1
|
Yatabe F, Seike T, Okahashi N, Ishii J, Matsuda F. Improvement of ethanol and 2,3-butanediol production in Saccharomyces cerevisiae by ATP wasting. Microb Cell Fact 2023; 22:204. [PMID: 37807050 PMCID: PMC10560415 DOI: 10.1186/s12934-023-02221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND "ATP wasting" has been observed in 13C metabolic flux analyses of Saccharomyces cerevisiae, a yeast strain commonly used to produce ethanol. Some strains of S. cerevisiae, such as the sake strain Kyokai 7, consume approximately two-fold as much ATP as laboratory strains. Increased ATP consumption may be linked to the production of ethanol, which helps regenerate ATP. RESULTS This study was conducted to enhance ethanol and 2,3-butanediol (2,3-BDO) production in the S. cerevisiae strains, ethanol-producing strain BY318 and 2,3-BDO-producing strain YHI030, by expressing the fructose-1,6-bisphosphatase (FBPase) and ATP synthase (ATPase) genes to induce ATP dissipation. The introduction of a futile cycle for ATP consumption in the pathway was achieved by expressing various FBPase and ATPase genes from Escherichia coli and S. cerevisiae in the yeast strains. The production of ethanol and 2,3-BDO was evaluated using high-performance liquid chromatography and gas chromatography, and fermentation tests were performed on synthetic media under aerobic conditions in batch culture. The results showed that in the BY318-opt_ecoFBPase (expressing opt_ecoFBPase) and BY318-ATPase (expressing ATPase) strains, specific glucose consumption was increased by 30% and 42%, respectively, and the ethanol production rate was increased by 24% and 45%, respectively. In contrast, the YHI030-opt_ecoFBPase (expressing opt_ecoFBPase) and YHI030-ATPase (expressing ATPase) strains showed increased 2,3-BDO yields of 26% and 18%, respectively, and the specific production rate of 2,3-BDO was increased by 36%. Metabolomic analysis confirmed the introduction of the futile cycle. CONCLUSION ATP wasting may be an effective strategy for improving the fermentative biosynthetic capacity of S. cerevisiae, and increased ATP consumption may be a useful tool in some alcohol-producing strains.
Collapse
Affiliation(s)
- Futa Yatabe
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taisuke Seike
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University Shimadzu, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University Shimadzu, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
de Valk SC, Bouwmeester SE, de Hulster E, Mans R. Engineering proton-coupled hexose uptake in Saccharomyces cerevisiae for improved ethanol yield. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:47. [PMID: 35524322 PMCID: PMC9077909 DOI: 10.1186/s13068-022-02145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
Abstract
Background In the yeast Saccharomyces cerevisiae, which is widely applied for industrial bioethanol production, uptake of hexoses is mediated by transporters with a facilitated diffusion mechanism. In anaerobic cultures, a higher ethanol yield can be achieved when transport of hexoses is proton-coupled, because of the lower net ATP yield of sugar dissimilation. In this study, the facilitated diffusion transport system for hexose sugars of S. cerevisiae was replaced by hexose–proton symport. Results Introduction of heterologous glucose– or fructose–proton symporters in an hxt0 yeast background strain (derived from CEN.PK2-1C) restored growth on the corresponding sugar under aerobic conditions. After applying an evolutionary engineering strategy to enable anaerobic growth, the hexose–proton symporter-expressing strains were grown in anaerobic, hexose-limited chemostats on synthetic defined medium, which showed that the biomass yield of the resulting strains was decreased by 44.0-47.6%, whereas the ethanol yield had increased by up to 17.2% (from 1.51 to 1.77 mol mol hexose−1) compared to an isogenic strain expressing the hexose uniporter HXT5. To apply this strategy to increase the ethanol yield on sucrose, we constructed a platform strain in which all genes encoding hexose transporters, disaccharide transporters and disaccharide hydrolases were deleted, after which a combination of a glucose–proton symporter, fructose–proton symporter and extracellular invertase (SUC2) were introduced. After evolution, the resulting strain exhibited a 16.6% increased anaerobic ethanol yield (from 1.51 to 1.76 mol mol hexose equivalent−1) and 46.6% decreased biomass yield on sucrose. Conclusions This study provides a proof-of-concept for the replacement of the endogenous hexose transporters of S. cerevisiae by hexose-proton symport, and the concomitant decrease in ATP yield, to greatly improve the anaerobic yield of ethanol on sugar. Moreover, the sugar-negative platform strain constructed in this study acts as a valuable starting point for future studies on sugar transport or development of cell factories requiring specific sugar transport mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02145-7.
Collapse
|
3
|
A Computational Toolbox to Investigate the Metabolic Potential and Resource Allocation in Fission Yeast. mSystems 2022; 7:e0042322. [PMID: 35950759 PMCID: PMC9426579 DOI: 10.1128/msystems.00423-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The fission yeast, Schizosaccharomyces pombe, is a popular eukaryal model organism for cell division and cell cycle studies. With this extensive knowledge of its cell and molecular biology, S. pombe also holds promise for use in metabolism research and industrial applications. However, unlike the baker's yeast, Saccharomyces cerevisiae, a major workhorse in these areas, cell physiology and metabolism of S. pombe remain less explored. One way to advance understanding of organism-specific metabolism is construction of computational models and their use for hypothesis testing. To this end, we leverage existing knowledge of S. cerevisiae to generate a manually curated high-quality reconstruction of S. pombe's metabolic network, including a proteome-constrained version of the model. Using these models, we gain insights into the energy demands for growth, as well as ribosome kinetics in S. pombe. Furthermore, we predict proteome composition and identify growth-limiting constraints that determine optimal metabolic strategies under different glucose availability regimes and reproduce experimentally determined metabolic profiles. Notably, we find similarities in metabolic and proteome predictions of S. pombe with S. cerevisiae, which indicate that similar cellular resource constraints operate to dictate metabolic organization. With these cases, we show, on the one hand, how these models provide an efficient means to transfer metabolic knowledge from a well-studied to a lesser-studied organism, and on the other, how they can successfully be used to explore the metabolic behavior and the role of resource allocation in driving different strategies in fission yeast. IMPORTANCE Our understanding of microbial metabolism relies mostly on the knowledge we have obtained from a limited number of model organisms, and the diversity of metabolism beyond the handful of model species thus remains largely unexplored in mechanistic terms. Computational modeling of metabolic networks offers an attractive platform to bridge the knowledge gap and gain new insights into physiology of lesser-studied organisms. Here we showcase an example of successful knowledge transfer from the budding yeast Saccharomyces cerevisiae to a popular model organism in molecular and cell biology, fission yeast Schizosaccharomyces pombe, using computational models.
Collapse
|
4
|
Estrada-Ávila AK, González-Hernández JC, Calahorra M, Sánchez NS, Peña A. Xylose and yeasts: A story beyond xylitol production. Biochim Biophys Acta Gen Subj 2022; 1866:130154. [PMID: 35461922 DOI: 10.1016/j.bbagen.2022.130154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Six different yeasts were used to study their metabolism of glucose and xylose, and mainly their capacity to produce ethanol and xylitol. The strains used were Candida guilliermondii, Debaryomyces hansenii, Saccharomyces cerevisiae, Kluyveromyces marxianus, Meyerozyma guilliermondii and Clavispora lusitaniae, four isolated from a rural mezcal fermentation facility. All of them produced ethanol when the substrate was glucose. When incubated in a medium containing xylose instead of glucose, only K. marxianus and M. guilliermondii were able to produce ethanol from xylose. On the other hand, all of them could produce some xylitol from xylose, but the most active in this regard were K. marxianus, M. guilliermondii, Candida lusitaniae, and C. guilliermondii with the highest amount of xylitol produced. The capacity of all strains to take up glucose and xylose was also studied. Xylose, in different degrees, produced a redox imbalance in all yeasts. Respiration capacity was also studied with glucose or xylose, where C. guilliermondii, D. hansenii, K. marxianus and M. guilliermondii showed higher cyanide resistant respiration when grown in xylose. Neither xylose transport nor xylitol production were enhanced by an acidic environment (pH 4), which can be interpreted as the absence of a proton/sugar symporter mechanism for xylose transport, except for C. lusitaniae. The effects produced by xylose and their magnitude depend on the background of the studied yeast and the conditions in which these are studied.
