1
|
Wang L, Wang Y, Ye K, Qiu X, Zhao Q, Ye L, Yang J. Molecular epidemiology, genetic diversity, antibiotic resistance and pathogenicity of Stenotrophomonas maltophilia complex from bacteremia patients in a tertiary hospital in China for nine years. Front Microbiol 2024; 15:1424241. [PMID: 38946894 PMCID: PMC11211261 DOI: 10.3389/fmicb.2024.1424241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024] Open
Abstract
Background The Stenotrophomonas maltophilia complex (Smc) has emerged as a significant nosocomial pathogen contributing to increased mortality rates, particularly in case of bloodstream infections. Methods This study employed whole-genome sequencing (WGS) to assess the genetic diversity, antimicrobial resistance profiles, molecular epidemiology and frequencies of virulence genes among 55 S. maltophilia isolates obtained from bacteremic cases over a 9-year period. Results Based on the threshold of 95% average nucleotide identity (ANI) and 70% digital DNA-DNA hybridization (dDDH) for genospecies delineation, we classified 37 isolates into 6 known species, all belonging to the Smc. The remaining 18 isolates sequenced in this study were assigned to 6 new genomospecies. Among the 55 isolates, we identified 44 different sequence types (STs), comprising 22 known and 22 novel allele combinations. The resistance rate of Smc against trimethoprim-sulfamethoxazole (TMP/SMX) was found to be 3.6%, with the sul1 and class one integron integrase genes (intI) detected in these isolates. All Smc isolates were susceptible to minocycline. Furthermore, all Smc strains harbored the motA, pilU, smf-1 and Stmpr2 genes. Genomospecies 1 (100%, n = 9), Stenotrophomonas maltophilia (84.21%, n = 19) and Stenotrophomonas sepilia (71.43%, n = 7) demonstrated a higher percentage of the afaD gene, which was also associated with a higher separation rate. In addition to motA, pilU, smf-1, and Stmpr2 genes, all S. maltophilia strains (100%) contained entA, gspD, KatA, and stmPr1 genes, while all genomospecies 1 strains (100%) contained afaD, entA, gspD, and KatA genes. Conclusion Our study highlights the genetic diversity among Smc isolates from patients with bacteremia, revealing 22 novel ST types, 58 new alleles and 6 new genomospecies. S. maltophilia and S. pavanii were found to carry more virulence factors, emphasizing the importance of accurate strain identification. Minocycline emerged as a promising alternative antibiotic for patients who were resistant to TMP/SMX.
Collapse
Affiliation(s)
- Lifeng Wang
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yu Wang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Kun Ye
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuemei Qiu
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Zhao
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - LiYan Ye
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiyong Yang
- Department of Laboratory Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Bostanghadiri N, Sholeh M, Navidifar T, Dadgar-Zankbar L, Elahi Z, van Belkum A, Darban-Sarokhalil D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2024; 23:26. [PMID: 38504262 PMCID: PMC10953290 DOI: 10.1186/s12941-024-00685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Infections caused by Stenotrophomonas maltophilia are clinically important due to its intrinsic resistance to a broad range of antibiotics. Therefore, selecting the most appropriate antibiotic to treat S. maltophilia infection is a major challenge. AIM The current meta-analysis aimed to investigate the global prevalence of antibiotic resistance among S. maltophilia isolates to the develop more effective therapeutic strategies. METHOD A systematic literature search was performed using the appropriate search syntax after searching Pubmed, Embase, Web of Science and Scopus databases (May 2023). Statistical analysis was performed using Pooled and the random effects model in R and the metafor package. A total of 11,438 articles were retrieved. After a thorough evaluation, 289 studies were finally eligible for inclusion in this systematic review and meta-analysis. RESULT Present analysis indicated that the highest incidences of resistance were associated with doripenem (97%), cefoxitin (96%), imipenem and cefuroxime (95%), ampicillin (94%), ceftriaxone (92%), aztreonam (91%) and meropenem (90%) which resistance to Carbapenems is intrinsic. The lowest resistance rates were documented for minocycline (3%), cefiderocol (4%). The global resistance rate to TMP-SMX remained constant in two periods before and after 2010 (14.4% vs. 14.6%). A significant increase in resistance to tigecycline and ceftolozane/tazobactam was observed before and after 2010. CONCLUSIONS Minocycline and cefiderocol can be considered the preferred treatment options due to low resistance rates, although regional differences in resistance rates to other antibiotics should be considered. The low global prevalence of resistance to TMP-SMX as a first-line treatment for S. maltophilia suggests that it remains an effective treatment option.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, BaseClear, Leiden, Netherlands
