1
|
Arino T, Faulkner D, Bustillo KC, An DD, Jorgens D, Hébert S, McKinley C, Proctor M, Loguinov A, Vulpe C, Abergel RJ. Electron microscopy evidence of gadolinium toxicity being mediated through cytoplasmic membrane dysregulation. Metallomics 2024; 16:mfae042. [PMID: 39313325 PMCID: PMC11497612 DOI: 10.1093/mtomcs/mfae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Past functional toxicogenomic studies have indicated that genes relevant to membrane lipid synthesis are important for tolerance to the lanthanides. Moreover, previously reported imaging of patient's brains following administration of gadolinium-based contrast agents shows gadolinium lining the vessels of the brain. Taken together, these findings suggest the disruption of cytoplasmic membrane integrity as a mechanism by which lanthanides induce cytotoxicity. In the presented work we used scanning transmission electron microscopy and spatially resolved elemental spectroscopy to image the morphology and composition of gadolinium, europium, and samarium precipitates that formed on the outside of yeast cell membranes. In no sample did we find that the lanthanide contaminant had crossed the cell membrane, even in experiments using yeast mutants with disrupted genes for sphingolipid synthesis-the primary lipids found in yeast cytoplasmic membranes. Rather, we have evidence that lanthanides are co-located with phosphorus outside the yeast cells. These results lead us to hypothesize that the lanthanides scavenge or otherwise form complexes with phosphorus from the sphingophospholipid head groups in the cellular membrane, thereby compromising the structure or function of the membrane, and gaining the ability to disrupt membrane function without entering the cell.
Collapse
Affiliation(s)
- Trevor Arino
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
| | - Danielle Jorgens
- Electron Microscope Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
| | - Carla McKinley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Wang T, Zhang Q, Qiao Y, Jiang Y, Xiao F, Duan J, Zhao X. Research progress on microbial adsorption of radioactive nuclides in deep geological environments. Front Microbiol 2024; 15:1430498. [PMID: 39021632 PMCID: PMC11251946 DOI: 10.3389/fmicb.2024.1430498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Due to the development and utilization of nuclear energy, the safe disposal of nuclear waste needs to be urgently addressed. In recent years, the utilization of microorganisms' adsorption capacity to dispose of radioactive waste has received increasing attention. When compared with conventional disposal methods, microbial adsorption exhibits the characteristics of high efficiency, low cost, and no secondary pollution. In the long term, microbial biomass shows significant promise as specific chemical-binding agents. Optimization of biosorption conditions, identification of rare earth element binding sites, and studies on the sorption capacities of immobilized cells provide compelling reasons to consider biosorption for industrial applications in heavy metal removal from solutions. However, the interaction mechanism between microorganisms and radioactive nuclides is very complex. This mini-review briefly provides an overview of the preparation methods, factors affecting the adsorption capacity, and the mechanisms of microbial adsorbents.
Collapse
Affiliation(s)
- Tianyu Wang
- Navy Submarine Academy, Qingdao, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qichao Zhang
- Navy Submarine Academy, Qingdao, China
- CAS Key Laboratory of Marine Environment of Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yanxin Qiao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | | | - Feng Xiao
- Navy Submarine Academy, Qingdao, China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environment of Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhao
- Navy Submarine Academy, Qingdao, China
| |
Collapse
|
3
|
Kharkova AS, Medvedeva AS, Kuznetsova LS, Gertsen MM, Kolesov VV, Arlyapov VA, Reshetilov AN. A "2-in-1" Bioanalytical System Based on Nanocomposite Conductive Polymers for Early Detection of Surface Water Pollution. Polymers (Basel) 2024; 16:1431. [PMID: 38794624 PMCID: PMC11125136 DOI: 10.3390/polym16101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
This work proposes an approach to the formation of receptor elements for the rapid diagnosis of the state of surface waters according to two indicators: the biochemical oxygen demand (BOD) index and toxicity. Associations among microorganisms based on the bacteria P. yeei and yeast S. cerevisiae, as well as associations of the yeasts O. polymorpha and B. adeninivorans, were formed to evaluate these indicators, respectively. The use of nanocomposite electrically conductive materials based on carbon nanotubes, biocompatible natural polymers-chitosan and bovine serum albumin cross-linked with ferrocenecarboxaldehyde, neutral red, safranin, and phenosafranin-has made it possible to expand the analytical capabilities of receptor systems. Redox polymers were studied by IR spectroscopy and Raman spectroscopy, the contents of electroactive components were determined by atomic absorption spectroscopy, and electrochemical properties were studied by electrochemical impedance and cyclic voltammetry methods. Based on the proposed kinetic approach to modeling individual stages of bioelectrochemical processes, the chitosan-neutral red/CNT composite was chosen to immobilize the yeast association between O. polymorpha (ks = 370 ± 20 L/g × s) and B. adeninivorans (320 ± 30 L/g × s), and a bovine serum albumin (BSA)-neutral composite was chosen to immobilize the association between the yeast S. cerevisiae (ks = 130 ± 10 L/g × s) and the bacteria P. yeei red/CNT (170 ± 30 L/g × s). After optimizing the composition of the receptor systems, it was shown that the use of nanocomposite materials together with associations among microorganisms makes it possible to determine BOD with high sensitivity (with a lower limit of 0.6 mg/dm3) and detect the presence of a wide range of toxicants of both organic and inorganic origin. Both receptor elements were tested on water samples, showing a high correlation between the results of biosensor analysis of BOD and toxicity and the results of standard analytical methods. The results obtained show broad prospects for creating sensitive and portable bioelectrochemical sensors for the early warning of environmentally hazardous situations based on associations among microorganisms and nanocomposite materials.
Collapse
Affiliation(s)
- Anna S. Kharkova
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia; (A.S.K.); (A.S.M.); (L.S.K.)
| | - Anastasia S. Medvedeva
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia; (A.S.K.); (A.S.M.); (L.S.K.)
| | - Lyubov S. Kuznetsova
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia; (A.S.K.); (A.S.M.); (L.S.K.)
| | - Maria M. Gertsen
- Laboratory of Soil Chemistry and Ecology, Tula State Lev Tolstoy Pedagogical University, 300026 Tula, Russia;
| | - Vladimir V. Kolesov
- Kotelnikov Institute of Radioengineering and Electronics (IRE) of Russian Academy of Sciences, 111250 Moscow, Russia;
| | - Vyacheslav A. Arlyapov
- The Research Center «BioChemTech», Tula State University, 300012 Tula, Russia; (A.S.K.); (A.S.M.); (L.S.K.)
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia;
| |
Collapse
|
4
|
Ghodsi S, Kamranifar M, Fatehizadeh A, Taheri E, Bina B, Hublikar LV, Ganachari SV, Nadagouda M, Aminabhavi TM. New insights on the decolorization of waste flows by Saccharomyces cerevisiae strain - A systematic review. ENVIRONMENTAL RESEARCH 2024; 249:118398. [PMID: 38331155 DOI: 10.1016/j.envres.2024.118398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
One of the common causes of water pollution is the presence of toxic dye-based effluents, which can pose a serious threat to the ecosystem and human health. The application of Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization has been widely investigated due to their efficient removal and eco-friendly treatments. This review attempts to create an awareness of different forms and methods of using Saccharomyces cerevisiae (S. cerevisiae) for wastewater decolorization through a systematic approach. Overall, some suggestions on classification of dyes and related environmental/health problems, and treatment methods are discussed. Besides, the mechanisms of dye removal by S. cerevisiae including biosorption, bioaccumulation, and biodegradation and cell immobilization methods such as adsorption, covalent binding, encapsulation, entrapment, and self-aggregation are discussed. This review would help to inspire the exploration of more creative methods for applications and modification of S. cerevisiae and its further practical applications.
Collapse
Affiliation(s)
- Soudabeh Ghodsi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Kamranifar
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Bijan Bina
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Leena V Hublikar
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India.
| | - Megha Nadagouda
- University of Cincinnati, 2600 Clifton Ave. Cincinnati, OH 45221, United States.
