1
|
Hosseiniyan Khatibi SM, Dimaano NG, Veliz E, Sundaresan V, Ali J. Exploring and exploiting the rice phytobiome to tackle climate change challenges. PLANT COMMUNICATIONS 2024:101078. [PMID: 39233440 DOI: 10.1016/j.xplc.2024.101078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world's food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome; however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.
Collapse
Affiliation(s)
| | - Niña Gracel Dimaano
- International Rice Research Institute, Los Baños, Laguna, Philippines; College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Esteban Veliz
- College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Venkatesan Sundaresan
- College of Biological Sciences, University of California, Davis, Davis, CA, USA; College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, USA
| | - Jauhar Ali
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
2
|
Zhu Z, Ding J, Du R, Zhang Z, Guo J, Li X, Jiang L, Chen G, Bu Q, Tang N, Lu L, Gao X, Li W, Li S, Zeng G, Liang J. Systematic tracking of nitrogen sources in complex river catchments: Machine learning approach based on microbial metagenomics. WATER RESEARCH 2024; 253:121255. [PMID: 38341971 DOI: 10.1016/j.watres.2024.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Tracking nitrogen pollution sources is crucial for the effective management of water quality; however, it is a challenging task due to the complex contaminative scenarios in the freshwater systems. The contaminative pattern variations can induce quick responses of aquatic microorganisms, making them sensitive indicators of pollution origins. In this study, the soil and water assessment tool, accompanied by a detailed pollution source database, was used to detect the main nitrogen pollution sources in each sub-basin of the Liuyang River watershed. Thus, each sub-basin was assigned to a known class according to SWAT outputs, including point source pollution-dominated area, crop cultivation pollution-dominated area, and the septic tank pollution-dominated area. Based on these outputs, the random forest (RF) model was developed to predict the main pollution sources from different river ecosystems using a series of input variable groups (e.g., natural macroscopic characteristics, river physicochemical properties, 16S rRNA microbial taxonomic composition, microbial metagenomic data containing taxonomic and functional information, and their combination). The accuracy and the Kappa coefficient were used as the performance metrics for the RF model. Compared with the prediction performance among all the input variable groups, the prediction performance of the RF model was significantly improved using metagenomic indices as inputs. Among the metagenomic data-based models, the combination of the taxonomic information with functional information of all the species achieved the highest accuracy (0.84) and increased median Kappa coefficient (0.70). Feature importance analysis was used to identify key features that could serve as indicators for sudden pollution accidents and contribute to the overall function of the river system. The bacteria Rhabdochromatium marinum, Frankia, Actinomycetia, and Competibacteraceae were the most important species, whose mean decrease Gini indices were 0.0023, 0.0021, 0.0019, and 0.0018, respectively, although their relative abundances ranged only from 0.0004 to 0.1 %. Among the top 30 important variables, functional variables constituted more than half, demonstrating the remarkable variation in the microbial functions among sites with distinct pollution sources and the key role of functionality in predicting pollution sources. Many functional indicators related to the metabolism of Mycobacterium tuberculosis, such as K24693, K25621, K16048, and K14952, emerged as significant important factors in distinguishing nitrogen pollution origins. With the shortage of pollution source data in developing regions, this suggested approach offers an economical, quick, and accurate solution to locate the origins of water nitrogen pollution using the metagenomic data of microbial communities.
Collapse
Affiliation(s)
- Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Junjie Ding
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ran Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zehua Zhang
- Center for Economics, Finance, and Management Studies, Hunan University, Changsha 410082, PR China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Gaojie Chen
- School of Mathematics, Hunan University, Changsha 410082, PR China
| | - Qiurong Bu
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weixiang Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
3
|
Wang X, Sun T, Yan S, Chen S, Zhang Y. Sediment microbial community characteristics in sea cucumber restocking area. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106233. [PMID: 37866200 DOI: 10.1016/j.marenvres.2023.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Variations of microbial species and functional composition in coastal sediment are usually taken as the results of the provision of supplementary nutrients affected by human activities. However, responses of microbiome stability to restocking biological resources remain less understood in coastal benthic systems without nutrient supplements. Here, combined with metagenomics and microbiome co-occurrence networks, the composition, function, and community stability of microbes were evaluated in a coastal area where sea cucumbers (Apostichopus japonicus) restocked after six months. Also, the physicochemical characteristics of sediments and bottom water were analyzed. We found the total organic carbon, total nitrogen, and total phosphorus of sediment did not change significantly in the restocking area after six months, whereas the concentration of dissolved inorganic nitrogen in bottom water increased significantly. Moreover, the relative abundance of Nitrospina at the class level was increased significantly in the restocking area. Also, enzymes related to nitrate reduction and nitrous oxide reductase were increased in the restocking area. Of note, stock enhancement of sea cucumbers altered associations between bacteria rather than their composition. The elimination of negative associations and reduction of the potential keystone taxa in the restocking area indicated destabilized bacterial communities. Our work may contribute to elucidating the response of microbial stability to stock enhancement. This finding also suggests that microbial community stability can be considered as an indicator of ecological risk under the influence of stock enhancement.
Collapse
Affiliation(s)
- Xiaoling Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Shengjun Yan
- National Marine Environmental Monitoring Center, Dalian, 116021, China
| | - Shangyi Chen
- Comprehensive Administrative Law Enforcement Bureau, Qingdao, 266011, China
| | - Yue Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Meili CH, Jones AL, Arreola AX, Habel J, Pratt CJ, Hanafy RA, Wang Y, Yassin AS, TagElDein MA, Moon CD, Janssen PH, Shrestha M, Rajbhandari P, Nagler M, Vinzelj JM, Podmirseg SM, Stajich JE, Goetsch AL, Hayes J, Young D, Fliegerova K, Grilli DJ, Vodička R, Moniello G, Mattiello S, Kashef MT, Nagy YI, Edwards JA, Dagar SS, Foote AP, Youssef NH, Elshahed MS. Patterns and determinants of the global herbivorous mycobiome. Nat Commun 2023; 14:3798. [PMID: 37365172 PMCID: PMC10293281 DOI: 10.1038/s41467-023-39508-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.
Collapse
Affiliation(s)
- Casey H Meili
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Adrienne L Jones
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Alex X Arreola
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Jeffrey Habel
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Carrie J Pratt
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Radwa A Hanafy
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA
| | - Yan Wang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Moustafa A TagElDein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Christina D Moon
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - Mitesh Shrestha
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Prajwal Rajbhandari
- Department of Applied Microbiology and Food Technology, Research Institute for Bioscience and Biotechnology (RIBB), Kathmandu, Nepal
| | - Magdalena Nagler
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Julia M Vinzelj
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Sabine M Podmirseg
- Universität Innsbruck, Faculty of Biology, Department of Microbiology, Innsbruck, Austria
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, USA
| | | | | | - Diana Young
- Bavarian State Research Center for Agriculture, Freising, Germany
| | - Katerina Fliegerova
- Institute of Animal Physiology and Genetics Czech Academy of Sciences, Prague, Czechia
| | - Diego Javier Grilli
- Área de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - Giuseppe Moniello
- Department of Veterinary Medicine, University of Sassari, Sardinia, Italy
| | - Silvana Mattiello
- University of Milan, Dept. of Agricultural and Environmental Sciences, Milan, Italy
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | | | - Andrew P Foote
- Oklahoma State University, Department of Animal and Food Sciences, Stillwater, OK, USA
| | - Noha H Youssef
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| | - Mostafa S Elshahed
- Oklahoma State University, Department of Microbiology and Molecular Genetics, Stillwater, OK, USA.
| |
Collapse
|
5
|
Jia X, Dini-Andreote F, Salles JF. Unravelling the interplay of ecological processes structuring the bacterial rare biosphere. ISME COMMUNICATIONS 2022; 2:96. [PMID: 37938751 PMCID: PMC9723687 DOI: 10.1038/s43705-022-00177-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Most ecological communities harbor many rare species (i.e., the rare biosphere), however, relatively little is known about how distinct ecological processes structure their existence. Here, we used spatiotemporal data on soil bacterial communities along a natural ecosystem gradient to model the relative influences of assembly processes structuring the rare and common biospheres. We found a greater influence of homogeneous selection (i.e., imposed by spatiotemporally constant variables) mediating the assembly of the rare biosphere, whereas the common biosphere was mostly governed by variable selection (i.e., imposed by spatial and/or temporal fluctuating variables). By partitioning the different types of rarity, we found homogeneous selection to explain the prevalence of permanently rare taxa, thus suggesting their persistence at low abundances to be restrained by physiological traits. Conversely, the dynamics of conditionally rare taxa were mostly structured by variable selection, which aligns with the ability of these taxa to switch between rarity and commonness as responses to environmental spatiotemporal variations. Taken together, our study contributes to the establishment of a link between conceptual and empirical developments in the ecology of the soil microbial rare biosphere. Besides, this study provides a framework to better understand, model, and predict the existence and dynamics of microbial rare biospheres across divergent systems and scales.