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Li K, Yu K, Huang Z, Liu X, Mei L, Ren X, Bai X, Gao H, Sun Z, Liu X, Wang D. Stenotrophomonas maltophilia complex: insights into evolutionary relationships, global distribution and pathogenicity. Front Cell Infect Microbiol 2024; 13:1325379. [PMID: 38268792 PMCID: PMC10806987 DOI: 10.3389/fcimb.2023.1325379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Stenotrophomonas maltophilia complex (Smc) comprises opportunistic Gram-negative bacilli responsible for various nosocomial infections. Limited data exists concerning its evolutionary lineage, global prevalence and pathogenicity. Methods We conducted an extensive genomic analysis on 734 Smc genomes, of which 90 were newly sequenced and isolated from different patients. The species composition and evolutionary relationships of Smc were examined using core protein sequence analysis. Pathogenicity evaluation was used by assays for swimming motility, biofilm formation and identification of virulence factors. The broth microdilution method was used to evaluate the drug resistance spectrum of clinical isolates. Results Phylogenetic analyses delineated 24 species-level clades, dominated by S. maltophilia (42.8%), S. sepilia (13.6%) and S. geniculata (9.9%). Geographically, strains were primarily distributed in Europe (34.2%), Asia (33.7%) and North America (24.0%), with intricate global distribution patterns. Meanwhile, 154 virulence-associated genes and 46 antimicrobial resistance genes within Smc were identified. These genes encoded span various functions, including motility, adherence, toxin, RND antibiotic efflux pumps, beta-lactamases and aminoglycoside-modifying enzymes. Moreover, significant variations were indicated in swimming motility and biofilm-forming capability across the different species, with S. sepilia exhibiting superior levels of both traits. Additionally, no statistically significant discrepancy was detected among Smc species to other antibiotics, despite the fact that all S. geniculata isolates were resistant to Ceftazidime and much higher than other species. Conclusion Our findings indicate the need to pay increased attention to other mainstream species of Smc besides S. maltophilia in order to better manage Smc-related infections and tailor effective treatment strategies.
Collapse
Affiliation(s)
- Kun Li
- School of Public Health, Lanzhou University, Lanzhou, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Keyi Yu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenzhou Huang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Xiao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Mei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaodong Ren
- School of Public Health, Lanzhou University, Lanzhou, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuemei Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - He Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiwen Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoning Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Duochun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Li Y, Liu X, Chen L, Shen X, Wang H, Guo R, Li X, Yu Z, Zhang X, Zhou Y, Fu L. Comparative genomics analysis of Stenotrophomonas maltophilia strains from a community. Front Cell Infect Microbiol 2023; 13:1266295. [PMID: 38089814 PMCID: PMC10715271 DOI: 10.3389/fcimb.2023.1266295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Background Stenotrophomonas maltophilia is a multidrug-resistant (MDR) opportunistic pathogen with high resistance to most clinically used antimicrobials. The dissemination of MDR S. maltophilia and difficult treatment of its infection in clinical settings are global issues. Methods To provide more genetic information on S. maltophilia and find a better treatment strategy, we isolated five S. maltophilia, SMYN41-SMYN45, from a Chinese community that were subjected to antibiotic susceptibility testing, biofilm formation assay, and whole-genome sequencing. Whole-genome sequences were compared with other thirty-seven S. maltophilia sequences. Results The five S. maltophilia strains had similar antibiotic resistance profiles and were resistant to β-lactams, aminoglycosides, and macrolides. They showed similar antimicrobial resistance (AMR) genes, including various efflux pumps, β-lactamase resistance genes (blaL1/2), aminoglycoside resistance genes [aac(6'), aph(3'/6)], and macrolide-resistant gene (MacB). Genome sequencing analysis revealed that SMYN41-SMYN45 belonged to sequence type 925 (ST925), ST926, ST926, ST31, and ST928, respectively, and three new STs were identified (ST925, ST926, and ST928). Conclusion This study provides genetic information by comparing genome sequences of several S. maltophilia isolates from a community of various origins, with the aim of optimizing empirical antibiotic medication and contributing to worldwide efforts to tackle antibiotic resistance.
