1
|
Chen LM, Beck P, van Ede J, Pronk M, van Loosdrecht MCM, Lin Y. Anionic extracellular polymeric substances extracted from seawater-adapted aerobic granular sludge. Appl Microbiol Biotechnol 2024; 108:144. [PMID: 38231410 DOI: 10.1007/s00253-023-12954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Anionic polymers, such as heparin, have been widely applied in the chemical and medical fields, particularly for binding proteins (e.g., fibroblast growth factor 2 (FGF-2) and histones). However, the current animal-based production of heparin brings great risks, including resource shortages and product contamination. Recently, anionic compounds, nonulosonic acids (NulOs), and sulfated glycoconjugates were discovered in the extracellular polymeric substances (EPS) of aerobic granular sludge (AGS). Given the prevalence of anionic polymers, in marine biofilms, it was hypothesized that the EPS from AGS grown under seawater condition could serve as a raw material for producing the alternatives to heparin. This study aimed to isolate and enrich the anionic fractions of EPS and evaluate their potential application in the chemical and medical fields. The AGS was grown in a lab-scale reactor fed with acetate, under the seawater condition (35 g/L sea salt). The EPS was extracted with an alkaline solution at 80 °C and fractionated by size exclusion chromatography. Its protein binding capacity was evaluated by native gel electrophoresis. It was found that the two highest molecular weight fractions (438- > 14,320 kDa) were enriched with NulO and sulfate-containing glycoconjugates. The enriched fractions can strongly bind the two histones involved in sepsis and a model protein used for purification by heparin-column. These findings demonstrated possibilities for the application of the extracted EPS and open up a novel strategy for resource recovery. KEY POINTS: • High MW EPS from seawater-adapted AGS are dominant with sulfated groups and NulOs • Fifty-eight percent of the EPS is high MW of 68-14,320 kDa • EPS and its fractions can bind histones and fibroblast growth factor 2.
Collapse
Affiliation(s)
- Le Min Chen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Paula Beck
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Jitske van Ede
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
- Royal HaskoningDHV, Laan 1914 35, Amersfoort, 3800, AL, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
2
|
Benhadda F, Zykwinska A, Colliec-Jouault S, Sinquin C, Thollas B, Courtois A, Fuzzati N, Toribio A, Delbarre-Ladrat C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar Drugs 2023; 21:582. [PMID: 37999406 PMCID: PMC10672628 DOI: 10.3390/md21110582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Collapse
Affiliation(s)
- Fanny Benhadda
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Sylvia Colliec-Jouault
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | | | | | - Nicola Fuzzati
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Alix Toribio
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Christine Delbarre-Ladrat
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| |
Collapse
|
3
|
Dey G, Patil MP, Banerjee A, Sharma RK, Banerjee P, Maity JP, Singha S, Taharia M, Shaw AK, Huang HB, Kim GD, Chen CY. The role of bacterial exopolysaccharides (EPS) in the synthesis of antimicrobial silver nanomaterials: A state-of-the-art review. J Microbiol Methods 2023; 212:106809. [PMID: 37597775 DOI: 10.1016/j.mimet.2023.106809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
The emergence of multi-drug resistant (MDR) pathogens poses a significant global health concern due to the failure of conventional medical treatment. As a result, the development of several metallic (Ag, Au, Zn, Ti, etc.) nanoparticles, has gained prominence as an alternative to conventional antimicrobial therapies. Among these, green-synthesized silver nanoparticles (AgNPs) have gained significant attention due to their notable efficiency and broad spectrum of antimicrobial activity. Bacterial exopolysaccharides (EPS) have recently emerged as a promising biological substrate for the green synthesis of AgNPs. EPS possess polyanionic functional groups (hydroxyl, carboxylic, sulfate, and phosphate) that effectively reduce and stabilize AgNPs. EPS-mediated AgNPs exhibit a wide range of antimicrobial activity against various pathogenic microbes, including Gram-positive and Gram-negative bacteria, as well as fungi. The extraction and purification of bacterial EPS play a vital role in obtaining high-quality and -quantity EPS for industrial applications. This study focuses on the comprehensive methodology of EPS extraction and purification, encompassing screening, fermentation optimization, pretreatment, protein elimination, precipitation, and purification. The review specifically highlights the utilization of bacterial EPS-mediated AgNPs, covering EPS extraction, the synthesis mechanism of green EPS-mediated AgNPs, their characterization, and their potential applications as antimicrobial agents against pathogens. These EPS-mediated AgNPs offer numerous advantages, including biocompatibility, biodegradability, non-toxicity, and eco-friendliness, making them a promising alternative to traditional antimicrobials and opening new avenues in nanotechnology-based approaches to combat microbial infections.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Maheshkumar Prakash Patil
- Industry-University Cooperation Foundation, Pukyong National University, 45 Yongso-ro, Busan 48513, Republic of Korea
| | - Aparna Banerjee
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Talca 3467987, Chile
| | - Raju Kumar Sharma
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India.
| | - Shuvendu Singha
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Md Taharia
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Arun Kumar Shaw
- Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, 45 Yongso-ro, Busan 48513, Republic of Korea
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Ming-Shung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan.