Collapse
Affiliation(s)
- Xiu Jia
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, 9747AG, The Netherlands.
| | - Francisco Dini-Andreote
- Department of Plant Science, The Pennsylvania State University, Pennsylvania, University Park, PA, 16801, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16801, USA
| | - Joana Falcão Salles
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, 9747AG, The Netherlands.
| |
Collapse
|
6
|
Hentati D, Abed RMM, Abotalib N, El Nayal AM, Ashraf I, Ismail W. Biotreatment of oily sludge by a bacterial consortium: Effect of bioprocess conditions on biodegradation efficiency and bacterial community structure. Front Microbiol 2022; 13:998076. [PMID: 36212842 PMCID: PMC9532598 DOI: 10.3389/fmicb.2022.998076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
We studied the biodegradation of oily sludge generated by a petroleum plant in Bahrain by a bacterial consortium (termed as AK6) under different bioprocess conditions. Biodegradation of petroleum hydrocarbons in oily sludge (C11-C29) increased from 24% after two days to 99% after 9 days of incubation in cultures containing 5% (w/v) of oily sludge at 40°C. When the nitrogen source was excluded from the batch cultures, hydrocarbon biodegradation dropped to 45% within 7 days. The hydrocarbon biodegradation decreased also by increasing the salinity to 3% and the temperature above 40°C. AK6 tolerated up to 50% (w/v) oily sludge and degraded 60% of the dichloromethane-extractable oil fraction. Illumina-MiSeq analyses revealed that the AK6 consortium was mainly composed of Gammaproteobacteria (ca. 98% of total sequences), with most sequences belonging to Klebsiella (77.6% of total sequences), Enterobacter (16.7%) and Salmonella (5%). Prominent shifts in the bacterial composition of the consortium were observed when the temperature and initial sludge concentration increased, and the nitrogen source was excluded, favoring sequences belonging to Pseudomonas and Stenotrophomonas. The AK6 consortium is endowed with a strong oily sludge tolerance and biodegradation capability under different bioprocess conditions, where Pseudomonas spp. appear to be crucial for hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Dorra Hentati
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Raeid M. M. Abed
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Nasser Abotalib
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Ashraf M. El Nayal
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | | | - Wael Ismail
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
- *Correspondence: Wael Ismail,
| |
Collapse
|
7
|
Yang Y, Cheng K, Li K, Jin Y, He X. Deciphering the diversity patterns and community assembly of rare and abundant bacterial communities in a wetland system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156334. [PMID: 35660444 DOI: 10.1016/j.scitotenv.2022.156334] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Water microorganisms that have distinct contributions to community dynamics, including many rare taxa and few abundant taxa, are crucial to the wetland ecosystem functions. In this study, we comprehensively investigated the diversity patterns and assembly processes of rare and abundant taxa to strengthen our understanding of ecosystem function and diversity in a wetland system. The results showed that TN and NH3-N were the most significant factors affecting the community structure in this wetland. Functional Annotation of Prokaryotic Taxa (FAPROTAX) revealed that functions associated with nitrogen removal were the most prevalent metabolic pathways in samples of regenerated wetland (RW). Co-occurrence network analysis revealed that nonrare taxa exhibited more interactions with rare taxa than with conspecifics and some microbial hubs belonged to rare taxa, which might play an instrumental role in maintaining the stability of the community structure. We found that the assembly of rare taxa with a lower niche breadth was mainly governed by homogeneous selection, implying that their higher sensitivity of these to environmental disturbances and changes in TN played significant roles in community assembly of rare taxa. In contrast, the assembly of abundant taxa with higher niche breadth was dominated by stochastic processes (undominated process and dispersal limitation) indicating that abundant taxa had greater responsibility for maintaining community structure when exposed to environmental fluctuations. These results broaden our understanding of the microbial structure, interactions and ecological assembly mechanisms underlying microbial dynamics in aquatic ecosystems, which are crucial for the management of microorganisms in the wetlands.
Collapse
Affiliation(s)
- Yan Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kexin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaihang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
8
|
Vila-Costa M, Lundin D, Casamayor EO, Meijer SN, Fernández P, Dachs J. Microbial metabolic routes in metagenome assembled genomes are mirrored by the mass balance of polycyclic aromatic hydrocarbons in a high altitude lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119592. [PMID: 35688389 DOI: 10.1016/j.envpol.2022.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Semivolatile organic pollutants have potential for long range atmospheric transport and can thus reach pristine remote lakes by atmospheric deposition. Polycyclic aromatic hydrocarbons (PAHs) are among the most abundant and toxic semivolatile pollutants affecting lakes, however, the main factors controlling their fate are still poorly known. Here we show two contrasting lines of evidence for the importance of microbial degradation on the environmental fate of PAHs in a high altitude deep lake. The first evidence is given by an assessment of the metagenomes from surface and deep waters from Lake Redon (Pyrenees Mountains), which shows the occurrence of the initial ring hydroxylating dioxygenases as well as other PAH degrading genes from the complete metabolic route of PAH degradation. The second line of evidence is by the application of an environmental fate model for PAHs to Lake Redon under two contrasting scenarios considering the inclusion or not of degradation. When degradation is included in the model, PAH concentrations in the sediment are predicted within a factor of two of those measured in Lake Redon. Finally, the extent of the degradation sink is quantified and compared to other cycling PAH fluxes in the lake.
Collapse
Affiliation(s)
- Maria Vila-Costa
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain.
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Sweden
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes, CEAB-CSIC, Blanes, Catalunya, Spain
| | - Sandra N Meijer
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Pilar Fernández
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, Barcelona, Catalunya, Spain
| |
Collapse
|
9
|
Jia Y, Zhao S, Guo W, Peng L, Zhao F, Wang L, Fan G, Zhu Y, Xu D, Liu G, Wang R, Fang X, Zhang H, Kristiansen K, Zhang W, Chen J. Sequencing introduced false positive rare taxa lead to biased microbial community diversity, assembly, and interaction interpretation in amplicon studies. ENVIRONMENTAL MICROBIOME 2022; 17:43. [PMID: 35978448 PMCID: PMC9387074 DOI: 10.1186/s40793-022-00436-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Increasing studies have demonstrated potential disproportionate functional and ecological contributions of rare taxa in a microbial community. However, the study of the microbial rare biosphere is hampered by their inherent scarcity and the deficiency of currently available techniques. Sample-wise cross contaminations might be introduced by sample index misassignment in the most widely used metabarcoding amplicon sequencing approach. Although downstream bioinformatic quality control and clustering or denoising algorithms could remove sequencing errors and non-biological artifact reads, no algorithm could eliminate high quality reads from sample-wise cross contaminations introduced by index misassignment, making it difficult to distinguish between bona fide rare taxa and potential false positives in metabarcoding studies. RESULTS We thoroughly evaluated the rate of index misassignment of the widely used NovaSeq 6000 and DNBSEQ-G400 sequencing platforms using both commercial and customized mock communities, and observed significant lower (0.08% vs. 5.68%) fraction of potential false positive reads for DNBSEQ-G400 as compared to NovaSeq 6000. Significant batch effects could be caused by stochastically introduced false positive or false negative rare taxa. These false detections could also lead to inflated alpha diversity of relatively simple microbial communities and underestimated that of complex ones. Further test using a set of cow rumen samples reported differential rare taxa by different sequencing platforms. Correlation analysis of the rare taxa detected by each sequencing platform demonstrated that the rare taxa identified by DNBSEQ-G400 platform had a much higher possibility to be correlated with the physiochemical properties of rumen fluid as compared to NovaSeq 6000 platform. Community assembly mechanism and microbial network correlation analysis indicated that false positive or negative rare taxa detection could lead to biased community assembly mechanism and identification of fake keystone species of the community. CONCLUSIONS We highly suggest proper positive/negative/blank controls, technical replicate settings, and proper sequencing platform selection in future amplicon studies, especially when the microbial rare biosphere would be focused.
Collapse
Affiliation(s)
- Yangyang Jia
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenjie Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Ling Peng
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Fang Zhao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Guangyi Fan
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yuanfang Zhu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Dayou Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Ruoqing Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | | | - He Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
| |
Collapse
|
10
|
Legeay J, Hijri M. A Comprehensive Insight of Current and Future Challenges in Large-Scale Soil Microbiome Analyses. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02060-2. [PMID: 35739325 DOI: 10.1007/s00248-022-02060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In the last decade, various large-scale projects describing soil microbial diversity across large geographical gradients have been undertaken. However, many questions remain unanswered about the best ways to conduct these studies. In this review, we present an overview of the experience gathered during these projects, and of the challenges that future projects will face, such as standardization of protocols and results, considering the temporal variation of microbiomes, and the legal constraints limiting such studies. We also present the arguments for and against the exhaustive description of soil microbiomes. Finally, we look at future developments of soil microbiome studies, notably emphasizing the important role of cultivation techniques.