Collapse
Affiliation(s)
- Alejandra Karina Estrada-Ávila
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City (+5255)56225633, Mexico
| | - Juan Carlos González-Hernández
- Tecnológico Nacional de México / Instituto Tecnológico de Morelia, Departamento de Ingeniería Química y Bioquímica, Av. Tecnológico # 1500. Colonia Lomas de Santiaguito, 58120 Morelia, Michoacán, Mexico
| | - Martha Calahorra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City (+5255)56225633, Mexico
| | - Norma Silvia Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City (+5255)56225633, Mexico
| | - Antonio Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México City (+5255)56225633, Mexico.
| |
Collapse
|
5
|
de Valk SC, Mans R. Novel Evolutionary Engineering Approach to Alter Substrate Specificity of Disaccharide Transporter Mal11 in Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8040358. [PMID: 35448589 PMCID: PMC9024999 DOI: 10.3390/jof8040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
A major challenge in the research of transport proteins is to understand how single amino acid residues contribute to their structure and biological function. Amino acid substitutions that result in a selective advantage in adaptive laboratory evolution experiments can provide valuable hints at their role in transport proteins. In this study, we applied an evolutionary engineering strategy to alter the substrate specificity of the proton-coupled disaccharide transporter Mal11 in Saccharomyces cerevisiae, which has affinity for sucrose, maltose and glucose. The introduction of MAL11 in a strain devoid of all other sugar transporters and disaccharide hydrolases restored growth on glucose but rendered the strain highly sensitive to the presence of sucrose or maltose. Evolution in glucose-limited continuous cultures with pulse-wise addition of a concentrated sucrose solution at increasing frequency resulted in the enrichment of spontaneous mutant cells that were less sensitive to the presence of sucrose and maltose. Sequence analysis showed that in each of the two independent experiments, three mutations occurred in MAL11, which were found responsible for the disaccharide-insensitive phenotype via reverse engineering. Our work demonstrates how laboratory evolution with proton-motive force-driven uptake of a non-metabolizable substrate can be a powerful tool to provide novel insights into the role of specific amino acid residues in the transport function of Mal11.
Collapse
|
6
|
van Aalst AC, de Valk SC, van Gulik WM, Jansen ML, Pronk JT, Mans R. Pathway engineering strategies for improved product yield in yeast-based industrial ethanol production. Synth Syst Biotechnol 2022; 7:554-566. [PMID: 35128088 PMCID: PMC8792080 DOI: 10.1016/j.synbio.2021.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Product yield on carbohydrate feedstocks is a key performance indicator for industrial ethanol production with the yeast Saccharomyces cerevisiae. This paper reviews pathway engineering strategies for improving ethanol yield on glucose and/or sucrose in anaerobic cultures of this yeast by altering the ratio of ethanol production, yeast growth and glycerol formation. Particular attention is paid to strategies aimed at altering energy coupling of alcoholic fermentation and to strategies for altering redox-cofactor coupling in carbon and nitrogen metabolism that aim to reduce or eliminate the role of glycerol formation in anaerobic redox metabolism. In addition to providing an overview of scientific advances we discuss context dependency, theoretical impact and potential for industrial application of different proposed and developed strategies.
Collapse
Affiliation(s)
- Aafke C.A. van Aalst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Sophie C. de Valk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Walter M. van Gulik
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Mickel L.A. Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613, AX Delft, the Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| |
Collapse
|
7
|
Lao-Martil D, Verhagen KJA, Schmitz JPJ, Teusink B, Wahl SA, van Riel NAW. Kinetic Modeling of Saccharomyces cerevisiae Central Carbon Metabolism: Achievements, Limitations, and Opportunities. Metabolites 2022; 12:74. [PMID: 35050196 PMCID: PMC8779790 DOI: 10.3390/metabo12010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
Central carbon metabolism comprises the metabolic pathways in the cell that process nutrients into energy, building blocks and byproducts. To unravel the regulation of this network upon glucose perturbation, several metabolic models have been developed for the microorganism Saccharomyces cerevisiae. These dynamic representations have focused on glycolysis and answered multiple research questions, but no commonly applicable model has been presented. This review systematically evaluates the literature to describe the current advances, limitations, and opportunities. Different kinetic models have unraveled key kinetic glycolytic mechanisms. Nevertheless, some uncertainties regarding model topology and parameter values still limit the application to specific cases. Progressive improvements in experimental measurement technologies as well as advances in computational tools create new opportunities to further extend the model scale. Notably, models need to be made more complex to consider the multiple layers of glycolytic regulation and external physiological variables regulating the bioprocess, opening new possibilities for extrapolation and validation. Finally, the onset of new data representative of individual cells will cause these models to evolve from depicting an average cell in an industrial fermenter, to characterizing the heterogeneity of the population, opening new and unseen possibilities for industrial fermentation improvement.
Collapse
Affiliation(s)
- David Lao-Martil
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
| | - Koen J. A. Verhagen
- Lehrstuhl für Bioverfahrenstechnik, FAU Erlangen-Nürnberg, 91052 Erlangen, Germany; (K.J.A.V.); (S.A.W.)
| | - Joep P. J. Schmitz
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands;
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - S. Aljoscha Wahl
- Lehrstuhl für Bioverfahrenstechnik, FAU Erlangen-Nürnberg, 91052 Erlangen, Germany; (K.J.A.V.); (S.A.W.)
| | - Natal A. W. van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
- Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Shayevitz A, Abbott E, Van Zandycke S, Fischborn T. The Impact of Lactic and Acetic Acid on Primary Beer Fermentation Performance and Secondary Re-Fermentation during Bottle-Conditioning with Active Dry Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1952508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Avi Shayevitz
- Research & Development, Lallemand Inc., Montreal, Quebec, Canada
| | - Eric Abbott
- Research & Development, Lallemand Inc., Montreal, Quebec, Canada
| | | | - Tobias Fischborn
- Research & Development, Lallemand Inc., Montreal, Quebec, Canada
| |
Collapse
|
9
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
10
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|
11
|
Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking. Comput Struct Biotechnol J 2021; 19:1713-1737. [PMID: 33897977 PMCID: PMC8050425 DOI: 10.1016/j.csbj.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses). At the heart of this mechanism lies a network of proteins that includes the arrestin‐related trafficking adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors. Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cellular fitness under dynamic conditions found in nature and highlight how further understanding and engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell factories in industrial biotechnological processes.
Collapse
Key Words
- AAs, amino acids
- ACT, amino Acid/Choline Transporter
- AP, adaptor protein
- APC, amino acid-polyamine-organocation
- Arg, arginine
- Arrestins
- Arts, arrestin‐related trafficking adaptors
- Asp, aspartic acid
- Aspergilli
- Biotechnology
- C, carbon
- C-terminus, carboxyl-terminus
- Cell factories
- Conformational changes
- Cu, copper
- DUBs, deubiquitinating enzymes
- EMCs, eisosome membrane compartments
- ER, endoplasmic reticulum
- ESCRT, endosomal sorting complex required for transport
- Endocytic signals
- Endocytosis
- Fe, iron
- Fungi
- GAAC, general amino acid control
- Glu, glutamic acid
- H+, proton
- IF, inward-facing
- LAT, L-type Amino acid Transporter
- LID, loop Interaction Domain
- Lys, lysine
- MCCs, membrane compartments containing the arginine permease Can1
- MCCs/eisosomes
- MCPs, membrane compartments of Pma1
- MFS, major facilitator superfamily
- MVB, multi vesicular bodies
- Met, methionine
- Metabolism
- Mn, manganese
- N, nitrogen
- N-terminus, amino-terminus
- NAT, nucleobase Ascorbate Transporter
- NCS1, nucleobase/Cation Symporter 1
- NCS2, nucleobase cation symporter family 2
- NH4+, ammonium
- Nutrient transporters
- OF, outward-facing
- PEST, proline (P), glutamic acid (E), serine (S), and threonine (T)
- PM, plasma membrane
- PVE, prevacuolar endosome
- Saccharomyces cerevisiae
- Signaling pathways
- Structure-function
- TGN, trans-Golgi network
- TMSs, transmembrane segments
- TORC1, target of rapamycin complex 1
- TRY, titer, rate and yield
- Trp, tryptophan
- Tyr, tyrosine
- Ub, ubiquitin
- Ubiquitylation
- VPS, vacuolar protein sorting
- W/V, weight per volume
- YAT, yeast Amino acid Transporter
- Zn, Zinc
- fAATs, fungal AA transporters
Collapse
|
12
|
Zahoor A, Messerschmidt K, Boecker S, Klamt S. ATPase-based implementation of enforced ATP wasting in Saccharomyces cerevisiae for improved ethanol production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:185. [PMID: 33292464 PMCID: PMC7654063 DOI: 10.1186/s13068-020-01822-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/23/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Enforced ATP wasting has been recognized as a promising metabolic engineering strategy to enhance the microbial production of metabolites that are coupled to ATP generation. It also appears to be a suitable approach to improve production of ethanol by Saccharomyces cerevisiae. In the present study, we constructed different S. cerevisiae strains with heterologous expression of genes of the ATP-hydrolyzing F1-part of the ATPase enzyme to induce enforced ATP wasting and quantify the resulting effect on biomass and ethanol formation. RESULTS In contrast to genomic integration, we found that episomal expression of the αβγ subunits of the F1-ATPase genes of Escherichia coli in S. cerevisiae resulted in significantly increased ATPase activity, while neither genomic integration nor episomal expression of the β subunit from Trichoderma reesei could enhance ATPase activity. When grown in minimal medium under anaerobic growth-coupled conditions, the strains expressing E. coli's F1-ATPase genes showed significantly improved ethanol yield (increase of 10% compared to the control strain). However, elevated product formation reduces biomass formation and, therefore, volumetric productivity. We demonstrate that this negative effect can be overcome under growth-decoupled (nitrogen-starved) operation with high and constant biomass concentration. Under these conditions, which mimic the second (production) phase of a two-stage fermentation process, the ATPase-expressing strains showed significant improvement in volumetric productivity (up to 111%) compared to the control strain. CONCLUSIONS Our study shows that expression of genes of the F1-portion of E. coli's ATPase induces ATPase activity in S. cerevisiae and can be a promising way to improve ethanol production. This ATP-wasting strategy can be easily applied to other metabolites of interest, whose formation is coupled to ATP generation.
