC6695430 DOI: 10.1038/s41598-019-47948-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/26/2019] [Indexed: 01/16/2023] Open
Abstract
In this study, 140 cattle STEC isolates belonging to serogroups O157, O26, O145, O121, O103 and O45 were characterized for 38 virulence-associated genes, antimicrobial resistance profiles and genotyped by PFGE. The majority of isolates carried both stx1 and stx2 concurrently, stx2c, and stx2d; plasmid-encoded genes ehxA, espP, subA and saa but lacked katP and etpD and eaeA. Possession of eaeA was significantly associated with the presence of nle genes, katP, etpD, ureC and terC. However, saa and subA, stx1c and stx1d were only detected in eaeA negative isolates. A complete OI-122 and most non-LEE effector genes were detected in only two eaeA positive serotypes, including STEC O157:H7 and O103:H2. The eaeA gene was detected in STEC serotypes that are commonly implicated in severe humans disease and outbreaks including STEC O157:H7, STEC O145:H28 and O103:H2. PFGE revealed that the isolates were highly diverse with very low rates of antimicrobial resistance. In conclusion, only a small number of cattle STEC serotypes that possessed eaeA, had the highest number of virulence-associated genes, indicative of their high virulence. Further characterization of STEC O157:H7, STEC O145:H28 and O103:H2 using whole genome sequencing will be needed to fully understand their virulence potential for humans.
Collapse
Affiliation(s)
- Musafiri Karama
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| | - Alfred O Mainga
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Beniamino T Cenci-Goga
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.,Dipartimento di Scienze Biopatologiche, Laboratorio di Ispezione degli Alimenti di Origine Animale, Facoltà di Medicina Veterinaria, Università degli Studi di Perugia, Perugia, Italy
| | - Mogaugedi Malahlela
- Veterinary Public Health Section, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Saeed El-Ashram
- School of Life Science and Engineering, Foshan University, Foshan, China.,Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Alan Kalake
- Gauteng Department of Agriculture and Rural Development (GDARD), Johannesburg, South Africa
| |
Collapse
|
28
|
Montero DA, Canto FD, Velasco J, Colello R, Padola NL, Salazar JC, Martin CS, Oñate A, Blanco J, Rasko DA, Contreras C, Puente JL, Scheutz F, Franz E, Vidal RM. Cumulative acquisition of pathogenicity islands has shaped virulence potential and contributed to the emergence of LEE-negative Shiga toxin-producing Escherichia coli strains. Emerg Microbes Infect 2019; 8:486-502. [PMID: 30924410 PMCID: PMC6455142 DOI: 10.1080/22221751.2019.1595985] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens causing severe gastroenteritis, which may lead to hemolytic uremic syndrome. The Locus of Enterocyte Effacement (LEE), a Pathogenicity Island (PAI), is a major determinant of intestinal epithelium attachment of a group of STEC strains; however, the virulence repertoire of STEC strains lacking LEE, has not been fully characterized. The incidence of LEE-negative STEC strains has increased in several countries, highlighting the relevance of their study. In order to gain insights into the basis for the emergence of LEE-negative STEC strains, we performed a large-scale genomic analysis of 367 strains isolated worldwide from humans, animals, food and the environment. We identified uncharacterized genomic islands, including two PAIs and one Integrative Conjugative Element. Additionally, the Locus of Adhesion and Autoaggregation (LAA) was the most prevalent PAI among LEE-negative strains and we found that it contributes to colonization of the mice intestine. Our comprehensive and rigorous comparative genomic and phylogenetic analyses suggest that the accumulative acquisition of PAIs has played an important, but currently unappreciated role, in the evolution of virulence in these strains. This study provides new knowledge on the pathogenicity of LEE-negative STEC strains and identifies molecular markers for their epidemiological surveillance.