Collapse
Affiliation(s)
- Yini Li
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xin Liu
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Lingzhi Chen
- Department of Ultrasound, Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xiao Shen
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Haihong Wang
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Ruiyu Guo
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou, China
| | - Xiaoli Zhang
- Department of Allergy, Jiangnan University Medical Center, Wuxi, China
| | - Yingshun Zhou
- Department of Pathogen Biology, School of Basic Medicine, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, China
| | - Li Fu
- Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
McDaniel MS, Sumpter NA, Lindgren NR, Billiot CE, Swords WE. Comparative genomics of clinical Stenotrophomonas maltophilia isolates reveals genetic diversity which correlates with colonization and persistence in vivo. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001408. [PMID: 37942787 PMCID: PMC10710838 DOI: 10.1099/mic.0.001408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
Stenotrophomonas maltophilia is a Gram-negative emerging opportunistic pathogen often present in people with respiratory diseases such as cystic fibrosis (CF). People with CF (pwCF) experience lifelong polymicrobial infections of the respiratory mucosa. Our prior work showed that Pseudomonas aeruginosa promotes persistence of S. maltophilia in mouse respiratory infections. As is typical for environmental opportunistic pathogens, S. maltophilia has a large genome and a high degree of genetic diversity. In this study, we evaluated the genomic content of S. maltophilia, combining short and long read sequencing to construct nearly complete genomes of 10 clinical isolates. The genomes of these isolates were then compared with all publicly available S. maltophilia genome assemblies, and each isolate was then evaluated for colonization/persistence in vivo, both alone and in coinfection with P. aeruginosa. We found that while the overall genome size and GC content were fairly consistent between strains, there was considerable variability in both genome structure and gene content. Similarly, there was significant variability in S. maltophilia colonization and persistence in experimental mouse respiratory infections in the presence or absence of P. aeruginosa. Ultimately, this study gives us a greater understanding of the genomic diversity of clinical S. maltophilia isolates, and how this genomic diversity relates to both interactions with other pulmonary pathogens and to host disease progression. Identifying the molecular determinants of infection with S. maltophilia can facilitate development of novel antimicrobial strategies for a highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Melissa S. McDaniel
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| | - Nicholas A. Sumpter
- Department of Medicine, Division of Clinical Immunology and Rheumatology, Birmingham, AL, US
| | - Natalie R. Lindgren
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| | - Caitlin E. Billiot
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| | - W. Edward Swords
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Birmingham, AL, US
- Gregory Fleming James Center for Cystic Fibrosis Research, Birmingham, AL, US
| |
Collapse
|
6
|
McDaniel MS, Sumpter NA, Lindgren NR, Billiot CE, Swords WE. Comparative genomics of clinical Stenotrophomonas maltophilia isolates reveals regions of diversity which correlate with colonization and persistence in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549068. [PMID: 37503051 PMCID: PMC10369963 DOI: 10.1101/2023.07.14.549068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Stenotrophomonas maltophilia is a Gram-negative emerging opportunistic pathogen often found in respiratory diseases such as cystic fibrosis (CF). Patients with CF experience lifelong polymicrobial infections of the respiratory mucosa. Our prior work showed that P. aeruginosa promotes persistence of S. maltophilia mouse respiratory infections. As is typical for environmental opportunistic pathogens, S. maltophilia has a large genome and a high degree of genetic diversity. In this study, we evaluated the genomic content of S. maltophilia, combining short and long read sequencing to construct complete genomes of 10 clinical isolates which were then compared with the larger phylogeny of S. maltophilia genomic sequence data, and compared colonization/persistence in vivo, alone and in coinfection with P. aeruginosa. We found that while the overall genome size and GC content were fairly consistent, there was considerable variability in arrangement and gene content. Similarly, there was significant variability in S. maltophilia colonization and persistence in vivo in experimental mouse respiratory infection. Ultimately, this study gives us a greater understanding of the genomic diversity of S. maltophilia isolated from patients, and how this genomic diversity relates to interactions with other pulmonary pathogens, and to host disease progression. Identifying the molecular determinants of infection with S. maltophilia can facilitate development of novel antimicrobial strategies for a highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Melissa S. McDaniel
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham
| | - Nicholas A. Sumpter
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham
| | - Natalie R. Lindgren
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham
| | - Caitlin E. Billiot
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham
| | - W. Edward Swords
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham
- Gregory Fleming James Center for Cystic Fibrosis Research, University of Alabama at Birmingham
| |
Collapse
|
7
|
Lee DH, Cha JH, Kim DW, Lee K, Kim YS, Oh HY, Cho YH, Cha CJ. Colistin-degrading proteases confer collective resistance to microbial communities during polymicrobial infections. MICROBIOME 2022; 10:129. [PMID: 35982474 PMCID: PMC9389796 DOI: 10.1186/s40168-022-01315-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The increasing prevalence of resistance against the last-resort antibiotic colistin is a significant threat to global public health. Here, we discovered a novel colistin resistance mechanism via enzymatic inactivation of the drug and proposed its clinical importance in microbial communities during polymicrobial infections. RESULTS A bacterial strain of the Gram-negative opportunistic pathogen Stenotrophomonas maltophilia capable of degrading colistin and exhibiting a high-level colistin resistance was isolated from the soil environment. A colistin-degrading protease (Cdp) was identified in this strain, and its contribution to colistin resistance was demonstrated by growth inhibition experiments using knock-out (Δcdp) and complemented (Δcdp::cdp) mutants. Coculture and coinfection experiments revealed that S. maltophilia carrying the cdp gene could inactivate colistin and protect otherwise susceptible Pseudomonas aeruginosa, which may seriously affect the clinical efficacy of the drug for the treatment of cystic fibrosis patients with polymicrobial infection. CONCLUSIONS Our results suggest that Cdp should be recognized as a colistin resistance determinant that confers collective resistance at the microbial community level. Our study will provide vital information for successful clinical outcomes during the treatment of complex polymicrobial infections, particularly including S. maltophilia and other colistin-susceptible Gram-negative pathogens such as P. aeruginosa. Video abstract.