| |
Collapse
|
4
|
Sun L, Hu X, Wang Q, Niu H, Pei C, Li Y, Xia C. Alteromonas salexigens sp. nov., isolated from coastal seawater. Arch Microbiol 2023; 205:317. [PMID: 37612565 DOI: 10.1007/s00203-023-03658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
A Gram-negative, aerobic, short rod-shaped bacterium, designated ASW11-19T, was isolated from a coastal seawater sample of the Yellow Sea, PR China. Strain ASW11-19T grew optimally at 37 °C, 3.0-5.0% (w/v) NaCl and pH 7.5. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain ASW11-19T belonged to the genus Alteromonas and most closely related to Alteromonas profundi 345S023T and Alteromonas fortis 1T (98.4%, both). The draft genome was 3.55 Mb with 3150 protein-coding genes, 18 contigs, and a DNA G+C content was 44.4%. The digital DNA-DNA hybridization and average nucleotide identity values were below the species-delineating thresholds. The major fatty acids were summed feature 3 (C16:1ω7c/C16:1ω6c), summed feature 8 (C18:1ω7c/C18:1ω6c), and C16:0. The sole respiratory quinone was ubiquinone 8. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, phospholipid, and two unidentified lipids. Based on these genomic data, phenotypic and chemotaxonomic properties, strain ASW11-19T is considered to represent a novel species of the genus Alteromonas. The name Alteromonas salexigens sp.nov. is proposed for ASW11-19T (=MCCC 1K07239T=KCTC 92247T).
Collapse
Affiliation(s)
- Liping Sun
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xinyuan Hu
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Qin Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Huijing Niu
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Caixia Pei
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yi Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Chengqiang Xia
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
5
|
Ibrahim HAH, Abou Elhassayeb HE, El-Sayed WMM. Potential functions and applications of diverse microbial exopolysaccharides in marine environments. J Genet Eng Biotechnol 2022; 20:151. [PMID: 36318392 PMCID: PMC9626724 DOI: 10.1186/s43141-022-00432-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Exopolysaccharides (EPSs) from microorganisms are essential harmless natural biopolymers used in applications including medications, nutraceuticals and functional foods, cosmetics, and insecticides. Several microbes can synthesize and excrete EPSs with chemical properties and structures that make them suitable for several important applications. Microbes secrete EPSs outside their cell walls, as slime or as a "jelly" into the extracellular medium. These EPS-producing microbes are ubiquitous and can be isolated from aquatic and terrestrial environments, such as freshwater, marine water, wastewater, and soils. They have also been isolated from extreme niches like hot springs, cold waters, halophilic environments, and salt marshes. Recently, microbial EPSs have attracted interest for their applications such as environmental bio-flocculants because they are degradable and nontoxic. However, further efforts are required for the cost-effective and industrial-scale commercial production of microbial EPSs. This review focuses on the exopolysaccharides obtained from several extremophilic microorganisms, their synthesis, and manufacturing optimization for better cost and productivity. We also explored their role and applications in interactions between several organisms.
Collapse
Affiliation(s)
- Hassan A. H. Ibrahim
- Marine Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516 Egypt
| | - Hala E. Abou Elhassayeb
- Marine Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516 Egypt
| | - Waleed M. M. El-Sayed
- Marine Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516 Egypt
| |
Collapse
|
6
|
Ecological and Biotechnological Relevance of Mediterranean Hydrothermal Vent Systems. MINERALS 2022. [DOI: 10.3390/min12020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Marine hydrothermal systems are a special kind of extreme environments associated with submarine volcanic activity and characterized by harsh chemo-physical conditions, in terms of hot temperature, high concentrations of CO2 and H2S, and low pH. Such conditions strongly impact the living organisms, which have to develop adaptation strategies to survive. Hydrothermal systems have attracted the interest of researchers due to their enormous ecological and biotechnological relevance. From ecological perspective, these acidified habitats are useful natural laboratories to predict the effects of global environmental changes, such as ocean acidification at ecosystem level, through the observation of the marine organism responses to environmental extremes. In addition, hydrothermal vents are known as optimal sources for isolation of thermophilic and hyperthermophilic microbes, with biotechnological potential. This double aspect is the focus of this review, which aims at providing a picture of the ecological features of the main Mediterranean hydrothermal vents. The physiological responses, abundance, and distribution of biotic components are elucidated, by focusing on the necto-benthic fauna and prokaryotic communities recognized to possess pivotal role in the marine ecosystem dynamics and as indicator species. The scientific interest in hydrothermal vents will be also reviewed by pointing out their relevance as source of bioactive molecules.