Collapse
Affiliation(s)
- Ahmed Zahoor
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Katrin Messerschmidt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| |
Collapse
|
13
|
Tiukova IA, Møller-Hansen I, Belew ZM, Darbani B, Boles E, Nour-Eldin HH, Linder T, Nielsen J, Borodina I. Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast Brettanomyces bruxellensis. FEMS Microbiol Lett 2020; 366:5610216. [PMID: 31665273 PMCID: PMC6847091 DOI: 10.1093/femsle/fnz222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
The yeast Brettanomyces bruxellensis (syn. Dekkera bruxellensis) is an emerging and undesirable contaminant in industrial low-sugar ethanol fermentations that employ the yeast Saccharomyces cerevisiae. High-affinity glucose import in B. bruxellensis has been proposed to be the mechanism by which this yeast can outcompete S. cerevisiae. The present study describes the characterization of two B. bruxellensis genes (BHT1 and BHT3) believed to encode putative high-affinity glucose transporters. In vitro-generated transcripts of both genes as well as the S. cerevisiae HXT7 high-affinity glucose transporter were injected into Xenopus laevis oocytes and subsequent glucose uptake rates were assayed using 14C-labelled glucose. At 0.1 mM glucose, Bht1p was shown to transport glucose five times faster than Hxt7p. pH affected the rate of glucose transport by Bht1p and Bht3p, indicating an active glucose transport mechanism that involves proton symport. These results suggest a possible role for BHT1 and BHT3 in the competitive ability of B. bruxellensis.
Collapse
Affiliation(s)
- Ievgeniia A Tiukova
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Iben Møller-Hansen
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Building 220, 2800 Kongens Lyngby, Denmark
| | - Zeinu M Belew
- Department of Plant and Environmental Sciences, DynaMo Center, Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Behrooz Darbani
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Building 220, 2800 Kongens Lyngby, Denmark
| | - Eckhard Boles
- Institute of Molecular Biosciences, Faculty of Biological Sciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany
| | - Hussam H Nour-Eldin
- Department of Plant and Environmental Sciences, DynaMo Center, Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Tomas Linder
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Almas allé 5, 750 07 Uppsala, Sweden
| | - Jens Nielsen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden
| | - Irina Borodina
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Building 220, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Abstract
Metabolic engineering is crucial in the development of production strains for platform chemicals, pharmaceuticals and biomaterials from renewable resources. The central carbon metabolism (CCM) of heterotrophs plays an essential role in the conversion of biomass to the cellular building blocks required for growth. Yet, engineering the CCM ultimately aims toward a maximization of flux toward products of interest. The most abundant dissimilative carbohydrate pathways amongst prokaryotes (and eukaryotes) are the Embden-Meyerhof-Parnas (EMP) and the Entner-Doudoroff (ED) pathways, which build the basics for heterotrophic metabolic chassis strains. Although the EMP is regarded as the textbook example of a carbohydrate pathway owing to its central role in production strains like Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis, it is either modified, complemented or even replaced by alternative carbohydrate pathways in different organisms. The ED pathway also plays key roles in biotechnological relevant bacteria, like Zymomonas mobilis and Pseudomonas putida, and its importance was recently discovered in photoautotrophs and marine microorganisms. In contrast to the EMP, the ED pathway and its variations are not evolutionary optimized for high ATP production and it differs in key principles such as protein cost, energetics and thermodynamics, which can be exploited in the construction of unique metabolic designs. Single ED pathway enzymes and complete ED pathway modules have been used to rewire carbon metabolisms in production strains and for the construction of cell-free enzymatic pathways. This review focuses on the differences of the ED and EMP pathways including their variations and discusses the use of alternative pathway strategies for in vivo and cell-free metabolic engineering.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
15
|
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019; 47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
This review summarizes progress in the construction of efficient yeast ethanol producers from glucose/sucrose and lignocellulose. Saccharomyces cerevisiae is the major industrial producer of first-generation ethanol. The different approaches to increase ethanol yield and productivity from glucose in S. cerevisiae are described. Construction of the producers of second-generation ethanol is described for S. cerevisiae, one of the best natural xylose fermenters, Scheffersomyces stipitis and the most thermotolerant yeast known Ogataea polymorpha. Each of these organisms has some advantages and drawbacks. S. cerevisiae is the primary industrial ethanol producer and is the most ethanol tolerant natural yeast known and, however, cannot metabolize xylose. S. stipitis can effectively ferment both glucose and xylose and, however, has low ethanol tolerance and requires oxygen for growth. O. polymorpha grows and ferments at high temperatures and, however, produces very low amounts of ethanol from xylose. Review describes how the mentioned drawbacks could be overcome.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Olena O Kurylenko
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Kostyantyn V Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Biotechnology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
16
|
Mans R, Hassing EJ, Wijsman M, Giezekamp A, Pronk JT, Daran JM, van Maris AJA. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 17:4628041. [PMID: 29145596 DOI: 10.1093/femsyr/fox085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 11/14/2022] Open
Abstract
CRISPR/Cas9-based genome editing allows rapid, simultaneous modification of multiple genetic loci in Saccharomyces cerevisiae. Here, this technique was used in a functional analysis study aimed at identifying the hitherto unknown mechanism of lactate export in this yeast. First, an S. cerevisiae strain was constructed with deletions in 25 genes encoding transport proteins, including the complete aqua(glycero)porin family and all known carboxylic acid transporters. The 25-deletion strain was then transformed with an expression cassette for Lactobacillus casei lactate dehydrogenase (LcLDH). In anaerobic, glucose-grown batch cultures this strain exhibited a lower specific growth rate (0.15 vs. 0.25 h-1) and biomass-specific lactate production rate (0.7 vs. 2.4 mmol g biomass-1 h-1) than an LcLDH-expressing reference strain. However, a comparison of the two strains in anaerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) showed identical lactate production rates. These results indicate that, although deletion of the 25 transporter genes affected the maximum specific growth rate, it did not impact lactate export rates when analysed at a fixed specific growth rate. The 25-deletion strain provides a first step towards a 'minimal transportome' yeast platform, which can be applied for functional analysis of specific (heterologous) transport proteins as well as for evaluation of metabolic engineering strategies.
Collapse
Affiliation(s)
- Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Else-Jasmijn Hassing
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annabel Giezekamp
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
17
|
Ohdate T, Omura F, Hatanaka H, Zhou Y, Takagi M, Goshima T, Akao T, Ono E. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast. PLoS One 2018; 13:e0198744. [PMID: 29894505 PMCID: PMC5997316 DOI: 10.1371/journal.pone.0198744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022] Open
Abstract
For maltose fermentation, budding yeast Saccharomyces cerevisiae operates a mechanism that involves transporters (MALT), maltases (MALS) and regulators (MALR) collectively known as MAL genes. However, functional relevance of MAL genes during sake brewing process remains largely elusive, since sake yeast is cultured under glucose-rich condition achieved by the co-culture partner Aspergillus spp.. Here we isolated an ethyl methane sulfonate (EMS)-mutagenized sake yeast strain exhibiting enhanced maltose fermentation compared to the parental strain. The mutant carried a single nucleotide insertion that leads to the extension of the C-terminal region of a previously uncharacterized MALR gene YPR196W-2, which was renamed as MAL73. Introduction of the mutant allele MAL73L with extended C-terminal region into the parental or other sake yeast strains enhanced the growth rate when fed with maltose as the sole carbon source. In contrast, disruption of endogenous MAL73 in the sake yeasts decreased the maltose fermentation ability of sake yeast, confirming that the original MAL73 functions as a MALR. Importantly, the MAL73L-expressing strain fermented more maltose in practical condition compared to the parental strain during sake brewing process. Our data show that MAL73(L) is a novel MALR gene that regulates maltose fermentation, and has been functionally attenuated in sake yeast by single nucleotide deletion during breeding history. Since the MAL73L-expressing strain showed enhanced ability of maltose fermentation, MAL73L might also be a valuable tool for enhancing maltose fermentation in yeast in general.