Collapse
Affiliation(s)
- Do-Hoon Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Ju-Hee Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Dae-Wi Kim
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
- Division of Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Kihyun Lee
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Yong-Seok Kim
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Hyo-Young Oh
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, 17456, Republic of Korea.
| |
Collapse
|
8
|
Mojica MF, Humphries R, Lipuma JJ, Mathers AJ, Rao GG, Shelburne SA, Fouts DE, Van Duin D, Bonomo RA. Clinical challenges treating Stenotrophomonas maltophilia infections: an update. JAC Antimicrob Resist 2022; 4:dlac040. [PMID: 35529051 PMCID: PMC9071536 DOI: 10.1093/jacamr/dlac040] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John J. Lipuma
- University of Michigan Medical School, Pediatric Infectious Disease, Ann Arbor, MI, USA
| | - Amy J. Mathers
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Derrick E. Fouts
- Genomic Medicine, The J. Craig Venter Institute, Rockville, MD, USA
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert A. Bonomo
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Senior Clinician Scientist Investigator, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Medical Service and Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
9
|
Molecular Characterization of Three Tandemly Located Flagellin Genes of Stenotrophomonas maltophilia. Int J Mol Sci 2022; 23:ijms23073863. [PMID: 35409223 PMCID: PMC8998449 DOI: 10.3390/ijms23073863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023] Open
Abstract
Stenotrophomonas maltophilia is a motile, opportunistic pathogen. The flagellum, which is involved in swimming, swarming, adhesion, and biofilm formation, is considered a virulence factor for motile pathogens. Three flagellin genes, fliC1, fliC2, and fliC3, were identified from the sequenced S. maltophilia genome. FliC1, fliC2, and fliC3 formed an operon, and their encoding proteins shared 67–82% identity. Members of the fliC1C2C3 operon were deleted individually or in combination to generate single mutants, double mutants, and a triple mutant. The contributions of the three flagellins to swimming, swarming, flagellum morphology, adhesion, and biofilm formation were assessed. The single mutants generally had a compromise in swimming and no significant defects in swarming, adhesion on biotic surfaces, and biofilm formation on abiotic surfaces. The double mutants displayed obvious defects in swimming and adhesion on abiotic and biotic surfaces. The flagellin-null mutant lost swimming ability and was compromised in adhesion and biofilm formation. All tested mutants demonstrated substantial but different flagellar morphologies, supporting that flagellin composition affects filament morphology. Bacterial swimming motility was significantly compromised under an oxidative stress condition, irrespective of flagellin composition. Collectively, the utilization of these three flagellins for filament assembly equips S. maltophilia with flagella adapted to provide better ability in swimming, adhesion, and biofilm formation for its pathogenesis.
Collapse
|
10
|
Liu YY, Zhang SD, Xiao JJ, Feng WZ, Wei D, Deng YJ, Cao HQ, Shi YH. Gut microbiota-involved metabolism and intestinal absorption mechanisms in decreasing bioaccessibility of triadimefon in strawberry and grape. Food Chem 2022; 373:131575. [PMID: 34801285 DOI: 10.1016/j.foodchem.2021.131575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022]
Abstract
Gut microbiota-involved metabolism and intestinal absorption affecting bioaccessibility of triadimefon in strawberry and grape were investigated for the first time by coupling the in vitro digestion model with the Caco-2 cell model. Results showed that the gut microbiota decreased the bioaccessibility of triadimefon in strawberry by 31.00% but failed in grape, probably due to a negative modulation of the colon bacterial activity by dietary components in grapes. A strain of triadimefon-degrading bacteria, Stenotrophomonas maltophilia, was isolated from the gut microbiota and its degradation products were profiled. This study also clarified a significant reduction in transepithelial transport (up to 32.81%) of triadimefon as a result of the barrier effect of gut microbiota. These findings provide new insights on the function of the gut microbiota in pesticide bioaccessibility and highlight the importance of including gut microbiota in pesticide residue risk assessments.
Collapse
Affiliation(s)
- Yu-Ying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Si-Dong Zhang
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Jin-Jing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Wen-Zhe Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Dong Wei
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ya-Jing Deng
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Hai-Qun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Yan-Hong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China.
| |
Collapse
|
11
|
Complete Genome Sequence of Stenotrophomonas maltophilia 1800, a New Bacterial Strain with Potential for Bioremediation of Oil-Contaminated Environments. Microbiol Resour Announc 2022; 11:e0111621. [PMID: 35175122 PMCID: PMC8852311 DOI: 10.1128/mra.01116-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia strain 1800 was isolated from the effluent of an industrial oil refinery in Algeria. Its genome was sequenced using Illumina MiSeq (2 × 150-bp read pairs) and Oxford Nanopore (long reads) technologies and assembled using Unicycler. It is composed of one chromosome of 4.83 Mb.