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India; Korea University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Liapun V, Motola M. Current overview and future perspective in fungal biorecovery of metals from secondary sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117345. [PMID: 36724599 DOI: 10.1016/j.jenvman.2023.117345] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms are intimately involved in many biogeochemical processes that underpin the transformation of metals and cycling of related substances, such as metalloids and radionuclides. Many processes determine the mobility and bioavailability of metals, thereby influencing their transfer to the environment and living organisms. These processes are closely related to global phenomena such as soil formation and bioweathering. In addition to environmental significance, microbial metal transformations play an essential role in both in situ and ex situ bioremediation processes for solid and liquid wastes. The solubilization of heavy metals from industrial waste and soil is commonly used in bioremediation. Moreover, immobilization processes are applicable to bioremediation of metals and radionuclides from aqueous solutions. This review provides an overview of critical metal extraction and recovery from secondary sources, applied microorganisms and methods, metal-microbe interactions, as well as a detailed description of known metal recovery mechanisms.
Collapse
Affiliation(s)
- Viktoriia Liapun
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia.
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
6
|
Kharkova A, Arlyapov V, Medvedeva A, Lepikash R, Melnikov P, Reshetilov A. Mediator Microbial Biosensor Analyzers for Rapid Determination of Surface Water Toxicity. SENSORS (BASEL, SWITZERLAND) 2022; 22:8522. [PMID: 36366221 PMCID: PMC9655160 DOI: 10.3390/s22218522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Microbial mediator biosensors for surface water toxicity determination make it possible to carry out an early assessment of the environmental object’s quality without time-consuming standard procedures based on standard test-organisms, and provide broad opportunities for receptor element modifying depending on the required operational parameters analyzer. Four microorganisms with broad substrate specificity and nine electron acceptors were used to form a receptor system for toxicity assessment. Ferrocene was the most effective mediator according to its high rate constant of interaction with the microorganisms (0.33 ± 0.01 dm3/(g × s) for yeast Saccharomyces cerevisiae). Biosensors were tested on samples containing four heavy metal ions (Cu2+, Zn2+, Pb2+, Cd2+), two phenols (phenol and p-nitrophenol), and three natural water samples. The «ferrocene- Escherichia coli» and «ferrocene-Paracoccus yeei, E. coli association» systems showed good operational stability with a relative standard deviation of 6.9 and 7.3% (14 measurements) and a reproducibility of 7 and 5.2% using copper (II) ions as a reference toxicant. Biosensor analysis with these systems was shown to highly correlate with the results of the standard method using Chlorella algae as a test object. Developed biosensors allow for a valuation of the polluted natural water’s impact on the ecosystem via an assessment of the influence on bacteria and yeast in the receptor system. The systems could be used in toxicological monitoring of natural waters.
Collapse
Affiliation(s)
- Anna Kharkova
- Department of Chemistry, Tula State University, 92 Lenin Avenue, Tula 300012, Russia
| | - Vyacheslav Arlyapov
- Department of Chemistry, Tula State University, 92 Lenin Avenue, Tula 300012, Russia
| | - Anastasia Medvedeva
- Department of Chemistry, Tula State University, 92 Lenin Avenue, Tula 300012, Russia
| | - Roman Lepikash
- Department of Chemistry, Tula State University, 92 Lenin Avenue, Tula 300012, Russia
| | - Pavel Melnikov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Prospect Vernadskogo 86, Moscow 119571, Russia
| | - Anatoly Reshetilov
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences” (FRC PSCBR), Russian Academy of Sciences, 5 Nauki Avenue, Moscow 142290, Russia
| |
Collapse
|
7
|
Revel B, Catty P, Ravanel S, Bourguignon J, Alban C. High-affinity iron and calcium transport pathways are involved in U(VI) uptake in the budding yeast Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126894. [PMID: 34416697 DOI: 10.1016/j.jhazmat.2021.126894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) is a naturally-occurring radionuclide that is toxic for all living organisms. To date, the mechanisms of U uptake are far from being understood. Here we provide a direct characterization of the transport machineries capable of transporting U, using the yeast Saccharomyces cerevisiae as a unicellular eukaryote model. First, we evidenced a metabolism-dependent U transport in yeast. Then, competition experiments with essential metals allowed us to identify calcium, iron and copper entry pathways as potential routes for U uptake. The analysis of various metal transport mutants revealed that mutant affected in calcium (mid1Δ and cch1Δ) and Fe(III) (ftr1Δ) transport, exhibited highly reduced U uptake rates and accumulation, demonstrating the implication of the calcium channel Mid1/Cch1 and the iron permease Ftr1 in U uptake. Finally, expression of the Mid1 gene into the mid1Δ mutant restored U uptake levels of the wild type strain, underscoring the central role of the Mid1/Cch1 calcium channel in U absorption process in yeast. Our results also open up the opportunity for rapid screening of U-transporter candidates by functional expression in yeast, before their validation in more complex higher eukaryote model systems.
Collapse
Affiliation(s)
- Benoît Revel
- Univ. Grenoble Alpes, CEA, INRAE, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | - Patrice Catty
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, LCBM, 38000 Grenoble, France
| | - Stéphane Ravanel
- Univ. Grenoble Alpes, CEA, INRAE, CNRS, IRIG, LPCV, 38000 Grenoble, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, CEA, INRAE, CNRS, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
8
|
Geetha N, Bhavya G, Abhijith P, Shekhar R, Dayananda K, Jogaiah S. Insights into nanomycoremediation: Secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124541. [PMID: 33223321 DOI: 10.1016/j.jhazmat.2020.124541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 05/21/2023]
Abstract
Our environment thrives on the subtle balance achieved by the forever cyclical nature of building and rebuilding life through natural processes. Fungi, being the evident armor of bioremediation, is the indispensable element of the soil food web, contribute to be the nature's most dynamic arsenal with non-specific enzymes like peroxidase (POX), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), non-enzymatic compounds like thiol (-SH) groups and non-protein compounds such as glutathione (GSH) and metallothionein (MT). Recently, the area of nanomycoremediation has been gaining momentum as a powerful tool for environmental clean-up strategies with its ability to detoxify heavy metals with its unique characteristics to adapt mechanisms such as biosorption, bioconversion, and biodegradation to harmless end products. The insight into the elaborate secretomic processes provides us with huge opportunities for creating a magnificent living bioremediation apparatus. This review discusses the scope and recent advances in the lesser understood area, nanomycoremediation, the state-of-the-art, innovative, cost-effective and promising tool for detoxification of heavy metal pollutants and focuses on the metabolic capabilities and secretomics with nanobiotechnological interventions.
Collapse
Affiliation(s)
- Nagaraja Geetha
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Padukana Abhijith
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Ravikant Shekhar
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Karigowda Dayananda
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, Karnataka, India.
| |
Collapse
|
9
|
Yu R, Chai H, Yu Z, Wu X, Liu Y, Shen L, Li J, Ye J, Liu D, Ma T, Gao F, Zeng W. Behavior and Mechanism of Cesium Biosorption from Aqueous Solution by Living Synechococcus PCC7002. Microorganisms 2020; 8:microorganisms8040491. [PMID: 32235603 PMCID: PMC7232235 DOI: 10.3390/microorganisms8040491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Many efforts have focused on the adsorption of metals from contaminated water by microbes. Synechococcus PCC7002, a major marine cyanobacteria, is widely applied to remove metals from the ocean's photic zone. However, its ability to adsorb cesium (Cs) nuclides has received little attention. In this study, the biosorption behavior of Cs(I) from ultrapure distilled water by living Synechococcus PCC7002 was investigated based on kinetic and isotherm studies, and the biosorption mechanism was characterized by Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, and three-dimensional excitation emission matrix fluorescence spectroscopy. Synechococcus PCC7002 showed extremely high tolerance to Cs ions and its minimal inhibitory concentration was 8.6 g/L. Extracellular polymeric substances (EPS) in Synechococcus PCC7002 played a vital role in this tolerance. The biosorption of Cs by Synechococcus PCC7002 conformed to a Freundlich-type isotherm model and pseudo-second-order kinetics. The binding of Cs(I) was primarily attributed to the extracellular proteins in EPS, with the amino, hydroxyl, and phosphate groups on the cell walls contributing to Cs adsorption. The biosorption of Cs involved two mechanisms: Passive adsorption on the cell surface at low Cs concentrations and active intracellular adsorption at high Cs concentrations. The results demonstrate that the behavior and mechanism of Cs adsorption by Synechococcus PCC7002 differ based on the Cs ions concentration.