Collapse
Affiliation(s)
- David Arturo Montero
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Felipe Del Canto
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Juliana Velasco
- b Servicio de Urgencia Infantil, Hospital Clínico de la Universidad de Chile "Dr. José Joaquín Aguirre" , Santiago , Chile
| | - Rocío Colello
- c Centro de Investigación Veterinaria Tandil, CONICET-CIC, Facultad de Ciencias Veterinarias, UNCPBA , Tandil , Argentina
| | - Nora Lia Padola
- c Centro de Investigación Veterinaria Tandil, CONICET-CIC, Facultad de Ciencias Veterinarias, UNCPBA , Tandil , Argentina
| | - Juan Carlos Salazar
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| | - Carla San Martin
- d Departamento de Microbiología, Facultad de Ciencias Biológicas , Universidad de Concepción , Concepción , Chile
| | - Angel Oñate
- d Departamento de Microbiología, Facultad de Ciencias Biológicas , Universidad de Concepción , Concepción , Chile
| | - Jorge Blanco
- e Laboratorio de Referencia de E. coli, Facultad de Veterinaria , Universidad de Santiago de Compostela , Lugo , España
| | - David A Rasko
- f Department of Microbiology and Immunology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Carmen Contreras
- g Departamento de Microbiología Molecular , Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , México
| | - Jose Luis Puente
- g Departamento de Microbiología Molecular , Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca , México
| | - Flemming Scheutz
- h Department of Bacteria, Parasites and Fungi , The International Collaborating Centre for Reference and Research on Escherichia and Klebsiella, Statens Serum Institut , Copenhagen , Denmark
| | - Eelco Franz
- i National Institute for Public Health, Centre for Infectious Disease Control , Bilthoven , The Netherlands
| | - Roberto M Vidal
- a Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile.,j Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| |
Collapse
|
29
|
Virulence Characteristics and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Humans in South Africa: 2006-2013. Toxins (Basel) 2019; 11:toxins11070424. [PMID: 31331115 PMCID: PMC6669688 DOI: 10.3390/toxins11070424] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 01/11/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) isolates (N = 38) that were incriminated in human disease from 2006 to 2013 in South Africa were characterized by serotype, virulence-associated genes, antimicrobial resistance and pulsed-field gel electrophoresis (PFGE). The isolates belonged to 11 O:H serotypes. STEC O26:H11 (24%) was the most frequent serotype associated with human disease, followed by O111:H8 (16%), O157:H7 (13%) and O117:H7 (13%). The majority of isolates were positive for key virulence-associated genes including stx1 (84%), eaeA (61%), ehxA (68.4%) and espP (55%), but lacked stx2 (29%), katP (42%), etpD (16%), saa (16%) and subA (3%). stx2 positive isolates carried stx2c (26%) and/or stx2d (26%) subtypes. All pathogenicity island encoded virulence marker genes were detected in all (100%) isolates except nleA (47%), nleC (84%) and nleD (76%). Multidrug resistance was observed in 89% of isolates. PFGE revealed 34 profiles with eight distinct clusters that shared ≥80% intra-serotype similarity, regardless of the year of isolation. In conclusion, STEC isolates that were implicated in human disease between 2006 and 2013 in South Africa were mainly non-O157 strains which possessed virulence genes and markers commonly associated with STEC strains that have been incriminated in mild to severe human disease worldwide. Improved STEC monitoring and surveillance programs are needed in South Africa to control and prevent STEC disease in humans.
Collapse
|
30
|
Response to Questions Posed by the Food and Drug Administration Regarding Virulence Factors and Attributes that Define Foodborne Shiga Toxin-Producing Escherichia coli (STEC) as Severe Human Pathogens †. J Food Prot 2019; 82:724-767. [PMID: 30969806 DOI: 10.4315/0362-028x.jfp-18-479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
-
- NACMCF Executive Secretariat, * U.S. Department of Agriculture, Food Safety and Inspection Service, Office of Public Health Science, PP3, 9-178, 1400 Independence Avenue S.W., Washington, D.C. 20250-3700, USA
| |
Collapse
|
31
|
Stromberg ZR, Redweik GAJ, Mellata M. Detection, Prevalence, and Pathogenicity of Non-O157 Shiga Toxin-Producing Escherichia coli from Cattle Hides and Carcasses. Foodborne Pathog Dis 2019; 15:119-131. [PMID: 29638166 DOI: 10.1089/fpd.2017.2401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli (STEC) and harbor these bacteria in the intestinal tract. The prevalence, concentration, and STEC serogroup isolated in cattle varies between individuals. Hide removal at slaughter serves as a major point of carcass contamination and ultimately beef products. Certain STEC serogroups, such as O26, O45, O103, O111, O121, O145, and O157, containing the intestinal adherence factor intimin, pose a large economic burden to food producers because of testing and recalls. Human infection with STEC can cause illnesses ranging from diarrhea to hemorrhagic colitis and hemolytic uremic syndrome, and is commonly acquired through ingestion of contaminated foods, often beef products. Previously, most studies focused on O157 STEC, but there is growing recognition of the importance of non-O157 STEC serogroups. This review summarizes detection methods, prevalence, and methods for prediction of pathogenicity of non-O157 STEC from cattle hides and carcasses. A synthesis of procedures is outlined for general non-O157 STEC and targeted detection of specific STEC serogroups. Standardization of sample collection and processing procedures would allow for more robust comparisons among studies. Presence of non-O157 STEC isolated from cattle hides and carcasses and specific factors, such as point of sample collection and season, are summarized. Also, factors that might influence STEC survival on these surfaces, such as the microbial population on hides and microbial adherence genes, are raised as topics for future investigation. Finally, this review gives an overview on studies that have used genetic and cell-based methods to identify specific phenotypes of non-O157 STEC strains isolated from cattle to assess their risk to human health.
