1
|
An Overview on Methanotrophs and the Role of Methylosinus trichosporium OB3b for Biotechnological Applications. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Huddling together to survive: Population density as a survival strategy of non-spore forming bacteria under nutrient starvation and desiccation at solid-air interfaces. Microbiol Res 2022; 258:126997. [DOI: 10.1016/j.micres.2022.126997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/16/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022]
|
3
|
Guo Z, Yin H, Wei X, Zhu M, Lu G, Dang Z. Effects of methanol on the performance of a novel BDE-47 degrading bacterial consortium QY2 in the co-metabolism process. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125698. [PMID: 33773249 DOI: 10.1016/j.jhazmat.2021.125698] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), frequently detected in the environment, is arduous to be removed by conventional biological treatments due to its persistence and toxicity. Herein effects of methanol as a co-metabolic substrate on the biodegradation of BDE-47 was systematically studied by a functional bacterial consortium QY2, constructed through long-term and successive acclimation from indigenous microorganisms. The results revealed that BDE-47 (0.25 mg/L) was completely removed within 7 days in the 2.5 mM methanol treatment group, and its degradation efficiency was 3.26 times higher than that without methanol treatment. The addition of methanol dramatically accelerated the debromination, hydroxylation and phenyl ether bond breakage of BDE-47 by QY2. However, excessive methanol (>5 mM) combined with BDE-47 had strong stress on microbial cells, including significant (p < 0.05) increase of reactive oxygen species level, superoxide dismutase activity, catalase activity and malondialdehyde content, even causing 20.65% cell apoptosis and 11.27% death. It was worth noting that the changes of QY2 community structure remained relatively stable after adding methanol, presumably attributed to the important role of the genus Methylobacterium in maintaining the functional and structural stability of QY2. This study deepened our understanding of how methanol as co-metabolite substances stimulated the biodegradation of BDE-47 by microbial consortium.
Collapse
Affiliation(s)
- Zhanyu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Xipeng Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China
| |
Collapse
|
4
|
Jin C, Geng Z, Pang X, Zhang Y, Wang G, Ji J, Li X, Guan C. Isolation and characterization of a novel benzophenone-3-degrading bacterium Methylophilus sp. strain FP-6. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109780. [PMID: 31627096 DOI: 10.1016/j.ecoenv.2019.109780] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/09/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Benzophenone-3 (BP-3) is extensively applied in sunscreens and some other related cosmetic products. It is necessary to efficiently and safely remove BP-3 from environments by application of various treatment technologies. However, to the authors' knowledge, BP-3 biodegradation by a single bacterial strain has not been reported before. In this study, a Gram-negative aerobic bacterium capable of degrading BP-3 as a sole carbon source was isolated from a municipal wastewater treatment plant and classified as Methylophilus sp. FP-6 according to BIOLOG GEN III and 16S rDNA analysis. Methanol was chosen for further experiments as a co-metabolic carbon source to enhance the microbial degradation efficiency of BP-3. Orthogonal and one-way experiments were all performed to investigate the optimal culture conditions for degradation of BP-3 by Methylophilus sp. FP-6. The degradation rate of BP-3 reached about 65% after 8 days of incubation with strain FP-6 under optimal culture conditions. The half-life (t1/2) of BP-3 biodegradation by strain FP-6 was estimated as 2.95 days according to the BP-3 degradation curve. The metabolite intermediates generated during the BP-3 degradation process were analyzed by LC-MS/MS and three metabolite products were identified. According to the analysis of metabolic intermediates, three pathways for degradation of BP-3 by strain FP-6 were proposed. The results from this study gave first insights into the potential of BP-3 biodegradation by a single bacterial strain.
Collapse
Affiliation(s)
- Chao Jin
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenlong Geng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xintong Pang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yue Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaozhou Li
- Tianjin Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Draft Genome Sequence of n-Alkane-Utilizing Acinetobacter sp. Strain BS1, Isolated from Ethane Oxidation Culture. GENOME ANNOUNCEMENTS 2018; 6:6/22/e00465-18. [PMID: 29853505 PMCID: PMC5981037 DOI: 10.1128/genomea.00465-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft whole-genome sequence of a bacterial strain, Acinetobacter sp. strain BS1, isolated from black soil during ethane oxidation culture. Medium- or long-chain alkane oxidation-related genes were identified; however, the short-chain alkane monooxygenase was not detected.
Collapse
|
6
|
Meier A, Singh MK, Kastner A, Merten D, Büchel G, Kothe E. Microbial communities in carbonate rocks-from soil via groundwater to rocks. J Basic Microbiol 2017; 57:752-761. [PMID: 28681946 DOI: 10.1002/jobm.201600643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 11/10/2022]
Abstract
Microbial communities in soil, groundwater, and rock of two sites in limestone were investigated to determine community parameters differentiating habitats in two lithostratigraphic untis. Lower Muschelkalk and Middle Muschelkalk associated soils, groundwater, and rock samples showed different, but overlapping microbial communities linked to carbon fluxes. The microbial diversities in soil were highest, groundwater revealed overlapping taxa but lower diversity, and rock samples were predominantly characterized by endospore forming bacteria and few archaea. Physiological profiles could establish a differentiation between habitats (soil, groundwater, rock). From community analyses and physiological profiles, different element cycles in limestone could be identified for the three habitats. While in soil, nitrogen cycling was identified as specific determinant, in rock methanogenesis linked carbonate rock to atmospheric methane cycles. These patterns specifically allowed for delineation of lithostratigraphic connections to physiological parameters.
Collapse
Affiliation(s)
- Aileen Meier
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Manu K Singh
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Anne Kastner
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Dirk Merten
- Institute of Geosciences, Applied Geology, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Büchel
- Institute of Geosciences, Applied Geology, Friedrich Schiller University Jena, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
7
|
Şimşir B, Yan J, Im J, Graves D, Löffler FE. Natural Attenuation in Streambed Sediment Receiving Chlorinated Solvents from Underlying Fracture Networks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4821-4830. [PMID: 28328216 PMCID: PMC6944067 DOI: 10.1021/acs.est.6b05554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Contaminant discharge from fractured bedrock formations remains a remediation challenge. We applied an integrated approach to assess the natural attenuation potential of sediment that forms the transition zone between upwelling groundwater from a chlorinated solvent-contaminated fractured bedrock aquifer and the receiving surface water. In situ measurements demonstrated that reductive dechlorination in the sediment attenuated chlorinated compounds before reaching the water column. Microcosms established with creek sediment or in situ incubated Bio-Sep beads degraded C1-C3 chlorinated solvents to less-chlorinated or innocuous products. Quantitative PCR and 16S rRNA gene amplicon sequencing revealed the abundance and spatial distribution of known dechlorinator biomarker genes within the creek sediment and demonstrated that multiple dechlorinator populations degrading chlorinated C1-C3 alkanes and alkenes co-inhabit the sediment. Phylogenetic classification of bacterial and archaeal sequences indicated a relatively uniform distribution over spatial (300 m horizontally) scale, but Dehalococcoides and Dehalobacter were more abundant in deeper sediment, where 5.7 ± 0.4 × 105 and 5.4 ± 0.9 × 106 16S rRNA gene copies per g of sediment, respectively, were measured. The microbiological and hydrogeological characterization demonstrated that microbial processes at the fractured bedrock-sediment interface were crucial for preventing contaminants reaching the water column, emphasizing the relevance of this critical zone environment for contaminant attenuation.