Collapse
|
7
|
Concórdio-Reis P, Alves VD, Moppert X, Guézennec J, Freitas F, Reis MAM. Characterization and Biotechnological Potential of Extracellular Polysaccharides Synthesized by Alteromonas Strains Isolated from French Polynesia Marine Environments. Mar Drugs 2021; 19:522. [PMID: 34564184 PMCID: PMC8470090 DOI: 10.3390/md19090522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/04/2023] Open
Abstract
Marine environments comprise almost three quarters of Earth's surface, representing the largest ecosystem of our planet. The vast ecological and metabolic diversity found in marine microorganisms suggest that these marine resources have a huge potential as sources of novel commercially appealing biomolecules, such as exopolysaccharides (EPS). Six Alteromonas strains from different marine environments in French Polynesia atolls were selected for EPS extraction. All the EPS were heteropolysaccharides composed of different monomers, including neutral monosaccharides (glucose, galactose, and mannose, rhamnose and fucose), and uronic acids (glucuronic acid and galacturonic acid), which accounted for up to 45.5 mol% of the EPS compositions. Non-carbohydrate substituents, such as acetyl (0.5-2.1 wt%), pyruvyl (0.2-4.9 wt%), succinyl (1-1.8 wt%), and sulfate (1.98-3.43 wt%); and few peptides (1.72-6.77 wt%) were also detected. Thermal analysis demonstrated that the EPS had a degradation temperature above 260 °C, and high char yields (32-53%). Studies on EPS functional properties revealed that they produce viscous aqueous solutions with a shear thinning behavior and could form strong gels in two distinct ways: by the addition of Fe2+, or in the presence of Mg2+, Cu2+, or Ca2+ under alkaline conditions. Thus, these EPS could be versatile materials for different applications.
Collapse
Affiliation(s)
- Patrícia Concórdio-Reis
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - Xavier Moppert
- Pacific Biotech SAS, BP 140 289, 98 701 Arue, Tahiti, French Polynesia;
| | - Jean Guézennec
- AiMB (Advices in Marine Biotechnology), 17 Rue d’Ouessant, 29280 Plouzané, France;
| | - Filomena Freitas
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Maria A. M. Reis
- Associate Laboratory i4HB–Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (P.C.-R.); (M.A.M.R.)
- UCIBIO–Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Nikolova C, Gutierrez T. Biosurfactants and Their Applications in the Oil and Gas Industry: Current State of Knowledge and Future Perspectives. Front Bioeng Biotechnol 2021; 9:626639. [PMID: 33659240 PMCID: PMC7917263 DOI: 10.3389/fbioe.2021.626639] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022] Open
Abstract
Surfactants are a group of amphiphilic chemical compounds (i.e., having both hydrophobic and hydrophilic domains) that form an indispensable component in almost every sector of modern industry. Their significance is evidenced from the enormous volumes that are used and wide diversity of applications they are used in, ranging from food and beverage, agriculture, public health, healthcare/medicine, textiles, and bioremediation. A major drive in recent decades has been toward the discovery of surfactants from biological/natural sources-namely bio-surfactants-as most surfactants that are used today for industrial applications are synthetically-manufactured via organo-chemical synthesis using petrochemicals as precursors. This is problematic, not only because they are derived from non-renewable resources, but also because of their environmental incompatibility and potential toxicological effects to humans and other organisms. This is timely as one of today's key challenges is to reduce our reliance on fossil fuels (oil, coal, gas) and to move toward using renewable and sustainable sources. Considering the enormous genetic diversity that microorganisms possess, they offer considerable promise in producing novel types of biosurfactants for replacing those that are produced from organo-chemical synthesis, and the marine environment offers enormous potential in this respect. In this review, we begin with an overview of the different types of microbial-produced biosurfactants and their applications. The remainder of this review discusses the current state of knowledge and trends in the usage of biosurfactants by the Oil and Gas industry for enhancing oil recovery from exhausted oil fields and as dispersants for combatting oil spills.
Collapse
Affiliation(s)
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Chen M, Song Y, Feng X, Tang K, Jiao N, Tian J, Zhang Y. Genomic Characteristics and Potential Metabolic Adaptations of Hadal Trench Roseobacter and Alteromonas Bacteria Based on Single-Cell Genomics Analyses. Front Microbiol 2020; 11:1739. [PMID: 32793171 PMCID: PMC7393951 DOI: 10.3389/fmicb.2020.01739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022] Open
Abstract
Heterotrophic bacteria such as those from the Roseobacter group and genus Alteromonas dominate the hadal zones of oceans; however, we know little about the genomic characteristics and potential metabolic adaptations of hadal trench-dwelling bacteria. Here, we report multiple single amplified genomes (SAGs) belonging to Roseobacter and Alteromonas, recovered from the hadal zone of the Mariana Trench. While phylogenetic analyses show that these hadal SAGs cluster with their surface relatives, an analysis of genomic recruitment indicates that they have higher relative abundances in the hadal zone of the Mariana Trench. Comparative genomic analyses between the hadal SAGs and reference genomes of closely related shallow-water relatives indicate that genes involved in the mobilome (prophages and transposons) are overrepresented among the unique genes of the hadal Roseobacter and Alteromonas SAGs; the functional proteins encoded by this category of genes also shows higher amino acid sequence variation than those encoded by other gene sets within the Roseobacter SAGs. We also found that genes involved in cell wall/membrane/envelope biogenesis, transcriptional regulation, and metal transport may be important for the adaptation of hadal Roseobacter and Alteromonas lineages. These results imply that the modification of cell surface-related proteins and transporters is the major direction of genomic evolution in Roseobacter and Alteromonas bacteria adapting to the hadal environment, and that prophages and transposons may be the key factors driving this process.