Collapse
Affiliation(s)
- Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| | - Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University , Ames, Iowa
| |
Collapse
|
32
|
Improving hazard characterization in microbial risk assessment using next generation sequencing data and machine learning: Predicting clinical outcomes in shigatoxigenic Escherichia coli. Int J Food Microbiol 2019; 292:72-82. [DOI: 10.1016/j.ijfoodmicro.2018.11.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 10/23/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
|
33
|
Detection of Shiga toxin-producing Escherichia coli, stx1, stx2 and Salmonella by two high resolution melt curve multiplex real-time PCR. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Arais LR, Barbosa AV, Andrade JRC, Gomes TAT, Asensi MD, Aires CAM, Cerqueira AMF. Zoonotic potential of atypical enteropathogenic Escherichia coli (aEPEC) isolated from puppies with diarrhoea in Brazil. Vet Microbiol 2018; 227:45-51. [PMID: 30473351 DOI: 10.1016/j.vetmic.2018.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/02/2023]
Abstract
Recent studies point atypical enteropathogenic Escherichia coli (aEPEC) to be an important agent in childhood diarrhoea in Brazil. aEPEC are commonly found in various animal species, including dogs. Although the true zoonotic risk remains unknown, some strains recovered from dogs present the same serotypes and carry the same virulence genes implicated in human disease. In this study, we compared the virulence and genetic relationship among a set of aEPEC strains previously isolated from diarrheic faeces from companion dogs and humans. A total of 17 strains, 12 from puppies and five from children, were studied. The strains were assessed for: (i) presence of virulence-associated genes (a total of 31 genes) using PCR assays; (ii) genetic relationship by Random Amplified Polymorphic DNA (RAPD), Multilocus Sequence Typing (MLST) and Pulsed-field Gel Electrophoresis (PFGE); and (iii) adherence pattern in intestinal Caco-2 cells. The occurrence of virulence genes was similar between the canine and human isolates presenting the same serotype. The fimbrial genes ecpA and fimH were the most frequently detected, followed by hcpA, tccP, tccP2, lpfA1, lpfA2, astA and toxB genes. Several nle genes were also detected, with one canine strain (O156:H- / ST327) showing all PAI O-122 genes investigated (efa-1, nleB, nleE and ent/espL2). Canine and human strains of the same serotype were grouped into a single cluster by RAPD and PFGE, in which the ST10 and ST206 were identified. Additionally, most of the strains exhibited a localized adherence-like phenotype when interacting with Caco-2 cells. The results showed that some canine aEPEC strains share virulence genes commonly found in human pathogenic strains. Moreover, strains of the same serotype, isolated from dogs and children, share virulence genes and are phylogenetically close, suggesting a potential zoonotic risk.
Collapse
Affiliation(s)
- Lavicie R Arais
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Universidade Federal Fluminense, Professor Hernani Melo Street, 101, Niterói, RJ, 24210-130, Brazil
| | - André V Barbosa
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Universidade Federal Fluminense, Professor Hernani Melo Street, 101, Niterói, RJ, 24210-130, Brazil.
| | - João R C Andrade
- Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro. Prof., Manuel de Abreu Avenue, 444, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Botucatu Street, 862, São Paulo, SP, 04023-062, Brazil
| | - Marise D Asensi
- Laboratório de Pesquisa em Infecção Hospitalar, Fundação Oswaldo Cruz, Brasil Avenue, 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Caio A M Aires
- Laboratório de Pesquisa em Infecção Hospitalar, Fundação Oswaldo Cruz, Brasil Avenue, 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Aloysio M F Cerqueira
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Universidade Federal Fluminense, Professor Hernani Melo Street, 101, Niterói, RJ, 24210-130, Brazil
| |
Collapse
|
35
|
First report of the distribution of Locus of Adhesion and Autoaggregation (LAA) pathogenicity island in LEE-negative Shiga toxin-producing Escherichia coli isolates from Argentina. Microb Pathog 2018; 123:259-263. [DOI: 10.1016/j.micpath.2018.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
|
36
|
Functional diversification of the NleG effector family in enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A 2018; 115:10004-10009. [PMID: 30217892 DOI: 10.1073/pnas.1718350115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pathogenic strategy of Escherichia coli and many other gram-negative pathogens relies on the translocation of a specific set of proteins, called effectors, into the eukaryotic host cell during infection. These effectors act in concert to modulate host cell processes in favor of the invading pathogen. Injected by the type III secretion system (T3SS), the effector arsenal of enterohemorrhagic E. coli (EHEC) O157:H7 features at least eight individual NleG effectors, which are also found across diverse attaching and effacing pathogens. NleG effectors share a conserved C-terminal U-box E3 ubiquitin ligase domain that engages with host ubiquitination machinery. However, their specific functions and ubiquitination targets have remained uncharacterized. Here, we identify host proteins targeted for ubiquitination-mediated degradation by two EHEC NleG family members, NleG5-1 and NleG2-3. NleG5-1 localizes to the host cell nucleus and targets the MED15 subunit of the Mediator complex, while NleG2-3 resides in the host cytosol and triggers degradation of Hexokinase-2 and SNAP29. Our structural studies of NleG5-1 reveal a distinct N-terminal α/β domain that is responsible for interacting with host protein targets. The core of this domain is conserved across the NleG family, suggesting this domain is present in functionally distinct NleG effectors, which evolved diversified surface residues to interact with specific host proteins. This is a demonstration of the functional diversification and the range of host proteins targeted by the most expanded effector family in the pathogenic arsenal of E. coli.