Collapse
Affiliation(s)
- Burcu Şimşir
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jun Yan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Jeongdae Im
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01002, United States
| | - Duane Graves
- Geosyntec Consultants, Knoxville, Tennessee 37922, United States
| | - Frank E. Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Strong PJ, Laycock B, Mahamud SNS, Jensen PD, Lant PA, Tyson G, Pratt S. The Opportunity for High-Performance Biomaterials from Methane. Microorganisms 2016; 4:E11. [PMID: 27681905 PMCID: PMC5029516 DOI: 10.3390/microorganisms4010011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 01/18/2023] Open
Abstract
Polyhydroxyalkanoate (PHA) biopolymers are widely recognised as outstanding candidates to replace conventional petroleum-derived polymers. Their mechanical properties are good and can be tailored through copolymer composition, they are biodegradable, and unlike many alternatives, they do not rely on oil-based feedstocks. Further, they are the only commodity polymer that can be synthesised intracellularly, ensuring stereoregularity and high molecular weight. However, despite offering enormous potential for many years, they are still not making a significant impact. This is broadly because commercial uptake has been limited by variable performance (inconsistent polymer properties) and high production costs of the raw polymer. Additionally, the main type of PHA produced naturally is poly-3-hydroxybutyrate (PHB), which has limited scope due to its brittle nature and low thermal stability, as well as its tendency to embrittle over time. Production cost is strongly impacted by the type of the feedstock used. In this article we consider: the production of PHAs from methanotrophs using methane as a cost-effective substrate; the use of mixed cultures, as opposed to pure strains; and strategies to generate a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer (PHBV), which has more desirable qualities such as toughness and elasticity.
Collapse
Affiliation(s)
- Peter James Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Bronwyn Laycock
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | | | - Paul Douglas Jensen
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Paul Andrew Lant
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| | - Gene Tyson
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Steven Pratt
- School of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
9
|
Isolation of methanotrophic bacteria from termite gut. Microbiol Res 2015; 179:29-37. [DOI: 10.1016/j.micres.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/08/2015] [Accepted: 06/06/2015] [Indexed: 11/20/2022]
|
10
|
Yoo YS, Han JS, Ahn CM, Kim CG. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas. ENVIRONMENTAL TECHNOLOGY 2015; 36:983-991. [PMID: 25267420 DOI: 10.1080/09593330.2014.971059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Methane in a simulated biogas converting to methanol under aerobic condition was comparatively assessed by inhibiting the activity of methanol dehydrogenase (MDH) of Methylosinus sporium using phosphate, NaCl, NH4Cl or EDTA in their varying concentrations. The highest amount of methane was indistinguishably diverted at the typical conditions regardless of the types of inhibitors: 35°C and pH 7 under a 0.4% (v/v) of biogas, specifically for <40 mM phosphate, 50 mM NaCl, 40 mM NH4Cl or 150 µM EDTA. The highest level of methanol was obtained for the addition of 40 mM phosphate, 100 mM NaCl, 40 mM NH4Cl or 50 µM EDTA. In other words, 0.71, 0.60, 0.66 and 0.66 mmol methanol was correspondingly generated by the oxidation of 1.3, 0.67, 0.74 and 1.3 mmol methane. It gave a methanol conversion rate of 54.7%, 89.9%, 89.6% and 47.8%, respectively. Among them, the maximum rate of methanol production was observed at 6.25 µmol/mg h for 100 mM NaCl. Regardless of types or concentrations of inhibitors differently used, methanol production could be nonetheless identically maximized when the MDH activity was limitedly hampered by up to 35%.
Collapse
Affiliation(s)
- Yeon-Sun Yoo
- a Department of Environmental Engineering , Inha University , Incheon , Republic of Korea
| | | | | | | |
Collapse
|
11
|
Jhala YK, Vyas RV, Shelat HN, Patel HK, Patel HK, Patel KT. Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microbiol Biotechnol 2014; 30:1845-60. [PMID: 24469547 DOI: 10.1007/s11274-014-1606-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/17/2014] [Indexed: 11/30/2022]
Abstract
Methylotrophic bacteria which are known to utilize C1 compounds including methane. Research during past few decades increased the interest in finding out novel genera of methane degrading bacteria to efficiently utilize methane to decrease global warming effect. Moreover, evaluation of certain known plant growth promoting strains for their methane degrading potential may open up a new direction for multiple utility of such cultures. In this study, efficient methylotrophic cultures were isolated from wetland paddy fields of Gujarat. From the overall morphological, biochemical and molecular characterization studies, the isolates were identified and designated as Bacillus aerius AAU M 8; Rhizobium sp. AAU M 10; B. subtilis AAU M 14; Paenibacillus illinoisensis AAU M 17 and B. megaterium AAU M 29. Gene specific PCR analysis of the isolates, P. illinoisensis, B. aerius, Rhizobium sp. and B. subtilis showed presence of pmoA gene encoding α subunit particulate methane monooxygenase cluster. B. megaterium, P. illinoisensis, Rhizobium sp. and Methylobacterium extrorquens showed presence of mmoX gene encoding α subunit of the hydroxylase component of the soluble methane monooxygenase cluster. P. illinoisensis and Rhizobium sp. showed presence mxaF gene encoding α subunit region of methanol dehydrogenase gene cluster showing that both isolates are efficient utilizers of methane. To the best of our knowledge, this is the first time report showing presence of methane degradation enzymes and genes within the known PGPB group of organisms from wet land paddy agro-ecosystem, which is considered as one of the leading methane producer.
Collapse
Affiliation(s)
- Y K Jhala
- Department of Microbiology, Anand Agricultural University, Anand, Gujarat, India,
| | | | | | | | | | | |
Collapse
|
12
|
Dianou D, Ueno C, Ogiso T, Kimura M, Asakawa S. Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH). Microbes Environ 2012; 27:278-87. [PMID: 22446309 PMCID: PMC4036049 DOI: 10.1264/jsme2.me11327] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The diversity of cultivable methane-oxidizing bacteria (MOB) in the rice paddy field ecosystem was investigated by combined culture-dependent and fluorescence in situ hybridization (FISH) techniques. Seven microsites of a Japanese rice paddy field were the focus of the study: floodwater, surface soil, bulk soil, rhizosphere soil, root, basal stem of rice plant, and rice stumps of previous harvest. Based on pmoA gene analysis and transmission electron microscopy (TEM), four type I, and nine type II MOB isolates were obtained from the highest dilution series of enrichment cultures. The type I MOB isolates included a novel species in the genus Methylomonas from floodwater and this is the first type I MOB strain isolated from floodwater of a rice paddy field. In the type I MOB, two isolates from stumps were closely related to Methylomonas spp.; one isolate obtained from rhizosphere soil was most related to Methyloccocus-Methylocaldum-Methylogaea clade. Almost all the type II MOB isolates were related to Methylocystis methanotrophs. FISH confirmed the presence of both types I and II MOB in all the microsites and in the related enrichment cultures. The study reported, for the first time, the diversity of cultivable methanotrophs including a novel species of type I MOB in rice paddy field compartments. Refining growth media and culture conditions, in combination with molecular approaches, will allow us to broaden our knowledge on the MOB community in the rice paddy field ecosystem and consequently to implement strategies for mitigating CH4 emission from this ecosystem.