Collapse
Affiliation(s)
- Runlan Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.Y.); (H.C.); (Z.Y.); (X.W.); (Y.L.); (L.S.); (J.L.)
| | - Hongsheng Chai
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.Y.); (H.C.); (Z.Y.); (X.W.); (Y.L.); (L.S.); (J.L.)
| | - Zhaojing Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.Y.); (H.C.); (Z.Y.); (X.W.); (Y.L.); (L.S.); (J.L.)
| | - Xueling Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.Y.); (H.C.); (Z.Y.); (X.W.); (Y.L.); (L.S.); (J.L.)
| | - Yuandong Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.Y.); (H.C.); (Z.Y.); (X.W.); (Y.L.); (L.S.); (J.L.)
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.Y.); (H.C.); (Z.Y.); (X.W.); (Y.L.); (L.S.); (J.L.)
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.Y.); (H.C.); (Z.Y.); (X.W.); (Y.L.); (L.S.); (J.L.)
| | - Jun Ye
- Hunan Qingzhiyuan Environmental Protection Technology Co, Ltd., Changsha 410000, China; (J.Y.); (D.L.); (T.M.)
| | - Danchan Liu
- Hunan Qingzhiyuan Environmental Protection Technology Co, Ltd., Changsha 410000, China; (J.Y.); (D.L.); (T.M.)
| | - Tao Ma
- Hunan Qingzhiyuan Environmental Protection Technology Co, Ltd., Changsha 410000, China; (J.Y.); (D.L.); (T.M.)
| | - Fengzheng Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (R.Y.); (H.C.); (Z.Y.); (X.W.); (Y.L.); (L.S.); (J.L.)
- Correspondence: ; Tel.: +86-13787288594
| |
Collapse
|
10
|
Ighalo JO, Adeniyi AG. Statistical Modelling and Optimisation of the Biosorption of Cd(II) and Pb(II) onto Dead Biomass of Pseudomonas Aeruginosa. CHEMICAL PRODUCT AND PROCESS MODELING 2020. [DOI: 10.1515/cppm-2019-0139] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Dead biomass of micro-organisms can be used as biosorbents for the mitigation of heavy metal pollution in the aqueous environment. The aim of this study was to statistically model and optimise the sorption of Cd(II) and Pb(II) by dead biomass of Pseudomonas aeruginosa and to study the interactions between operating conditions. Statistically significant models were obtained for Cd(II) and Pb(II) sorption. The standard deviation for the Cd(II) and Pb(II) models were 0.86 and 1.54 while the coefficient of determination (R2) were 0.9978 and 0.9928 respectively. For both models, the adjusted R2 was in good agreement with the predicted R2 as the difference was less than 0.2. Numerical optimisation revealed that optimum Cd(II) removal of 88.6 % can be achieved at 1.172 ppm initial metal concentration, pH of 8.85, temperature of 43.72 °C, agitation time of 125.96 minutes and dead cell mass of 114.8 mg. Also, an optimum Pb(II) removal of 100 % can be achieved at 1.936 ppm initial metal concentration, pH of 6.88, temperature of 37.24 °C, agitation time of 130.57 minutes and dead cell mass of 122.85 mg. The study has revealed that at careful selected operational parameters, dead biomass of Pseudomonas aeruginosa can be valorised for the removal of heavy metals in aqueous media.
Collapse
Affiliation(s)
- Joshua O. Ighalo
- Department of Chemical Engineering , University of Ilorin , Ilorin , Kwara , Nigeria
| | | |
Collapse
|
11
|
Liu R, Zhang W, Chen Y, Wang Y. Uranium (VI) adsorption by copper and copper/iron bimetallic central MOFs. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Kolhe N, Zinjarde S, Acharya C. Impact of uranium exposure on marine yeast, Yarrowia lipolytica: Insights into the yeast strategies to withstand uranium stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121226. [PMID: 31557712 DOI: 10.1016/j.jhazmat.2019.121226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/17/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
A marine yeast, Yarrowia lipolytica, was evaluated for morphological, physiological and biochemical responses towards uranium (U) exposure at pH 7.5. The yeast revealed biphasic U binding - a rapid biosorption resulting in ∼35% U binding within 15-30 min followed by a slow biomineralization process, binding up to ∼45.5% U by 24 h on exposure to 50 μM of uranyl carbonate. Scanning electron microscopy coupled with Energy Dispersive X-ray spectroscopy analysis of 24 h U challenged cells revealed the deposition of uranyl precipitates due to biomineralization. The loss of intracellular structures together with surface and subcellular localization of uranyl precipitates in 24 h U exposed cells were visualized by transmission electron microscopy. Cells treated with 50 μM U exhibited membrane permeabilization which was higher at 200 μM U. Enhanced reactive oxygen species (ROS) accumulation and lipid peroxidation, transient RNA degradation and protein oxidation were observed in U exposed cells. High superoxide dismutase levels coupled with uranium binding and bioprecipitation possibly helped in counteracting U stress in 50 μM U treated cells. Resistance to U toxicity apparently developed under prolonged uranyl (50 μM) incubations. However, cells could not cope up with toxicity at 200 μM U due to impairment of resistance mechanisms.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune, 411007, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, Mumbai, 400094, India.
| |
Collapse
|
13
|
Tu H, Yuan G, Zhao C, Liu J, Li F, Yang J, Liao J, Yang Y, Liu N. U-phosphate biomineralization induced by Bacillus sp. dw-2 in the presence of organic acids. NUCLEAR ENGINEERING AND TECHNOLOGY 2019. [DOI: 10.1016/j.net.2019.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Gupta D, Satpati S, Dixit A, Ranjan R. Fabrication of biobeads expressing heavy metal-binding protein for removal of heavy metal from wastewater. Appl Microbiol Biotechnol 2019; 103:5411-5420. [PMID: 31065755 DOI: 10.1007/s00253-019-09852-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Dipinte Gupta
- Department of Botany, Faculty of Science, Plant Biotechnology Lab, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, 282005,, Uttar Pradesh, India
| | - Suresh Satpati
- Institute of Life Science, Nalco Square, Bhubaneshwar, Odisha, 751023, India
| | - Anshuman Dixit
- Institute of Life Science, Nalco Square, Bhubaneshwar, Odisha, 751023, India
| | - Rajiv Ranjan
- Department of Botany, Faculty of Science, Plant Biotechnology Lab, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, 282005,, Uttar Pradesh, India.
| |
Collapse
|
15
|
Tu H, Lan T, Yuan G, Zhao C, Liu J, Li F, Yang J, Liao J, Yang Y, Wang D, Liu N. The influence of humic substances on uranium biomineralization induced by Bacillus sp. dwc-2. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 197:23-29. [PMID: 30502659 DOI: 10.1016/j.jenvrad.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
In this paper, the influence of humic acid (HA) and fulvic acid (FA) on biomineralization behaviour was evaluated. The results showed HA and FA did not obviously inhabit or promote the precipitation of U-phosphate minerals. The data from molecular dynamic simulation indicated that the free energy for the dissociation of uranyl the PO43- -uranyl was 202.49 kJ/mol, which was much larger than that form HA-uranyl (88.3 kJ/mol). These simulated results revealed the less competitiveness of HA and FA with PO43- for uranyl and explained why HA and FA had less impacted on the formation of U-phosphate minerals. However, the influence of HA/FA on the morphology was obvious, the microstructure of the bio-minerals changed from small particles to lamellar stacking structure with the addition of HA or FA. The findings of this study are helpful for us to gain a better understanding natural U-phosphate biomineralization behaviour.