Collapse
Affiliation(s)
- Mingming Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Yu Song
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Xiaoyuan Feng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Jiwei Tian
- Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Multiple Megaplasmids Confer Extremely High Levels of Metal Tolerance in Alteromonas Strains. Appl Environ Microbiol 2020; 86:AEM.01831-19. [PMID: 31757820 DOI: 10.1128/aem.01831-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Alteromonas is a widely distributed genus of marine Gammaproteobacteria, with representatives shown to be key players in diverse processes, including biogeochemical cycling and biofouling of marine substrata. While Alteromonas spp. are early colonizers of copper-based antifouling paints on marine vessels, their mechanism of tolerance is poorly understood. PacBio whole-genome sequencing of Alteromonas macleodii strains CUKW and KCC02, isolated from Cu/Ni alloy test coupons submerged in oligotrophic coastal waters, indicated the presence of multiple megaplasmids (ca. 200 kb) in both. A pulsed-field gel electrophoresis method was developed and used to confirm the presence of multiple megaplasmids in these two strains; it was then used to screen additional Alteromonas strains for which little to no sequencing data exist. Plasmids were not detected in any of the other strains. Bioinformatic analysis of the CUKW and KCC02 plasmids identified numerous genes associated with metal resistance. Copper resistance orthologs from both the Escherichia coli Cue and Cus and Pseudomonas syringae Cop systems were present, at times as multiple copies. Metal growth assays in the presence of copper, cobalt, manganese, and zinc performed with 10 Alteromonas strains demonstrated the ability of CUKW and KCC02 to grow at metal concentrations inhibitory to all the other strains tested. This study reports multiple megaplasmids in Alteromonas strains. Bioinformatic analysis of the CUKW and KCC02 plasmids indicate that they harbor elements of the Tra system conjugation apparatus, although their type of mobility remains to be experimentally verified.IMPORTANCE Copper is commonly used as an antifouling agent on ship hulls. Alteromonas spp. are early colonizers of copper-based antifouling paint, but their mechanism of tolerance is poorly understood. Sequencing of A. macleodii strains isolated from copper test materials for marine ships indicated the presence of multiple megaplasmids. Plasmids serve as key vectors in horizontal gene transfer and confer traits such as metal resistance, detoxification, ecological interaction, and antibiotic resistance. Bioinformatic analysis identified many metal resistance genes and genes associated with mobility. Understanding the molecular mechanisms and capacity for gene transfer within marine biofilms provides a platform for the development of novel antifouling solutions targeting genes involved in copper tolerance and biofilm formation.
Collapse
|
11
|
Oves M, Rauf MA, Hussain A, Qari HA, Khan AAP, Muhammad P, Rehman MT, Alajmi MF, Ismail IIM. Antibacterial Silver Nanomaterial Synthesis From Mesoflavibacter zeaxanthinifaciens and Targeting Biofilm Formation. Front Pharmacol 2019; 10:801. [PMID: 31427961 PMCID: PMC6688106 DOI: 10.3389/fphar.2019.00801] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
Considering the significance of biological and eco-friendly nanomaterials, in the present study, we have synthesized silver nanoparticles from the exopolysaccharide of recently recovered bacterial strain CEES51 from the Red Sea coastal area of Jeddah, Saudi Arabia. 16S ribosomal RNA gene sequencing was used to characterize the isolated bacteria, and it was identified as Mesoflavibacter zeaxanthinifaciens and assigned an accession number MH707257.1 GenBank. The bacterial strain is an excellent exopolysaccharide producer and survived at hypersaline (30%) and high-temperature (50°C) conditions. The bacterial exopolysaccharides were employed for the fabrication of silver nanoparticles at room temperature. UV-visible spectrophotometer optimized the synthesized nanoparticles, and their size was determined by Nanophox particle size analyzer and dynamic light scattering. Additionally, the X-ray powder diffraction and Fourier-transform infrared spectroscopy studies also approved its crystalline nature and the involvement of organic functional groups in their formation. The synthesized nanomaterials were tested for their antibacterial and antibiofilm properties against pathogenic microorganisms Bacillus subtilis and methicillin-resistant Staphylococcus aureus. The antimicrobial property showed time, and dose-dependent response with a maximum of zone inhibition was observed at around 22 and 18 mm at a dose of 50 µg/well against B. subtilis and S. aureus and a minimum inhibitory concentration of 8 and 10 µg/ml, respectively. Furthermore, the synthesized silver nanoparticles possessed a substantial antibiofilm property and were also found to be biocompatible as depicted by red blood cell lysis assay and their interaction with peripheral blood mononuclear cells and human embryonic kidney 293 cells. Therefore, Mesoflavibacter zeaxanthinifaciens is found to be an excellent source for exopolysaccharide synthesis that assists in the silver nanoparticle production.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Ahmar Rauf
- International Joint Centre for Biomedical Innovation, Henan University, Kaifeng, China
| | - Afzal Hussain
- Department of Phamocognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Huda A Qari
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Pir Muhammad
- International Joint Centre for Biomedical Innovation, Henan University, Kaifeng, China
| | - Md Tabish Rehman
- Department of Phamocognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Fahad Alajmi