Collapse
Affiliation(s)
- Dayéri Dianou
- Centre National de la Recherche Scientifique et Technologique, 03BP7192 Ouagadougou, Burkina Faso
| | | | | | | | | |
Collapse
|
13
|
Hoefman S, van der Ha D, De Vos P, Boon N, Heylen K. Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria. Microb Biotechnol 2011; 5:368-78. [PMID: 22070783 PMCID: PMC3821679 DOI: 10.1111/j.1751-7915.2011.00314.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Methane‐oxidizing bacteria (MOB) have a large potential as a microbial sink for the greenhouse gas methane as well as for biotechnological purposes. However, their application in biotechnology has so far been hampered, in part due to the relative slow growth rate of the available strains. To enable the availability of novel strains, this study compares the isolation of MOB by conventional dilution plating with miniaturized extinction culturing, both performed after an initial enrichment step. The extinction approach rendered 22 MOB isolates from four environmental samples, while no MOB could be isolated by plating. In most cases, extinction culturing immediately yielded MOB monocultures making laborious purification redundant. Both type I (Methylomonas spp.) and type II (Methylosinus sp.) MOB were isolated. The isolated methanotrophic diversity represented at least 11 different strains and several novel species based on 16S rRNA gene sequence dissimilarity. These strains possessed the particulate (100%) and soluble (64%) methane monooxygenase gene. Also, 73% of the strains could be linked to a highly active fast‐growing mixed MOB community. In conclusion, miniaturized extinction culturing was more efficient in rapidly isolating numerous MOB requiring little effort and fewer materials, compared with the more widely applied plating procedure. This miniaturized approach allowed straightforward isolation and could be very useful for subsequent screening of desired characteristics, in view of their future biotechnological potential.
Collapse
Affiliation(s)
- Sven Hoefman
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
14
|
Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE. Arch Microbiol 2008; 191:221-32. [DOI: 10.1007/s00203-008-0445-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 09/26/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|
15
|
Fernandes VC, Albergaria JT, Oliva-Teles T, Delerue-Matos C, De Marco P. Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil. Biodegradation 2008; 20:375-82. [DOI: 10.1007/s10532-008-9228-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
|
16
|
McDonald IR, Miguez CB, Rogge G, Bourque D, Wendlandt KD, Groleau D, Murrell JC. Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol Lett 2006; 255:225-32. [PMID: 16448499 DOI: 10.1111/j.1574-6968.2005.00090.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Methanotrophs were enriched and isolated from polluted environments in Canada and Germany. Enrichments in low copper media were designed to specifically encourage growth of soluble methane monooxygenase (sMMO) containing organisms. The 10 isolates were characterized physiologically and genetically with one type I and nine type II methanotrophs being identified. Three key genes: 16S rRNA; pmoA and mmoX, encoding for the particulate and soluble methane monooxygenases respectively, were cloned from the isolates and sequenced. Phylogenetic analysis of these sequences identified strains, which were closely related to Methylococcus capsulatus, Methylocystis sp., Methylosinus sporium and Methylosinus trichosporium. Diversity of sMMO-containing methanotrophs detected in this and previous studies was rather narrow, both genetically and physiologically, suggesting possible constraints on genetic diversity of sMMO due to essential conservation of enzyme function.
Collapse
Affiliation(s)
- Ian R McDonald
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
17
|
DeChaine EG, Cavanaugh CM. Symbioses of methanotrophs and deep-sea mussels (Mytilidae: Bathymodiolinae). PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:227-49. [PMID: 16623396 DOI: 10.1007/3-540-28221-1_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The symbioses between invertebrates and chemosynthetic bacteria allow both host and symbiont to colonize and thrive in otherwise inhospitable deep-sea habitats. Given the global distribution of the bathymodioline symbioses, this association is an excellent model for evaluating co-speciation and evolution of symbioses. Thus far, the methanotroph and chemoautotroph endosymbionts of mussels are tightly clustered within two independent clades of gamma Proteobacteria, respectively. Further physiological and genomic studies will elucidate the ecological and evolutionary roles that these bacterial clades play in the symbiosis and chemosynthetic community. Due to the overall abundance of the methanotrophic symbioses at hydrothermal vents and hydrocarbon seeps, they likely play a significant, but as of yet unquantified, role in the biogeochemical cycling of methane. With this in mind, the search for methanotrophic symbioses should not be restricted to these known deep-sea habitats, but rather should be expanded to include methane-rich coastal marine and freshwater environments inhabited by methanotrophs and bivalves. Our current understanding of the bathymodioline symbioses provides a strong foundation for future explorations into the origin, ecology, and evolution of methanotroph symbioses, which are now becoming possible through a combination of classical and advanced molecular techniques.
Collapse
Affiliation(s)
- Eric G DeChaine
- Department of Organismic and Evolutionary Biology, Havard University, The Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
18
|
Bissett A, Bowman J, Burke C. Bacterial diversity in organically-enriched fish farm sediments. FEMS Microbiol Ecol 2006; 55:48-56. [PMID: 16420614 DOI: 10.1111/j.1574-6941.2005.00012.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The bacterial diversity and community structure within both organically enriched and adjacent, unimpacted, near-shore marine sediments at two fish farms in southern Tasmania, Australia, was examined using 16S rRNA gene clone library construction and analysis. Sediments at both caged and reference sites at both farms showed a very high level of microbial diversity. Over 900 clones were analysed and grouped into 631 unique phylotypes. Reference sites were dominated by Delta- and Gammaproteobacteria and the Cytophaga-Flavobacteria-Bacteroides group. Cage site sediments were also dominated by these phylotypes, as well as members of the Alpha- and Epsilonproteobacteria. Diversity and coverage indices indicated that the actual diversity of the sediments was much greater than that detected, despite a large sampling effort. All libraries were shown to be statistically different from one another (P < 0.05). Many phylotypes did not group with cultured bacteria, but grouped with other environmental clones from a wide array of marine benthic environments. Diversity and evenness indices suggested that although both parameters changed after farming, diverse communities were present in all sediments. The response of the microbial community to organic load suggested that random, rather than predictable, succession events determine community composition and diversity, and that sediment type may influence bacterial community and sediment response to organic perturbation.
Collapse
Affiliation(s)
- Andrew Bissett
- School of Aquaculture, University of Tasmania, Aquafin CRC, Launceston, Australia.
| | | | | |
Collapse
|
19
|
Minamikawa K, Sakai N, Yagi K. Methane Emission from Paddy Fields and its Mitigation Options on a Field Scale. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.135] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Naoki Sakai
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | | |
Collapse
|
20
|
Watanabe K, Baker PW. Environmentally relevant microorganisms. J Biosci Bioeng 2005; 89:1-11. [PMID: 16232691 DOI: 10.1016/s1389-1723(00)88043-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1999] [Accepted: 12/03/1999] [Indexed: 11/19/2022]
Abstract
The development of molecular microbial ecology in the 1990s has allowed scientists to realize that microbial populations in the natural environment are much more diverse than microorganisms so far isolated in the laboratory. This finding has exerted a significant impact on environmental biotechnology, since knowledge in this field has been largely dependent on studies with pollutant-degrading bacteria isolated by conventional culture methods. Researchers have thus started to use molecular ecological methods to analyze microbial populations relevant to pollutant degradation in the environment (called environmentally relevant microorganisms, ERMs), although further effort is needed to gain practical benefits from these studies. This review highlights the utility and limitations of molecular ecological methods for understanding and advancing environmental biotechnology processes. The importance of the combined use of molecular ecological and physiological methods for identifying ERMs is stressed.