Collapse
|
12
|
Zając OM, Tyski S, Laudy AE. Phenotypic and Molecular Characteristics of the MDR Efflux Pump Gene-Carrying Stenotrophomonas maltophilia Strains Isolated in Warsaw, Poland. BIOLOGY 2022; 11:biology11010105. [PMID: 35053103 PMCID: PMC8772754 DOI: 10.3390/biology11010105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Nosocomial infections caused by Stenotrophomonas maltophilia have been increasing worldwide. These bacteria are intrinsically resistant to most antibiotics. The underestimated resistance mechanism of Gram-negative rods is an overexpression of multidrug-resistant (MDR) efflux pumps. The aim of this study was to analyze the genetic diversity of isolates derived from various clinical materials, including blood, and the prevalence of MDR efflux pump genes and susceptibility profiles to the anti-S. maltophilia drugs. The research was conducted on 94 S. maltophilia isolates derived from hospitalized patients and outpatients in Warsaw, Poland. All isolates were susceptible to trimethoprim-sulfamethoxazole and minocycline, while 44/94 isolates demonstrated reduction in susceptibility to levofloxacin. A large genetic variation was observed among these isolates. However, a clonal relationship was revealed among two groups of bloodstream isolates from one hospital ward: (1) nine isolates, (2) six isolates. Moreover, the presence of genes encoding ten different efflux pumps from the resistance-nodulation-division family and the ATP-binding cassette family was shown in the majority of the 94 isolates. The obtained knowledge about the prevalence of efflux pump genes in clinical S. maltophilia strains makes it possible to predict the scale of the risk of resistance emergence in strains as a result of gene overexpression. Abstract An increase of nosocomial infections caused by Stenotrophomonas maltophilia strains has recently been observed all over the world. The isolation of these bacteria from the blood is of particular concern. In this study we performed the phenotypic and genotypic characterization of 94 S. maltophilia isolates, including isolates from patients hospitalized in a tertiary Warsaw hospital (n = 79) and from outpatients (n = 15). All isolates were found to be susceptible to trimethoprim-sulfamethoxazole and minocycline, while 44/94 isolates demonstrated a reduction in susceptibility to levofloxacin. A large genetic variation was observed among the isolates tested by pulsed-field gel electrophoresis. A clonal relationship with 100% similarity was observed between isolates within two sub-pulsotypes: the first included nine bloodstream isolates and the second involved six. Multilocus sequence typing showed two new sequence types (ST498 and ST499) deposited in public databases for molecular typing. Moreover, the presence of genes encoding ten different efflux pumps from the resistance-nodulation-division family and the ATP-binding cassette family was shown in the majority of the 94 isolates. The obtained knowledge about the prevalence of efflux pump genes in clinical S. maltophilia strains makes it possible to predict the scale of the risk of resistance emergence in strains as a result of gene overexpression.
Collapse
Affiliation(s)
- Olga M. Zając
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, 02091 Warsaw, Poland; (O.M.Z.); (S.T.)
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, 02091 Warsaw, Poland; (O.M.Z.); (S.T.)
- Department of Antibiotics and Microbiology, National Medicines Institute, 02091 Warsaw, Poland
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, 02091 Warsaw, Poland; (O.M.Z.); (S.T.)
- Correspondence:
| |
Collapse
|
13
|
Pedrosa-Silva F, Matteoli FP, Passarelli-Araujo H, Olivares FL, Venancio TM. Genome sequencing of the vermicompost strain Stenotrophomonas maltophilia UENF-4GII and population structure analysis of the S. maltophilia Sm3 genogroup. Microbiol Res 2021; 255:126923. [PMID: 34856482 DOI: 10.1016/j.micres.2021.126923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 01/11/2023]
Abstract
The Stenotrophomonas maltophilia complex (Smc) is a cosmopolitan bacterial group that has been proposed an emergent multidrug-resistant pathogen. Taxonomic studies support the genomic heterogeneity of Smc, which comprises genogroups exhibiting a range of phenotypically distinct strains from different sources. Here, we report the genome sequencing and in-depth analysis of S. maltophilia UENF-4GII, isolated from vermicompost. This genome harbors a unique region encoding a penicillin-binding protein (pbpX) that was carried by a transposon, as well as horizontally-transferred genomic islands involved in anti-phage defense via DNA modification, and pili glycosylation. We also analyzed all available Smc genomes to investigate genes associated with resistance and virulence, niche occupation, and population structure. S. maltophilia UENF-4GII belongs to genogroup 3 (Sm3), which comprises three phylogenetic clusters (PC). Pan-GWAS analysis uncovered 471 environment-associated and 791 PC-associated genes, including antimicrobial resistance (e.g. blaL1 and blaR1) and virulence determinants (e.g. treS and katG) that provide insights on the resistance and virulence potential of Sm3 strains. Together, the results presented here provide the grounds for more detailed clinical and ecological investigations of S. maltophilia.