Collapse
Affiliation(s)
- Hong Tu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China; CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Techniques, Multidisciplinary Initiative Centre, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Guoyuan Yuan
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Changsong Zhao
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Jun Liu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Dongqi Wang
- CAS Key Laboratory of Nuclear Radiation and Nuclear Energy Techniques, Multidisciplinary Initiative Centre, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
16
|
Massoud R, Hadiani MR, Hamzehlou P, Khosravi-Darani K. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Mycoextraction: Rapid Cadmium Removal by Macrofungi-Based Technology from Alkaline Soil. MINERALS 2018. [DOI: 10.3390/min8120589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fungi are promising materials for soil metal bioextraction and thus biomining. Here, a macrofungi-based system was designed for rapid cadmium (Cd) removal from alkaline soil. The system realized directed and rapid fruiting body development for subsequent biomass harvest. The Cd removal efficiency of the system was tested through a pot culture experiment. It was found that aging of the added Cd occurred rapidly in the alkaline soil upon application. During mushroom growth, the soil solution remained considerably alkaline, though a significant reduction in soil pH was observed in both Cd treatments. Cd and dissolved organic carbon (DOC) in soil solution generally increased over time and a significant correlation between them was detected in both Cd treatments, suggesting that the mushroom‒substratum system has an outstanding ability to mobilize Cd in an alkaline environment. Meanwhile, the growth of the mushrooms was not affected relative to the control. The estimated Cd removal efficiency of the system was up to 12.3% yearly thanks to the rapid growth of the mushroom and Cd enrichment in the removable substratum. Transcriptomic analysis showed that gene expression of the fruiting body presented considerable differences between the Cd treatments and control. Annotation of the differentially expressed genes (DEGs) indicated that cell wall sorption, intracellular binding, and vacuole storage may account for the cellular Cd accumulation. In conclusion, the macrofungi-based technology designed in this study has the potential to become a standalone biotechnology with practical value in soil heavy metal removal, and continuous optimization may make the system useful for biomining.
Collapse
|
18
|
Metabolism-dependent bioaccumulation of uranium by Rhodosporidium toruloides isolated from the flooding water of a former uranium mine. PLoS One 2018; 13:e0201903. [PMID: 30089169 PMCID: PMC6082562 DOI: 10.1371/journal.pone.0201903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/24/2018] [Indexed: 01/18/2023] Open
Abstract
Remediation of former uranium mining sites represents one of the biggest challenges worldwide that have to be solved in this century. During the last years, the search of alternative strategies involving environmentally sustainable treatments has started. Bioremediation, the use of microorganisms to clean up polluted sites in the environment, is considered one the best alternative. By means of culture-dependent methods, we isolated an indigenous yeast strain, KS5 (Rhodosporidium toruloides), directly from the flooding water of a former uranium mining site and investigated its interactions with uranium. Our results highlight distinct adaptive mechanisms towards high uranium concentrations on the one hand, and complex interaction mechanisms on the other. The cells of the strain KS5 exhibit high a uranium tolerance, being able to grow at 6 mM, and also a high ability to accumulate this radionuclide (350 mg uranium/g dry biomass, 48 h). The removal of uranium by KS5 displays a temperature- and cell viability-dependent process, indicating that metabolic activity could be involved. By STEM (scanning transmission electron microscopy) investigations, we observed that uranium was removed by two mechanisms, active bioaccumulation and inactive biosorption. This study highlights the potential of KS5 as a representative of indigenous species within the flooding water of a former uranium mine, which may play a key role in bioremediation of uranium contaminated sites.
Collapse
|
19
|
Kolhe N, Zinjarde S, Acharya C. Responses exhibited by various microbial groups relevant to uranium exposure. Biotechnol Adv 2018; 36:1828-1846. [PMID: 30017503 DOI: 10.1016/j.biotechadv.2018.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 11/28/2022]
Abstract
There is a strong interest in knowing how various microbial systems respond to the presence of uranium (U), largely in the context of bioremediation. There is no known biological role for uranium so far. Uranium is naturally present in rocks and minerals. The insoluble nature of the U(IV) minerals keeps uranium firmly bound in the earth's crust minimizing its bioavailability. However, anthropogenic nuclear reaction processes over the last few decades have resulted in introduction of uranium into the environment in soluble and toxic forms. Microbes adsorb, accumulate, reduce, oxidize, possibly respire, mineralize and precipitate uranium. This review focuses on the microbial responses to uranium exposure which allows the alteration of the forms and concentrations of uranium within the cell and in the local environment. Detailed information on the three major bioprocesses namely, biosorption, bioprecipitation and bioreduction exhibited by the microbes belonging to various groups and subgroups of bacteria, fungi and algae is provided in this review elucidating their intrinsic and engineered abilities for uranium removal. The survey also highlights the instances of the field trials undertaken for in situ uranium bioremediation. Advances in genomics and proteomics approaches providing the information on the regulatory and physiologically important determinants in the microbes in response to uranium challenge have been catalogued here. Recent developments in metagenomics and metaproteomics indicating the ecologically relevant traits required for the adaptation and survival of environmental microbes residing in uranium contaminated sites are also included. A comprehensive understanding of the microbial responses to uranium can facilitate the development of in situ U bioremediation strategies.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, Mumbai 400094, India.
| |
Collapse
|
20
|
Commercial African Catfish (Clarias gariepinus) Recirculating Aquaculture Systems: Assessment of Element and Energy Pathways with Special Focus on the Phosphorus Cycle. SUSTAINABILITY 2018. [DOI: 10.3390/su10061805] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Mycoremediation of Agricultural Soil: Bioprospection for Sustainable Development. Fungal Biol 2018. [DOI: 10.1007/978-3-319-77386-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Li X, Li D, Yan Z, Ao Y. Adsorption of cadmium by live and dead biomass of plant growth-promoting rhizobacteria. RSC Adv 2018; 8:33523-33533. [PMID: 35548138 PMCID: PMC9086479 DOI: 10.1039/c8ra06758a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/15/2018] [Indexed: 11/28/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) have been extensively investigated in combination remediation with plants in heavy metal contaminated soil. However, being biosorbent, few studies of live and dead cells of PGPR have been undertaken. Meanwhile, the application of live or dead biomass for the removal of heavy metals continues to be debated. Therefore, this study uses living and non-living biosorbents of Cupriavidus necator GX_5, Sphingomonas sp. GX_15, and Curtobacterium sp. GX_31 to compare their Cd(ii) adsorption capacities by SEM-EDX, FTIR, and adsorption experiments. In the present study, whether the cells were living or dead and whatever the initial Cd(ii) concentration was, removal efficiency and adsorption capacity can be arranged as GX_31 > GX_15 > GX_5 (p < 0.05). However, removal efficiency in live and dead biosorbents was quite different and it greatly affected by the initial Cd(ii) concentrations. The dead cells exhibited a higher adsorption capacity than the live cells of GX_31. Nevertheless, for GX_5 and GX_15, the loading capacity of the non-living biomass was stronger than that of the living biomass at 20 mg L−1 of Cd(ii), but the capacity was similar at 100 mg L−1 of Cd(ii). Minor changes of spectra were found after autoclaving and it seemed that more functional groups of the dead biosorbent were involved in Cd(ii) binding by FTIR analysis, which also illustrated that the hydroxyl, amino, amide, and carboxyl groups played an important role in complexation with Cd(ii). Based on these findings, we concluded that the dead cells were more potent for Cd(ii) remediation, especially for GX_31. Plant growth-promoting rhizobacteria (PGPR) have been extensively investigated in combination remediation with plants in heavy metal contaminated soil.![]()
Collapse
Affiliation(s)
- Xingjie Li
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Dongbo Li
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhenning Yan
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yansong Ao
- School of Agriculture and Biology
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
23
|
Lin D, Ji R, Wang D, Xiao M, Zhao J, Zou J, Li Y, Qin T, Xing B, Chen Y, Liu P, Wu Z, Wang L, Zhang Q, Chen H, Qin W, Wu D, Liu Y, Liu Y, Li S. The research progress in mechanism and influence of biosorption between lactic acid bacteria and Pb(II): A review. Crit Rev Food Sci Nutr 2017; 59:395-410. [DOI: 10.1080/10408398.2017.1374241] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Ran Ji
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Dan Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Mengshi Xiao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jingjing Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Jinpeng Zou
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yutong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Tao Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Yuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Peng Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhijun Wu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Suqing Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
24
|
Kang SM, Jang SC, Heo NS, Oh SY, Cho HJ, Rethinasabapathy M, Vilian ATE, Han YK, Roh C, Huh YS. Cesium-induced inhibition of bacterial growth of Pseudomonas aeruginosa PAO1 and their possible potential applications for bioremediation of wastewater. JOURNAL OF HAZARDOUS MATERIALS 2017; 338:323-333. [PMID: 28582713 DOI: 10.1016/j.jhazmat.2017.05.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Radioactive isotopes and fission products have attracted considerable attention because of their long lasting serious damage to the health of humans and other organisms. This study examined the toxicity and accumulation behavior of cesium towards P. aeruginosa PAO1 and its capacity to remove cesium from waste water. Interestingly, the programmed bacterial growth inhibition occurred according to the cesium environment. The influence of cesium was analyzed using several optical methods for quantitative evaluation. Cesium plays vital role in the growth of microorganisms and functions as an anti-microbial agent. The toxicity of Cs to P. aeruginosa PAO1 increases as the concentration of cesium is increased in concentration-dependent manner. P. aeruginosa PAO1 shows excellent Cs removal efficiency of 76.1% from the contaminated water. The toxicity of cesium on the cell wall and in the cytoplasm were studied by transmission electron microscopy and electron dispersive X-ray analysis. Finally, the removal of cesium from wastewater using P. aeruginosa PAO1 as a potential biosorbent and the blocking of competitive interactions of other monovalent cation, such as potassium, were assessed. Overall, P. aeruginosa PAO1 can be used as a high efficient biomaterial in the field of radioactive waste disposal and management.