Collapse
|
37
|
Li D, Shen M, Xu Y, Liu C, Wang W, Wu J, Luo X, Jia X, Ma Y. Virulence gene profiles and molecular genetic characteristics of diarrheagenic Escherichia coli from a hospital in western China. Gut Pathog 2018; 10:35. [PMID: 30127859 PMCID: PMC6097206 DOI: 10.1186/s13099-018-0262-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023] Open
Abstract
Background Diarrheagenic Escherichia coli (DEC) is one of the most important etiological agents of diarrheal diseases. In this study we investigated the prevalence, virulence gene profiles, antimicrobial resistance, and molecular genetic characteristics of DEC at a hospital in western China. Methods A total of 110 Escherichia coli clinical isolates were collected from the First Affiliated Hospital of Chengdu Medical College from 2015 to 2016. Microbiological methods, PCR, antimicrobial susceptibility test, pulsed-field gel electrophoresis and multilocus sequence typing were used in this study. Results Molecular analysis of six DEC pathotype marker genes showed that 13 of the 110 E. coli isolates (11.82%) were DEC including nine (8.18%) diffusely adherent Escherichia coli (DAEC) and four (3.64%) enteroaggregative Escherichia coli (EAEC). The adherence genes fimC and fimH were present in all DAEC and EAEC isolates. All nine DAEC isolates harbored the virulence genes fyuA and irp2 and four (44.44%) also carried the hlyA and sat genes. The virulence genes fyuA, irp2, cnf1, hlyA, and sat were found in 100%, 100%, 75%, 50%, and 50% of EAEC isolates, respectively. In addition, all DEC isolates were multidrug resistant and had high frequencies of antimicrobial resistance. Molecular genetic characterization showed that the 13 DEC isolates were divided into 11 pulsed-field gel electrophoresis patterns and 10 sequence types. Conclusions To the best of our knowledge, this study provides the first report of DEC, including DAEC and EAEC, in western China. Our analyses identified the virulence genes present in E. coli from a hospital indicating their role in the isolated DEC strains’ pathogenesis. At the same time, the analyses revealed, the antimicrobial resistance pattern of the DEC isolates. Thus, DAEC and EAEC among the DEC strains should be considered a significant risk to humans in western China due to their evolved pathogenicity and antimicrobial resistance pattern.
Collapse
Affiliation(s)
- Dan Li
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China.,2School of Medical Laboratory Science, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Min Shen
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Ying Xu
- 4Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Chao Liu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Wen Wang
- 5West China School of Public Health, Sichuan University, Chengdu, 610041 Sichuan China
| | - Jinyan Wu
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xianmei Luo
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Xu Jia
- 3Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610500 Sichuan China
| | - Yongxin Ma
- 1Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China
| |
Collapse
|
38
|
Amézquita-López BA, Soto-Beltrán M, Lee BG, Yambao JC, Quiñones B. Isolation, genotyping and antimicrobial resistance of Shiga toxin-producing Escherichia coli. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 51:425-434. [DOI: 10.1016/j.jmii.2017.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 06/28/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022]
|
39
|
Januszkiewicz A, Rastawicki W. Molecular Characterization of Shiga Toxin-Producing Escherichia coli Strains Isolated in Poland. Pol J Microbiol 2018; 65:261-269. [PMID: 29334059 DOI: 10.5604/17331331.1215601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains also called verotoxin-producing E. coli (VTEC) represent one of the most important groups of food-borne pathogens that can cause several human diseases such as hemorrhagic colitis (HC) and hemolytic - uremic syndrome (HUS) worldwide. The ability of STEC strains to cause disease is associated with the presence of wide range of identified and putative virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996-2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria. virulence factors including those encoding Shiga toxin. In this study, we examined the distribution of various virulence determinants among STEC strains isolated in Poland from different sources. A total of 71 Shiga toxin-producing E. coli strains isolated from human, cattle and food over the years 1996-2010 were characterized by microarray and PCR detection of virulence genes. As stx1a subtype was present in all of the tested Shiga toxin 1 producing E. coli strains, a greater diversity of subtypes was found in the gene stx2, which occurred in five subtypes: stx2a, stx2b, stx2c, stx2d, stx2g. Among STEC O157 strains we observed conserved core set of 14 virulence factors, stable in bacteria genome at long intervals of time. There was one cattle STEC isolate which possessed verotoxin gene as well as sta1 gene encoded heat-stable enterotoxin STIa characteristic for enterotoxigenic E. coli. To the best of our knowledge, this is the first comprehensive analysis of virulence gene profiles identified in STEC strains isolated from human, cattle and food in Poland. The results obtained using microarrays technology confirmed high effectiveness of this method in determining STEC virulotypes which provides data suitable for molecular risk assessment of the potential virulence of this bacteria.