- Department of Phamocognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Iqbal I M Ismail
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemistry, King Abdulaziz, University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Hassan SWM, Ibrahim HAH. Production, Characterization and Valuable Applications of Exopolysaccharides from Marine Bacillus subtilis SH1. Pol J Microbiol 2019; 66:449-461. [PMID: 29319513 DOI: 10.5604/01.3001.0010.7001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exopolysaccharides (EPSs) are high molecular weight polymers consisting of different sugar residues they are preferable for replacing synthetic polymers as they are degradable and nontoxic. Many microorganisms possess the ability to synthesize and excrete exopolysaccharides with novel chemical compositions, properties and structures to have potential applications in different fields. The present study attempt to optimize the production of EPS by marine Bacillus subtilis SH1 in addition to characterization and investigation of different valuable applications. Effect of medium type, incubation period and pH were studied using the one factor at a time experiments. It was shown that the highest productivity (24 gl-1) of exopolysaccharides was recorded by using yeast malt glucose medium with pH 9 at the fourth day of incubation. Experimental design using Response Surface Methodology (RSM) was applied to optimize various nutrients at different concentrations. The finalized optimized medium contained (gl-1) glucose (5), peptone (2.5), yeast extract (4.5) and malt extract (4.5) increased the production of EPS to 33.8 gl-1 with1.4 fold increase compared to the basal medium. Chemical characterization of the extracted EPS showed that, FTIR spectra exhibited bands at various regions. Moreover, HPLC chromatogram indicated that the EPS was a heteropolysaccharide consisting of maltose and rhamnose. The study was extended to evaluate the potentiality of the extracted polysaccharides in different medical applications. Results concluded that, EPS exhibited antibacterial activity against Aeromonas hydrophila, Pseudomonas aeruginosa and Streptococcus faecalis and the highest antibacterial activity (7.8, 9 and 10.4 AU/ml) was against S. faecalis at 50, 100 and 200 mg/ml respectively. The EPS exhibited various degree of antitumor effect toward the tested cell lines (MCF-7, HCT-116 and HepG2). In addition, EPS exhibited antiviral activity at 500 μg/ml. The antioxidant capacity increased with increasing the concentration of the sample. Scanning electron microscopic analysis showed that EPS had compact film-like structure, which could make it a useful in the future applications as in preparing plasticized film.
Collapse
Affiliation(s)
- Sahar W M Hassan
- Marine Microbiology Department, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Hassan A H Ibrahim
- Marine Microbiology Department, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| |
Collapse
|
13
|
Deep-sea Hydrothermal Vent Bacteria as a Source of Glycosaminoglycan-Mimetic Exopolysaccharides. Molecules 2019; 24:molecules24091703. [PMID: 31052416 PMCID: PMC6539532 DOI: 10.3390/molecules24091703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022] Open
Abstract
Bacteria have developed a unique strategy to survive in extreme environmental conditions through the synthesis of an extracellular polymeric matrix conferring upon the cells a protective microenvironment. The main structural component of this complex network constitutes high-molecular weight hydrophilic macromolecules, namely exopolysaccharides (EPS). EPS composition with the presence of particular chemical features may closely be related to the specific conditions in which bacteria evolve. Deep-sea hydrothermal vent bacteria have already been shown to produce EPS rich in hexosamines and uronic acids, frequently bearing some sulfate groups. Such a particular composition ensures interesting functional properties, including biological activities mimicking those known for glycosaminoglycans (GAG). The aim of the present study was to go further into the exploration of the deep-sea hydrothermal vent IFREMER (French Research Institute for Exploitation of the Sea) collection of bacteria to discover new strains able to excrete EPS endowed with GAG-like structural features. After the screening of our whole collection containing 692 strains, 38 bacteria have been selected for EPS production at the laboratory scale. EPS-producing strains were identified according to 16S rDNA phylogeny. Chemical characterization of the obtained EPS highlighted their high chemical diversity with the presence of atypical compositional patterns. These EPS constitute potential bioactives for a number of biomedical applications, including regenerative medicines and cancer treatment.
Collapse
|
14
|
Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 2019; 60:1475-1495. [PMID: 30740985 DOI: 10.1080/10408398.2019.1575791] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbial exopolysaccharides (EPS) are an abundant and important group of compounds that can be secreted by bacteria, fungi and algae. The biotechnological production of these substances represents a faster alternative when compared to chemical and plant-derived production with the possibility of using industrial wastes as substrates, a feasible strategy after a comprehensive study of factors that may affect the synthesis by the chosen microorganism and desirable final product. Another possible difficulty could be the extraction and purification methods, a crucial part of the production of microbial polysaccharides, since different methods should be adopted. In this sense, this review aims to present the biotechnological production of microbial exopolysaccharides, exploring the production steps, optimization processes and current applications of these relevant bioproducts.