Collapse
Affiliation(s)
- Sung-Min Kang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea; Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Sung-Chan Jang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea; Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Nam Su Heo
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Seo Yeong Oh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - Hye-Jin Cho
- Reliability Assessment Center for Chemical Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Muruganantham Rethinasabapathy
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea
| | - A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Changhyun Roh
- Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29 Geumgu-gil, Jeongeup, Jeonbuk, 56212, Republic of Korea; Radiation Biotechnology and Applied Radioisotope Science, University of Science Technology (UST), 217 Gajeong-ro, Daejeon, 34113, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Incheon, 22212, Republic of Korea; WCSL of Integrated Human Airway-on-a-Chip, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
25
|
Sutcliffe B, Chariton AA, Harford AJ, Hose GC, Greenfield P, Elbourne LDH, Oytam Y, Stephenson S, Midgley DJ, Paulsen IT. Effects of uranium concentration on microbial community structure and functional potential. Environ Microbiol 2017. [DOI: 10.1111/1462-2920.13839] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Brodie Sutcliffe
- Macquarie UniversitySydney New South Wales, 2109 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | | | - Andrew J. Harford
- Supervising Scientist Branch, Department of the Environment and EnergyDarwin Northern Territory Australia
| | - Grant C. Hose
- Macquarie UniversitySydney New South Wales, 2109 Australia
| | - Paul Greenfield
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | | | - Yalchin Oytam
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | - Sarah Stephenson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | - David J. Midgley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)Canberra Australia
| | - Ian T. Paulsen
- Macquarie UniversitySydney New South Wales, 2109 Australia
| |
Collapse
|
26
|
Aslani MAA, Celik F, Mermer O, Kutahyali Aslani C. Assessment of reaction between thorium and polyelectrolyte nano-thin film using Box–Behnken design. ADSORPT SCI TECHNOL 2017. [DOI: 10.1177/0263617417708658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sandwich type polyelectrolyte nano-thin films (PENTFs) were prepared by using polyallylamine hydrochloride and polyacrylic acid from layer-by-layer assembly process with spin coating system. Their nanostructures have been studied by scanning electron microscope, atomic force microscope, and attenuated total reflectance Fourier transform infrared spectroscopy. In order to understand the effects of the initial concentration of thorium, initial solution pH, temperature, and contact time on the reaction between thorium and PENTF, an experiment data set was designed according to Box–Behnken model. The analysis of variance calculations for regression model were carried out in 95% confidence level and were checked for fitting experimental data and predicted values. The correlation coefficient value ( R2) obtained as 94% showed that there was a correlation between the predicted and the observed values. The optimum pH, temperature, initial concentration of thorium, and interaction time in studied ranges were found as 2.81, 35℃, 160 mg·L−1, and 120 min, respectively. At these conditions thorium (IV) ions adsorption yield was obtained as 89 ± 2%. The Freundlich, Langmuir, and Dubinin–Radushkevich isotherms were used to investigate the characteristics of the process. These characteristics data imply that the Freundlich model fits better than the Langmuir model for the Th (IV) sorption onto PENTFs with KF and n values were found to be 20.6 mg·g−1 and 1.08 L·mg−1, respectively. The thermodynamic parameters were also computed as negative Δ H value suggest that adsorption of Th (IV) is exothermic nature. The calculated negative and positive values of Δ G indicate that the sorption process is favorable (energetically) while running below 40℃ and over this point the process status change to non-spontaneous, respectively.
Collapse
Affiliation(s)
| | - Fatih Celik
- Department of Nuclear Technology, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| | - Omer Mermer
- Department of Electrical & Electronic Engineering, Ege University, Izmir, Turkey
| | - Ceren Kutahyali Aslani
- Department of Nuclear Technology, Institute of Nuclear Sciences, Ege University, Izmir, Turkey
| |
Collapse
|
27
|
Zheng XY, Wang XY, Shen YH, Lu X, Wang TS. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite. CHEMOSPHERE 2017; 175:161-169. [PMID: 28211330 DOI: 10.1016/j.chemosphere.2017.02.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
Biosorption of heavy metal elements including radionuclides by microorganisms is a promising and effective method for the remediation of the contaminated places. The responses of live Saccharomyces cerevisiae in the toxic uranium solutions during the biosorption process and the mechanism of uranium biomineralization by cells were investigated in the present study. A novel experimental phenomenon that uranium concentrations have negative correlation with pH values and positive correlation with phosphate concentrations in the supernatant was observed, indicating that hydrogen ions, phosphate ions and uranyl ions were involved in the chernikovite precipitation actively. During the biosorption process, live cells desorb deposited uranium within the equilibrium state of biosorption system was reached and the phosphorus concentration increased gradually in the supernatant. These metabolic detoxification behaviours could significantly alleviate uranium toxicity and protect the survival of the cells better in the environment. The results of microscopic and spectroscopic analysis demonstrated that the precipitate on the cell surface was a type of uranium-phosphate compound in the form of a scale-like substance, and S. cerevisiae could transform the uranium precipitate into crystalline state-tetragonal chernikovite [H2(UO2)2(PO4)2·8H2O].
Collapse
Affiliation(s)
- Xin-Yan Zheng
- School of Nuclear Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730000, China.
| | - Xiao-Yu Wang
- School of Nuclear Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730000, China.
| | - Yang-Hao Shen
- School of Nuclear Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730000, China.
| | - Xia Lu
- School of Nuclear Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730000, China.
| | - Tie-Shan Wang
- School of Nuclear Science and Technology, Lanzhou University, No. 222, Tianshui South Road, Chengguan District, Lanzhou 730000, China.
| |
Collapse
|
28
|
Wang T, Zheng X, Wang X, Lu X, Shen Y. Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 167:92-99. [PMID: 27913083 DOI: 10.1016/j.jenvrad.2016.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Uranium adsorption mechanisms of live and heat-killed Saccharomyces cerevisiae in different pH values and biomass concentrations were studied under environmentally relevant conditions. Compared with live cells, the adsorption capacity of heat-killed cells is almost one order of magnitude higher in low biomass concentration and highly acidic pH conditions. To explore the mesoscopic surface interactions between uranium and cells, the characteristic of uranium deposition was investigated by SEM-EDX, XPS and FTIR. Biosorption process of live cells was considered to be metabolism-dependent. Under stimulation by uranyl ions, live cells could gradually release phosphorus and reduce uranium from U(VI) to U(IV) to alleviate uranium toxicity. The uranyl-phosphate complexes were formed in scale-like shapes on cell surface. The metabolic detoxification mechanisms such as reduction and "self-protection" are of significance to the migration of radionuclides. In the metabolism-independent biosorption process of heat-killed cells: the cells cytomembrane was damaged by autoclaving which led to the free diffusion of phosphorous from intracellular, and the rough surface and nano-holes indicated that the dead cells provided larger contact area to precipitate U(VI) as spherical nano-particles. The high biosorption capacity of heat-killed cells makes it become a suitable biological adsorbent for uranium removal.