Collapse
Affiliation(s)
- Jean Legeay
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Institut de La Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montreal, QE, H1X 2B2, Canada
| |
Collapse
|
11
|
AlDhafiri S, Chiang YR, El Nayal AM, Abed RMM, Abotalib N, Ismail W. Temporal compositional shifts in an activated sludge microbiome during estrone biodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32702-32716. [PMID: 35015225 DOI: 10.1007/s11356-021-18185-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Microbial biodegradation is a key process for the removal of estrogens during wastewater treatment. At least four degradation pathways for natural estrogens have been proposed. However, major estrogen degraders and the occurrence of different estrogen biodegradation pathways in wastewater treatment plants have been rarely investigated. This study was conducted to elucidate estrone biodegradation pathway and to identify key estrone-degrading bacteria in activated sludge from a major wastewater treatment plant in Bahrain. The biodegradation experiments were performed in activated sludge microcosms supplemented with estrone. Sludge samples were retrieved at time intervals to analyze the biodegradation metabolites and the temporal shifts in the bacterial community composition. Chemical analysis revealed the biodegradation of more than 90% of the added estrone within 6 days, and the compounds 4-hydroxyestrone and pyridinestrone acid, which are typical markers of the 4,5-seco pathway of aerobic estrone biodegradation, were detected. Temporal shifts in the relative abundance of bacteria were most prominent among members of Proteobacteria and Bacteroidetes. While the alphaproteobacterial genera Novosphingobium and Sphingoaurantiacus were significantly enriched (from ≤ 6% to an average of 31%) in the estrone-amended activated sludge after 2 days of incubation, the bacteroidete Pedobacter was uniquely detected in these microcosms at day 10. The relative abundance of Polyangia (Nannocyctis) increased to an average of 10 ± 0.4% in the estrone-amended activated sludge after 4 days of incubation. Enrichment cultivation of bacteria from the activated sludge on estrone resulted in a mixed culture that was capable of degrading estrone. An estrone-degrading strain was isolated from this mixed culture and was affiliated with the known estrogen-degrading Alphaproteobacteria Sphingobium estrogenivorans. We conclude that estrone degradation in the activated sludge from the studied wastewater treatment plant proceeds via the 4,5-seco pathway and is most likely mediated by alphaproteobacterial taxa.
Collapse
Affiliation(s)
- Sarah AlDhafiri
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ashraf M El Nayal
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Nasser Abotalib
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain.
| |
Collapse
|
12
|
McElhinney JMWR, Catacutan MK, Mawart A, Hasan A, Dias J. Interfacing Machine Learning and Microbial Omics: A Promising Means to Address Environmental Challenges. Front Microbiol 2022; 13:851450. [PMID: 35547145 PMCID: PMC9083327 DOI: 10.3389/fmicb.2022.851450] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial communities are ubiquitous and carry an exceptionally broad metabolic capability. Upon environmental perturbation, microbes are also amongst the first natural responsive elements with perturbation-specific cues and markers. These communities are thereby uniquely positioned to inform on the status of environmental conditions. The advent of microbial omics has led to an unprecedented volume of complex microbiological data sets. Importantly, these data sets are rich in biological information with potential for predictive environmental classification and forecasting. However, the patterns in this information are often hidden amongst the inherent complexity of the data. There has been a continued rise in the development and adoption of machine learning (ML) and deep learning architectures for solving research challenges of this sort. Indeed, the interface between molecular microbial ecology and artificial intelligence (AI) appears to show considerable potential for significantly advancing environmental monitoring and management practices through their application. Here, we provide a primer for ML, highlight the notion of retaining biological sample information for supervised ML, discuss workflow considerations, and review the state of the art of the exciting, yet nascent, interdisciplinary field of ML-driven microbial ecology. Current limitations in this sphere of research are also addressed to frame a forward-looking perspective toward the realization of what we anticipate will become a pivotal toolkit for addressing environmental monitoring and management challenges in the years ahead.
Collapse
Affiliation(s)
- James M. W. R. McElhinney
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Aurelie Mawart
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ayesha Hasan
- Applied Genomics Laboratory, Center for Membranes and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jorge Dias
- EECS, Center for Autonomous Robotic Systems, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Hudson DT, Chapman PA, Day RC, Morgan XC, Beck CW. Complete Genome Sequences of Kinneretia sp. Strain XES5, Shinella sp. Strain XGS7, and Vogesella sp. Strain XCS3, Isolated from Xenopus laevis Skin. Microbiol Resour Announc 2021; 10:e0105021. [PMID: 34913717 PMCID: PMC8675264 DOI: 10.1128/mra.01050-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Here, we report the genome sequences of three bacterial isolates, Kinneretia sp. strain XES5, Shinella sp. strain XGS7, and Vogesella sp. strain XCS3, which were cultured from skin of adult female laboratory-bred Xenopus laevis.
Collapse
Affiliation(s)
- D. T. Hudson
- Department of Zoology, University of Otago, Dunedin, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - P. A. Chapman
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - R. C. Day
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - X. C. Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - C. W. Beck
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Barros-Rodríguez A, Rangseekaew P, Lasudee K, Pathom-aree W, Manzanera M. Impacts of Agriculture on the Environment and Soil Microbial Biodiversity. PLANTS 2021; 10:plants10112325. [PMID: 34834690 PMCID: PMC8619008 DOI: 10.3390/plants10112325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022]
Abstract
Agriculture represents an important mechanism in terms of reducing plant, animal, and microbial biodiversity and altering the environment. The pressure to cope with the increasing food demands of the human population has intensified the environmental impact, and alternative ways to produce food are required in order to minimize the decrease in biodiversity. Conventional agricultural practices, such as floods and irrigation systems; the removal of undesired vegetation by fires, tilling, and plowing; the use of herbicides, fertilizers, and pesticides; and the intensification of these practices over the last 50 years, have led to one of the most important environmental threats—a major loss of biodiversity. In this study, we review the impact that agriculture and its intensification have had on the environment and biodiversity since its invention. Moreover, we demonstrate how these impacts could be reduced through the use of microorganisms as biostimulants.
Collapse
Affiliation(s)
| | - Pharada Rangseekaew
- Doctor of Philosophy Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krisana Lasudee
- Research Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.L.); (W.P.-a.)
| | - Wasu Pathom-aree
- Research Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.L.); (W.P.-a.)
| | - Maximino Manzanera
- Department of Microbiology, Institute for Water Research, University of Granada, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-248324; Fax: +34-958-243094
| |
Collapse
|
15
|
Alexandrino DAM, Mucha AP, Tomasino MP, Almeida CMR, Carvalho MF. Combining Culture-Dependent and Independent Approaches for the Optimization of Epoxiconazole and Fludioxonil-Degrading Bacterial Consortia. Microorganisms 2021; 9:microorganisms9102109. [PMID: 34683430 PMCID: PMC8538489 DOI: 10.3390/microorganisms9102109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 11/25/2022] Open
Abstract
Epoxiconazole (EPO) and fludioxonil (FLU) are two widely used fluorinated pesticides known to be highly persistent and with high ecotoxicological potential, turning them into pollutants of concern. This work aimed to optimize two degrading bacterial consortia, previously obtained from an agricultural soil through enrichment with EPO and FLU, by characterizing the contribution of their corresponding bacterial isolates to the biodegradation of these pesticides using both culture-dependent and independent methodologies. Results showed that a co-culture of the strains Hydrogenophaga eletricum 5AE and Methylobacillus sp. 8AE was the most efficient in biodegrading EPO, being able to defluorinate ca. 80% of this pesticide in 28 days. This catabolic performance is likely the result of a commensalistic cooperation, in which H. eletricum may be the defluorinating strain and Methylobacillus sp. may assume an accessory, yet pivotal, catabolic role. Furthermore, 16S rRNA metabarcoding analysis revealed that these strains represent a minority in their original consortium, showing that the biodegradation of EPO can be driven by less abundant phylotypes in the community. On the other hand, none of the tested combinations of bacterial strains showed potential to biodegrade FLU, indicating that the key degrading strains were not successfully isolated from the original enrichment culture. Overall, this work shows, for the first time, the direct involvement of two bacterial species, namely H. eletricum and Methylobacillus sp., in the biodegradation of EPO, while also offering insight on how they might cooperate to accomplish this process. Moreover, the importance of adequate culture-dependent approaches in the engineering of microbial consortia for bioremediation purposes is also emphasized.
Collapse
Affiliation(s)
- Diogo A. M. Alexandrino
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (A.P.M.); (M.P.T.); (C.M.R.A.); (M.F.C.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-223401815
| | - Ana P. Mucha
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (A.P.M.); (M.P.T.); (C.M.R.A.); (M.F.C.)
- Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| | - Maria Paola Tomasino
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (A.P.M.); (M.P.T.); (C.M.R.A.); (M.F.C.)
| | - C. Marisa R. Almeida
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (A.P.M.); (M.P.T.); (C.M.R.A.); (M.F.C.)
| | - Maria F. Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (A.P.M.); (M.P.T.); (C.M.R.A.); (M.F.C.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
16
|
Huang H, Jiang Y, Zhao J, Li S, Schulz S, Deng L. BTEX biodegradation is linked to bacterial community assembly patterns in contaminated groundwater ecosystem. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126205. [PMID: 34216964 DOI: 10.1016/j.jhazmat.2021.126205] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 05/22/2023]
Abstract
The control of degrader populations and the stochasticity and certainty of the microbial community in contaminated groundwater are not well-understood. In this study, a long-term contaminated groundwater ecosystem was selected to investigate the impact of BTEX on microbial communities and how microbial communities respond to BTEX pollution. 16S rRNA gene sequencing and metagenomic sequencing provided insights on microbial community assemblage patterns and their role in BTEX cleaning. The operational taxonomy units (OTUs) in the contaminated groundwater ecosystem were clustered distinguishably between the Plume and the Deeper Zone (lower contaminated zone). βNTI analysis revealed that the assembly strategies of abundant and rare OTU subcommunities preferred deterministic processes. Redundancy Analysis (RDA) and mantel testing indicated that benzene, toluene, ethylbenzene, and xylenes (BTEX) strongly drove the abundant OTU subcommunity, while the rare OTU subcommunity was only weakly affected. Deltaproteobacteria, the most dominant degrading microorganism, contains the complete degradation genes in the plume layer. In summary, our finding revealed that BTEX was the major factor in shaping the microbial community structure, and functional bacteria contribute greatly to water cleaning. Investigating the pattern of microbial community assembly will provide insights into the ecological controls of contaminant degradation in groundwater.