Collapse
Affiliation(s)
- K Watanabe
- Marine Biotechnology Institute, Kamaishi Laboratories, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan
| | | |
Collapse
|
21
|
Ramakrishnan V, Ogram AV, Lindner AS. Impacts of co-solvent flushing on microbial populations capable of degrading trichloroethylene. ENVIRONMENTAL HEALTH PERSPECTIVES 2005; 113:55-61. [PMID: 15626648 PMCID: PMC1253710 DOI: 10.1289/ehp.6937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 04/07/2004] [Indexed: 05/11/2023]
Abstract
With increased application of co-solvent flushing technologies for removal of nonaqueous phase liquids from groundwater aquifers, concern over the effects of the solvent on native microorganisms and their ability to degrade residual contaminant has also arisen. This study assessed the impact of ethanol flushing on the numbers and activity potentials of trichloroethylene (TCE)-degrading microbial populations present in aquifer soils taken immediately after and 2 years after ethanol flushing of a former dry cleaners site. Polymerase chain reaction analysis revealed soluble methane monooxygenase genes in methanotrophic enrichments, and 16S rRNA analysis identified Methylocystis parvus with 98% similarity, further indicating the presence of a type II methanotroph. Dissimilatory sulfite reductase genes in sulfate-reducing enrichments prepared were also observed. Ethanol flushing was simulated in columns packed with uncontaminated soils from the dry cleaners site that were dosed with TCE at concentrations observed in the field; after flushing, the columns were subjected to a continuous flow of 500 pore volumes of groundwater per week. Total acridine orange direct cell counts of the flushed and nonflushed soils decreased over the 15-week testing period, but after 5 weeks, the flushed soils maintained higher cell counts than the nonflushed soils. Inhibition of methanogenesis by sulfate reduction was observed in all column soils, as was increasing removal of total methane by soils incubated under methanotrophic conditions. These results showed that impacts of ethanol were not as severe as anticipated and imply that ethanol may mitigate the toxicity of TCE to the microorganisms.
Collapse
|
22
|
Ricke P, Erkel C, Kube M, Reinhardt R, Liesack W. Comparative analysis of the conventional and novel pmo (particulate methane monooxygenase) operons from methylocystis strain SC2. Appl Environ Microbiol 2004; 70:3055-63. [PMID: 15128567 PMCID: PMC404415 DOI: 10.1128/aem.70.5.3055-3063.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to the conventional pmoA gene (pmoA1) encoding the active site polypeptide of particulate methane monooxygenase, a novel pmoA gene copy (pmoA2) is widely distributed among type II methanotrophs (methane-oxidizing bacteria [MOB]) (M. Tchawa Yimga, P. F. Dunfield, P. Ricke, J. Heyer, and W. Liesack, Appl. Environ. Microbiol. 69:5593-5602, 2003). Here we report that the pmoA1 and pmoA2 gene copies in the type II MOB Methylocystis strain SC2 are each part of a complete pmoCAB gene cluster (pmoCAB1, pmoCAB2). A bacterial artificial chromosome (BAC) library of strain SC2 genomic DNA was constructed, and BAC clones carrying either pmoCAB1 or pmoCAB2 were identified. Comparative sequence analysis showed that these two gene clusters exhibit low levels of identity at both the DNA level (67.4 to 70.9%) and the derived protein level (59.3 to 65.6%). In contrast, the secondary structures predicted for PmoCAB1 and PmoCAB2, as well as the derived transmembrane-spanning regions, are nearly identical. This suggests that PmoCAB2 is, like PmoCAB1, a highly hydrophobic, membrane-associated protein. A total of 190 of the 203 amino acid residues representing a highly conserved consensus sequence of the currently known PmoCAB1 and AmoCAB sequence types could be identified in PmoCAB2. The amoCAB gene cluster encodes ammonia monooxygenase and is evolutionarily related to pmoCAB. Analysis of a set of amino acid residues that allowed differentiation between conventional PmoA and AmoA provided further support for the hypothesis that pmoCAB2 encodes a functional equivalent of PmoCAB1. In experiments in which we used 5' rapid amplification of cDNA ends we identified transcriptional start sites 320 and 177 bp upstream of pmoC1 and pmoC2, respectively. Immediately upstream of the transcriptional start sites of both pmoCAB1 and pmoCAB2, sequence motifs similar to Escherichia coli sigma(70) promoters were identified.
Collapse
Affiliation(s)
- Peter Ricke
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Marco P, Pacheco CC, Figueiredo AR, Moradas-Ferreira P. Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09515.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
25
|
Sowder AG, Bertsch PM, Morris PJ. Partitioning and availability of uranium and nickel in contaminated riparian sediments. JOURNAL OF ENVIRONMENTAL QUALITY 2003; 32:885-898. [PMID: 12809289 DOI: 10.2134/jeq2003.8850] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of iron oxides and organic matter on the partitioning and chemical lability of U and Ni were examined for contaminated riparian sediments from the U.S. Department of Energy's Savannah River Site. In sequential extractions of four sediments that ranged from 12.7 to 82.2 g kg(-1) in organic carbon, U was found almost exclusively in moderately labile fractions (93% in acid-soluble + organically bound). Nickel was distributed across all operationally defined fractions, including substantial amounts in the very labile fractions (4-15% in water-soluble + exchangeable), noncrystalline and crystalline iron oxides (38-49%), and in the nonlabile residual fraction (25-34%). Aqueous U concentrations in 1:1 sediment-water extracts were highly correlated to dissolved organic carbon (DOC) (R2 = 0.96; p < 0.0001) and ranged from 29 to 410 microg L(-1). Aqueous concentrations of Ni exceeded U by two to three orders of magnitude (124-2227 microg L(-1)) but were not correlated with DOC (R2 = 0.04; p = 0.53). Partitioning and solubility trends suggest that Ni availability is controlled primarily by iron-oxide phases, whereas U availability is dominated by naturally occurring organic carbon. Discrete mineral phases were also identified as nonlabile reservoirs of anthropogenic metals. In spite of comparably high sediment concentrations, Ni appears to be significantly more available than U in riparian sediments and therefore warrants greater consideration in terms of environmental consequences (i.e., transport, biological uptake, and toxicity).