Collapse
Affiliation(s)
- Tieshan Wang
- School of Nuclear Science and Technology, Lanzhou University, NO.222, Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Xinyan Zheng
- School of Nuclear Science and Technology, Lanzhou University, NO.222, Tianshui South Road, Chengguan District, Lanzhou 730000, China.
| | - Xiaoyu Wang
- School of Nuclear Science and Technology, Lanzhou University, NO.222, Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Xia Lu
- School of Nuclear Science and Technology, Lanzhou University, NO.222, Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Yanghao Shen
- School of Nuclear Science and Technology, Lanzhou University, NO.222, Tianshui South Road, Chengguan District, Lanzhou 730000, China
| |
Collapse
|
29
|
Sánchez-Castro I, Amador-García A, Moreno-Romero C, López-Fernández M, Phrommavanh V, Nos J, Descostes M, Merroun ML. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 166:130-141. [PMID: 27068793 DOI: 10.1016/j.jenvrad.2016.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies.
Collapse
Affiliation(s)
- Iván Sánchez-Castro
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain.
| | - Ahinara Amador-García
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain
| | - Cristina Moreno-Romero
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Jeremy Nos
- R&D Department, AREVA Mines, La Défense, 92084, Paris, France
| | | | - Mohamed L Merroun
- Departamento de Microbiología, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain
| |
Collapse
|
30
|
Understanding the sorption behavior of tetra- and hexavalent plutonium on fungus Rhizopus arrhizus dead biomass. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-5104-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Gerber U, Zirnstein I, Krawczyk-Bärsch E, Lünsdorf H, Arnold T, Merroun ML. Combined use of flow cytometry and microscopy to study the interactions between the gram-negative betaproteobacterium Acidovorax facilis and uranium(VI). JOURNAL OF HAZARDOUS MATERIALS 2016; 317:127-134. [PMID: 27262280 DOI: 10.1016/j.jhazmat.2016.05.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
The former uranium mine Königstein (Saxony, Germany) is currently in the process of remediation by means of controlled underground flooding. Nevertheless, the flooding water has to be cleaned up by a conventional wastewater treatment plant. In this study, the uranium(VI) removal and tolerance mechanisms of the gram-negative betaproteobacterium Acidovorax facilis were investigated by a multidisciplinary approach combining wet chemistry, flow cytometry, and microscopy. The kinetics of uranium removal and the corresponding mechanisms were investigated. The results showed a biphasic process of uranium removal characterized by a first phase where 95% of uranium was removed within the first 8h followed by a second phase that reached equilibrium after 24h. The bacterial cells displayed a total uranium removal capacity of 130mgU/g dry biomass. The removal of uranium was also temperature-dependent, indicating that metabolic activity heavily influenced bacterial interactions with uranium. TEM analyses showed biosorption on the cell surface and intracellular accumulation of uranium. Uranium tolerance tests showed that A. facilis was able to withstand concentrations up to 0.1mM. This work demonstrates that A. facilis is a suitable candidate for in situ bioremediation of flooding water in Königstein as well as for other contaminated waste waters.
Collapse
Affiliation(s)
- U Gerber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden, Germany.
| | - I Zirnstein
- Research Institute of Leather and Plastic Sheeting (FILK) gGmbH, Meissner Ring 1-5, 09599 Freiberg, Germany
| | - E Krawczyk-Bärsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden, Germany
| | - H Lünsdorf
- Helmholtz Centre for Infection Research, Central Facility for Microscopy, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - T Arnold
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden, Germany
| | - M L Merroun
- University of Granada, Department of Microbiology, Campus Fuentenueva, E-18071 Granada, Spain
| |
Collapse
|
32
|
Ahmed SM, El-Dib FI, El-Gendy NS, Sayed WM, El-Khodary M. A kinetic study for the removal of anionic sulphonated dye from aqueous solution using nano-polyaniline and Baker’s yeast. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2012.04.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
33
|
Plouznikoff K, Declerck S, Calonne-Salmon M. Mitigating Abiotic Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Yan X, Luo X, Zhao M. Metagenomic analysis of microbial community in uranium-contaminated soil. Appl Microbiol Biotechnol 2015; 100:299-310. [PMID: 26433967 DOI: 10.1007/s00253-015-7003-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Uranium tailing is a serious pollution challenge for the environment. Based on metagenomic sequencing analysis, we explored the functional and structural diversity of the microbial community in six soil samples taken at different soil depths from uranium-contaminated and uncontaminated areas. Kyoto Encyclopedia of Genes and Genomes Orthology (KO) groups were obtained using a Basic Local Alignment Search Tool search based on the universal protein resource database. The KO-pathway network was then constructed using the selected KOs. Finally, alpha and beta diversity analyses were performed to explore the differences in soil bacterial diversity between the radioactive soil and uncontaminated soil. In total, 30-68 million high-quality reads were obtained. Sequence assembly yielded 286,615 contigs; and these contigs mostly annotated to 1699 KOs. The KO distributions were similar among the six soil samples. Moreover, the proportion of the metabolism of other amino acids (e.g., beta-alanine, taurine, and hypotaurine) and signal transduction was significantly lower in radioactive soil than in uncontaminated soil, whereas the proportion of membrane transport and carbohydrate metabolism was higher. Additionally, KOs were mostly enriched in ATP-binding cassette transporters and two-component systems. According to diversity analyses, Actinobacteria and Proteobacteria were the dominant phyla in radioactive and uncontaminated soil, and Robiginitalea, Microlunatus, and Alicyclobacillus were the dominant genera in radioactive soil. Taken together, these results demonstrate that soil microbial community, structure, and functions show significant changes in uranium-contaminated soil. The dominant categories such as Actinobacteria and Proteobacteria may be applied in environmental governance for uranium-contaminated soil in southern China.
Collapse
Affiliation(s)
- Xun Yan
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.,College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar, Heilongjiang, 161006, China
| | - Xuegang Luo
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| |
Collapse
|
35
|
Vázquez-Campos X, Kinsela AS, Collins RN, Neilan BA, Aoyagi N, Waite TD. Uranium Binding Mechanisms of the Acid-Tolerant Fungus Coniochaeta fodinicola. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8487-8496. [PMID: 26106944 DOI: 10.1021/acs.est.5b01342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The uptake and binding of uranium [as (UO2)(2+)] by a moderately acidophilic fungus, Coniochaeta fodinicola, recently isolated from a uranium mine site, is examined in this work in order to better understand the potential impact of organisms such as this on uranium sequestration in hydrometallurgical systems. Our results show that the viability of the fungal biomass is critical to their capacity to remove uranium from solution. Indeed, live biomass (viable cells based on vital staining) were capable of removing ∼16 mg U/g dry weight in contrast with dead biomass (autoclaved) which removed ∼45 mg U/g dry weight after 2 h. Furthermore, the uranium binds with different strength, with a fraction ranging from ∼20-50% being easily leached from the exposed biomass by a 10 min acid wash. Results from X-ray absorption spectroscopy measurements show that the strength of uranium binding is strongly influenced by cell viability, with live cells showing a more well-ordered uranium bonding environment, while the distance to carbon or phosphorus second neighbors is similar in all samples. When coupled with time-resolved laser fluorescence and Fourier transformed infrared measurements, the importance of organic acids, phosphates, and polysaccharides, likely released with fungal cell death, appear to be the primary determinants of uranium binding in this system. These results provide an important progression to our understanding with regard to uranium sequestration in hydrometallurgical applications with implications to the unwanted retention of uranium in biofilms and/or its mobility in a remediation context.
Collapse
Affiliation(s)
| | | | | | | | - Noboru Aoyagi
- ∥Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Ibaraki 319-1184, Japan
| | | |
Collapse
|
36
|
Mesquita VA, Machado MD, Silva CF, Soares EV. Impact of multi-metals (Cd, Pb and Zn) exposure on the physiology of the yeast Pichia kudriavzevii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11127-11136. [PMID: 25794581 DOI: 10.1007/s11356-015-4326-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Metal contamination of the environment is frequently associated to the presence of two or more metals. This work aimed to study the impact of a mixture of metals (Cd, Pb and Zn) on the physiology of the non-conventional yeast Pichia kudriavzevii. The incubation of yeast cells with 5 mg/l Cd, 10 mg/l Pb and 5 mg/l Zn, for 6 h, induced a loss of metabolic activity (assessed by FUN-1 staining) and proliferation capacity (evaluated by a clonogenic assay), with a small loss of membrane integrity (measured by trypan blue exclusion assay). The staining of yeast cells with calcofluor white revealed that no modification of chitin deposition pattern occurred during the exposure to metal mixture. Extending for 24 h, the exposure of yeast cells to metal mixture provoked a loss of membrane integrity, which was accompanied by the leakage of intracellular components. A marked loss of the metabolic activity and the loss of proliferation capacity were also observed. The analysis of the impact of a single metal has shown that, under the conditions studied, Pb was the metal responsible for the toxic effect observed in the metal mixture. Intracellular accumulation of Pb seems to be correlated with the metals' toxic effects observed.