Collapse
Affiliation(s)
- Haiying Huang
- Institute of Virology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany; Institute of Virology, Technical University of Munich, Munich, Germany
| | - Yiming Jiang
- Institute of Virology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany; Institute of Virology, Technical University of Munich, Munich, Germany
| | - Jianhua Zhao
- Shanghai Majorbio Bio-pharm Technology Co., Ltd., Building 3, Lane 3399, Kangxin Road, International Medical Zone, Pudong New Area, Shanghai, PR China
| | - Shasha Li
- Shanghai Majorbio Bio-pharm Technology Co., Ltd., Building 3, Lane 3399, Kangxin Road, International Medical Zone, Pudong New Area, Shanghai, PR China
| | - Sarah Schulz
- Institute of Virology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany; Institute of Virology, Technical University of Munich, Munich, Germany
| | - Li Deng
- Institute of Virology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany; Institute of Virology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
17
|
Wu Y, Wu J, Wu Z, Zhou J, Zhou L, Lu Y, Liu X, Wu W. Groundwater contaminated with short-chain chlorinated paraffins and microbial responses. WATER RESEARCH 2021; 204:117605. [PMID: 34488140 DOI: 10.1016/j.watres.2021.117605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The vertical migrations of toxic and persistent short-chain chlorinated paraffins (SCCPs) in soils as well as the microbial responses have been reported, however, there is a paucity of data on the resulting groundwater contamination. Here, we determined the concentration and congener profile of SCCPs in the groundwater beneath a production plant of chlorinated paraffins (CPs) and characterized the microbial community to explore their responses to SCCPs. Results showed that SCCPs ranged from not detected to 70.3 μg/L, with C13-CPs (11.2-65.8%) and Cl7-CPs (27.2-50.6%), in mass ratio, as the dominant groups. Similar to the distribution pattern in soils, SCCPs in groundwater were distributed in hotspot pattern. CP synthesis was the source of SCCPs in groundwater and the entire contamination plume significantly migrated downgradient, while there was an apparent hysteresis of C13-CP migration. Groundwater microbial community was likely shaped by both hydrogeological condition (pH and depth) and SCCPs. Specifically, the microbial community responded to the contamination by forming a co-occurrence network with "small world" feature, where Desulfobacca, Desulfomonile, Ferritrophicum, Methylomonas, Syntrophobacter, Syntrophorhabdus, Syntrophus, and Thermoanaerobaculum were the keystone taxa. Furthermore, the interrelations between bacterial taxa and SCCPs indicated that the microbial community might cooperate to achieve the dechlorination and mineralization of SCCPs through either anaerobic organohalide respiration mainly functioned by the keystone taxa, or cometabolic degradation processes functioned by Aquabacterium and Hydrogenophaga. Results of this study would provide a better understanding of the environmental behavior and ecological effects of SCCPs in groundwater systems.
Collapse
Affiliation(s)
- Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Zhuohao Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Lingli Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Xiaowen Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China.
| |
Collapse
|
18
|
Öztürk B, Werner J, Meier-Kolthoff JP, Bunk B, Spröer C, Springael D. Comparative Genomics Suggests Mechanisms of Genetic Adaptation toward the Catabolism of the Phenylurea Herbicide Linuron in Variovorax. Genome Biol Evol 2021; 12:827-841. [PMID: 32359160 PMCID: PMC7313664 DOI: 10.1093/gbe/evaa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 01/07/2023] Open
Abstract
Biodegradation of the phenylurea herbicide linuron appears a specialization within a specific clade of the Variovorax genus. The linuron catabolic ability is likely acquired by horizontal gene transfer but the mechanisms involved are not known. The full-genome sequences of six linuron-degrading Variovorax strains isolated from geographically distant locations were analyzed to acquire insight into the mechanisms of genetic adaptation toward linuron metabolism. Whole-genome sequence analysis confirmed the phylogenetic position of the linuron degraders in a separate clade within Variovorax and indicated that they unlikely originate from a common ancestral linuron degrader. The linuron degraders differentiated from Variovorax strains that do not degrade linuron by the presence of multiple plasmids of 20–839 kb, including plasmids of unknown plasmid groups. The linuron catabolic gene clusters showed 1) high conservation and synteny and 2) strain-dependent distribution among the different plasmids. Most of them were bordered by IS1071 elements forming composite transposon structures, often in a multimeric array configuration, appointing IS1071 as a key element in the recruitment of linuron catabolic genes in Variovorax. Most of the strains carried at least one (catabolic) broad host range plasmid that might have been a second instrument for catabolic gene acquisition. We conclude that clade 1 Variovorax strains, despite their different geographical origin, made use of a limited genetic repertoire regarding both catabolic functions and vehicles to acquire linuron biodegradation.
Collapse
Affiliation(s)
- Başak Öztürk
- Junior Research Group Microbial Biotechnology, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Division of Soil and Water Management, KU Leuven, Belgium
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Jan P Meier-Kolthoff
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Department Bioinformatics and Databases, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Belgium
| |
Collapse
|
19
|
Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, Piña B, Dachs J, Vila-Costa M. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environ Microbiol 2021; 23:4532-4546. [PMID: 34169620 DOI: 10.1111/1462-2920.15646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/16/2021] [Indexed: 12/13/2022]
Abstract
Thousands of man-made synthetic chemicals are released to oceans and compose the anthropogenic dissolved organic carbon (ADOC). Little is known about the effects of this chronic pollution on marine microbiome activities. In this study, we measured the pollution level at three sites in the Northeast Subarctic Pacific Ocean (NESAP) and investigated how mixtures of three model families of ADOC at different environmentally relevant concentrations affected naturally occurring marine bacterioplankton communities' structure and metabolic functioning. The offshore northernmost site (North) had the lowest concentrations of hydrocarbons, as well as organophosphate ester plasticizers, contrasting with the two other continental shelf sites, the southern coastal site (South) being the most contaminated. At North, ADOC stimulated bacterial growth and promoted an increase in the contribution of some Gammaproteobacteria groups (e.g. Alteromonadales) to the 16 rRNA pool. These groups are described as fast responders after oil spills. In contrast, minor changes in South microbiome activities were observed. Gene expression profiles at Central showed the coexistence of ADOC degradation and stress-response strategies to cope with ADOC toxicities. These results show that marine microbial communities at three distinct domains in NESAP are influenced by background concentrations of ADOC, expanding previous assessments for polar and temperate waters.
Collapse
Affiliation(s)
- Alícia Martinez-Varela
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Elena Cerro-Gálvez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Adrià Auladell
- Department of Marine Biology and Oceanography, Marine Science Institute, ICM-CSIC, Barcelona, Catalunya, Spain
| | - Shalabh Sharma
- Department of Marine Sciences, University of Georgia, Marine Sciences Building, Athens, GA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Marine Sciences Building, Athens, GA, USA
| | - Ronald P Kiene
- Department of Marine Sciences, University of South Alabama, Mobile, AL, USA
| | - Benjamí Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, Spain
| |
Collapse
|
20
|
Cross-Hemisphere Study Reveals Geographically Ubiquitous, Plastic-Specific Bacteria Emerging from the Rare and Unexplored Biosphere. mSphere 2021; 6:e0085120. [PMID: 34106771 PMCID: PMC8265672 DOI: 10.1128/msphere.00851-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While it is now appreciated that the millions of tons of plastic pollution travelling through marine systems carry complex communities of microorganisms, it is still unknown to what extent these biofilm communities are specific to the plastic or selected by the surrounding ecosystem. To address this, we characterized and compared the microbial communities of microplastic particles, nonplastic (natural and wax) particles, and the surrounding waters from three marine ecosystems (the Baltic, Sargasso and Mediterranean seas) using high-throughput 16S rRNA gene sequencing. We found that biofilm communities on microplastic and nonplastic particles were highly similar to one another across this broad geographical range. The similar temperature and salinity profiles of the Sargasso and Mediterranean seas, compared to the Baltic Sea, were reflected in the biofilm communities. We identified plastic-specific operational taxonomic units (OTUs) that were not detected on nonplastic particles or in the surrounding waters. Twenty-six of the plastic-specific OTUs were geographically ubiquitous across all sampled locations. These geographically ubiquitous plastic-specific OTUs were mostly low-abundance members of their biofilm communities and often represented uncultured members of marine ecosystems. These results demonstrate the potential for plastics to be a reservoir of rare and understudied microbes, thus warranting further investigations into the dynamics and role of these microbes in marine ecosystems. IMPORTANCE This study represents one of the largest comparisons of biofilms from environmentally sampled plastic and nonplastic particles from aquatic environments. By including particles sampled through three separate campaigns in the Baltic, Sargasso, and Mediterranean seas, we were able to make cross-geographical comparisons and discovered common taxonomical signatures that define the plastic biofilm. For the first time, we identified plastic-specific bacteria that reoccur across marine regions. Our data reveal that plastics have selective properties that repeatedly enrich for similar bacteria regardless of location, potentially shifting aquatic microbial communities in areas with high levels of plastic pollution. Furthermore, we show that bacterial communities on plastic do not appear to be strongly influenced by polymer type, suggesting that other properties, such as the absorption and/or leaching of chemicals from the surface, are likely to be more important in the selection and enrichment of specific microorganisms.