Collapse
Affiliation(s)
- Andrew G Sowder
- Savannah River Ecology Laboratory, The Univ. of Georgia, Drawer E. Aiken, SC 29802, USA
| | | | | |
Collapse
|
26
|
Abstract
Methane-oxidizing bacteria (methanotrophs) containing soluble methane monooxygenase (sMMO) are of interest in natural environments due to the high co-metabolic activity of this enzyme with contaminants such as trichloroethylene. We have analysed sMMO-containing methanotrophs in sediment from a freshwater lake. Environmental clone banks for a gene encoding a diagnostic sMMO subunit (mmoX) were generated using DNA extracted from Lake Washington sediment and subjected to RFLP analysis. Representatives from the six RFLP groups were cloned and sequenced, and all were found to group with Type I Methylomonas mmoX, although a majority were divergent from known Methylomonas mmoX sequences. Direct hybridization of Lake Washington sediment DNA was carried out using a series of sMMO- and Methylomonas-specific probes to assess the significance of these sMMO-containing Methylomonas-like strains in the sediment. The total sMMO-containing population and the sMMO-containing Methylomonas-like population were estimated to be similar to previous estimates for total methanotrophs and Type I methanotrophs. These results suggest that the major methanotrophic population in Lake Washington sediment consists of sMMO-containing Methylomonas-like (Type I) methanotrophs. The whole-cell TCE degradation kinetics of such a strain, LW15, isolated from this environment, were determined and found to be similar to values reported for other sMMO-containing methanotrophs. The numerical significance of sMMO-containing Methylomonas-like methanotrophs in a mesotrophic lake environment suggests that these methanotrophs may play an important role in methanotroph-mediated transformations, including co-metabolism of halogenated solvents, in natural environments.
Collapse
Affiliation(s)
- Ann J Auman
- Department of Microbiology, University of Washington, Box 351750, Seattle, WA 98195, USA
| | | |
Collapse
|
27
|
McGuire JT, Long DT, Klug MJ, Haack SK, Hyndman DW. Evaluating behavior of oxygen, nitrate, and sulfate during recharge and quantifying reduction rates in a contaminated aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002; 36:2693-2700. [PMID: 12099466 DOI: 10.1021/es015615q] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study evaluates the biogeochemical changes that occur when recharge water comes in contact with a reduced aquifer. It specifically addresses (1) which reactions occur in situ, (2) the order in which these reactions will occur if terminal electron acceptors (TEAs) are introduced simultaneously, (3) the rates of these reactions, and (4) the roles of the aqueous and solid-phase portions of the aquifer. Recharge events of waters containing various combinations of O2, NO3, and SO4 were simulated at a shallow sandy aquifer contaminated with waste fuels and chlorinated solvents using modified push-pull tests to quantify rates. In situ rate constants for aerobic respiration (14.4 day(-1)), denitrification (5.04-7.44 day(-1)), and sulfate reduction (4.32-6.48 day(-1)) were estimated. Results show that when introduced together, NO3 and SO4 can be consumed simultaneously at similar rates. To distinguish the role of aqueous phase from that of the solid phase of the aquifer, groundwater was extracted, amended with NO3 and SO4, and monitored overtime. Results indicate that neither NO3 nor SO4 was reduced during the course of the aqueous-phase study, suggesting that NO3 and SO4 can behave conservatively in highly reduced water. It is clear that sediments and their associated microbial communities are important in driving redox reactions.
Collapse
Affiliation(s)
- Jennifer T McGuire
- Department of Geological Science, Michigan State University, East Lansing 48824, USA.
| | | | | | | | | |
Collapse
|
28
|
Bioremediation of compounds hazardous to health and the environment: An overview. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0079-6352(02)80005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
29
|
Baker PW, Futamata H, Harayama S, Watanabe K. Molecular diversity of pMMO and sMMO in a TCE-contaminated aquifer during bioremediation. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00894.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Auman AJ, Speake CC, Lidstrom ME. nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 2001; 67:4009-16. [PMID: 11525998 PMCID: PMC93122 DOI: 10.1128/aem.67.9.4009-4016.2001] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some methane-oxidizing bacteria (methanotrophs) are known to be capable of expressing nitrogenase and utilizing N2 as a nitrogen source. However, no sequences are available for nif genes in these strains, and the known nitrogen-fixing methanotrophs are confined mainly to a few genera. The purpose of this work was to assess the nitrogen-fixing capabilities of a variety of methanotroph strains. nifH gene fragments from four type I methanotrophs and seven type II methanotrophs were PCR amplified and sequenced. Nitrogenase activity was confirmed in selected type I and type II strains by acetylene reduction. Activities ranged from 0.4 to 3.3 nmol/min/mg of protein. Sequence analysis shows that the nifH sequences from the type I and type II strains cluster with nifH sequences from other gamma proteobacteria and alpha proteobacteria, respectively. The translated nifH sequences from three Methylomonas strains show high identity (95 to 99%) to several published translated environmental nifH sequences PCR amplified from rice roots and a freshwater lake. The translated nifH sequences from the type II strains show high identity (94 to 99%) to published translated nifH sequences from a variety of environments, including rice roots, a freshwater lake, an oligotrophic ocean, and forest soil. These results provide evidence for nitrogen fixation in a broad range of methanotrophs and suggest that nitrogen-fixing methanotrophs may be widespread and important in the nitrogen cycling of many environments.
Collapse
Affiliation(s)
- A J Auman
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
31
|
Lehman RM, Colwell FS, Bala GA. Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. Appl Environ Microbiol 2001; 67:2799-809. [PMID: 11375197 PMCID: PMC92941 DOI: 10.1128/aem.67.6.2799-2809.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bench scale column studies were used to examine the partitioning of microorganisms between groundwater and a geologic medium and to examine the effect of hydrogeology (i.e., porous- versus fracture-flow) on organism partitioning. Replicated columns were constructed with intact basalt core segments that contained natural fractures and with the same basalt crushed into particles. The columns were perfused with groundwater, and upon reaching a steady state, the columns were sacrificed and the attached and unattached communities were analyzed by multiple approaches. The analyses included the total number of cells, the phylogenetic affiliation of the cells (i.e., the alpha, beta, and gamma subclasses of the class Proteobacteria and gram positives with high G+C DNA content) by fluorescent in situ hybridization (FISH), number and taxonomic affiliation by fatty acid methyl ester profiles of culturable heterotrophs, most-probable-number estimates of methanotrophs and phenol oxidizers, and whole-community sole carbon source utilization patterns from Biolog GN microplates. In the packed columns, about 99% of the total biomass (per cubic centimeter of porous medium) was attached to the geologic medium. Lack of equitable units precluded a comparison of attached and unattached biomasses in the fractured columns where the attached biomass was expressed per unit of surface area. Compositional differences in the attached and unattached communities were evidenced by (i) the recovery of Pseudomonas stutzeri, an Enterococcus sp., and Bacillus psychrophilus from the groundwater and not from the basalt, (ii) differences between community carbon source utilization patterns, and (iii) the relative abundances of different phylogenetic groups estimated by FISH in both column types. In the packed columns, attached communities were depleted of members of the alpha- and beta-Proteobacteria subclasses in comparison to those in the corresponding groundwater. In the fractured columns, attached communities were enriched in gram-positive Bacteria and gamma-Proteobacteria and depleted of beta-Proteobacteria, in comparison to those in the corresponding groundwater. Segregation of populations and their activities, possibly modified by attachment to geologic media, may influence contaminant fate and transport in the subsurface and impact other in situ applications.