Collapse
Affiliation(s)
- Aleksandra Januszkiewicz
- National Institute of Public Health - National Institute of Hygiene, Department of Bacteriology, Warsaw, Poland
| | - Waldemar Rastawicki
- National Institute of Public Health - National Institute of Hygiene, Department of Bacteriology, Warsaw, Poland
| |
Collapse
|
40
|
Sanso AM, Bustamante AV, Krüger A, Cadona JS, Alfaro R, Cáceres ME, Fernández D, Lucchesi PMA, Padola NL. Molecular epidemiology of Shiga toxin-producing O113:H21 isolates from cattle and meat. Zoonoses Public Health 2018; 65:569-577. [DOI: 10.1111/zph.12467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 12/01/2022]
Affiliation(s)
- A. M. Sanso
- Laboratorio de Inmunoquímica y Biotecnología; Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil; CONICET-CIC-UNCPBA; Tandil Argentina
| | - A. V. Bustamante
- Laboratorio de Inmunoquímica y Biotecnología; Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil; CONICET-CIC-UNCPBA; Tandil Argentina
| | - A. Krüger
- Laboratorio de Inmunoquímica y Biotecnología; Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil; CONICET-CIC-UNCPBA; Tandil Argentina
| | - J. S. Cadona
- Laboratorio de Inmunoquímica y Biotecnología; Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil; CONICET-CIC-UNCPBA; Tandil Argentina
| | - R. Alfaro
- Laboratorio de Inmunoquímica y Biotecnología; Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil; CONICET-CIC-UNCPBA; Tandil Argentina
| | - M. E. Cáceres
- Laboratorio de Inmunoquímica y Biotecnología; Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil; CONICET-CIC-UNCPBA; Tandil Argentina
| | - D. Fernández
- Laboratorio de Inmunoquímica y Biotecnología; Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil; CONICET-CIC-UNCPBA; Tandil Argentina
| | - P. M. A. Lucchesi
- Laboratorio de Inmunoquímica y Biotecnología; Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil; CONICET-CIC-UNCPBA; Tandil Argentina
| | - N. L. Padola
- Laboratorio de Inmunoquímica y Biotecnología; Facultad de Ciencias Veterinarias; Centro de Investigación Veterinaria de Tandil; CONICET-CIC-UNCPBA; Tandil Argentina
| |
Collapse
|
41
|
Tran SL, Jenkins C, Livrelli V, Schüller S. Shiga toxin 2 translocation across intestinal epithelium is linked to virulence of Shiga toxin-producing Escherichia coli in humans. MICROBIOLOGY-SGM 2018. [PMID: 29533744 PMCID: PMC5982136 DOI: 10.1099/mic.0.000645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are characterized by the release of potent Shiga toxins (Stx), which are associated with severe intestinal and renal disease. Although all STEC strains produce Stx, only a few serotypes cause infection in humans. To determine which virulence traits in vitro are linked to human disease in vivo, 13 Stx2a-producing STEC strains of seropathotype (SPT) A or B (associated with severe human intestinal disease and outbreaks) and 6 strains of SPT D or E (rarely or not linked to human disease) were evaluated in a microaerobic human colonic epithelial infection model. All SPT strains demonstrated similar growth, colonization of polarized T84 colon carcinoma cells and Stx release into the medium. In contrast, Stx translocation across the T84 cell monolayer was significantly lower in SPT group DE compared to SPT group AB strains. Further experiments showed that Stx penetration occurred via a transcellular pathway and was independent of bacterial type III secretion and attaching and effacing lesion formation. These results suggest that the extent of Stx transcytosis across the gut epithelium may represent an important indicator of STEC pathogenicity for humans.