Collapse
|
21
|
Pascoal F, Costa R, Magalhães C. The microbial rare biosphere: current concepts, methods and ecological principles. FEMS Microbiol Ecol 2021; 97:5974270. [PMID: 33175111 DOI: 10.1093/femsec/fiaa227] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/06/2020] [Indexed: 01/04/2023] Open
Abstract
Our ability to describe the highly diverse pool of low abundance populations present in natural microbial communities is increasing at an unprecedented pace. Yet we currently lack an integrative view of the key taxa, functions and metabolic activity which make-up this communal pool, usually referred to as the 'rare biosphere', across the domains of life. In this context, this review examines the microbial rare biosphere in its broader sense, providing an historical perspective on representative studies which enabled to bridge the concept from macroecology to microbial ecology. It then addresses our current knowledge of the prokaryotic rare biosphere, and covers emerging insights into the ecology, taxonomy and evolution of low abundance microeukaryotic, viral and host-associated communities. We also review recent methodological advances and provide a synthetic overview on how the rare biosphere fits into different conceptual models used to explain microbial community assembly mechanisms, composition and function.
Collapse
Affiliation(s)
- Francisco Pascoal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixoes, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rodrigo Costa
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1049-001, Lisbon, Portugal.,Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, CA 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, CA 94720 Berkeley, USA
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixoes, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.,School of Science, University of Waikato, Gate 1, Knighton Road 3240, Hamilton, New Zealand.,Ocean Frontier Institute, Dalhousie University, Steele Ocean Sciences Building, Dalhousie University 1355 Oxford St., B3H4R2 Halifax, NS, Canada
| |
Collapse
|
22
|
Li R, Hu C, Wang J, Sun J, Wang Y, Jiao N, Xu D. Biogeographical Distribution and Community Assembly of Active Protistan Assemblages Along an Estuary to a Basin Transect of the Northern South China Sea. Microorganisms 2021; 9:microorganisms9020351. [PMID: 33578968 PMCID: PMC7916720 DOI: 10.3390/microorganisms9020351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 11/21/2022] Open
Abstract
Marine protists are essential for globally critical biological processes, including the biogeochemical cycles of matter and energy. However, compared with their prokaryotic counterpart, it remains largely unclear how environmental factors determine the diversity and distribution of the active protistan communities on the regional scale. In the present study, the biodiversity, community composition, and potential drivers of the total, abundant, and rare protistan groups were studied using high throughput sequencing on the V9 hyper-variable regions of the small subunit ribosomal RNA (SSU rRNA) along an estuary to basin transect in the northern South China Sea. Overall, Bacillariophyta and Cercozoa were abundant in the surface water; heterotrophic protists including Spirotrichea and marine stramenopiles 3 (MAST-3) were more abundant in the subsurface waters near the heavily urbanized Pearl River estuary; Chlorophyta and Pelagophyceae were abundant at the deep chlorophyll maximum depth, while Hacrobia, Radiolaria, and Excavata were the abundant groups in the deep water. Salinity, followed by water depth, temperature, and other biological factors, were the primary factors controlling the distinct vertical and horizontal distribution of the total and abundant protists. Rare taxa were driven by water depth, followed by temperature, salinity, and the concentrations of PO43−. The active protistan communities were mainly driven by dispersal limitation, followed by drift and other ecological processes.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Chen Hu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Jianning Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430000, China;
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
- Correspondence: (N.J.); (D.X.)
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (R.L.); (C.H.); (J.W.); (Y.W.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361102, China
- Correspondence: (N.J.); (D.X.)
| |
Collapse
|
23
|
Pileggi M, Pileggi SA, Sadowsky MJ. Herbicide bioremediation: from strains to bacterial communities. Heliyon 2020; 6:e05767. [PMID: 33392402 PMCID: PMC7773584 DOI: 10.1016/j.heliyon.2020.e05767] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/23/2020] [Accepted: 12/15/2020] [Indexed: 01/12/2023] Open
Abstract
There is high demand for herbicides based on the necessity to increase crop production to satisfy world-wide demands. Nevertheless, there are negative impacts of herbicide use, manifesting as selection for resistant weeds, production of toxic metabolites from partial degradation of herbicides, changes in soil microbial communities and biogeochemical cycles, alterations in plant nutrition and soil fertility, and persistent environmental contamination. Some herbicides damage non-target microorganisms via directed interference with host metabolism and via oxidative stress mechanisms. For these reasons, it is necessary to identify sustainable, efficient methods to mitigate these environmental liabilities. Before the degradation process can be initiated by microbial enzymes and metabolic pathways, microorganisms need to tolerate the oxidative stresses caused by the herbicides themselves. This can be achieved via a complex system of enzymatic and non-enzymatic antioxidative stress systems. Many of these response systems are not herbicide specific, but rather triggered by a variety of substances. Collectively, these nonspecific response systems enhance the survival and fitness potential of microorganisms. Biodegradation studies and remediation approaches have relied on individually selected strains to effectively remediate herbicides in the environment. Nevertheless, it has been shown that microbial communication systems that modulate social relationships and metabolic pathways inside biofilm structures among microorganisms are complex; therefore, use of isolated strains for xenobiotic degradation needs to be enhanced using a community-based approach with biodegradation pathway integration. Bioremediation efforts can use omics-based technologies to gain a deeper understanding of the molecular complexes of bacterial communities to achieve to more efficient elimination of xenobiotics. With this knowledge, the possibility of altering microbial communities is increased to improve the potential for bioremediation without causing other environmental impacts not anticipated by simpler approaches. The understanding of microbial community dynamics in free-living microbiota and those present in complex communities and in biofilms is paramount to achieving these objectives. It is also essential that non-developed countries, which are major food producers and consumers of pesticides, have access to these techniques to achieve sustainable production, without causing impacts through unknown side effects.
Collapse
Affiliation(s)
- Marcos Pileggi
- Laboratory of Environmental Microbiology, Biological Science and Health Institute, Department of Structural and Molecular Biology, and Genetics, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Sônia A.V. Pileggi
- Laboratory of Environmental Microbiology, Biological Science and Health Institute, Department of Structural and Molecular Biology, and Genetics, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Michael J. Sadowsky
- The Biotechnology Institute, Department of Soil, Water, and Climate, Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
24
|
Martinez-Varela A, Casas G, Piña B, Dachs J, Vila-Costa M. Large Enrichment of Anthropogenic Organic Matter Degrading Bacteria in the Sea-Surface Microlayer at Coastal Livingston Island (Antarctica). Front Microbiol 2020; 11:571983. [PMID: 33013806 PMCID: PMC7516020 DOI: 10.3389/fmicb.2020.571983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
The composition of bacteria inhabiting the sea-surface microlayer (SML) is poorly characterized globally and yet undescribed for the Southern Ocean, despite their relevance for the biogeochemistry of the surface ocean. We report the abundances and diversity of bacteria inhabiting the SML and the subsurface waters (SSL) determined from a unique sample set from a polar coastal ecosystem (Livingston Island, Antarctica). From early to late austral summer (January–March 2018), we consistently found a higher abundance of bacteria in the SML than in the SSL. The SML was enriched in some Gammaproteobacteria genus such as Pseudoalteromonas, Pseudomonas, and Colwellia, known to degrade a wide range of semivolatile, hydrophobic, and surfactant-like organic pollutants. Hydrocarbons and other synthetic chemicals including surfactants, such as perfluoroalkyl substances (PFAS), reach remote marine environments by atmospheric transport and deposition and by oceanic currents, and are known to accumulate in the SML. Relative abundances of specific SML-enriched bacterial groups were significantly correlated to concentrations of PFASs, taken as a proxy of hydrophobic anthropogenic pollutants present in the SML and its stability. Our observations provide evidence for an important pollutant-bacteria interaction in the marine SML. Given that pollutant emissions have increased during the Anthropocene, our results point to the need to assess chemical pollution as a factor modulating marine microbiomes in the contemporaneous and future oceans.