Collapse
Affiliation(s)
- R M Lehman
- Biotechnology Department, Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho 83415-2203, USA.
| | | | | |
Collapse
|
32
|
Istok JD, Field JA, Schroth MH. In situ determination of subsurface microbial enzyme kinetics. GROUND WATER 2001; 39:348-55. [PMID: 11340999 DOI: 10.1111/j.1745-6584.2001.tb02317.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
The single-well, push-pull test has been used in previous field studies to measure in situ zero- and first-order rates for aerobic and anaerobic microbial respiration in the saturated zone. In this paper we demonstrate that the test can also be used to obtain more generalized descriptions of the kinetics of microbially mediated enzymatic reactions. Laboratory and field tests were performed with the model enzyme substrate p-nitrophenyl-beta-D-glucopyranoside (PNG). During a push-pull test, injected PNG is hydrolyzed in situ to p-nitrophenol (PNP); the rate of PNP production is taken as a measure of the beta-glucosidase activity expressed by indigenous microorganisms. Laboratory tests were performed in physical aquifer models packed with natural aquifer sediment; field tests were performed in a shallow unconfined alluvial aquifer at a petroleum contaminated site. The laboratory and field tests demonstrate that it is possible to compute the in situ rate of PNP production as a function of PNG concentration using only data from a single push-pull test. These data can then be used to estimate the Michaelis-Menton kinetic parameters Vmax and Km for the hydrolysis reaction. This approach potentially extends the range of applicability of the push-pull test approach for use in determining kinetic parameters for a wide range of microbial processes in situ. These could include the broad class of substituted nitrophenyl substrates used to assay other enzyme systems, as well as microbially mediated redox reactions that occur during contaminant transformations.
Collapse
Affiliation(s)
- J D Istok
- Department of Civil Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
33
|
Tani K, Iwamoto T, Fujimoto K, Nasu M. Dynamics of Methanotrophs during in situ Bioremediation. Microbes Environ 2001. [DOI: 10.1264/jsme2.2001.37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Katsuji Tani
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tomotada Iwamoto
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kazuo Fujimoto
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masao Nasu
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
34
|
Dianou D, Adachi K. Co-Culture of a Methanogenic Archaeon and a Methanotrophic Bacterium on Sterilized Soil in Large Test Tubes: Design for Soil-Mediated Co-Culture. Microbes Environ 2001. [DOI: 10.1264/jsme2.2001.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dayéri Dianou
- Centre National de la Recherche Scientifique et Technologique (CNRST)
| | - Katsuki Adachi
- National Agricultural Research Center for Kyushu Okinawa Region, Department of Upland Research
| |
Collapse
|
35
|
Auman AJ, Stolyar S, Costello AM, Lidstrom ME. Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 2000; 66:5259-66. [PMID: 11097900 PMCID: PMC92454 DOI: 10.1128/aem.66.12.5259-5266.2000] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Profiles of dissolved O(2) and methane with increasing depth were generated for Lake Washington sediment, which suggested the zone of methane oxidation is limited to the top 0.8 cm of the sediment. Methane oxidation potentials were measured for 0.5-cm layers down to 1.5 cm and found to be relatively constant at 270 to 350 micromol/liter of sediment/h. Approximately 65% of the methane was oxidized to cell material or metabolites, a signature suggestive of type I methanotrophs. Eleven methanotroph strains were isolated from the lake sediment and analyzed. Five of these strains classed as type I, while six were classed as type II strains by 16S rRNA gene sequence analysis. Southern hybridization analysis with oligonucleotide probes detected, on average, one to two copies of pmoA and one to three copies of 16S rRNA genes. Only one restriction length polymorphism pattern was shown for pmoA genes in each isolate, and in cases where, sequencing was done, the pmoA copies were found to be almost identical. PCR primers were developed for mmoX which amplified 1.2-kb regions from all six strains that tested positive for cytoplasmic soluble methane mono-oxygenase (sMMO) activity. Phylogenetic analysis of the translated PCR products with published mmoX sequences showed that MmoX falls into two distinct clusters, one containing the orthologs from type I strains and another containing the orthologs from type II strains. The presence of sMMO-containing Methylomonas strains in a pristine freshwater lake environment suggests that these methanotrophs are more widespread than has been previously thought.
Collapse
Affiliation(s)
- A J Auman
- Departments of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
36
|
Hrsak D, Begonja A. Possible interactions within a methanotrophic-heterotrophic groundwater community able to transform linear alkylbenzenesulfonates. Appl Environ Microbiol 2000; 66:4433-9. [PMID: 11010895 PMCID: PMC92321 DOI: 10.1128/aem.66.10.4433-4439.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationships and interactions within a methanotrophic-heterotrophic groundwater community were studied in a closed system (shake culture) in the presence of methane as the primary carbon and energy source and with the addition of the pure linear alkylbenzenesulfonate (LAS) congener 2-[4-(sulfophenyl)]decan as a cometabolic substrate. When cultured under different conditions, this community was shown to be a stable association, consisting of one obligate type II methanotroph and four or five heterotrophs possessing different nutritional and physiological characteristics. The results of experiments examining growth kinetics and nutritional relationships suggested that a number of complex interactions existed in the community in which the methanotroph was the only member able to grow on methane and to cometabolically initiate LAS transformation. These growth and metabolic activities of the methanotroph ensured the supply of a carbon source and specific nutrients which sustained the growth of four or five heterotrophs. In addition to the obligatory nutritional relationships between the methanotroph and heterotrophs, other possible interactions resulted in the modification of basic growth parameters of individual populations and a concerted metabolic attack on the complex LAS molecule. Most of these relationships conferred beneficial effects on the interacting populations, making the community adaptable to various environmental conditions and more efficient in LAS transformation than any of the individual populations alone.
Collapse
Affiliation(s)
- D Hrsak
- Center for Marine and Environmental Research, Rudger Boskovic Institute, HR-10002 Zagreb, Croatia.
| | | |
Collapse
|
37
|
Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K, Trotsenko YA. Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 1999; 22:565-72. [PMID: 10794145 DOI: 10.1016/s0723-2020(99)80010-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Methane-utilizing bacteria were enriched from deep igneous rock environments and affiliated by amplification of functional and phylogenetic gene probes. Type I methanotrophs belonging to the genera Methylomonas and Methylobacter dominated in enrichment cultures from depths below 400 m. A pure culture of an obligate methanotroph (strain SR5) was isolated and characterized. Pink-pigmented motile rods of the new isolate contained intracytoplasmic membranes as stacks of vesicles, assimilated methane via the ribulose monophosphate pathway and had an incomplete tricarboxylic acid cycle. Phosphatidyl glycerol, methylene ubiquinone and cytochrome c552 were prevailing. The DNA G+C content is 53.3 mol %. Strain SR5 grew at temperatures between 5 and 30 degrees C with optimum at 15 degrees C, close to its in situ temperature. Analyses of 16S rRNA gene, whole cell protein, enzymatic and physiological analyses of strain SR-5 revealed significant differences compared to the other representatives of Type I methanotrophs. Based on pheno- and genotypic characteristics we propose to refer the strain SR5 as to a new species, Methylomonas scandinavica.