Collapse
Affiliation(s)
- Francisnei Pedrosa-Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Filipe P Matteoli
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabio L Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos Para a Agricultura (NUDIBA), UENF, Brazil; Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, UENF, Brazil
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil.
| |
Collapse
|
14
|
García-Martín JM, Sarmiento-Ramírez JM, Diéguez-Uribeondo J. Beyond Sea Turtles: Fusarium keratoplasticum in Eggshells of Podocnemis unifilis, a Threatened Amazonian Freshwater Turtle. J Fungi (Basel) 2021; 7:742. [PMID: 34575781 PMCID: PMC8470610 DOI: 10.3390/jof7090742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The endangered yellow-spotted river turtle (Podocnemis unifilis) has experienced a dramatic population decline in the Ecuadorian Amazonia, mainly due to overexploitation of its eggs. To reverse this trend, the Wildlife Conservation Society has developed a head-start program in Yasuní National Park since 2008, but the potential risk that microbes associated with its eggs might represent for hatching success has not been evaluated yet. Members of the Fusarium solani species complex (FSSC) are involved in egg failure in sea turtles under natural and hatchery conditions, but their role in infecting the eggs of P. unifilis is unknown. In this study, we collected eggshells of P. unifilis and obtained 50 fungal and bacterial isolates. Some potentially pathogenic fungi of the genera Fusarium, Penicillium and Rhizopus were identified based on molecular data. Most importantly, the sea turtle pathogenic species F. keratoplasticum not only was present, but it was the most frequently found. Conversely, we have also isolated other microorganisms, such as Pseudomonas or Phoma-like species, producing a wide spectrum of antifungal compounds that may have a protective role against fungal diseases. Our survey provides useful information on potential pathogens found in P. unifilis eggshells, upon which the success of conservation programs may depend.
Collapse
Affiliation(s)
| | | | - Javier Diéguez-Uribeondo
- Departamento de Micología, Real Jardín Botánico-CSIC, 28014 Madrid, Spain; (J.M.G.-M.); (J.M.S.-R.)
| |
Collapse
|
15
|
Karthik K, Anbazhagan S, Thomas P, Ananda Chitra M, Senthilkumar TMA, Sridhar R, Dhinakar Raj G. Genome Sequencing and Comparative Genomics of Indian Isolates of Brucella melitensis. Front Microbiol 2021; 12:698069. [PMID: 34489888 PMCID: PMC8417702 DOI: 10.3389/fmicb.2021.698069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Brucella melitensis causes small ruminant brucellosis and a zoonotic pathogen prevalent worldwide. Whole genome phylogeny of all available B. melitensis genomes (n = 355) revealed that all Indian isolates (n = 16) clustered in the East Mediterranean lineage except the ADMAS-GI strain. Pangenome analysis indicated the presence of limited accessory genomes with few clades showing specific gene presence/absence pattern. A total of 43 virulence genes were predicted in all the Indian strains of B. melitensis except 2007BM-1 (ricA and wbkA are absent). Multilocus sequence typing (MLST) analysis indicated all except one Indian strain (ADMAS-GI) falling into sequence type (ST 8). In comparison with MLST, core genome phylogeny indicated two major clusters (>70% bootstrap support values) among Indian strains. Clusters with <70% bootstrap support values represent strains with diverse evolutionary origins present among animal and human hosts. Genetic relatedness among animal (sheep and goats) and human strains with 100% bootstrap values shows its zoonotic transfer potentiality. SNP-based analysis indicated similar clustering to that of core genome phylogeny. Among the Indian strains, the highest number of unique SNPs (112 SNPs) were shared by a node that involved three strains from Tamil Nadu. The node SNPs involved several peptidase genes like U32, M16 inactive domain protein, clp protease family protein, and M23 family protein and mostly represented non-synonymous (NS) substitutions. Vaccination has been followed in several parts of the world to prevent small ruminant brucellosis but not in India. Comparison of Indian strains with vaccine strains showed that M5 is genetically closer to most of the Indian strains than Rev.1 strain. The presence of most of the virulence genes among all Indian strains and conserved core genome compositions suggest the use of any circulating strain/genotypes for the development of a vaccine candidate for small ruminant brucellosis in India.
Collapse
Affiliation(s)
- Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Subbaiyan Anbazhagan
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Bareilly, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, Indian Veterinary Research Institute, Bareilly, India
| | - Murugesan Ananda Chitra
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | | | - Ramaswamy Sridhar
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Gopal Dhinakar Raj
- Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| |
Collapse
|
16
|
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen of significant concern to susceptible patient populations. This pathogen can cause nosocomial and community-acquired respiratory and bloodstream infections and various other infections in humans. Sources include water, plant rhizospheres, animals, and foods. Studies of the genetic heterogeneity of S. maltophilia strains have identified several new genogroups and suggested adaptation of this pathogen to its habitats. The mechanisms used by S. maltophilia during pathogenesis continue to be uncovered and explored. S. maltophilia virulence factors include use of motility, biofilm formation, iron acquisition mechanisms, outer membrane components, protein secretion systems, extracellular enzymes, and antimicrobial resistance mechanisms. S. maltophilia is intrinsically drug resistant to an array of different antibiotics and uses a broad arsenal to protect itself against antimicrobials. Surveillance studies have recorded increases in drug resistance for S. maltophilia, prompting new strategies to be developed against this opportunist. The interactions of this environmental bacterium with other microorganisms are being elucidated. S. maltophilia and its products have applications in biotechnology, including agriculture, biocontrol, and bioremediation.