Collapse
Affiliation(s)
- Alícia Martinez-Varela
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Gemma Casas
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| | - Maria Vila-Costa
- Department of Environmental Chemistry, Institut de Diagnóstic Ambiental i Estudis de l'aigua, Consejo Superior de Investigaciones Científicas (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
25
|
Mason LM, Eagar A, Patel P, Blackwood CB, DeForest JL. Potential microbial bioindicators of phosphorus mining in a temperate deciduous forest. J Appl Microbiol 2020; 130:109-122. [PMID: 32619072 DOI: 10.1111/jam.14761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 01/20/2023]
Abstract
AIMS The soil microbial community plays a critical role in increasing phosphorus (P) availability in low-P, weathered soils by "mining" recalcitrant organic P through the production of phosphatase enzymes. However, there is a lack of data on the fungal and bacterial taxa which are directly involved in P mining, which could also serve as potential microbial bioindicators of low P availability. METHODS AND RESULTS Leveraging a 5-year P enrichment experiment on low-P forest soils, high-throughput sequencing was used to profile the microbial community to determine which taxa associate closely with P availability. We hypothesized that there would be a specialized group of soil micro-organisms that could access recalcitrant P and whose presence could serve as a bioindicator of P mining. Community profiling revealed several candidate bioindicators of P mining (Russulales, Acidobacteria Subgroup 2, Acidobacteriales, Obscuribacterales and Solibacterales), whose relative abundance declined with elevated P and had a significant, positive association with phosphatase production. In addition, we identified candidate bioindicators of high P availability (Mytilinidales, Sebacinales, Chitinophagales, Cytophagales, Saccharimonadales, Opitulales and Gemmatales). CONCLUSIONS This research provides evidence that mitigating P limitation in this ecosystem may be a specialized trait and is mediated by a few microbial taxa. SIGNIFICANCE AND IMPACT OF THE STUDY Here, we characterize Orders of soil microbes associated with manipulated phosphorus availability in forest soils to determine bioindicator candidates for phosphorus. Likewise, we provide evidence that the microbial trait to utilize recalcitrant organic forms of P (e.g. P mining) is likely a specialized trait and not common to all members of the soil microbial community. This work further elucidates the role that a complex microbial community plays in the cycling of P in low-P soils, and provides evidence for future studies on microbial linkages to human-induced ecosystem changes.
Collapse
Affiliation(s)
- L M Mason
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - A Eagar
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - P Patel
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - C B Blackwood
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - J L DeForest
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| |
Collapse
|
26
|
Adyari B, Shen D, Li S, Zhang L, Rashid A, Sun Q, Hu A, Chen N, Yu CP. Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137767. [PMID: 32179350 DOI: 10.1016/j.scitotenv.2020.137767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Micropollutants have become of great concern, because of their disrupting effects on the structure and function of microbial communities. However, little is known about the relative importance of trace micropollutants on the aquatic prokaryotic communities as compared to the traditional physico-chemical characteristics, especially at different spatial dimensions. Here, we investigated free-living (FL) and particle-associated (PA) prokaryotic communities in a subtropical water reservoir, China, across seasons at horizontal (surface water) and vertical (depth-profile) scales by using 16S rRNA gene amplicon sequencing. Our results showed that the shared variances of physico-chemicals and micropollutants explained majority of the spatial variations in prokaryotic communities, suggesting a strong joint effect of the two abiotic categories on reservoir prokaryotic communities. Micropollutants appeared to exert strong independent influence on the core sub-communities (i.e., abundant and wide-spread taxa) than on the satellite (i.e., less abundant and narrow-range taxa) counterparts. The pure effect of micropollutants on both core and satellite sub-communities from FL and PA fractions was ~1.5 folds greater than that of physico-chemical factors at the horizontal scale, whereas an opposite effect was observed at the vertical scale. Moreover, eight micropollutants including anti-fungal agents, antibiotics, bisphenol analogues, stimulant and UV-filter were identified as the major disrupting compounds with strong associations with core taxa of typical freshwater prokaryotes. Altogether, we concluded that the ecological disrupting effects of micropollutants on prokaryotic communities may vary along horizontal and vertical dimensions in freshwater ecosystems.
Collapse
Affiliation(s)
- Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Dandan Shen
- Section of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Warnemünde D-18119, Germany; Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Shuang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Azhar Rashid
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Nuclear Institute for Food and Agriculture, Tarnab, Peshawar, Pakistan
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
27
|
Lima JY, Moreira C, Nunes Freitas PN, Olchanheski LR, Veiga Pileggi SA, Etto RM, Staley C, Sadowsky MJ, Pileggi M. Structuring biofilm communities living in pesticide contaminated water. Heliyon 2020; 6:e03996. [PMID: 32462094 PMCID: PMC7240113 DOI: 10.1016/j.heliyon.2020.e03996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/07/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
The wide use of pesticides in agriculture expose microbiota to stressful conditions that require the development of survival strategies. The bacterial response to many pollutants has not been elucidated in detail, as well as the evolutionary processes that occur to build adapted communities. The purpose of this study was to evaluate the bacterial population structure and adaptation strategies in planktonic and biofilm communities in limited environments, as tanks containing water used for washing herbicide containers. This biodiversity, with high percentage of nonculturable microorganisms, was characterized based on habitat and abiotic parameters using molecular and bioinformatics tools. According to water and wastewater standards, the physicochemical conditions of the tank water were inadequate for survival of the identified bacteria, which had to develop survival strategies in this hostile environment. The biodiversity decreased in the transition from planktonic to biofilm samples, indicating a possible association between genetic drift and selection of individuals that survive under stressful conditions, such as heating in water and the presence of chlorine, fluorine and agrochemicals over a six-month period. The abundance of Enterobacter, Acinetobacter and Pseudomonas in biofilms from water tanks was linked to essential processes, deduced from the genes attributed to these taxonomic units, and related to biofilm formation, structure and membrane transport, quorum sensing and xenobiotic degradation. These characteristics were randomly combined and fixed in the biofilm community. Thus, communities of biofilm bacteria obtained under these environmental conditions serve as interesting models for studying herbicide biodegradation kinetics and the prospects of consortia suitable for use in bioremediation in reservoirs containing herbicide-contaminated wastewater, as biofilters containing biofilm communities capable of degrading herbicides.
Collapse
Affiliation(s)
- Jhenifer Yonara Lima
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Cassiano Moreira
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Paloma Nathane Nunes Freitas
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | | | - Sonia Alvim Veiga Pileggi
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Rafael Mazer Etto
- Department of Chemistry, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Christopher Staley
- The Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States
| | - Michael Jay Sadowsky
- Department of Soil, Water, and Climate, The Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States
| | - Marcos Pileggi
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| |
Collapse
|
28
|
Yan L, Herrmann M, Kampe B, Lehmann R, Totsche KU, Küsel K. Environmental selection shapes the formation of near-surface groundwater microbiomes. WATER RESEARCH 2020; 170:115341. [PMID: 31790889 DOI: 10.1016/j.watres.2019.115341] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Hydrodynamics drives both stochastic and deterministic community assembly in aquatic habitats, by translocating microbes across geographic barriers and generating changes in selective pressures. Thus, heterogeneity of hydrogeological settings and episodic surface inputs from recharge areas might play important roles in shaping and maintaining groundwater microbial communities. Here we took advantage of the Hainich Critical Zone Exploratory to disentangle mechanisms of groundwater microbiome differentiation via a three-year observation in a setting of mixed carbonate-siliciclastic alternations along a hillslope transect. Variation partitioning of all data elucidated significant roles of hydrochemistry (35.0%) and spatial distance (18.6%) but not of time in shaping groundwater microbiomes. Groundwater was dominated by rare species (99.6% of OTUs), accounting for 25.9% of total reads, whereas only 26 OTUs were identified as core species. The proximity to the recharge area gave prominence to high microbial diversity coinciding with high surface inputs. In downstream direction, the abundance of rare OTUs decreased whereas core OTUs abundance increased up to 47% suggesting increasing selection stress with a higher competition cost for colonization. In general, environmental selection was the key mechanism driving the spatial differentiation of groundwater microbiomes, with N-compounds and dissolved oxygen as the major determinants, but it was more prominent in the upper aquifer with low flow velocity. Across the lower aquifer with higher flow velocity, stochastic processes appeared to be additionally important for community assembly. Overall, this study highlights the impact of surface and subsurface conditions, as well as flow regime and related habitat accessibility, on groundwater microbiomes assembly.
Collapse
Affiliation(s)
- Lijuan Yan
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Martina Herrmann
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Bernd Kampe
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich Schiller University, Jena, Germany
| | - Robert Lehmann
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University, Jena, Germany
| | - Kai Uwe Totsche
- Hydrogeology, Institute of Geosciences, Friedrich Schiller University, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.
| |
Collapse
|
29
|
Pascoal F, Magalhães C, Costa R. The Link Between the Ecology of the Prokaryotic Rare Biosphere and Its Biotechnological Potential. Front Microbiol 2020; 11:231. [PMID: 32140148 PMCID: PMC7042395 DOI: 10.3389/fmicb.2020.00231] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Current research on the prokaryotic low abundance taxa, the prokaryotic rare biosphere, is growing, leading to a greater understanding of the mechanisms underlying organismal rarity and its relevance in ecology. From this emerging knowledge it is possible to envision innovative approaches in biotechnology applicable to several sectors. Bioremediation and bioprospecting are two of the most promising areas where such approaches could find feasible implementation, involving possible new solutions to the decontamination of polluted sites and to the discovery of novel gene variants and pathways based on the attributes of rare microbial communities. Bioremediation can be improved through the realization that diverse rare species can grow abundant and degrade different pollutants or possibly transfer useful genes. Further, most of the prokaryotic diversity found in virtually all environments belongs in the rare biosphere and remains uncultivatable, suggesting great bioprospecting potential within this vast and understudied genetic pool. This Mini Review argues that knowledge of the ecophysiology of rare prokaryotes can aid the development of future, efficient biotechnology-based processes, products and services. However, this promise may only be fulfilled through improvements in (and optimal blending of) advanced microbial culturing and physiology, metagenomics, genome annotation and editing, and synthetic biology, to name a few areas of relevance. In the future, it will be important to understand how activity profiles relate with abundance, as some rare taxa can remain rare and increase activity, whereas other taxa can grow abundant. The metabolic mechanisms behind those patterns can be useful in designing biotechnological processes.