Collapse
Affiliation(s)
- M G Kalyuzhnaya
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | | | | | | | |
Collapse
|
38
|
Grosse S, Laramee L, Wendlandt KD, McDonald IR, Miguez CB, Kleber HP. Purification and characterization of the soluble methane monooxygenase of the type II methanotrophic bacterium Methylocystis sp. strain WI 14. Appl Environ Microbiol 1999; 65:3929-35. [PMID: 10473397 PMCID: PMC99722 DOI: 10.1128/aem.65.9.3929-3935.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methane monooxygenase (MMO) catalyzes the oxidation of methane to methanol as the first step of methane degradation. A soluble NAD(P)H-dependent methane monooxygenase (sMMO) from the type II methanotrophic bacterium WI 14 was purified to homogeneity. Sequencing of the 16S rDNA and comparison with that of other known methanotrophic bacteria confirmed that strain WI 14 is very close to the genus Methylocystis. The sMMO is expressed only during growth under copper limitation (<0.1 microM) and with ammonium or nitrate ions as the nitrogen source. The enzyme exhibits a low substrate specificity and is able to oxidize several alkanes and alkenes, cyclic hydrocarbons, aromatics, and halogenic aromatics. It has three components, hydroxylase, reductase and protein B, which is involved in enzyme regulation and increases sMMO activity about 10-fold. The relative molecular masses of the native components were estimated to be 229, 41, and 18 kDa, respectively. The hydroxylase contains three subunits with relative molecular masses of 57, 43, and 23 kDa, which are present in stoichiometric amounts, suggesting that the native protein has an alpha(2)beta(2)gamma(2) structure. We detected 3.6 mol of iron per mol of hydroxylase by atomic absorption spectrometry. sMMO is strongly inhibited by Hg(2+) ions (with a total loss of enzyme activity at 0.01 mM Hg(2+)) and Cu(2+), Zn(2+), and Ni(2+) ions (95, 80, and 40% loss of activity at 1 mM ions). The complete sMMO gene sequence has been determined. sMMO genes from strain WI 14 are clustered on the chromosome and show a high degree of homology (at both the nucleotide and amino acid levels) to the corresponding genes from Methylosinus trichosporium OB3b, Methylocystis sp. strain M, and Methylococcus capsulatus (Bath).
Collapse
Affiliation(s)
- S Grosse
- Institut für Biochemie, Fakultät für Biowissenschaften, Pharmazie und Psychologie, Universität Leipzig, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Dianou D, Adachi K. Characterization of methanotrophic bacteria isolated from a subtropical paddy field. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13498.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Arai K, Tsubone T, Takechi T, Inoue T. Some characteristics of bacteria found in a bioreactor to treat trichloroethylene-contaminated groundwater. J Vet Med Sci 1999; 61:295-8. [PMID: 10331207 DOI: 10.1292/jvms.61.295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A mixture of bacteria, having a methane-utilizing ability, was separated from a bioreactor supplied with air and methane gas. The bioreactor was operated to treat trichloroethylene (TCE)-contaminated groundwater. The mixture was composed of an obligate methane-utilizing bacterium and a heterotroph, identified as Methylomonas methanica and Pseudomonas sp., respectively. The mixed culture of these two strains removed TCE. In addition, it appeared that a cooperative metabolic interaction of these strains enabled Meth.methanica to maintain the TCE degradation ability.
Collapse
Affiliation(s)
- K Arai
- Engineering Research Center, NKK Corporation, Kanagawa, Japan
| | | | | | | |
Collapse
|
41
|
Cheng YS, Halsey JL, Fode KA, Remsen CC, Collins ML. Detection of methanotrophs in groundwater by PCR. Appl Environ Microbiol 1999; 65:648-51. [PMID: 9925595 PMCID: PMC91074 DOI: 10.1128/aem.65.2.648-651.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanotrophic bacteria have significant potential for bioremediation, which would require methods for monitoring the presence and activity of these organisms in environmental samples. In this study, PCR was used to detect methanotrophic bacteria. Primers were designed on the basis of a partial sequence of pmoA, which encodes one of the proteins of the particulate methane monooxygenase. Specific amplification of a portion of pmoA was obtained with template DNA isolated from lab strains of methanotrophs. A pmoA product was also obtained by using DNA from groundwater. The identity of the PCR product was confirmed by sequencing or by amplification with a nested primer. Reverse transcriptase PCR detected pmoA mRNA.
Collapse
Affiliation(s)
- Y S Cheng
- Department of Biological Sciences and Great Lakes Water Institute, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | | | |
Collapse
|
42
|
Miguez CB, Shen CF, Bourque D, Guiot SR, Groleau D. Monitoring methanotrophic bacteria in hybrid anaerobic-aerobic reactors with PCR and a catabolic gene probe. Appl Environ Microbiol 1999; 65:381-8. [PMID: 9925557 PMCID: PMC91036 DOI: 10.1128/aem.65.2.381-388.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1998] [Accepted: 11/04/1998] [Indexed: 11/20/2022] Open
Abstract
We attempted to mimic in small upflow anaerobic sludge bed (UASB) bioreactors the metabolic association found in nature between methanogens and methanotrophs. UASB bioreactors were inoculated with pure cultures of methanotrophs, and the bioreactors were operated by using continuous low-level oxygenation in order to favor growth and/or survival of methanotrophs. Unlike the reactors in other similar studies, the hybrid anaerobic-aerobic bioreactors which we used were operated synchronously, not sequentially. Here, emphasis was placed on monitoring various methanotrophic populations by using classical methods and also a PCR amplification assay based on the mmoX gene fragment of the soluble methane monooxygenase (sMMO). The following results were obtained: (i) under the conditions used, Methylosinus sporium appeared to survive better than Methylosinus trichosporium; (ii) the PCR method which we used could detect as few as about 2,000 sMMO gene-containing methanotrophs per g (wet weight) of granular sludge; (iii) inoculation of the bioreactors with pure cultures of methanotrophs contributed greatly to increases in the sMMO-containing population (although the sMMO-containing population decreased gradually with time, at the end of an experiment it was always at least 2 logs larger than the initial population before inoculation); (iv) in general, there was a good correlation between populations with the sMMO gene and populations that exhibited sMMO activity; and (v) inoculation with sMMO-positive cultures helped increase significantly the proportion of sMMO-positive methanotrophs in reactors, even after several weeks of operation under various regimes. At some point, anaerobic-aerobic bioreactors like those described here might be used for biodegradation of various chlorinated pollutants.