Collapse
Affiliation(s)
- Mayara C S Barcelos
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Kele A C Vespermann
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Franciele M Pelissari
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Laboratory of Food Biotechnology - Food Engineering, Institute of Science and Technology - UFVJM - Diamantina, Minas Gerais, Brazil
| |
Collapse
|
15
|
Characterization of an extracellular polysaccharide produced by a Saharan bacterium Paenibacillus tarimensis REG 0201M. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1406-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
16
|
Nagaraj V, Skillman L, Li D, Ho G. Review - Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:586-599. [PMID: 29975885 DOI: 10.1016/j.jenvman.2018.05.088] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 05/26/2023]
Abstract
Biofouling in seawater reverse osmosis (SWRO) membranes is a critical issue faced by the desalination industry worldwide. The major cause of biofouling is the irreversible attachment of recalcitrant biofilms formed by bacteria and their extracellular polymeric substances (EPS) on membrane surfaces. Transparent exopolymer particles (TEP) and protobiofilms are recently identified as important precursors of membrane fouling. Despite considerable amount of research on SWRO biofouling, the control of biofouling still remains a challenge. While adoption of better pretreatment methods may help in preventing membrane biofouling in new desalination setups, it is also crucial to effectively disperse old, recalcitrant biofilms and prolong membrane life in operational plants. Most current practices employ the use of broad spectrum biocides and chemicals that target bacterial cells to disperse mature biofilms, which are evidently inefficient. EPS, being known as the strongest structural framework of biofilms, it is essential to breakdown and disintegrate the EPS components for effective biofilm removal. To achieve this, it is necessary to understand the chemical composition and key elements that constitute the EPS of major biofouling bacterial groups in multi-species, mature biofilms. However, significant gaps in understanding the complexity of EPS are evident by the failure to achieve effective prevention and mitigation of fouling in most cases. Some of the reasons may be difficulty in sampling membranes from fully operational full-scale plants, poor understanding of microbial communities and their ecological shifts under dynamic operational conditions within the desalination process, selection of inappropriate model species for laboratory-scale biofouling studies, and the laborious process of extraction and purification of EPS. This article reviews the novel findings on key aspects of SWRO membrane fouling and control measures with particular emphasis on the key sugars in EPS. As a novel strategy to alleviate biofouling, future control methods may be aimed towards specifically disintegrating and breaking down these key sugars rather than using broad spectrum chemicals such as biocides that are currently used in the industry.
Collapse
Affiliation(s)
- Veena Nagaraj
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Lucy Skillman
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Dan Li
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| | - Goen Ho
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
17
|
Gutierrez T, Morris G, Ellis D, Bowler B, Jones M, Salek K, Mulloy B, Teske A. Hydrocarbon-degradation and MOS-formation capabilities of the dominant bacteria enriched in sea surface oil slicks during the Deepwater Horizon oil spill. MARINE POLLUTION BULLETIN 2018; 135:205-215. [PMID: 30301032 DOI: 10.1016/j.marpolbul.2018.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
A distinctive feature of the Deepwater Horizon (DwH) oil spill was the formation of significant quantities of marine oil snow (MOS), for which the mechanism(s) underlying its formation remain unresolved. Here, we show that Alteromonas strain TK-46(2), Pseudoalteromonas strain TK-105 and Cycloclasticus TK-8 - organisms that became enriched in sea surface oil slicks during the spill - contributed to the formation of MOS and/or dispersion of the oil. In roller-bottle incubations, Alteromonas cells and their produced EPS yielded MOS, whereas Pseudoalteromonas and Cycloclasticus did not. Interestingly, the Cycloclasticus strain was able to degrade n-alkanes concomitantly with aromatics within the complex oil mixture, which is atypical for members of this genus. Our findings, for the first time, provide direct evidence on the hydrocarbon-degrading capabilities for these bacteria enriched during the DwH spill, and that bacterial cells of certain species and their produced EPS played a direct role in MOS formation.
Collapse
Affiliation(s)
- Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | - Gordon Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Dave Ellis
- Institute of Chemical Sciences (ICS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Bernard Bowler
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Martin Jones
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Karina Salek
- Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Barbara Mulloy
- Laboratory for Molecular Structure, National Institute for Biological Standards and Control (NIBSC), Hertfordshire, UK
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications. Mar Drugs 2018; 16:md16020069. [PMID: 29461505 PMCID: PMC5852497 DOI: 10.3390/md16020069] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 11/16/2022] Open
Abstract
The marine environment is the largest aquatic ecosystem on Earth and it harbours microorganisms responsible for more than 50% of total biomass of prokaryotes in the world. All these microorganisms produce extracellular polymers that constitute a substantial part of the dissolved organic carbon, often in the form of exopolysaccharides (EPS). In addition, the production of these polymers is often correlated to the establishment of the biofilm growth mode, during which they are important matrix components. Their functions include adhesion and colonization of surfaces, protection of the bacterial cells and support for biochemical interactions between the bacteria and the surrounding environment. The aim of this review is to present a summary of the status of the research about the structures of exopolysaccharides from marine bacteria, including capsular, medium released and biofilm embedded polysaccharides. Moreover, ecological roles of these polymers, especially for those isolated from extreme ecological niches (deep-sea hydrothermal vents, polar regions, hypersaline ponds, etc.), are reported. Finally, relationships between the structure and the function of the exopolysaccharides are discussed.