Collapse
Affiliation(s)
- Vanessa A Mesquita
- Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | | | | | | |
Collapse
|
37
|
Ding C, Feng S, Cheng W, Zhang J, Li X, Liao J, Yang Y, An Z, Luo S, Yang J, Tang J, Liu N. Biosorption behavior and mechanism of thorium on Streptomyces sporoverrucosus dwc-3. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3110-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Intracellular uranium accumulation by Shewanella sp. HN-41 under the thiosulfate-reducing condition. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13765-014-4025-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Khemiri A, Carrière M, Bremond N, Ben Mlouka MA, Coquet L, Llorens I, Chapon V, Jouenne T, Cosette P, Berthomieu C. Escherichia coli response to uranyl exposure at low pH and associated protein regulations. PLoS One 2014; 9:e89863. [PMID: 24587082 PMCID: PMC3935937 DOI: 10.1371/journal.pone.0089863] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/23/2014] [Indexed: 11/18/2022] Open
Abstract
Better understanding of uranyl toxicity in bacteria is necessary to optimize strains for bioremediation purposes or for using bacteria as biodetectors for bioavailable uranyl. In this study, after different steps of optimization, Escherichia colicells were exposed to uranyl at low pH to minimize uranyl precipitation and to increase its bioavailability. Bacteria were adapted to mid acidic pH before exposure to 50 or 80 µM uranyl acetate for two hours at pH≈3. To evaluate the impact of uranium, growth in these conditions were compared and the same rates of cells survival were observed in control and uranyl exposed cultures. Additionally, this impact was analyzedby two-dimensional differential gel electrophoresis proteomics to discover protein actors specifically present or accumulated in contact with uranium.Exposure to uranium resulted in differential accumulation of proteins associated with oxidative stress and in the accumulation of the NADH/quinone oxidoreductase WrbA. This FMN dependent protein performs obligate two-electron reduction of quinones, and may be involved in cells response to oxidative stress. Interestingly, this WrbA protein presents similarities with the chromate reductase from E. coli, which was shown to reduce uranyl in vitro.
Collapse
Affiliation(s)
- Arbia Khemiri
- CEA, DSV, IBEB, Commissariat à l'Energie Atomique, Laboratoire des Interactions Protéine-Métal, Saint-Paul-lez-Durance, France ; CNRS, UMR Biologie Végétale et Microbiologie Environnementales 7265, Saint-Paul-lez-Durance, France ; Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Marie Carrière
- UMR E3 CEA-Université Joseph Fourier, Service de Chimie Inorganique et Biologique, Laboratoire Lésions des Acides Nucléiques (LAN), Grenoble, France
| | - Nicolas Bremond
- CEA, DSV, IBEB, Commissariat à l'Energie Atomique, Laboratoire des Interactions Protéine-Métal, Saint-Paul-lez-Durance, France ; CNRS, UMR Biologie Végétale et Microbiologie Environnementales 7265, Saint-Paul-lez-Durance, France ; Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Mohamed Amine Ben Mlouka
- UMR 6270 CNRS, Plateforme Protéomique PISSARO, IRIB -Université de Rouen, Mont Saint Aignan, France
| | - Laurent Coquet
- UMR 6270 CNRS, Plateforme Protéomique PISSARO, IRIB -Université de Rouen, Mont Saint Aignan, France
| | - Isabelle Llorens
- ESRF-CRG-FAME beamline, Polygone Scientifique Louis Néel, Grenoble, France ; Commissariat à l'Energie Atomique CEA, DSM, INAC, Laboratoire Nanostructure et Rayonnement Synchrotron, Grenoble, France
| | - Virginie Chapon
- CEA, DSV, IBEB, Commissariat à l'Energie Atomique, Laboratoire des Interactions Protéine-Métal, Saint-Paul-lez-Durance, France ; CNRS, UMR Biologie Végétale et Microbiologie Environnementales 7265, Saint-Paul-lez-Durance, France ; Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Thierry Jouenne
- UMR 6270 CNRS, Plateforme Protéomique PISSARO, IRIB -Université de Rouen, Mont Saint Aignan, France
| | - Pascal Cosette
- UMR 6270 CNRS, Plateforme Protéomique PISSARO, IRIB -Université de Rouen, Mont Saint Aignan, France
| | - Catherine Berthomieu
- CEA, DSV, IBEB, Commissariat à l'Energie Atomique, Laboratoire des Interactions Protéine-Métal, Saint-Paul-lez-Durance, France ; CNRS, UMR Biologie Végétale et Microbiologie Environnementales 7265, Saint-Paul-lez-Durance, France ; Université d'Aix-Marseille, Saint-Paul-lez-Durance, France
| |
Collapse
|
40
|
Lu X, Zhou XJ, Wang TS. Mechanism of uranium(VI) uptake by Saccharomyces cerevisiae under environmentally relevant conditions: batch, HRTEM, and FTIR studies. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:297-303. [PMID: 24041822 DOI: 10.1016/j.jhazmat.2013.08.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
Biosorption is of significance for the safety evaluation of high-level nuclear wastes repositories and remediation of radioactive contamination places. Quantitive study and structural characterization of uranium uptake by both live and heat-killed Saccharomyces cerevisiae at environmentally relevant uranium concentration and with different ionic strengths were carried out. Kinetic investigation showed the equilibrium reached within 15 min. In equilibrium studies, pH shift towards neutral indicated release of hydroxyl ions. pH was the most important factor, which partly affected electrostatic interaction between uranyl ions and S. cerevisiae surface. The high ionic strength inhibited biosorption capacity, which can be explained by a competitive reaction between sodium ions and uranyl ions. Heat killing process significantly enhanced biosorption capacity, showing an order of magnitude higher than that of live cells. High resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray (EDX) showed needle-like uranium-phosphate precipitation formed on the cell walls for both live and heat-killed cells. Besides, dark-field micrographs displayed considerable similar uranium-phosphate precipitation presented outside the heat-killed cells. The phosphate released during heat-killing process. FTIR illustrated function groups hydroxyl, carboxyl, phosphate, and amino groups played important role in complexation with uranium.
Collapse
Affiliation(s)
- Xia Lu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, PR China.
| | | | | |
Collapse
|
41
|
Sousa T, Chung AP, Pereira A, Piedade AP, Morais PV. Aerobic uranium immobilization by Rhodanobacter A2-61 through formation of intracellular uranium-phosphate complexes. Metallomics 2013; 5:390-7. [PMID: 23487302 DOI: 10.1039/c3mt00052d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Severe environmental problems arise from old uranium mines, which continue to discharge uranium (U) via acid mine drainage water, resulting in soil, subsoil and groundwater contamination. Bioremediation of U contaminated environments has been attempted, but most of the conceptual models propose U removal by cell suspensions of anaerobic bacteria. In this study, strain Rhodanobacter A2-61, isolated from Urgeiriça Mine, Portugal, was shown to resist up to 2 mM of U(vi). The conditions used (low nutrient content and pH 5) potentiated the interaction of the toxic uranyl ion with the tested strain. The strain was able to remove approximately 120 μM of U(vi) when grown aerobically in the presence of 500 μM U. Under these conditions, this strain was also able to lower the phosphate concentration in the medium and increased its capacity to take up inorganic phosphate, accumulating up to 0.52 μmol phosphate per optical density unit of the medium at 600 nm, after 24 hours, corresponding approximately to the late log phase of the bacterial culture. Microscopically dense intracellular structures with nanometer size were visible. The extent of U inside the cells was quantified by LS counting. EDS analysis of heated cells showed the presence of complexes composed of phosphate and uranium, suggesting the simultaneous precipitation of U and phosphate within the cells. XRD analysis of the cells containing the U-phosphate complexes suggested the presence of a meta-autunite-like mineral structure. SEM identified, in pyrolyzed cells, crystalline nanoparticles with shape in the tetragonal system characteristic of the meta-autunite-like mineral structures. U removal has been reported previously but mainly by cell suspensions and through release of phosphate. The innovative Rhodanobacter A2-61 can actively grow aerobically, in the presence of U, and can efficiently remove U(vi) from the environment, accumulating it in a structural form consistent with that of the mineral meta-autunite inside the cell, corresponding to effective metal immobilization. This work supports previous findings that U bioremediation could be achieved via the biomineralization of U(vi) in phosphate minerals.