Collapse
Affiliation(s)
- C B Miguez
- Microbial and Enzymatic Technology Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | |
Collapse
|
43
|
Jensen S, ÃVreÃ¥s L, Daae FL, Torsvik V. Diversity in methane enrichments from agricultural soil revealed by DGGE separation of PCR amplified 16S rDNA fragments. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb01557.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
44
|
Brigmon R, Franck M, Bray J, Scott D, Lanclos K, Fliermans C. Direct immunofluorescence and enzyme-linked immunosorbent assays for evaluating organic contaminant degrading bacteria. J Microbiol Methods 1998. [DOI: 10.1016/s0167-7012(97)00092-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Téllez CM, Gaus KP, Graham DW, Arnold RG, Guzman RZ. Isolation of copper biochelates from Methylosinus trichosporium OB3b and soluble methane monooxygenase mutants. Appl Environ Microbiol 1998; 64:1115-22. [PMID: 9501450 PMCID: PMC106376 DOI: 10.1128/aem.64.3.1115-1122.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methylosinus trichosporium OB3b produces an extracellular copper-binding ligand (CBL) with high affinity for copper. Wild-type cells and mutants that express soluble methane monooxygenase (sMMO) in the presence and absence of copper (sMMOc) were used to obtain cell exudates that were separated and analyzed by size exclusion high-performance liquid chromatography. A single chromatographic peak, when present, contained most of the aqueous-phase Cu(II) present in the culture medium. In mutant cultures that were unable to acquire copper, extracellular CBL accumulated to high levels both in the presence and in the absence of copper. Conversely, in wild-type cultures containing 5 microM Cu(II), extracellular CBL was maintained at a low, steady level during exponential growth, after which the external ligand was rapidly consumed. When Cu(II) was omitted from the growth medium, the wild-type organism produced the CBL at a rate that was proportional to cell density. After copper was added to this previously Cu-deprived culture, the CBL and copper concentrations in the medium decreased at approximately the same rate. Apparently, the extracellular CBL was produced throughout the period of cell growth, in the presence and absence of Cu(II), by both the mutant and wild-type cultures and was reinternalized or otherwise utilized by the wild-type cultures when it was bound to copper. CBL produced by the mutant strain facilitated copper uptake by wild-type cells, indicating that the extracellular CBLs produced by the mutant and wild-type organisms are functionally indistinguishable. CBL from the wild-type strain did not promote copper uptake by the mutant. The molecular weight of the CBL was estimated to be 500, and its association constant with copper was 1.4 x 10(16) M-1. CBL exhibited a preference for copper, even in the presence of 20-fold higher concentrations of nickel. External complexation may play a role in normal copper acquisition by M. trichosporium OB3b. The sMMOc phenotype is probably related to the mutant's inability to take up CBL-complexed copper, not to a defective CBL structure.
Collapse
Affiliation(s)
- C M Téllez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson 85721, USA
| | | | | | | | | |
Collapse
|
46
|
Bowman JP, McCammon SA, Skerrat JH. Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1451-1459. [PMID: 9141708 DOI: 10.1099/00221287-143-4-1451] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Methanotrophic bacteria were enumerated and isolated from the chemocline and surface sediments of marine-salinity Antarctic meromictic lakes located in the Vestfold Hills, Antarctica (68 degrees S 78 degrees E). Most probable number (MPN) analysis indicated that at the chemocline of Ace Lake the methanotroph population made up only a small proportion of the total microbial population and was sharply stratified, with higher populations detected in the surface sediments collected at the edge of Ace Lake and Burton Lake. Methanotrophs were not detected in Pendant Lake. Only a single phenotypic group of methanotrophs was successfully enriched, enumerated and isolated into pure culture from the lake samples. Strains of this group were non-motile, coccoidal in morphology, did not form resting cells, reproduced by constriction, and required seawater for growth. The strains were also psychrophilic, with optimal growth occurring at 10-13 degrees C and maximum growth temperatures of 16-21 degrees C. The ribulose monophosphate pathway but not the serine pathway for incorporation of C1 compounds was detectable in the strains. The guanine plus cytosine (G + C) content of the genomic DNA was 43-46 mol%. Whole-cell fatty acid analysis indicated that 16:1 omega 8c (37-41%), 16:1 omega 6c (17-19%), 16:1 omega 7c (15-19%) and 16:0 (14-15%) were the major fatty acids in the strains. 16s rDNA sequence analysis revealed that the strains form a distinct line of descent in the family Methylococcaceae (group I methanotrophs), with the closest relative being the Louisiana Slope methanotrophic mytilid endosymbiont (91.8-92.3% sequence similarity). On the basis of polyphasic taxonomic characteristics the Antarctic lake isolates represent a novel group I methanotrophic genus with the proposed name Methylosphaera hansonii (type strain ACAM 549).
Collapse
Affiliation(s)
- John P Bowman
- Department of Agricultural Science, University of Tasmania, GPO Box 252-80, Hobart, Tasmania 7001, Australia
- Antarctic CRC, University of Tasmania, GPO Box 252-80, Hobart, Tasmania 7001, Australia
| | - Sharee A McCammon
- Department of Agricultural Science, University of Tasmania, GPO Box 252-80, Hobart, Tasmania 7001, Australia
| | - Jenny H Skerrat
- CSIRO Oceanography Division, CSIRO Marine Laboratories, Hobart, Tasmania, Australia
- Antarctic CRC, University of Tasmania, GPO Box 252-80, Hobart, Tasmania 7001, Australia
| |
Collapse
|
47
|
Ecology and Biogeochemistry of in Situ Groundwater Bioremediation. ADVANCES IN MICROBIAL ECOLOGY 1997. [DOI: 10.1007/978-1-4757-9074-0_7] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
48
|
Hanna ML, Taylor RT. Attachment/detachment and trichloroethylene degradation-longevity of a resting cell Methylosinus trichosporium OB3b filter. Biotechnol Bioeng 1996; 51:659-72. [PMID: 18629832 DOI: 10.1002/(sici)1097-0290(19960920)51:6<659::aid-bit5>3.0.co;2-g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We are investigating a methanotrophic filter strategy for the in situ bioremediation of low levels of chlorinated aliphatic, volatile organic chemicals (VOCs). It is based on the use of pregrown, resting cells, instead of growth-nutrient stimulations. The economic feasibility of such a filter is dependent on its operational longevity at ground-water temperatures. The latter, in turn, is dependent on several key parameters, such as the bacterial attachment densities reached during the injection of the microbial suspension and the subsequent detachment-removal of cells from the filter over time. Scaled attachment/detachment experiments were carried out using a representative quartzitic sand in glass 1-cm x 10-cm columns to simulate a filter. A rosette-dominated form of Methylosinus trichosporium OB3b was isolated and used in these and the subsequent catalytic longevity experiments. Its initial attachment, employing Higgins' medium phosphate buffer, pH 7.0 (HPB), was 7.0 to 8.0 x 10(8) bacteria/g of dry sand. This was elevated to approximately 1.5 x 10(9) cells/g by including 1.0 mM MgCl(2), 100 muM FeSO(4), and 0.025% agar in the cell-suspension loading buffer. These loading additives also increased the time required to reach 50% cell detachment with HPB alone from 5 days to approximately 45 days. The functional longevity of a column biofilter, formed with resting-state rosette-enriched cells in the presence of the aforementioned additives, was determined at 21 degrees C by challenging it with weekly 12 h, approximately 250 ppb pulses of trichloroethylene (TCE). The column results indicate that for our attached-cell filter to biodegrade TCE levels of several hundred ppb sufficiently, to <5 ppb, it will likely need replenishment at approximately 8 week intervals, due to the instability of the endogenous whole-cell soluble methane monooxygenase specific activity beyond that time period. This study represents the first time that anyone has shown that a rosette-enriched substrain can be isolated from a well-known methanotrophic strain and then stably cultured and utilized advantageously for a specific application-namely its improved attachment-slowed detachment characteristics in a microbial filter.
Collapse
Affiliation(s)
- M L Hanna
- Biology and Biotechnology Research Program and Earth Sciences Division, Lawrence Livermore National Laboratory, University of California Livermore, California
| | | |
Collapse
|
49
|
Abstract
Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene.
Collapse
Affiliation(s)
- R S Hanson
- Department of Microbiology, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
50
|
Joshi B, Walia S. PCR amplification of catechol 2,3-dioxygenase gene sequences from naturally occurring hydrocarbon degrading bacteria isolated from petroleum hydrocarbon contaminated groundwater. FEMS Microbiol Ecol 1996. [DOI: 10.1111/j.1574-6941.1996.tb00193.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|