Collapse
Affiliation(s)
- Seav-Ly Tran
- Norwich Medical School, University of East Anglia, Norwich, UK.,Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, UK.,Present address: Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, UK
| | - Valérie Livrelli
- Université Clermont Auvergne, Inserm U1071, M2iSH 'Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte', USC-INRA 2018, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Service de Bactériologie, Parasitologie Mycologie, Clermont-Ferrand, France
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich, UK.,Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich, UK
| |
Collapse
|
42
|
Pathogenicity Islands Distribution in Non-O157 Shiga Toxin-Producing Escherichia coli (STEC). Genes (Basel) 2018; 9:genes9020081. [PMID: 29439390 PMCID: PMC5852577 DOI: 10.3390/genes9020081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens associated with outbreaks and hemolytic-uremic syndrome. Cattle and meat foods are the main reservoir and infection source, respectively. Pathogenicity islands (PAIs) play an important role in STEC pathogenicity, and non-locus of the enterocyte effacement(LEE) effector (nle) genes present on them encode translocated substrates of the type III secretion system. A molecular risk assessment based on the evaluation of the nle content has been used to predict which STEC strains pose a risk to humans. The goal was to investigate the distribution of the PAIs OI (O-island)-36 (nleB2, nleC, nleH1-1, nleD), OI-57 (nleG2-3, nleG5-2, nleG6-2), OI-71 (nleA, nleF, nleG, nleG2-1, nleG9, nleH1-2) and OI-122 (ent/espL2, nleB, nleE, Z4321, Z4326, Z4332, Z4333) among 204 clinical, food and animal isolates belonging to 52 non-O157:H7 serotypes. Differences in the frequencies of genetic markers and a wide spectrum of PAI virulence profiles were found. In most LEE-negative strains, only module 1 (Z4321) of OI-122 was present. However, some unusual eae-negative strains were detected, which carried other PAI genes. The cluster analysis, excluding isolates that presented no genes, defined two major groups: eae-negative (determined as seropathotypes (SPTs) D, E or without determination, isolated from cattle or food) and eae-positive (mostly identified as SPTs B, C, or not determined).
Collapse
|
43
|
Cundon C, Carbonari CC, Zolezzi G, Rivas M, Bentancor A. Putative virulence factors and clonal relationship of O174 Shiga toxin-producing Escherichia coli isolated from human, food and animal sources. Vet Microbiol 2018; 215:29-34. [DOI: 10.1016/j.vetmic.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/06/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
|
44
|
Molecular characterization of diarrheagenic Escherichia coli isolated from vegetables in Argentina. Int J Food Microbiol 2017; 261:57-61. [DOI: 10.1016/j.ijfoodmicro.2017.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/22/2022]
|
45
|
Abstract
The human gut is home to trillions of bacteria and provides the scaffold for one of the most complex microbial ecosystems in nature. Inflammatory bowel diseases, such as Crohn's disease, involve a compositional shift in the microbial constituents of this ecosystem with a marked expansion of Enterobacteriaceae, particularly Escherichia coli. Adherent-invasive E. coli (AIEC) strains are frequently isolated from the biopsies of Crohn's patients, where their ability to elicit inflammation suggests a possible role in Crohn's pathology. Here, we consider the origins of the AIEC pathovar and discuss how risk factors associated with Crohn's disease might influence AIEC colonization dynamics within the host to alter the overall disease potential of the microbial community.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Alexander Oberc
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,CONTACT Brian K. Coombes , Department of Biochemistry and Biomedical Sciences, McMaster University, MDCL 2319, Hamilton, ON Canada L8S 4K1
| |
Collapse
|
46
|
Alonso CA, Mora A, Díaz D, Blanco M, González-Barrio D, Ruiz-Fons F, Simón C, Blanco J, Torres C. Occurrence and characterization of stx and/or eae-positive Escherichia coli isolated from wildlife, including a typical EPEC strain from a wild boar. Vet Microbiol 2017; 207:69-73. [PMID: 28757042 DOI: 10.1016/j.vetmic.2017.05.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
Abstract
Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) strains are food-borne pathogens associated with acute diarrhea. Haemolytic-uremic syndrome (HUS) is often a complication of STEC infection. In order to examine the occurrence, serotypes, virulence and antimicrobial-resistance profiles of STEC and EPEC in wildlife, 326 faecal E. coli strains from 304 clinically healthy animals were analyzed. For this approach stx1, stx2 and eae genes, as well as accessory virulence determinants (ehx, hlyA, saa, tia, bfp, subAB) were PCR-screened and sequenced. Serotyping was performed employing all available O (O1-O185) and H (H1-H56) antisera. Genetic diversity was analyzed by XbaI-PFGE and phylotyping. Thirteen STEC (4.3%) and 10 EPEC (3.3%) were identified among 12 deer, 3 mouflon, 6 wild boars and 2 birds. Nine STEC showed seropathotypes B (O145:[H28]) and C (O22:H8, O128:[H2]) associated with HUS, and D (O110:H28, O146:H21, O146:[H28], ONT:H8) associated with human diarrhea. Although most isolates harbored stx2b and stx1c variants, stx2a and stx1a (related with severe disease) were also detected. Additionally, the eae gene was present in one stx2a-positive O145:[H28] STEC from a deer and 11 STEC harbored subAB genes (mainly the subAB2 variant). EPEC isolates showed 7 different intimin variants (β1, β2, γ1, ε1, ζ1, ι1-A, κ). Interestingly, the O49:[H10] eae-κ EPEC isolated from a wild boar was bfpA-positive showing a combination of serotype/virulence profile previously detected among human clinical tEPEC. Based on present results, wild ruminants, wild boars and to a lesser extent birds would be carriers of potentially pathogenic STEC and EPEC strains.