Collapse
|
20
|
How to Succeed in Marketing Marine Natural Products for Nutraceutical, Pharmaceutical and Cosmeceutical Markets. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Delbarre-Ladrat C, Salas ML, Sinquin C, Zykwinska A, Colliec-Jouault S. Bioprospecting for Exopolysaccharides from Deep-Sea Hydrothermal Vent Bacteria: Relationship between Bacterial Diversity and Chemical Diversity. Microorganisms 2017; 5:microorganisms5030063. [PMID: 28930185 PMCID: PMC5620654 DOI: 10.3390/microorganisms5030063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 12/23/2022] Open
Abstract
Many bacteria biosynthesize structurally diverse exopolysaccharides (EPS) and excrete them into their surrounding environment. The EPS functional features have found many applications in industries such as cosmetics and pharmaceutics. In particular, some EPS produced by marine bacteria are composed of uronic acids, neutral sugars, and N-acetylhexosamines, and may also bear some functional sulfate groups. This suggests that they can share common structural features with glycosaminoglycans (GAG) like the two EPS (HE800 and GY785) originating from the deep sea. In an attempt to discover new EPS that may be promising candidates as GAG-mimetics, fifty-one marine bacterial strains originating from deep-sea hydrothermal vents were screened. The analysis of the EPS chemical structure in relation to bacterial species showed that Vibrio, Alteromonas, and Pseudoalteromonas strains were the main producers. Moreover, they produced EPS with distinct structural features, which might be useful for targeting marine bacteria that could possibly produce structurally GAG-mimetic EPS.
Collapse
Affiliation(s)
- Christine Delbarre-Ladrat
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies,Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France.
| | | | - Corinne Sinquin
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies,Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France.
| | - Agata Zykwinska
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies,Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France.
| | - Sylvia Colliec-Jouault
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies,Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes, France.
| |
Collapse
|
22
|
Zhang Z, Cai R, Zhang W, Fu Y, Jiao N. A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810. Mar Drugs 2017; 15:md15060175. [PMID: 28604644 PMCID: PMC5484125 DOI: 10.3390/md15060175] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 11/16/2022] Open
Abstract
Most marine bacteria can produce exopolysaccharides (EPS). However, very few structures of EPS produced by marine bacteria have been determined. The characterization of EPS structure is important for the elucidation of their biological functions and ecological roles. In this study, the structure of EPS produced by a marine bacterium, Alteromonas sp. JL2810, was characterized, and the biosorption of the EPS for heavy metals Cu2+, Ni2+, and Cr6+ was also investigated. Nuclear magnetic resonance (NMR) analysis indicated that the JL2810 EPS have a novel structure consisting of the repeating unit of [-3)-α-Rhap-(1→3)-α-Manp-(1→4)-α-3OAc-GalAp-(1→]. The biosorption of the EPS for heavy metals was affected by a medium pH; the maximum biosorption capacities for Cu2+ and Ni2+ were 140.8 ± 8.2 mg/g and 226.3 ± 3.3 mg/g at pH 5.0; however, for Cr6+ it was 215.2 ± 5.1 mg/g at pH 5.5. Infrared spectrometry analysis demonstrated that the groups of O-H, C=O, and C-O-C were the main function groups for the adsorption of JL2810 EPS with the heavy metals. The adsorption equilibrium of JL2810 EPS for Ni2+ was further analyzed, and the equilibrium data could be better represented by the Langmuir isotherm model. The novel EPS could be potentially used in industrial applications as a novel bio-resource for the removal of heavy metals.
Collapse
Affiliation(s)
- Zilian Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| | - Ruanhong Cai
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| | - Wenhui Zhang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| | - Yingnan Fu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
23
|
Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci Rep 2017; 7:41193. [PMID: 28117455 PMCID: PMC5259719 DOI: 10.1038/srep41193] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 01/19/2023] Open
Abstract
Acidobacteria have been described as one of the most abundant and ubiquitous bacterial phyla in soil. However, factors contributing to this ecological success are not well elucidated mainly due to difficulties in bacterial isolation. Acidobacteria may be able to survive for long periods in soil due to protection provided by secreted extracellular polymeric substances that include exopolysaccharides (EPSs). Here we present the first study to characterize EPSs derived from two strains of Acidobacteria from subdivision 1 belonging to Granulicella sp. EPS are unique heteropolysaccharides containing mannose, glucose, galactose and xylose as major components, and are modified with carboxyl and methoxyl functional groups that we characterized by Fourier transform infrared (FTIR) spectroscopy. Both EPS compounds we identified can efficiently emulsify various oils (sunflower seed, diesel, and liquid paraffin) and hydrocarbons (toluene and hexane). Moreover, the emulsions are more thermostable over time than those of commercialized xanthan. Acidobacterial EPS can now be explored as a source of biopolymers that may be attractive and valuable for industrial applications due to their natural origin, sustainability, biodegradability and low toxicity.