Collapse
Affiliation(s)
- Takumi Ohdate
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., Seika-cho, Soraku-gun, Kyoto, Japan
- * E-mail:
| | - Fumihiko Omura
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., Seika-cho, Soraku-gun, Kyoto, Japan
| | - Haruyo Hatanaka
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., Seika-cho, Soraku-gun, Kyoto, Japan
| | - Yan Zhou
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Masami Takagi
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Tetsuya Goshima
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashihiroshima, Hiroshima, Japan
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., Seika-cho, Soraku-gun, Kyoto, Japan
| |
Collapse
|
18
|
Bracher JM, Verhoeven MD, Wisselink HW, Crimi B, Nijland JG, Driessen AJM, Klaassen P, van Maris AJA, Daran JMG, Pronk JT. The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive l-arabinose transport in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:63. [PMID: 29563966 PMCID: PMC5848512 DOI: 10.1186/s13068-018-1047-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/08/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important rate-controlling step in the complete conversion of these feedstocks by engineered pentose-metabolizing S. cerevisiae strains. RESULTS Chemostat-based transcriptome analysis yielded 16 putative sugar transporter genes in the filamentous fungus Penicillium chrysogenum whose transcript levels were at least threefold higher in l-arabinose-limited cultures than in d-glucose-limited and ethanol-limited cultures. Of five genes, that encoded putative transport proteins and showed an over 30-fold higher transcript level in l-arabinose-grown cultures compared to d-glucose-grown cultures, only one (Pc20g01790) restored growth on l-arabinose upon expression in an engineered l-arabinose-fermenting S. cerevisiae strain in which the endogenous l-arabinose transporter, GAL2, had been deleted. Sugar transport assays indicated that this fungal transporter, designated as PcAraT, is a high-affinity (Km = 0.13 mM), high-specificity l-arabinose-proton symporter that does not transport d-xylose or d-glucose. An l-arabinose-metabolizing S. cerevisiae strain in which GAL2 was replaced by PcaraT showed 450-fold lower residual substrate concentrations in l-arabinose-limited chemostat cultures than a congenic strain in which l-arabinose import depended on Gal2 (4.2 × 10-3 and 1.8 g L-1, respectively). Inhibition of l-arabinose transport by the most abundant sugars in hydrolysates, d-glucose and d-xylose was far less pronounced than observed with Gal2. Expression of PcAraT in a hexose-phosphorylation-deficient, l-arabinose-metabolizing S. cerevisiae strain enabled growth in media supplemented with both 20 g L-1 l-arabinose and 20 g L-1 d-glucose, which completely inhibited growth of a congenic strain in the same condition that depended on l-arabinose transport via Gal2. CONCLUSION Its high affinity and specificity for l-arabinose, combined with limited sensitivity to inhibition by d-glucose and d-xylose, make PcAraT a valuable transporter for application in metabolic engineering strategies aimed at engineering S. cerevisiae strains for efficient conversion of lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Jasmine M. Bracher
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Maarten D. Verhoeven
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - H. Wouter Wisselink
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Present Address: Isobionics, Urmonderbaan 22-B 45, 6167 RD Geleen, The Netherlands
| | - Barbara Crimi
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Present Address: Institut de Génétique Humaine, UMR9002-CNRS-UM, 141 rue de la Cardonille, 34396 Montpellier, France
| | - Jeroen G. Nijland
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Paul Klaassen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Present Address: Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, AlbaNova University Centre, 20691 Stockholm, Sweden
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
19
|
Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae. Metab Eng 2017; 45:121-133. [PMID: 29196124 DOI: 10.1016/j.ymben.2017.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/27/2017] [Accepted: 11/24/2017] [Indexed: 11/24/2022]
Abstract
Anaerobic industrial fermentation processes do not require aeration and intensive mixing and the accompanying cost savings are beneficial for production of chemicals and fuels. However, the free-energy conservation of fermentative pathways is often insufficient for the production and export of the desired compounds and/or for cellular growth and maintenance. To increase free-energy conservation during fermentation of the industrially relevant disaccharide sucrose by Saccharomyces cerevisiae, we first replaced the native yeast α-glucosidases by an intracellular sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase). Subsequently, we replaced the native proton-coupled sucrose uptake system by a putative sucrose facilitator from Phaseolus vulgaris (PvSUF1). The resulting strains grew anaerobically on sucrose at specific growth rates of 0.09 ± 0.02h-1 (LmSPase) and 0.06 ± 0.01h-1 (PvSUF1, LmSPase). Overexpression of the yeast PGM2 gene, which encodes phosphoglucomutase, increased anaerobic growth rates on sucrose of these strains to 0.23 ± 0.01h-1 and 0.08 ± 0.00h-1, respectively. Determination of the biomass yield in anaerobic sucrose-limited chemostat cultures was used to assess the free-energy conservation of the engineered strains. Replacement of intracellular hydrolase with a phosphorylase increased the biomass yield on sucrose by 31%. Additional replacement of the native proton-coupled sucrose uptake system by PvSUF1 increased the anaerobic biomass yield by a further 8%, resulting in an overall increase of 41%. By experimentally demonstrating an energetic benefit of the combined engineering of disaccharide uptake and cleavage, this study represents a first step towards anaerobic production of compounds whose metabolic pathways currently do not conserve sufficient free-energy.
Collapse
|
20
|
Brickwedde A, van den Broek M, Geertman JMA, Magalhães F, Kuijpers NGA, Gibson B, Pronk JT, Daran JMG. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast. Front Microbiol 2017; 8:1690. [PMID: 28943864 PMCID: PMC5596070 DOI: 10.3389/fmicb.2017.01690] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.
Collapse
Affiliation(s)
- Anja Brickwedde
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | | | | | | | - Niels G A Kuijpers
- HEINEKEN Supply Chain, Global Innovation and ResearchZoeterwoude, Netherlands
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd.Espoo, Finland
| | - Jack T Pronk
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| |
Collapse
|
21
|
Andrejc D, Možir A, Legiša M. Effect of the cancer specific shorter form of human 6-phosphofructo-1-kinase on the metabolism of the yeast Saccharomyces cerevisiae. BMC Biotechnol 2017; 17:41. [PMID: 28482870 PMCID: PMC5422889 DOI: 10.1186/s12896-017-0362-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Background At first glance, there appears to be a high degree of similarity between the metabolism of yeast (the Crabtree effect) and human cancer cells (the Warburg effect). At the root of both effects is accelerated metabolic flow through glycolysis which leads to overflows of ethanol and lactic acid, respectively. It has been proposed that enhanced glycolytic flow in cancer cells is triggered by the altered kinetic characteristics of the key glycolytic regulatory enzyme 6-phosphofructo-1-kinase (Pfk). Through a posttranslational modification, highly active shorter Pfk-M fragments, which are resistant to feedback inhibition, are formed after the proteolytic cleavage of the C-terminus of the native human Pfk-M. Alternatively, enhanced glycolysis is triggered by optimal growth conditions in the yeast Saccharomyces cerevisiae. Results To assess the deregulation of glycolysis in yeast cells, the sfPFKM gene encoding highly active human shorter Pfk-M fragments was introduced into pfk-null S. cerevisiae. No growth of the transformants with the sfPFKM gene was observed on glucose and fructose. Glucose even induced rapid deactivation of Pfk1 activities in such transformants. However, Pfk1 activities of the sfPFKM transformants were detected in maltose medium, but the growth in maltose was possible only after the addition of 10 mM of ethanol to the medium. Ethanol seemed to alleviate the severely unbalanced NADH/NADPH ratio in the sfPFKM cells. However, the transformants carrying modified Pfk-M enzymes grew faster than the transformants with the human native human Pfk-M enzyme in a narrow ecological niche with a low maltose concentration medium that was further improved by additional modifications. Interestingly, periodic extracellular accumulation of phenylacetaldehyde was detected during the growth of the strain with modified Pfk-M but not with the strain encoding the human native enzyme. Conclusions Highly active cancer-specific shorter Pfk-M fragments appear to trigger several controlling mechanisms in the primary metabolism of yeast S. cerevisiae cells. These results suggest more complex metabolic regulation is present in S. cerevisiae as free living unicellular eukaryotic organisms in comparison to metazoan human cells. However, increased productivity under broader growth conditions may be achieved if more gene engineering is performed to reduce or omit several controlling mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0362-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darjan Andrejc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hjadrihova 19, Si-1000, Ljubljana, Slovenia
| | - Alenka Možir
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Si-1000, Ljubljana, Slovenia.,Current address: Lek-Sandoz Company, Ljubljana, Slovenia
| | - Matic Legiša
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hjadrihova 19, Si-1000, Ljubljana, Slovenia.
| |
Collapse
|
22
|
González-Valiente CL. Investigación sobre Bibliotecología, Ciencia de la Información, e Inteligencia Empresarial, a través de las presentaciones a los congresos INFO e IntEmpres: un análisis bibliométrico (2002-2012). REVISTA ESPANOLA DE DOCUMENTACION CIENTIFICA 2016. [DOI: 10.3989/redc.2016.4.1377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
En este estudio se describen bibliométricamente los eventos cubanos Congreso Internacional de Información (INFO) y Taller Internacional sobre Inteligencia Empresarial y Gestión del Conocimiento en la Empresa (IntEmpres) durante el periodo 2002-2012. Son aplicados indicadores de productividad de autores, países, años, instituciones, idioma, tipo de estudio (teórico/empírico) y co-ocurrencia de términos. Se obtuvo un total de 1342 ponencias que resaltan a Cuba, México, Brasil y España como los países más participantes. Se destacan autores de algunos de estos países, procedentes mayormente del sector universitario. Los estudios presentados son mayormente empíricos, desde donde se destacan cinco líneas temáticas: (1) bibliometría, (2) educación y alfabetización en información, (3) gestión de información y del conocimiento, (4) actividad bibliotecaria y diseminación de información, y (5) tecnología de la información. Fueron obtenidos patrones de la productividad investigativa en información a través de dos de los eventos científicos más representativos dentro de la comunidad científica iberoamericana.