Collapse
Affiliation(s)
- Francisco Pascoal
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Porto, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal.,School of Science & Engineering, University of Waikato, Hamilton, New Zealand.,Ocean Frontier Institute, Dalhousie University, Halitax, NS, Canada
| | - Rodrigo Costa
- Department of Bioengineering, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.,Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.,U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
30
|
Tang Y, Dai T, Su Z, Hasegawa K, Tian J, Chen L, Wen D. A Tripartite Microbial-Environment Network Indicates How Crucial Microbes Influence the Microbial Community Ecology. MICROBIAL ECOLOGY 2020; 79:342-356. [PMID: 31428833 DOI: 10.1007/s00248-019-01421-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Current technologies could identify the abundance and functions of specific microbes, and evaluate their individual effects on microbial ecology. However, these microbes interact with each other, as well as environmental factors, in the form of complex network. Determination of their combined ecological influences remains a challenge. In this study, we developed a tripartite microbial-environment network (TMEN) analysis method that integrates microbial abundance, metabolic function, and environmental data as a tripartite network to investigate the combined ecological effects of microbes. Applying TMEN to analyzing the microbial-environment community structure in the sediments of Hangzhou Bay, one of the most seriously polluted coastal areas in China, we found that microbes were well-organized into 4 bacterial communities and 9 archaeal communities. The total organic carbon, sulfate, chemical oxygen demand, salinity, and nitrogen-related indexes were detected as crucial environmental factors in the microbial-environmental network. With close interactions with these environmental factors, Nitrospirales and Methanimicrococcu were identified as hub microbes with connection advantage. Our TMEN method could close the gap between lack of efficient statistical and computational approaches and the booming of large-scale microbial genomic and environmental data. Based on TMEN, we discovered a potential microbial ecological mechanism that crucial species with significant influence on the microbial community ecology would possess one or two of the community advantages for enhancing their ecological status and essentiality, including abundance advantage and connection advantage.
Collapse
Affiliation(s)
- Yushi Tang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Tianjiao Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Kohei Hasegawa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, Boston, MA, 02115, USA
| | - Jinping Tian
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing, 100084, China
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314050, Zhejiang, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
31
|
Ribeiro H, Martins A, Gonçalves M, Guedes M, Tomasino MP, Dias N, Dias A, Mucha AP, Carvalho MF, Almeida CMR, Ramos S, Almeida JM, Silva E, Magalhães C. Development of an autonomous biosampler to capture in situ aquatic microbiomes. PLoS One 2019; 14:e0216882. [PMID: 31091277 PMCID: PMC6519839 DOI: 10.1371/journal.pone.0216882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/30/2019] [Indexed: 11/18/2022] Open
Abstract
The importance of planktonic microbial communities is well acknowledged, since they are fundamental for several natural processes of aquatic ecosystems. Microorganisms naturally control the flux of nutrients, and also degrade and recycle anthropogenic organic and inorganic contaminants. Nevertheless, climate change effects and/or the runoff of nutrients/pollutants can affect the equilibrium of natural microbial communities influencing the occurrence of microbial pathogens and/or microbial toxin producers, which can compromise ecosystem environmental status. Therefore, improved microbial plankton monitoring is essential to better understand how these communities respond to environmental shifts. The study of marine microbial communities typically involves highly cost and time-consuming sampling procedures, which can limit the frequency of sampling and data availability. In this context, we developed and validated an in situ autonomous biosampler (IS-ABS) able to collect/concentrate in situ planktonic communities of different size fractions (targeting prokaryotes and unicellular eukaryotes) for posterior genomic, metagenomic, and/or transcriptomic analysis at a home laboratory. The IS-ABS field prototype is a small size and compact system able to operate up to 150 m depth. Water is pumped by a micropump (TCS MG2000) through a hydraulic circuit that allows in situ filtration of environmental water in one or more Sterivex filters placed in a filter cartridge. The IS-ABS also includes an application to program sampling definitions, allowing pre-setting configuration of the sampling. The efficiency of the IS-ABS was tested against traditional laboratory filtration standardized protocols. Results showed a good performance in terms of DNA recovery, as well as prokaryotic (16S rDNA) and eukaryotic (18S rDNA) community diversity analysis, using either methodologies. The IS-ABS automates the process of collecting environmental DNA, and is suitable for integration in water observation systems, what will contribute to substantially increase biological surveillances. Also, the use of highly sensitive genomic approaches allows a further study of the diversity and functions of whole or specific microbial communities.
Collapse
Affiliation(s)
- Hugo Ribeiro
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS-UP), University of Porto, Porto, Portugal
- * E-mail:
| | - Alfredo Martins
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | | | | | - Maria Paola Tomasino
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Nuno Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - André Dias
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Ana Paula Mucha
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F. Carvalho
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - C. Marisa R. Almeida
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
| | - Sandra Ramos
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- Institute of Estuarine and Coastal Studies, University of Hull, Hull, United Kingdom
| | - José Miguel Almeida
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Eduardo Silva
- INESC TEC–INESC Technology and Science, Porto, Portugal
- ISEP–School of Engineering, Polytechnic Institute of Porto, Porto, Portugal
| | - Catarina Magalhães
- CIIMAR–Interdisciplinary Center of Marine and Environmental Research, University of Porto, Av. General Norton de Matos s/n, Matosinhos, Portugal
- FCUP–Faculty of Sciences of University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Microbial Functional Responses to Cholesterol Catabolism in Denitrifying Sludge. mSystems 2018; 3:mSystems00113-18. [PMID: 30417110 PMCID: PMC6208644 DOI: 10.1128/msystems.00113-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/11/2018] [Indexed: 01/08/2023] Open
Abstract
Steroids are ubiquitous and abundant natural compounds that display recalcitrance. Biodegradation via sludge communities in wastewater treatment plants is the primary removal process for steroids. To date, compared to studies for aerobic steroid degradation, the knowledge of anaerobic degradation of steroids has been based on only a few model organisms. Due to the increase of anthropogenic impacts, steroid inputs may affect microbial diversity and functioning in ecosystems. Here, we first investigated microbial functional responses to cholesterol, the most abundant steroid in sludge, at the community level. Our metagenomic and metatranscriptomic analyses revealed that the capacities for cholesterol approach, uptake, and degradation are unique traits of certain low-abundance betaproteobacteria, indicating the importance of the rare biosphere in bioremediation. Apparent expression of genes involved in cofactor de novo synthesis and salvage pathways suggests that these micronutrients play important roles for cholesterol degradation in sludge communities. The 2,3-seco pathway, the pathway for anaerobic cholesterol degradation, has been established in the denitrifying betaproteobacterium Sterolibacterium denitrificans. However, knowledge of how microorganisms respond to cholesterol at the community level is elusive. Here, we applied mesocosm incubation and 16S rRNA sequencing to reveal that, in denitrifying sludge communities, three betaproteobacterial operational taxonomic units (OTUs) with low (94% to 95%) 16S rRNA sequence similarity to Stl. denitrificans are cholesterol degraders and members of the rare biosphere. Metatranscriptomic and metabolite analyses show that these degraders adopt the 2,3-seco pathway to sequentially catalyze the side chain and sterane of cholesterol and that two molybdoenzymes—steroid C25 dehydrogenase and 1-testosterone dehydrogenase/hydratase—are crucial for these bioprocesses, respectively. The metatranscriptome further suggests that these betaproteobacterial degraders display chemotaxis and motility toward cholesterol and that FadL-like transporters may be the key components for substrate uptake. Also, these betaproteobacteria are capable of transporting micronutrients and synthesizing cofactors essential for cellular metabolism and cholesterol degradation; however, the required cobalamin is possibly provided by cobalamin-de novo-synthesizing gamma-, delta-, and betaproteobacteria via the salvage pathway. Overall, our results indicate that the ability to degrade cholesterol in sludge communities is reserved for certain rare biosphere members and that C25 dehydrogenase can serve as a biomarker for sterol degradation in anoxic environments. IMPORTANCE Steroids are ubiquitous and abundant natural compounds that display recalcitrance. Biodegradation via sludge communities in wastewater treatment plants is the primary removal process for steroids. To date, compared to studies for aerobic steroid degradation, the knowledge of anaerobic degradation of steroids has been based on only a few model organisms. Due to the increase of anthropogenic impacts, steroid inputs may affect microbial diversity and functioning in ecosystems. Here, we first investigated microbial functional responses to cholesterol, the most abundant steroid in sludge, at the community level. Our metagenomic and metatranscriptomic analyses revealed that the capacities for cholesterol approach, uptake, and degradation are unique traits of certain low-abundance betaproteobacteria, indicating the importance of the rare biosphere in bioremediation. Apparent expression of genes involved in cofactor de novo synthesis and salvage pathways suggests that these micronutrients play important roles for cholesterol degradation in sludge communities.