Collapse
|
42
|
Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry. Appl Microbiol Biotechnol 2013; 97:6667-75. [PMID: 23824444 DOI: 10.1007/s00253-013-5063-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.
Collapse
|
43
|
Mumtaz S, Streten-Joyce C, Parry DL, McGuinness KA, Lu P, Gibb KS. Fungi outcompete bacteria under increased uranium concentration in culture media. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2013; 120:39-44. [PMID: 23416228 DOI: 10.1016/j.jenvrad.2013.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation.
Collapse
Affiliation(s)
- Saqib Mumtaz
- Charles Darwin University, Darwin, NT, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Acharya C, Apte SK. Novel surface associated polyphosphate bodies sequester uranium in the filamentous, marine cyanobacterium, Anabaena torulosa. Metallomics 2013; 5:1595-8. [DOI: 10.1039/c3mt00139c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Soares EV, Soares HMVM. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1066-1083. [PMID: 22139299 DOI: 10.1007/s11356-011-0671-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/14/2011] [Indexed: 05/31/2023]
Abstract
The release of heavy metals into the environment, mainly as a consequence of anthropogenic activities, constitutes a worldwide environmental pollution problem. Unlike organic pollutants, heavy metals are not degraded and remain indefinitely in the ecosystem, which poses a different kind of challenge for remediation. It seems that the "best treatment technologies" available may not be completely effective for metal removal or can be expensive; therefore, new methodologies have been proposed for the detoxification of metal-bearing wastewaters. The present work reviews and discusses the advantages of using brewing yeast cells of Saccharomyces cerevisiae in the detoxification of effluents containing heavy metals. The current knowledge of the mechanisms of metal removal by yeast biomass is presented. The use of live or dead biomass and the influence of biomass inactivation on the metal accumulation characteristics are outlined. The role of chemical speciation for predicting and optimising the efficiency of metal removal is highlighted. The problem of biomass separation, after treatment of the effluents, and the use of flocculent characteristics, as an alternative process of cell-liquid separation, are also discussed. The use of yeast cells in the treatment of real effluents to bridge the gap between fundamental and applied studies is presented and updated. The convenient management of the contaminated biomass and the advantages of the selective recovery of heavy metals in the development of a closed cycle without residues (green technology) are critically reviewed.
Collapse
Affiliation(s)
- Eduardo V Soares
- Bioengineering Laboratory, Chemical Engineering Department, Superior Institute of Engineering, Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal.
| | | |
Collapse
|
46
|
Biosorption of mercury and lead by aqueous Streptomyces VITSVK9 sp. isolated from marine sediments from the bay of Bengal, India. Front Chem Sci Eng 2012. [DOI: 10.1007/s11705-012-1285-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Sanaa NT, Didi MA, Villemin D. Uranium micelle-mediated extraction in acetate medium: factorial design optimization. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1734-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Colica G, Mecarozzi PC, De Philippis R. Biosorption and Recovery of Chromium from Industrial Wastewaters By Using Saccharomyces cerevisiae in a Flow-Through System. Ind Eng Chem Res 2012. [DOI: 10.1021/ie202584k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giovanni Colica
- Department
of Agricultural Biotechnology, University
of Florence, Piazzale delle Cascine 24, I 50144 Firenze, Italy
| | - Pier Cesare Mecarozzi
- Department
of Agricultural Biotechnology, University
of Florence, Piazzale delle Cascine 24, I 50144 Firenze, Italy
| | - Roberto De Philippis
- Department
of Agricultural Biotechnology, University
of Florence, Piazzale delle Cascine 24, I 50144 Firenze, Italy
| |
Collapse
|
49
|
Machado MD, Soares EV, Soares HMVM. Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:1279-1285. [PMID: 21399916 DOI: 10.1007/s11356-011-0477-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
PURPOSE Real electroplating effluents contain multiple metals. An important point related with the feasibility of the bioremediation process is linked with the strategy to recover selectively metals. In this work, a multimetal solution, obtained after microwave acid digestion of the ashes resulted from the incineration of Saccharomyces cerevisiae contaminated biomass, was used to recover selectively chromium, copper, nickel, and zinc. RESULTS The acid solution contained 3.8, 0.4, 2.8, and 0.2 g/L of chromium(III), copper, nickel, and zinc, respectively. The strategy developed consisted of recovering copper (97.6%), as a metal, by electrolyzing the solution at a controlled potential. Then, the simultaneous alkalinization of the solution (pH 14), addition of H(2)O(2), and heating of the solution led to a complete oxidation of chromium and nickel recovery (87.9% as a precipitate of nickel hydroxide). After adjusting the pH of the remaining solution at pH 10, selective recovery of zinc (82.7% as zinc hydroxide) and chromium (95.4% as a solution of cromate) was achieved. CONCLUSION The approach, used in the present work, allowed a selective and efficient recovery of chromium, copper, nickel, and zinc from an acid solution using a combined electrochemical and chemical process. The strategy proposed can be used for the selective recovery of metals present in an acid digestion solution, which resulted from the incineration of ashes of biomass used in the treatment of heavy metals rich industrial effluents.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory, Chemical Engineering Department, Superior Institute of Engineering from Porto Polytechnic Institute, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | | | | |
Collapse
|
50
|
Sivaswamy V, Boyanov MI, Peyton BM, Viamajala S, Gerlach R, Apel WA, Sani RK, Dohnalkova A, Kemner KM, Borch T. Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6. Biotechnol Bioeng 2011; 108:264-76. [PMID: 20872821 DOI: 10.1002/bit.22956] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Removal of hexavalent uranium (U(VI)) from aqueous solution was studied using a Gram-positive facultative anaerobe, Cellulomonas sp. strain ES6, under anaerobic, non-growth conditions in bicarbonate and PIPES buffers. Inorganic phosphate was released by cells during the experiments providing ligands for formation of insoluble U(VI) phosphates. Phosphate release was most probably the result of anaerobic hydrolysis of intracellular polyphosphates accumulated by ES6 during aerobic growth. Microbial reduction of U(VI) to U(IV) was also observed. However, the relative magnitudes of U(VI) removal by abiotic (phosphate-based) precipitation and microbial reduction depended on the buffer chemistry. In bicarbonate buffer, X-ray absorption fine structure (XAFS) spectroscopy showed that U in the solid phase was present primarily as a non-uraninite U(IV) phase, whereas in PIPES buffer, U precipitates consisted primarily of U(VI)-phosphate. In both bicarbonate and PIPES buffer, net release of cellular phosphate was measured to be lower than that observed in U-free controls suggesting simultaneous precipitation of U and PO₄³⁻. In PIPES, U(VI) phosphates formed a significant portion of U precipitates and mass balance estimates of U and P along with XAFS data corroborate this hypothesis. High-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) of samples from PIPES treatments indeed showed both extracellular and intracellular accumulation of U solids with nanometer sized lath structures that contained U and P. In bicarbonate, however, more phosphate was removed than required to stoichiometrically balance the U(VI)/U(IV) fraction determined by XAFS, suggesting that U(IV) precipitated together with phosphate in this system. When anthraquinone-2,6-disulfonate (AQDS), a known electron shuttle, was added to the experimental reactors, the dominant removal mechanism in both buffers was reduction to a non-uraninite U(IV) phase. Uranium immobilization by abiotic precipitation or microbial reduction has been extensively reported; however, the present work suggests that strain ES6 can remove U(VI) from solution simultaneously through precipitation with phosphate ligands and microbial reduction, depending on the environmental conditions. Cellulomonadaceae are environmentally relevant subsurface bacteria and here, for the first time, the presence of multiple U immobilization mechanisms within one organism is reported using Cellulomonas sp. strain ES6.
Collapse
Affiliation(s)
- Vaideeswaran Sivaswamy
- Center for Multiphase Environmental Research, Department of Chemical Engineering, Washington State University, Pullman, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|