Collapse
Affiliation(s)
- Carla Andrea Alonso
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Azucena Mora
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Universidad de Santiago de Compostela, Lugo, Spain
| | - Dafne Díaz
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Universidad de Santiago de Compostela, Lugo, Spain
| | - Miguel Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Universidad de Santiago de Compostela, Lugo, Spain
| | - David González-Barrio
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Francisco Ruiz-Fons
- Grupo SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Carmen Simón
- Facultad de Veterinaria,Universidad de Zaragoza, Zaragoza, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de E. coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Universidad de Santiago de Compostela, Lugo, Spain
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain.
| |
Collapse
|
47
|
A Type III Effector NleF from EHEC Inhibits Epithelial Inflammatory Cell Death by Targeting Caspase-4. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4101745. [PMID: 28593173 PMCID: PMC5448047 DOI: 10.1155/2017/4101745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
Enterohemorrhagic E. coli (EHEC) is a highly pathogenic bacterial strain capable of inducing severe gastrointestinal disease. Here, we show that EHEC uses the T3SS effector NleF to counteract the host inflammatory response by dampening caspase-4-mediated inflammatory epithelial cell death and by preventing the production of IL-1β. The other two inflammatory caspases, caspase-1 and caspase-5, are not involved in EHEC ΔnleF-induced inflammatory cell death. We found that NleF not only interrupted the heterodimerization of caspase-4-p19 and caspase-4-p10, but also inhibited the interaction of caspase-1 and caspase-4. The last four amino acids of the NleF carboxy terminus are essential in inhibiting caspase-4-dependent inflammatory cell death.
Collapse
|
48
|
Bardasi L, Taddei R, Fiocchi I, Pelliconi MF, Ramini M, Toschi E, Merialdi G. Shiga Toxin-Producing Escherichia Coii in Slaughtered Pigs and Pork Products. Ital J Food Saf 2017; 6:6584. [PMID: 28713792 PMCID: PMC5505102 DOI: 10.4081/ijfs.2017.6584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 11/24/2022] Open
Abstract
During the years 2015-2016, 83 faecal samples were collected at slaughter from pigs reared in farms located in Central-Northern Italy. During the years 2014-2016 a total of 562 pork products [465 not-readyto-eat (NRTE) and 97 ready-to-eat (RTE) products] were collected from retail outlets, large retailers and processing plants. The samples were analysed according to ISO TS 13136:2012. Out of 83 swine faecal samples, 77 (92.8%) resulted stx-positive by real time polymerase chain reaction (PCR), 5 stx2+ and 1 stx1+ Shiga toxin-producing Escherichia coli (STEC) strains were isolated. Among the 465 NRTE samples, 65 (14.0%) resulted stx-positive by real time PCR and 7 stx2+ STEC strains were isolated. The stx2 gene was detected more frequently than the stx1 gene both in faecal samples (90.4 vs 8.4%) and in NRTE pork products (13.3 vs 1.3%). All the RTE samples included in the analysis resulted stx-negative. Among the samples resulted positive for stx and eae genes, serogroup-associated genes were detected at high frequency: O26 resulted the most frequent in faecal samples (81.3%) and O145 in pork products (88.1%). The O157 serogroup resulted positive in 83.3 and 78.1% of pork products and faecal samples, respectively. Despite the frequent detection by real time PCR of genes indicating the possible presence of STEC strains belonging to the six serogroups, the bacteriological step did not confirm the isolation of any such strains.