Collapse
|
23
|
Marques WL, Raghavendran V, Stambuk BU, Gombert AK. Sucrose and Saccharomyces cerevisiae: a relationship most sweet. FEMS Yeast Res 2015; 16:fov107. [PMID: 26658003 DOI: 10.1093/femsyr/fov107] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2015] [Indexed: 12/16/2022] Open
Abstract
Sucrose is an abundant, readily available and inexpensive substrate for industrial biotechnology processes and its use is demonstrated with much success in the production of fuel ethanol in Brazil. Saccharomyces cerevisiae, which naturally evolved to efficiently consume sugars such as sucrose, is one of the most important cell factories due to its robustness, stress tolerance, genetic accessibility, simple nutrient requirements and long history as an industrial workhorse. This minireview is focused on sucrose metabolism in S. cerevisiae, a rather unexplored subject in the scientific literature. An analysis of sucrose availability in nature and yeast sugar metabolism was performed, in order to understand the molecular background that makes S. cerevisiae consume this sugar efficiently. A historical overview on the use of sucrose and S. cerevisiae by humans is also presented considering sugarcane and sugarbeet as the main sources of this carbohydrate. Physiological aspects of sucrose consumption are compared with those concerning other economically relevant sugars. Also, metabolic engineering efforts to alter sucrose catabolism are presented in a chronological manner. In spite of its extensive use in yeast-based industries, a lot of basic and applied research on sucrose metabolism is imperative, mainly in fields such as genetics, physiology and metabolic engineering.
Collapse
Affiliation(s)
- Wesley Leoricy Marques
- Department of Chemical Engineering, University of São Paulo, São Paulo-SP, 05424-970, Brazil School of Food Engineering, University of Campinas, Campinas-SP, 13083-862, Brazil
| | | | - Boris Ugarte Stambuk
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis-SC, 88040-900, Brazil
| | - Andreas Karoly Gombert
- Department of Chemical Engineering, University of São Paulo, São Paulo-SP, 05424-970, Brazil School of Food Engineering, University of Campinas, Campinas-SP, 13083-862, Brazil
| |
Collapse
|
24
|
Abstract
The author looks back on his development in microbiology and yeast research, and on the establishment in Delft of the FEMS Central Office, FEMS Publications Office and the birth of FEMS Yeast Research.
Collapse
Affiliation(s)
- W Alexander Scheffers
- Department of Microbiology, Delft University of Technology, Julianalaan 67A, NL-2628 BC, the Netherlands
| |
Collapse
|
25
|
Benisch F, Boles E. The bacterial Entner–Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron–sulfur cluster enzyme 6-phosphogluconate dehydratase. J Biotechnol 2014; 171:45-55. [DOI: 10.1016/j.jbiotec.2013.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/02/2013] [Accepted: 11/22/2013] [Indexed: 01/04/2023]
|
26
|
Analysis of cellodextrin transporters from Neurospora crassa in Saccharomyces cerevisiae for cellobiose fermentation. Appl Microbiol Biotechnol 2013; 98:1087-94. [DOI: 10.1007/s00253-013-5339-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 11/25/2022]
|
27
|
Anjos J, Rodrigues de Sousa H, Roca C, Cássio F, Luttik M, Pronk JT, Salema-Oom M, Gonçalves P. Fsy1, the sole hexose-proton transporter characterized in Saccharomyces yeasts, exhibits a variable fructose:H+ stoichiometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:201-7. [DOI: 10.1016/j.bbamem.2012.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/22/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
|
28
|
Lertwattanasakul N, Murata M, Rodrussamee N, Limtong S, Kosaka T, Yamada M. Essentiality of respiratory activity for pentose utilization in thermotolerant yeast Kluyveromyces marxianus DMKU 3-1042. Antonie van Leeuwenhoek 2013; 103:933-45. [PMID: 23338601 DOI: 10.1007/s10482-012-9874-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/31/2012] [Indexed: 11/26/2022]
Abstract
By random integrative mutagenesis with a kanMX4 cassette in Kluyveromyces marxianus DMKU 3-1042, we obtained three mutants of COX15, ATP25 and CYC3 encoding a cytochrome oxidase assembly factor (singleton), a transcription factor required for assembly of the Atp9p subunit of mitochondrial ATP synthase and cytochrome c heme lyase, respectively, as mutants lacking growth capability on xylose and/or arabinose. They exhibited incapability of growth on non-fermentable carbon sources, such as acetate or glycerol, and thermosensitiveness. Their biomass formation in glucose medium was reduced, but ethanol yields were increased with a high ethanol level in the medium, compared to those of the parental strain. Experiments with respiratory inhibitors showed that cox15 and cyc3, but not atp25, were able to grow in glucose medium containing antimycin A and that the atp25 mutant was KCN-resistant. Activities of NADH and ubiquinol oxidases in membrane fractions of each mutant became a half of that of the parent and negligible, respectively, and their remaining NADH oxidase activities were found to be resistant to KCN. Absolute absorption spectral analysis revealed that the peak corresponding to a + a 3 was very small in atp25 and negligible in cox15 and cyc3. These findings suggest that the K. marxianus strain possesses an alternative KCN-resistant oxidase that is located between primary dehydrogenases and the ubiquinone pool and that the respiratory activity is essential for utilization of pentoses.
Collapse
Affiliation(s)
- Noppon Lertwattanasakul
- Applied Molecular Bioscience, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
de Kok S, Yilmaz D, Daran JM, Pronk JT, van Maris AJA. In vivo analysis of Saccharomyces cerevisiae plasma membrane ATPase Pma1p isoforms with increased in vitro H+/ATP stoichiometry. Antonie van Leeuwenhoek 2012; 102:401-6. [PMID: 22488179 PMCID: PMC3397212 DOI: 10.1007/s10482-012-9730-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/22/2012] [Indexed: 11/24/2022]
Abstract
Plasma membrane H+-ATPase isoforms with increased H+/ATP ratios represent a desirable asset in yeast metabolic engineering. In vivo proton coupling of two previously reported Pma1p isoforms (Ser800Ala, Glu803Gln) with increased in vitro H+/ATP stoichiometries was analysed by measuring biomass yields of anaerobic maltose-limited chemostat cultures expressing only the different PMA1 alleles. In vivo H+/ATP stoichiometries of wildtype Pma1p and the two isoforms did not differ significantly.
Collapse
Affiliation(s)
- Stefan de Kok
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
de Kok S, Kozak BU, Pronk JT, van Maris AJA. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. FEMS Yeast Res 2012; 12:387-97. [PMID: 22404754 DOI: 10.1111/j.1567-1364.2012.00799.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/15/2012] [Accepted: 02/26/2012] [Indexed: 11/28/2022] Open
Abstract
Free-energy (ATP) conservation during product formation is crucial for the maximum product yield that can be obtained, but often overlooked in metabolic engineering strategies. Product pathways that do not yield ATP or even demand input of free energy (ATP) require an additional pathway to supply the ATP needed for product formation, cellular maintenance, and/or growth. On the other hand, product pathways with a high ATP yield may result in excess biomass formation at the expense of the product yield. This mini-review discusses the importance of the ATP yield for product formation and presents several opportunities for engineering free-energy (ATP) conservation, with a focus on sugar-based product formation by Saccharomyces cerevisiae. These engineering opportunities are not limited to the metabolic flexibility within S. cerevisiae itself, but also expression of heterologous reactions will be taken into account. As such, the diversity in microbial sugar uptake and phosphorylation mechanisms, carboxylation reactions, product export, and the flexibility of oxidative phosphorylation via the respiratory chain and H(+) -ATP synthase can be used to increase or decrease free-energy (ATP) conservation. For product pathways with a negative, zero or too high ATP yield, analysis and metabolic engineering of the ATP yield of product formation will provide a promising strategy to increase the product yield and simplify process conditions.