Collapse
|
17
|
Shimizu T, Tsuyuki Y, Shimoike K, Iyori K, Miyamoto T, Harada K. Antimicrobial resistance and multilocus sequence types of Stenotrophomonas maltophilia isolated from dogs and cats in Japan. J Med Microbiol 2021; 70. [PMID: 33826489 DOI: 10.1099/jmm.0.001344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As the representative multidrug-resistant pathogen, Stenotrophomonas maltophilia has multiple intrinsic and acquired resistances, including carbapenem resistance. In companion animals, the antimicrobial susceptibility and sequence types (STs) of S. maltophilia are not well understood due to its limited isolation rate. We investigated the antimicrobial susceptibilities and multilocus sequence types (MLSTs) of 38 S. maltophilia strains isolated from dogs and cats in Japan. Prevalence of resistance was detected for imipenem (100 %), aztreonam (94.7 %), piperacillin (65.8 %), trimethoprim-sulfamethoxazole (65.8 %), and ceftazidime (60.5 %). Rates of resistances to chloramphenicol, minocycline, and levofloxacin were low (2.6-5.3 %). MLST analysis revealed that all 38 strains were assigned to 34 STs, including 11 previously reported STs and 23 newly identified STs. Phylogenetic analysis of MLSTs enabled categorization of 13 isolates (34.2 %) into genogroup 6, which is a major genogroup of human isolates. Multinational surveillance would be needed to clarify the significance of antimicrobial-resistant S. maltophilia isolates from companion animals.
Collapse
Affiliation(s)
- Takae Shimizu
- Department of Veterinary Internal Medicine, Tottori University, Minami 4-101, Koyama, Tottori-shi, Tottori 680-8553, Japan
| | - Yuzo Tsuyuki
- Sanritsu Zelkova Veterinary Laboratory Inc., 2-5-8 Kuji, Takatsu, Kawasaki-shi, Kanagawa 213-0032, Japan
| | - Kenta Shimoike
- Vet Derm Tokyo Inc., 910 Shobuzawa, Fujisawa-shi, Kanagawa 252-0823, Japan
| | - Keita Iyori
- Vet Derm Tokyo Inc., 910 Shobuzawa, Fujisawa-shi, Kanagawa 252-0823, Japan
| | - Tadashi Miyamoto
- Miyamoto Animal Hospital, 2265-8 Kurokawa, Yamaguchi-shi, Yamaguchi 753-0851, Japan
| | - Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University, Minami 4-101, Koyama, Tottori-shi, Tottori 680-8553, Japan
| |
Collapse
|
18
|
Akimoto-Tomiyama C. Multiple endogenous seed-born bacteria recovered rice growth disruption caused by Burkholderia glumae. Sci Rep 2021; 11:4177. [PMID: 33603062 PMCID: PMC7892555 DOI: 10.1038/s41598-021-83794-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Burkholderia glumae is a causal agent of bacterial grain and seedling rot in rice, and is a threat to stable global food supply. The virulence of B. glumae was suppressed when it was inoculated on budding seed rather than on non-budding seed. To clarify the phenomena, pathogen titer inside the rice plant was measured by serial dilution plating of lysates from budding rice seedlings. Surprisingly, morphologically different types of colonies were observed on the plates. These 'contaminated' rice seed-born bacteria (RSB) were identified by sequencing 16S rRNA genes as three strains of Pseudomonas putida (RSB1, RSB10, RSB15) and Stenotrophomonas maltophilia (RSB2). All bacteria and B. glumae were simultaneously inoculated onto rice seeds, and all three P. putida RSBs suppressed the growth disruption caused by B. glumae, whereas RSB2 had no effect. Thus, the virulence was synergistically suppressed when co-treated with RSBs. The effect could be dependent on the high biofilm formation ability of RSB2. By comprehensive microbiota analysis, endogenous rice flora were changed by RSBs treatment. These results suggest the possibility of novel pathogen control through pre-treatment with endogenous beneficial microorganisms. The method would contribute substantially to the implementation of sustainable agriculture stated in Sustainable Development Goals of United Nations.