Collapse
Affiliation(s)
- Lia Bardasi
- Institute for Experimental Veterinary Medicine of Lombardy and Emilia Romagna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Naseer U, Løbersli I, Hindrum M, Bruvik T, Brandal LT. Virulence factors of Shiga toxin-producing Escherichia coli and the risk of developing haemolytic uraemic syndrome in Norway, 1992-2013. Eur J Clin Microbiol Infect Dis 2017; 36:1613-1620. [PMID: 28391537 PMCID: PMC5554284 DOI: 10.1007/s10096-017-2974-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/22/2017] [Indexed: 10/26/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) may cause haemolytic uraemic syndrome (HUS). Age ≤5 years and presence of stx2a and eae are risk factors for the development of HUS. In this study, we investigated STEC isolates for the presence of adhesins, toxins and molecular risk assessment (MRA) factors to identify virulence genes associated with HUS development. We included non-duplicate isolates from all STEC infections (n = 340, HUS = 32) reported to the Norwegian National Reference Laboratory (NRL) for Enteropathogenic Bacteria from 1992 to 2013. The most common STEC were O157:H7/H- (34%) and O103:H2 (14%). We retrospectively screened the isolates by three multiplex polymerase chain reactions (PCRs) for adhesins (n = 11), toxins (n = 5) and MRA (n = 15). We calculated odds ratios (ORs) and adjusted odds ratios (aORs) for associations with HUS development. On average, isolates were positive for 15 virulence genes (range: 1-24); two toxins (range: 0-4), five adhesins (range: 0-8) and eight MRA genes (range: 0-13). The gene combinations were clustered within serotypes. Isolates from HUS cases were positive for eae and IpfA O26, and negative for saa, eibG, astA, cnf, subA and pic. We identified 11 virulence genes with a significant association to HUS development. Multivariable analyses adjusted for age group and Shiga toxin identified nleH1-2 [aOR 8.4, 95% confidence interval (CI); 2.18-32.3] as an independent risk factor for the development of HUS from an STEC infection. This study demonstrated that the non-LEE effector protein nleH1-2 may be an important predictor for elevated risk of developing HUS from STEC infections. We recommend the NRL for Enteropathogenic Bacteria to consider including nleH1-2 screening as part of routine STEC surveillance.
Collapse
Affiliation(s)
- U Naseer
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway. .,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | - I Løbersli
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway.,Nextera AS, Oslo, Norway
| | - M Hindrum
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - T Bruvik
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - L T Brandal
- Domain for Environmental Health and Infectious Disease Control, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway
| |
Collapse
|
50
|
Agga GE, Arthur TM, Hinkley S, Bosilevac JM. Evaluation of Rectoanal Mucosal Swab Sampling for Molecular Detection of Enterohemorrhagic Escherichia coli in Beef Cattle. J Food Prot 2017; 80:661-667. [PMID: 28294683 DOI: 10.4315/0362-028x.jfp-16-435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cattle are a primary reservoir of enterohemorrhagic Escherichia coli (EHEC), and contaminated beef products are a source of human infections. The U.S. Department of Agriculture Food Safety and Inspection Service declared seven EHEC serogroups (O26, O45, O103, O111, O121, O145, and O157) as adulterants in raw ground beef. Sampling a large number of animals for EHEC surveillance or evaluations of EHEC-focused preharvest interventions requires a convenient and robust sampling method. We evaluated the diagnostic performance of rectoanal mucosal swab (RAMS) for the detection of the top seven EHEC serogroups. Paired fecal grab (FG) and RAMS samples were collected from 176 beef cattle and tested using the NeoSEEK Shiga toxin-producing E. coli (STEC) confirmation method. The prevalence of virulence-associated genes (stx1, stx2, stx2c, eae, and nleB) was higher in RAMS than in FG samples. The results of the two methods had poor agreement, as indicated by kappa statistics, for the detection of the seven serogroups. When FG and RAMS results were combined for comparison, RAMS was more sensitive than FG for the detection of serogroups O103 (82% versus 39%), O157 (75% versus 67%), and O45 (79% versus 73%) with similar sensitivity for the detection of serogroup O145 (67%). Serogroups O111 and O121 were detected from one and two samples, respectively, by FG and were not detected by RAMS. Serogroup O26 was not detected with either method. RAMS appears to be equivalent or superior to FG sampling for detection of the top seven EHEC serogroups in the feces of beef cattle with the NeoSEEK STEC confirmation test.
Collapse
Affiliation(s)
- Getahun E Agga
- 1 U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933; and
| | - Terrance M Arthur
- 1 U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933; and
| | - Susanne Hinkley
- 2 Neogen Corporation, NeoSEEK Laboratory, 4131 North 48th Street, Lincoln, Nebraska 68504, USA
| | - Joseph M Bosilevac
- 1 U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933; and
| |
Collapse
|