Collapse
Affiliation(s)
- Stefan de Kok
- Department of Biotechnology, Kluyver Centre for Genomics of Industrial Fermentation, Delft University of Technology, Delft, The Netherlands
| | | | | | | |
Collapse
|
31
|
Kok S, Nijkamp JF, Oud B, Roque FC, Ridder D, Daran JM, Pronk JT, Maris AJA. Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Res 2012. [DOI: 10.1111/j.1567-1364.2011.00787.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
32
|
de Kok S, Nijkamp JF, Oud B, Roque FC, de Ridder D, Daran JM, Pronk JT, van Maris AJA. Laboratory evolution of new lactate transporter genes in a jen1Δ mutant of Saccharomyces cerevisiae and their identification as ADY2 alleles by whole-genome resequencing and transcriptome analysis. FEMS Yeast Res 2012; 12:359-374. [PMID: 22257278 DOI: 10.1111/j.1567-1364.2012.00787.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Laboratory evolution is a powerful approach in applied and fundamental yeast research, but complete elucidation of the molecular basis of evolved phenotypes remains a challenge. In this study, DNA microarray-based transcriptome analysis and whole-genome resequencing were used to investigate evolution of novel lactate transporters in Saccharomyces cerevisiae that can replace Jen1p, the only documented S. cerevisiae lactate transporter. To this end, a jen1Δ mutant was evolved for growth on lactate in serial batch cultures. Two independent evolution experiments yielded growth on lactate as sole carbon source (0.14 and 0.18 h(-1) , respectively). Transcriptome analysis did not provide leads, but whole-genome resequencing showed different single-nucleotide changes (C755G/Leu219Val and C655G/Ala252Gly) in the acetate transporter gene ADY2. Introduction of these ADY2 alleles in a jen1Δ ady2Δ strain enabled growth on lactate (0.14 h(-1) for Ady2p(Leu219Val) and 0.12 h(-1) for Ady2p(Ala252Gly) ), demonstrating that these alleles of ADY2 encode efficient lactate transporters. Depth of coverage of DNA sequencing, combined with karyotyping, gene deletions and diagnostic PCR, showed that an isochromosome III (c. 475 kb) with two additional copies of ADY2(C755G) had been formed via crossover between retrotransposons YCLWΔ15 and YCRCΔ6. The isochromosome formation shows how even short periods of selective pressure can cause substantial karyotype changes.
Collapse
Affiliation(s)
- Stefan de Kok
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Basso TO, de Kok S, Dario M, do Espirito-Santo JCA, Müller G, Schlölg PS, Silva CP, Tonso A, Daran JM, Gombert AK, van Maris AJA, Pronk JT, Stambuk BU. Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab Eng 2011; 13:694-703. [PMID: 21963484 DOI: 10.1016/j.ymben.2011.09.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 11/17/2022]
Abstract
Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-proton symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9% higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5' coding sequences of SUC2, resulting in predominant (94%) cytosolic localization of invertase. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 90 generations of laboratory evolution in anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11% higher ethanol yield on sucrose in chemostat cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. After deletion of both copies of the duplicated AGT1, growth characteristics reverted to that of the unevolved SUC2 and iSUC2 strains. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.
Collapse
Affiliation(s)
- Thiago O Basso
- Department of Biotechnology, Delft University of Technology, Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nag A, Lunacek M, Graf PA, Chang CH. Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation. BMC SYSTEMS BIOLOGY 2011; 5:94. [PMID: 21682905 PMCID: PMC3148208 DOI: 10.1186/1752-0509-5-94] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 06/18/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. RESULTS Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter k(cat) and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase k(cat) and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to lower coupling between metabolic subsystems in different compartments. CONCLUSIONS We find that in the reference steady state, starch cleavage is the most significant determinant of carbon flux, with turnover of oligosaccharides playing a secondary role. Independence of stationary point with respect to initial dynamic variable values confirms a unique stationary point in the phase space of dynamically varying concentrations of the model network. Stromal maltooligosaccharide metabolism was highly coupled to the available starch concentration. From the most highly converged trajectories, distances between unique fixed points of phase spaces show that cytosolic maltose levels depend on the total concentrations of arabinogalactan and glucose present in the cytosol. In addition, cellular compartmentalization serves to dampen much, but not all, of the effects of one subnetwork on another, such that kinetic modeling of single compartments would likely capture most dynamics that are fast on the timescale of the transport reactions.
Collapse
Affiliation(s)
- Ambarish Nag
- Computational Sciences Center, National Renewable Energy Laboratory, 1617 Cole Boulevard, MS 1608, Golden, CO 80401, USA
| | | | | | | |
Collapse
|
35
|
de Kok S, Yilmaz D, Suir E, Pronk JT, Daran JM, van Maris AJA. Increasing free-energy (ATP) conservation in maltose-grown Saccharomyces cerevisiae by expression of a heterologous maltose phosphorylase. Metab Eng 2011; 13:518-26. [PMID: 21684346 DOI: 10.1016/j.ymben.2011.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/16/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Increasing free-energy conservation from the conversion of substrate into product is crucial for further development of many biotechnological processes. In theory, replacing the hydrolysis of disaccharides by a phosphorolytic cleavage reaction provides an opportunity to increase the ATP yield on the disaccharide. To test this concept, we first deleted the native maltose metabolism genes in Saccharomyces cerevisiae. The knockout strain showed no maltose-transport activity and a very low residual maltase activity (0.03 μmol mg protein(-1)min(-1)). Expression of a maltose phosphorylase gene from Lactobacillus sanfranciscensis and the MAL11 maltose-transporter gene resulted in relatively slow growth (μ(aerobic) 0.09 ± 0.03 h(-1)). Co-expression of Lactococcus lactis β-phosphoglucomutase accelerated maltose utilization via this route (μ(aerobic) 0.21 ± 0.01 h(-1), μ(anaerobic) 0.10 ± 0.00 h(-1)). Replacing maltose hydrolysis with phosphorolysis increased the anaerobic biomass yield on maltose in anaerobic maltose-limited chemostat cultures by 26%, thus demonstrating the potential of phosphorolysis to improve the free-energy conservation of disaccharide metabolism in industrial microorganisms.
Collapse
Affiliation(s)
- Stefan de Kok
- Department of Biotechnology, Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
Maas RHW, Bakker RR, Boersma AR, Bisschops I, Pels JR, de Jong E, Weusthuis RA, Reith H. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:14. [PMID: 18699996 PMCID: PMC2572599 DOI: 10.1186/1754-6834-1-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 08/12/2008] [Indexed: 05/11/2023]
Abstract
INTRODUCTION The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. RESULTS This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. CONCLUSION Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis).
Collapse
Affiliation(s)
- Ronald HW Maas
- Agrotechnology and Food Sciences Group, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
- Nobilon Bacteriological R&D, P.O. Box 320, 5830 AH Boxmeer, The Netherlands
| | - Robert R Bakker
- Agrotechnology and Food Sciences Group, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Arjen R Boersma
- Energy Research Centre of The Netherlands, Biomass, Coal and Environmental Research, PO Box 1, 1755 ZG Petten, The Netherlands
| | - Iemke Bisschops
- Lettinga Associates Foundation, PO Box 500, 6700 AM Wageningen, The Netherlands
| | - Jan R Pels
- Energy Research Centre of The Netherlands, Biomass, Coal and Environmental Research, PO Box 1, 1755 ZG Petten, The Netherlands
| | - Ed de Jong
- Agrotechnology and Food Sciences Group, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
- Avantium Technologies BV, Zekeringstraat, 1014 BV Amsterdam, The Netherlands
| | - Ruud A Weusthuis
- Agrotechnology and Food Sciences Group, Wageningen University and Research Centre, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Hans Reith
- Energy Research Centre of The Netherlands, Biomass, Coal and Environmental Research, PO Box 1, 1755 ZG Petten, The Netherlands
| |
Collapse
|
37
|
Stimulation of zero-trans rates of lactose and maltose uptake into yeasts by preincubation with hexose to increase the adenylate energy charge. Appl Environ Microbiol 2008; 74:3076-84. [PMID: 18378647 DOI: 10.1128/aem.00188-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initial rates of sugar uptake (zero-trans rates) are often measured by incubating yeast cells with radiolabeled sugars for 5 to 30 s and determining the radioactivity entering the cells. The yeast cells used are usually harvested from growth medium, washed, suspended in nutrient-free buffer, and stored on ice before they are assayed. With this method, the specific rates of zero-trans lactose uptake by Kluyveromyces lactis or recombinant Saccharomyces cerevisiae strains harvested from lactose fermentations were three- to eightfold lower than the specific rates of lactose consumption during fermentation. No significant extracellular beta-galactosidase activity was detected. The ATP content and adenylate energy charge (EC) of the yeasts were relatively low before the [(14)C]lactose uptake reactions were started. A short (1- to 7-min) preincubation of the yeasts with 10 to 30 mM glucose caused 1.5- to 5-fold increases in the specific rates of lactose uptake. These increases correlated with increases in EC (from 0.6 to 0.9) and ATP (from 4 to 8 micromol x g dry yeast(-1)). Stimulation by glucose affected the transport V(max) values, with smaller increases in K(m) values. Similar observations were made for maltose transport, using a brewer's yeast. These findings suggest that the electrochemical proton potential that drives transport through sugar/H(+) symports is significantly lower in the starved yeast suspensions used for zero-trans assays than in actively metabolizing cells. Zero-trans assays with such starved yeast preparations can produce results that seriously underestimate the capacity of sugar/H(+) symports. A short exposure to glucose allows a closer approach to the sugar/H(+) symport capacity of actively metabolizing cells.