Collapse
Affiliation(s)
- Chiharu Akimoto-Tomiyama
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
19
|
Roisin L, Melloul E, Woerther PL, Royer G, Decousser JW, Guillot J, Dannaoui E, Botterel F. Modulated Response of Aspergillus fumigatus and Stenotrophomonas maltophilia to Antimicrobial Agents in Polymicrobial Biofilm. Front Cell Infect Microbiol 2020; 10:574028. [PMID: 33123497 PMCID: PMC7573239 DOI: 10.3389/fcimb.2020.574028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction: The complexity of biofilms constitutes a therapeutic challenge and the antimicrobial susceptibility of fungal-bacterial biofilms remains poorly studied. The filamentous fungus Aspergillus fumigatus (Af) and the Gram-negative bacillus Stenotrophomonas maltophilia (Sm) can form biofilms and can be co-isolated from the airways of cystic fibrosis (CF) patients. We previously developed an in vitro biofilm model which highlighted the antibiosis effect of Sm on Af, which was dependent on the bacterial fitness. The aim of the present study was to investigate the in vitro susceptibility of Af and Sm in mono- or polymicrobial biofilms to five antimicrobial agents alone and in two-drug combinations. Methods: Af and Sm clinical reference strains and two strains from CF sputa were tested through a planktonic and biofilm approaches. Af, Sm, or Af-Sm susceptibilities to amphotericin B (AMB), itraconazole (ITC), voriconazole (VRC), levofloxacin (LVX), and rifampicin (RFN) were evaluated by conventional planktonic techniques, crystal violet, XTT, qPCR, and viable plate count. Results: Af planktonic cells and biofilms in formation were more susceptible to AMB, ITC, and VRC than Af mature biofilms. Af mature biofilms were susceptible to AMB, but not to ITC and VRC. Based on viable plate count, a lower concentration of LVX and RFN was required to reduce Sm cell numbers on biofilms in formation compared with mature biofilms. The antibiosis effect of Sm on Af growth was more pronounced for the association of CF strains that exhibited a higher fitness than the reference strains. In Af-Sm biofilms, the fungal susceptibility to AMB was increased compared with Af biofilms. In contrast, the bacterial susceptibility to LVX decreased in Af-Sm biofilms and was fungal biomass-dependent. The combination of AMB (64 μg/mL) with LVX or RFN (4 μg/mL) was efficient to impair Af and Sm growth in the polymicrobial biofilm. Conclusion: Sm increased the Af susceptibility to AMB, whereas Af protected Sm from LVX. Interactions between Af and Sm within biofilms modulate susceptibility to antimicrobial agents, opening the way to new antimicrobial strategies in CF patients.
Collapse
Affiliation(s)
- Lolita Roisin
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Elise Melloul
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France
| | - Paul-Louis Woerther
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Bactériologie-Hygiène, Département de prévention, diagnostic et traitement des infections, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Guilhem Royer
- Unité de Bactériologie-Hygiène, Département de prévention, diagnostic et traitement des infections, Hôpital Henri Mondor, AP-HP, Créteil, France.,LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Evry, Université Paris-Saclay, CNRS, Evry, France
| | - Jean-Winoc Decousser
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Bactériologie-Hygiène, Département de prévention, diagnostic et traitement des infections, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Jacques Guillot
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Parasitologie-Mycologie, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Eric Dannaoui
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP, Université Paris-Descartes, Paris, France
| | - Françoise Botterel
- EA 7380 Dynamyc, Université Paris-Est Créteil, Ecole nationale vétérinaire d'Alfort, USC Anses, Créteil, France.,Unité de Parasitologie-Mycologie, Département de prévention, diagnostic et traitement des infections, Hôpital Henri Mondor, AP-HP, Créteil, France
| |
Collapse
|
20
|
Yero D, Huedo P, Conchillo-Solé O, Martínez-Servat S, Mamat U, Coves X, Llanas F, Roca I, Vila J, Schaible UE, Daura X, Gibert I. Genetic Variants of the DSF Quorum Sensing System in Stenotrophomonas maltophilia Influence Virulence and Resistance Phenotypes Among Genotypically Diverse Clinical Isolates. Front Microbiol 2020; 11:1160. [PMID: 32582100 PMCID: PMC7283896 DOI: 10.3389/fmicb.2020.01160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity of Stenotrophomonas maltophilia is regulated in part by its quorum sensing (QS) system. The main QS signaling molecule in S. maltophilia is known as diffusible signal factor (DSF), and the rpf gene cluster is responsible for its synthesis and perception. Two cluster variants have been previously described, rpf-1 and rpf-2, which differ basically in the conditions under which DSF is produced. Here, correlations between the rpf variant and antibiotic susceptibility, LPS electrophoretic profiles and virulence-related phenotypes were evaluated for a collection of 78 geographically and genetically diverse clinical strains of S. maltophilia. In general there were associations between previously established genogroups and the genetic variant of the rpf cluster. However, only few genotype-phenotype correlations could be observed. Resistance to the β-lactam antibiotics ceftazidime and ticarcillin was associated with strains carrying the rpf-1 variant, whereas strains of variant rpf-2, particularly those of genogroup C, showed higher resistance levels to colistin. Strains of variant rpf-2 were also significantly more virulent to Galleria mellonella larvae than those of rpf-1, most likely due to an increased ability of rpf-2 strains to form biofilms. A comparative genomic analysis revealed the presence of proteins unique to individual genogroups. In particular, the strains of genogroup C share an operon that encodes for a new virulence determinant in S. maltophilia related to the synthesis of an alternative Flp/Tad pilus. Overall, this study establishes a link between the DSF-based QS system and the virulence and resistance phenotypes in this species, and identifies potential high-risk clones circulating in European hospitals.
Collapse
Affiliation(s)
- Daniel Yero
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Pol Huedo
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Oscar Conchillo-Solé
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sònia Martínez-Servat
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Uwe Mamat
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Coves
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ferran Llanas
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ignasi Roca
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Clinical Microbiology-ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ulrich E Schaible
- Cellular Microbiology, Priority Research Area Infections, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|