Collapse
|
33
|
Chen W, Wilkes G, Khan IUH, Pintar KDM, Thomas JL, Lévesque CA, Chapados JT, Topp E, Lapen DR. Aquatic Bacterial Communities Associated With Land Use and Environmental Factors in Agricultural Landscapes Using a Metabarcoding Approach. Front Microbiol 2018; 9:2301. [PMID: 30425684 PMCID: PMC6218688 DOI: 10.3389/fmicb.2018.02301] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/10/2018] [Indexed: 12/30/2022] Open
Abstract
This study applied a 16S rRNA gene metabarcoding approach to characterize bacterial community compositional and functional attributes for surface water samples collected within, primarily, agriculturally dominated watersheds in Ontario and Québec, Canada. Compositional heterogeneity was best explained by stream order, season, and watercourse discharge. Generally, community diversity was higher at agriculturally dominated lower order streams, compared to larger stream order systems such as small to large rivers. However, during times of lower relative water flow and cumulative 2-day rainfall, modestly higher relative diversity was found in the larger watercourses. Bacterial community assemblages were more sensitive to environmental/land use changes in the smaller watercourses, relative to small-to-large river systems, where the proximity of the sampled water column to bacteria reservoirs in the sediments and adjacent terrestrial environment was greater. Stream discharge was the environmental variable most significantly correlated (all positive) with bacterial functional groups, such as C/N cycling and plant pathogens. Comparison of the community structural similarity via network analyses helped to discriminate sources of bacteria in freshwater derived from, for example, wastewater treatment plant effluent and intensity and type of agricultural land uses (e.g., intensive swine production vs. dairy dominated cash/livestock cropping systems). When using metabarcoding approaches, bacterial community composition and coexisting pattern rather than individual taxonomic lineages, were better indicators of environmental/land use conditions (e.g., upstream land use) and bacterial sources in watershed settings. Overall, monitoring changes and differences in aquatic microbial communities at regional and local watershed scales has promise for enhancing environmental footprinting and for better understanding nutrient cycling and ecological function of aquatic systems impacted by a multitude of stressors and land uses.
Collapse
Affiliation(s)
- Wen Chen
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Graham Wilkes
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | | | - Janis L Thomas
- Ontario Ministry of the Environment and Climate Change, Environmental Monitoring and Reporting Branch, Toronto, ON, Canada
| | - C André Lévesque
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Julie T Chapados
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Edward Topp
- London Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, London, ON, Canada
| | - David R Lapen
- Ottawa Research and Development Center, Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
34
|
Godoy-Lozano EE, Escobar-Zepeda A, Raggi L, Merino E, Gutierrez-Rios RM, Juarez K, Segovia L, Licea-Navarro AF, Gracia A, Sanchez-Flores A, Pardo-Lopez L. Bacterial Diversity and the Geochemical Landscape in the Southwestern Gulf of Mexico. Front Microbiol 2018; 9:2528. [PMID: 30405581 PMCID: PMC6200919 DOI: 10.3389/fmicb.2018.02528] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/03/2018] [Indexed: 11/26/2022] Open
Abstract
Marine sediments are an example of one of the most complex microbial habitats. These bacterial communities play an important role in several biogeochemical cycles in the marine ecosystem. In particular, the Gulf of Mexico has a ubiquitous concentration of hydrocarbons in its sediments, representing a very interesting niche to explore. Additionally, the Mexican government has opened its oil industry, offering several exploration and production blocks in shallow and deep water in the southwestern Gulf of Mexico (swGoM), from which there are no public results of conducted studies. Given the higher risk of large-scale oil spills, the design of contingency plans and mitigation activities before oil exploitation is of growing concern. Therefore, a bacterial taxonomic baseline profile is crucial to understanding the impact of any eventual oil spill. Here, we show a genus level taxonomic profile to elucidate the bacterial baseline, pointing out richness and relative abundance, as well as relationships with 79 abiotic parameters, in an area encompassing ∼150,000 km2, including a region where the exploitation of new oil wells has already been authorized. Our results describe for the first time the bacterial landscape of the swGoM, establishing a bacterial baseline "core" of 450 genera for marine sediments in this region. We can also differentiate bacterial populations from shallow and deep zones of the swGoM based on their community structure. Shallow sediments have been chronically exposed to aromatic hydrocarbons, unlike deep zones. Our results reveal that the bacterial community structure is particularly enriched with hydrocarbon-degrading bacteria in the shallow zone, where a greater aromatic hydrocarbon concentration was determined. Differences in the bacterial communities in the swGoM were also observed through a comprehensive comparative analysis relative to various marine sediment sequencing projects, including sampled sites from the Deep Water Horizon oil spill. This study in the swGoM provides clues to the bacterial population adaptation to the ubiquitous presence of hydrocarbons and reveals organisms such as Thioprofundum bacteria with potential applications in ecological surveillance. This resource will allow us to differentiate between natural conditions and alterations generated by oil extraction activities, which, in turn, enables us to assess the environmental impact of such activities.
Collapse
Affiliation(s)
| | | | - Luciana Raggi
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Katy Juarez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Adolfo Gracia
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | | | - Liliana Pardo-Lopez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
35
|
Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes. mSystems 2018; 3:e00055-18. [PMID: 30273414 PMCID: PMC6156271 DOI: 10.1128/msystems.00055-18] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
To describe a microbe's physiology, including its metabolism, environmental roles, and growth characteristics, it must be grown in a laboratory culture. Unfortunately, many phylogenetically novel groups have never been cultured, so their physiologies have only been inferred from genomics and environmental characteristics. Although the diversity, or number of different taxonomic groups, of uncultured clades has been studied well, their global abundances, or numbers of cells in any given environment, have not been assessed. We quantified the degree of similarity of 16S rRNA gene sequences from diverse environments in publicly available metagenome and metatranscriptome databases, which we show have far less of the culture bias present in primer-amplified 16S rRNA gene surveys, to those of their nearest cultured relatives. Whether normalized to scaffold read depths or not, the highest abundances of metagenomic 16S rRNA gene sequences belong to phylogenetically novel uncultured groups in seawater, freshwater, terrestrial subsurface, soil, hypersaline environments, marine sediment, hot springs, hydrothermal vents, nonhuman hosts, snow, and bioreactors (22% to 87% uncultured genera to classes and 0% to 64% uncultured phyla). The exceptions were human and human-associated environments, which were dominated by cultured genera (45% to 97%). We estimate that uncultured genera and phyla could comprise 7.3 × 1029 (81%) and 2.2 × 1029 (25%) of microbial cells, respectively. Uncultured phyla were overrepresented in metatranscriptomes relative to metagenomes (46% to 84% of sequences in a given environment), suggesting that they are viable. Therefore, uncultured microbes, often from deeply phylogenetically divergent groups, dominate nonhuman environments on Earth, and their undiscovered physiologies may matter for Earth systems. IMPORTANCE In the past few decades, it has become apparent that most of the microbial diversity on Earth has never been characterized in laboratory cultures. We show that these unknown microbes, sometimes called "microbial dark matter," are numerically dominant in all major environments on Earth, with the exception of the human body, where most of the microbes have been cultured. We also estimate that about one-quarter of the population of microbial cells on Earth belong to phyla with no cultured relatives, suggesting that these never-before-studied organisms may be important for ecosystem functions. Author Video: An author video summary of this article is available.
Collapse
Affiliation(s)
- Karen G. Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Andrew D. Steen
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Joshua Ladau
- Gladstone Institutes, University of California, San Francisco, San Francisco, California, USA
| | - Junqi Yin
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Lonnie Crosby
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
36
|
Jia X, Dini-Andreote F, Falcão Salles J. Community Assembly Processes of the Microbial Rare Biosphere. Trends Microbiol 2018; 26:738-747. [DOI: 10.1016/j.tim.2018.02.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/12/2018] [Accepted: 02/22/2018] [Indexed: 01/19/2023]
|
37
|
Lavergne C, Hugoni M, Dupuy C, Agogué H. First evidence of the presence and activity of archaeal C3 group members in an Atlantic intertidal mudflat. Sci Rep 2018; 8:11790. [PMID: 30087413 PMCID: PMC6081377 DOI: 10.1038/s41598-018-30222-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/18/2018] [Indexed: 11/09/2022] Open
Abstract
The phylogenetic assignment of archaeal communities is constantly evolving, and the recent discovery of new phyla that grouped into superphyla has provided novel insights into archaeal ecology and evolution in ecosystems. In intertidal sediments, archaea are known to be involved in key functional processes such as organic matter turnover, but the ecological relevance of the rarest archaeal groups is poorly investigated, due partly to the lack of cultivated members. The high resolution of microbial diversity provided by high-throughput sequencing technologies now allows the rare biosphere to be described. In this work, we focused on the archaeal C3 group, showing that this phylum is not only present (at the DNA level) independently of sediment depth but also active (at the RNA level) in specific sediment niches depending on vertical physicochemical gradients. Moreover, we highlight the ambiguous phylogenetic affiliation of this group, indicating the need of further research to get new insights into the role of the C3 group.
Collapse
Affiliation(s)
- Céline Lavergne
- Université de La Rochelle - CNRS, UMR 7266, LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France. .,Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| | - Mylène Hugoni
- Université Lyon 1 - UMR CNRS 5557/INRA 1418, Ecologie Microbienne, Villeurbanne, France
| | - Christine Dupuy
- Université de La Rochelle - CNRS, UMR 7266, LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Hélène Agogué
- Université de La Rochelle - CNRS, UMR 7266, LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|