Collapse
|
38
|
Pizarro F, Varela C, Martabit C, Bruno C, Pérez-Correa JR, Agosin E. Coupling kinetic expressions and metabolic networks for predicting wine fermentations. Biotechnol Bioeng 2008; 98:986-98. [PMID: 17497743 DOI: 10.1002/bit.21494] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Problematic fermentations are commonplace and cause wine industry producers substantial economic losses through wasted tank capacity and low value final products. Being able to predict such fermentations would enable enologists to take preventive actions. In this study we modeled sugar uptake kinetics and coupled them to a previously developed stoichiometric model, which describes the anaerobic metabolism of Saccharomyces cerevisiae. The resulting model was used to predict normal and slow fermentations under winemaking conditions. The effects of fermentation temperature and initial nitrogen concentration were modeled through an efficiency factor incorporated into the sugar uptake expressions. The model required few initial parameters to successfully reproduce glucose, fructose, and ethanol profiles of laboratory and industrial fermentations. Glycerol and biomass profiles were successfully predicted in nitrogen rich cultures. The time normal or slow wine fermentations needed to complete the process was predicted accurately, at different temperatures. Simulations with a model representing a genetically modified yeast fermentation, reproduced qualitatively well literature results regarding the formation of minor compounds involved in wine complexity and aroma. Therefore, the model also proves useful to explore the effects of genetic modifications on fermentation profiles.
Collapse
Affiliation(s)
- Francisco Pizarro
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
39
|
Development of a serial bioreactor system for direct ethanol production from starch usingAspergillus niger andSaccharomyces cerevisiae. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931356] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 2007; 74:937-53. [PMID: 17294186 DOI: 10.1007/s00253-006-0827-2] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/21/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
Production of bioethanol from forest and agricultural products requires a fermenting organism that converts all types of sugars in the raw material to ethanol in high yield and with a high rate. This review summarizes recent research aiming at developing industrial strains of Saccharomyces cerevisiae with the ability to ferment all lignocellulose-derived sugars. The properties required from the industrial yeast strains are discussed in relation to four benchmarks: (1) process water economy, (2) inhibitor tolerance, (3) ethanol yield, and (4) specific ethanol productivity. Of particular importance is the tolerance of the fermenting organism to fermentation inhibitors formed during fractionation/pretreatment and hydrolysis of the raw material, which necessitates the use of robust industrial strain background. While numerous metabolic engineering strategies have been developed in laboratory yeast strains, only a few approaches have been realized in industrial strains. The fermentation performance of the existing industrial pentose-fermenting S. cerevisiae strains in lignocellulose hydrolysate is reviewed. Ethanol yields of more than 0.4 g ethanol/g sugar have been achieved with several xylose-fermenting industrial strains such as TMB 3400, TMB 3006, and 424A(LNF-ST), carrying the heterologous xylose utilization pathway consisting of xylose reductase and xylitol dehydrogenase, which demonstrates the potential of pentose fermentation in improving lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Bärbel Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, PO Box 124, Lund 22100, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Papagianni M, Boonpooh Y, Mattey M, Kristiansen B. Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentration levels. J Ind Microbiol Biotechnol 2007; 34:301-9. [PMID: 17211636 DOI: 10.1007/s10295-006-0198-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 12/04/2006] [Indexed: 11/26/2022]
Abstract
Fed-batch culture is the mode of operation of choice in industrial baker's yeast fermentation. The particular mode of culture, operated at stable glucose and maltose concentration levels, was employed in this work in order to estimate important kinetic parameters in a process mostly described in the literature as batch or continuous culture. This way, the effects of a continuously falling sugar level during a batch process were avoided and therefore the effects of various (stable) sugar levels on growth kinetics were evaluated. Comparing the kinetics of growth and the inhibition by the substrate in cultures grown on glucose, which is the preferential sugar source for Saccharomyces cerevisiae, and maltose, the most common sugar source in industrial media for baker's yeast production, a milder inhibition effect by the substrate in maltose-grown cells was observed, as well as a higher yield coefficient. The observed sugar inhibition effect in glucostat cultures was taken into account in modeling substrate inhibition kinetics. The inhibition coefficient Ki increased with increasing sugar concentration levels, but it appeared to be unaffected by the type of substrate and almost equal for both substrates at elevated concentration levels.
Collapse
Affiliation(s)
- M Papagianni
- Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece.
| | | | | | | |
Collapse
|
42
|
Ishtar Snoek IS, Yde Steensma H. Factors involved in anaerobic growth ofSaccharomyces cerevisiae. Yeast 2007; 24:1-10. [PMID: 17192845 DOI: 10.1002/yea.1430] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Life in the absence of molecular oxygen requires several adaptations. Traditionally, the switch from respiratory metabolism to fermentation has attracted much attention in Saccharomyces cerevisiae, as this is the basis for the use of this yeast in the production of alcohol and in baking. It has also been clear that under anaerobic conditions the yeast is not able to synthesize sterols and unsaturated fatty acids and that for anaerobic growth these have to be added to the media. More recently it has been found that many more factors play a role. Several other biosynthetic reactions also require molecular oxygen and the yeast must have alternatives for these. In addition, the composition of the cell wall and cell membrane show major differences when aerobic and anaerobic cells are compared. All these changes are reflected by the observation that the transcription of more than 500 genes changes significantly between aerobically and anaerobically growing cultures. In this review we will give an overview of the factors that play a role in the survival in the absence of molecular oxygen.
Collapse
Affiliation(s)
- I S Ishtar Snoek
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
43
|
Jansen MLA, Krook DJJ, De Graaf K, van Dijken JP, Pronk JT, de Winde JH. Physiological characterization and fed-batch production of an extracellular maltase of Schizosaccharomyces pombe CBS 356. FEMS Yeast Res 2006; 6:888-901. [PMID: 16911511 DOI: 10.1111/j.1567-1364.2006.00091.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe CBS 356 exhibits extracellular maltase activity. This activity may be of commercial interest as it exhibited a low pH optimum (3.5) and a high affinity for maltose (Km of 7.0+/-1.8 mM). N-terminal sequencing of the protein indicates that it is the product of the AGL1 gene. Regulation of this gene occurs via a derepression/repression mechanism. In sugar- or nitrogen-limited chemostat cultures, the specific rate of enzyme production (q(p)) was independent of the nature of the carbon source (i.e. glucose or maltose), but synthesis was partially repressed by high sugar concentrations. Furthermore, q(p) increased linearly with specific growth rate (mu) between 0.04 and 0.10 h(-1). The enzyme is easily mass-produced in aerobic glucose-limited fed-batch cultures, in which the specific growth rate is controlled to prevent alcoholic fermentation. In fed-batch cultures in which biomass concentrations of 83 g L(-1) were attained, the enzyme concentration reached 58,000 Units per liter culture supernatant. Extracellular maltase may be used as a dough additive in order to prevent mechanisms such as maltose-induced glucose efflux and maltose-hypersensitivity that occur in maltose-consuming Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Mickel L A Jansen
- Kluyver Laboratory of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | | |
Collapse
|
44
|
Batista AS, Miletti LC, Stambuk BU. Sucrose fermentation by Saccharomyces cerevisiae lacking hexose transport. J Mol Microbiol Biotechnol 2005; 8:26-33. [PMID: 15741738 DOI: 10.1159/000082078] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sucrose is the major carbon source used by Saccharomyces cerevisiae during production of baker's yeast, fuel ethanol and several distilled beverages. It is generally accepted that sucrose fermentation proceeds through extracellular hydrolysis of the sugar, mediated by the periplasmic invertase, producing glucose and fructose that are transported into the cells and metabolized. In the present work we analyzed the contribution to sucrose fermentation of a poorly characterized pathway of sucrose utilization by S. cerevisiae cells, the active transport of the sugar through the plasma membrane and its intracellular hydrolysis. A yeast strain that lacks the major hexose transporters (hxt1-hxt7 and gal2) is incapable of growing on or fermenting glucose or fructose. Our results show that this hxt-null strain is still able to ferment sucrose due to direct uptake of the sugar into the cells. Deletion of the AGT1 gene, which encodes a high-affinity sucrose-H(+) symporter, rendered cells incapable of sucrose fermentation. Since sucrose is not an inducer of the permease, expression of the AGT1 must be constitutive in order to allow growth of the hxt-null strain on sucrose. The molecular characterization of active sucrose transport and fermentation by S. cerevisiae cells opens new opportunities to optimize yeasts for sugarcane-based industrial processes.
Collapse
Affiliation(s)
- Anderson S Batista
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | | |
Collapse
|
45
|
Jansen MLA, Daran-Lapujade P, de Winde JH, Piper MDW, Pronk JT. Prolonged maltose-limited cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity. Appl Environ Microbiol 2004; 70:1956-63. [PMID: 15066785 PMCID: PMC383169 DOI: 10.1128/aem.70.4.1956-1963.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 12/22/2003] [Indexed: 11/20/2022] Open
Abstract
Prolonged cultivation (>25 generations) of Saccharomyces cerevisiae in aerobic, maltose-limited chemostat cultures led to profound physiological changes. Maltose hypersensitivity was observed when cells from prolonged cultivations were suddenly exposed to excess maltose. This substrate hypersensitivity was evident from massive cell lysis and loss of viability. During prolonged cultivation at a fixed specific growth rate, the affinity for the growth-limiting nutrient (i.e., maltose) increased, as evident from a decreasing residual maltose concentration. Furthermore, the capacity of maltose-dependent proton uptake increased up to 2.5-fold during prolonged cultivation. Genome-wide transcriptome analysis showed that the increased maltose transport capacity was not primarily due to increased transcript levels of maltose-permease genes upon prolonged cultivation. We propose that selection for improved substrate affinity (ratio of maximum substrate consumption rate and substrate saturation constant) in maltose-limited cultures leads to selection for cells with an increased capacity for maltose uptake. At the same time, the accumulative nature of maltose-proton symport in S. cerevisiae leads to unrestricted uptake when maltose-adapted cells are exposed to a substrate excess. These changes were retained after isolation of individual cell lines from the chemostat cultures and nonselective cultivation, indicating that mutations were involved. The observed trade-off between substrate affinity and substrate tolerance may be relevant for metabolic engineering and strain selection for utilization of substrates that are taken up by proton symport.
Collapse
Affiliation(s)
- Mickel L A Jansen
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Jansen MLA, De Winde JH, Pronk JT. Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose. Appl Environ Microbiol 2002; 68:4259-65. [PMID: 12200274 PMCID: PMC124116 DOI: 10.1128/aem.68.9.4259-4265.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2002] [Accepted: 06/18/2002] [Indexed: 11/20/2022] Open
Abstract
When wild-type Saccharomyces cerevisiae strains pregrown in maltose-limited chemostat cultures were exposed to excess maltose, release of glucose into the external medium was observed. Control experiments confirmed that glucose release was not caused by cell lysis or extracellular maltose hydrolysis. To test the hypothesis that glucose efflux involved plasma membrane glucose transporters, experiments were performed with an S. cerevisiae strain in which all members of the hexose transporter (HXT) gene family had been eliminated and with an isogenic reference strain. Glucose efflux was virtually eliminated in the hexose-transport-deficient strain. This constitutes experimental proof that Hxt transporters facilitate export of glucose from S. cerevisiae cells. After exposure of the hexose-transport-deficient strain to excess maltose, an increase in the intracellular glucose level was observed, while the concentrations of glucose 6-phosphate and ATP remained relatively low. These results demonstrate that glucose efflux can occur as a result of uncoordinated expression of the initial steps of maltose metabolism and the subsequent reactions in glucose dissimilation. This is a relevant phenomenon for selection of maltose-constitutive strains for baking and brewing.
Collapse
Affiliation(s)
- Mickel L A Jansen
- Kluyver Laboratory of Biotechnology, Delft University of Technology, 2628 BC Delft, The Netherlands
| | | | | |
Collapse
|
47
|
van Dijken JP, van Tuijl A, Luttik MAH, Middelhoven WJ, Pronk JT. Novel pathway for alcoholic fermentation of delta-gluconolactone in the yeast Saccharomyces bulderi. J Bacteriol 2002; 184:672-8. [PMID: 11790736 PMCID: PMC139522 DOI: 10.1128/jb.184.3.672-678.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2001] [Accepted: 11/06/2001] [Indexed: 11/20/2022] Open
Abstract
Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments delta-gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for delta-gluconolactone fermentation operates in this yeast. In this pathway, delta-gluconolactone is first reduced to glucose via an NADPH-dependent glucose dehydrogenase (EC 1.1.1.47). After phosphorylation, half of the glucose is metabolized via the pentose phosphate pathway, yielding the NADPH required for the glucose-dehydrogenase reaction. The remaining half of the glucose is dissimilated via glycolysis. Involvement of this novel pathway in delta-gluconolactone fermentation in S. bulderi is supported by several experimental observations. (i) Fermentation of delta-gluconolactone and gluconate occurred only at low pH values, at which a substantial fraction of the substrate is present as delta-gluconolactone. Unlike gluconate, the latter compound is a substrate for glucose dehydrogenase. (ii) High activities of an NADP(+)-dependent glucose dehydrogenase were detected in cell extracts of anaerobic, delta-gluconolactone-grown cultures, but activity of this enzyme was not detected in glucose-grown cells. Gluconate kinase activity in cell extracts was negligible. (iii) During anaerobic growth on delta-gluconolactone, CO(2) production exceeded ethanol production by 35%, indicating that pyruvate decarboxylation was not the sole source of CO(2). (iv) Levels of the pentose phosphate pathway enzymes were 10-fold higher in delta-gluconolactone-grown anaerobic cultures than in glucose-grown cultures, consistent with the proposed involvement of this pathway as a primary dissimilatory route in delta-gluconolactone metabolism.
Collapse
Affiliation(s)
- Johannes P van Dijken
- Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Abstract
alpha-Glucosides are the most abundant fermentable sugars in the industrial applications of Saccharomyces cerevisiae, and the active transport across the plasma membrane is the rate-limiting step for their metabolism. In this report we performed a detailed kinetic analysis of the active alpha-glucoside transport system(s) present in a wild-type strain, and in strains with defined alpha-glucoside permeases. Our results indicate that the wild-type strain harbors active transporters with high and low affinity for maltose and trehalose, and low-affinity transport systems for maltotriose and alpha-methylglucoside. The maltose permease encoded by the MAL21 gene showed a high affinity (K(m) approximately 5 mM) for maltose, and a low affinity (K(m) approximately 90 mM) for trehalose. On the other hand, the alpha-glucoside permease encoded by the AGT1 gene had a high affinity (K(m) approximately 7 mM) for trehalose, a low affinity (K(m) approximately 18 mM) for maltose and maltotriose, and a very low affinity (K(m) approximately 35 mM) for alpha-methylglucoside.
Collapse
Affiliation(s)
- B U Stambuk
- Departamento de Bioquímica, Centro do Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | | |
Collapse
|
49
|
Abstract
Saccharomyces cerevisiae cells are able to grow using trehalose as a sole source of carbon and energy. However, the biomass yield obtained with trehalose was higher, and the specific growth rate lower, than that obtained with glucose or maltose. The respiratory inhibitor antimycin A prevented cell growth on trehalose, and no ethanol or glycerol was formed during batch growth on this carbon source. Thus, S. cerevisiae exhibits the KLUYVER effect for trehalose: this disaccharide is assimilated and respired, but, in contrast to glucose or maltose, it cannot be fermented. The high-affinity trehalose-H+ symporter encoded by the AGT1 gene is required for growth on trehalose. Analysis of the differences in the metabolism of maltose and trehalose (both disaccharides of glucose transported by active transport systems) indicated that the absence of trehalose fermentation is a consequence of low sugar influx into the cells during growth on this carbon source.
Collapse
Affiliation(s)
- E F Malluta
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
50
|
Overkamp KM, Bakker BM, Kötter P, van Tuijl A, de Vries S, van Dijken JP, Pronk JT. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 2000; 182:2823-30. [PMID: 10781551 PMCID: PMC101991 DOI: 10.1128/jb.182.10.2823-2830.2000] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During respiratory glucose dissimilation, eukaryotes produce cytosolic NADH via glycolysis. This NADH has to be reoxidized outside the mitochondria, because the mitochondrial inner membrane is impermeable to NADH. In Saccharomyces cerevisiae, this may involve external NADH dehydrogenases (Nde1p or Nde2p) and/or a glycerol-3-phosphate shuttle consisting of soluble (Gpd1p or Gpd2p) and membrane-bound (Gut2p) glycerol-3-phosphate dehydrogenases. This study addresses the physiological relevance of these mechanisms and the possible involvement of alternative routes for mitochondrial oxidation of cytosolic NADH. Aerobic, glucose-limited chemostat cultures of a gut2Delta mutant exhibited fully respiratory growth at low specific growth rates. Alcoholic fermentation set in at the same specific growth rate as in wild-type cultures (0.3 h(-1)). Apparently, the glycerol-3-phosphate shuttle is not essential for respiratory glucose dissimilation. An nde1Delta nde2Delta mutant already produced glycerol at specific growth rates of 0.10 h(-1) and above, indicating a requirement for external NADH dehydrogenase to sustain fully respiratory growth. An nde1Delta nde2Delta gut2Delta mutant produced even larger amounts of glycerol at specific growth rates ranging from 0.05 to 0.15 h(-1). Apparently, even at a low glycolytic flux, alternative mechanisms could not fully replace the external NADH dehydrogenases and glycerol-3-phosphate shuttle. However, at low dilution rates, the nde1Delta nde2Delta gut2Delta mutant did not produce ethanol. Since glycerol production could not account for all glycolytic NADH, another NADH-oxidizing system has to be present. Two alternative mechanisms for reoxidizing cytosolic NADH are discussed: (i) cytosolic production of ethanol followed by its intramitochondrial oxidation and (ii) a redox shuttle linking cytosolic NADH oxidation to the internal NADH dehydrogenase.
Collapse
Affiliation(s)
- K M Overkamp
- Kluyver Laboratory of Biotechnology, Delft University of Technology, NL-2628 BC Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|