Collapse
|
24
|
Exopolysaccharides of Halophilic Microorganisms: An Overview. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
25
|
Exopolysaccharide production by a marine Pseudoalteromonas sp. strain isolated from Madeira Archipelago ocean sediments. N Biotechnol 2016; 33:460-6. [DOI: 10.1016/j.nbt.2016.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/21/2016] [Accepted: 02/16/2016] [Indexed: 11/16/2022]
|
26
|
Kambourova M, Radchenkova N, Tomova I, Bojadjieva I. Thermophiles as a Promising Source of Exopolysaccharides with Interesting Properties. BIOTECHNOLOGY OF EXTREMOPHILES: 2016. [DOI: 10.1007/978-3-319-13521-2_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Georgieva MN, Little CTS, Ball AD, Glover AG. Mineralization of Alvinella polychaete tubes at hydrothermal vents. GEOBIOLOGY 2015; 13:152-169. [PMID: 25556400 PMCID: PMC4359681 DOI: 10.1111/gbi.12123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/29/2014] [Indexed: 06/04/2023]
Abstract
Alvinellid polychaete worms form multilayered organic tubes in the hottest and most rapidly growing areas of deep-sea hydrothermal vent chimneys. Over short periods of time, these tubes can become entirely mineralized within this environment. Documenting the nature of this process in terms of the stages of mineralization, as well as the mineral textures and end products that result, is essential for our understanding of the fossilization of polychaetes at hydrothermal vents. Here, we report in detail the full mineralization of Alvinella spp. tubes collected from the East Pacific Rise, determined through the use of a wide range of imaging and analytical techniques. We propose a new model for tube mineralization, whereby mineralization begins as templating of tube layer and sublayer surfaces and results in fully mineralized tubes comprised of multiple concentric, colloform, pyrite bands. Silica appeared to preserve organic tube layers in some samples. Fine-scale features such as protein fibres, extracellular polymeric substances and two types of filamentous microbial colonies were also found to be well preserved within a subset of the tubes. The fully mineralized Alvinella spp. tubes do not closely resemble known ancient hydrothermal vent tube fossils, corroborating molecular evidence suggesting that the alvinellids are a relatively recent polychaete lineage. We also compare pyrite and silica preservation of organic tissues within hydrothermal vents to soft tissue preservation in sediments and hot springs.
Collapse
Affiliation(s)
- M N Georgieva
- School of Earth and Environment, University of LeedsLeeds, UK
- Life Sciences Department, The Natural History MuseumLondon, UK
| | - C T S Little
- School of Earth and Environment, University of LeedsLeeds, UK
| | - A D Ball
- Imaging and Analysis Centre, The Natural History MuseumLondon, UK
| | - A G Glover
- Life Sciences Department, The Natural History MuseumLondon, UK
| |
Collapse
|
28
|
Du J, Dong C, Lai Q, Liu Y, Xie Y, Shao Z. Pseudobowmanella zhangzhouensis gen. nov., sp. nov., isolated from the surface freshwater of the Jiulong River in China. Antonie van Leeuwenhoek 2015; 107:741-8. [PMID: 25707905 DOI: 10.1007/s10482-014-0368-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
A strain, JS7-9(T), which was isolated from the surface freshwater of the Jiulong River, China, was subjected to taxonomic study. The bacterium was Gram-negative, facultatively anaerobic, rod-shaped and motile by means of a single polar flagellum. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JS7-9(T) is affiliated to the family Alteromonadaceae, showing 90.5-94.2 % of 16S rRNA gene sequence similarity with the genera Bowmanella (94.0-94.2 %), Aestuariibacter (93.0-93.5 %), Glaciecola (91.0-93.1 %), Alteromonas (90.5-93.1 %) and Salinimonas (90.6-91.8 %). The major fatty acids were identified as C16:0, Sum In Feature 3 (C16:1 ω7c/ω6c), Sum In Feature 8 (C18:1 ω7c/ω6c) and C17:1 ω8c, and Q-8 as the predominant isoprenoid quinone. Based on the phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain JS7-9(T) is considered to represent a novel species of a novel genus of the family Alteromonadaceae, for which the name Pseudobowmanella zhangzhouensis gen. nov., sp. nov. is proposed, with the type strain JS7-9(T) (=MCCC 1A00758(T) = KCTC 42143(T)).
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, The Third Institute of State Oceanic Administration, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, 361005, China
| | | | | | | | | | | |
Collapse
|
29
|
Vignesh V, Sathiyanarayanan G, Sathishkumar G, Parthiban K, Sathish-Kumar K, Thirumurugan R. Formulation of iron oxide nanoparticles using exopolysaccharide: evaluation of their antibacterial and anticancer activities. RSC Adv 2015. [DOI: 10.1039/c5ra03134f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formulation of FeONPs using bacterial exopolysaccharide and their significance.
Collapse
Affiliation(s)
- Venkatasamy Vignesh
- Laboratory of Aquabiotics/Nanoscience
- Department of Animal Science
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
| | - Ganesan Sathiyanarayanan
- Department of Plant Science
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Gnanasekar Sathishkumar
- Department of Biotechnology and Genetic Engineering
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Karuppaiah Parthiban
- Laboratory of Aquabiotics/Nanoscience
- Department of Animal Science
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
| | | | - Ramasamy Thirumurugan
- Laboratory of Aquabiotics/Nanoscience
- Department of Animal Science
- School of Life Sciences
- Bharathidasan University
- Tiruchirappalli-620024
| |
Collapse
|
30
|
Winkel M, Pjevac P, Kleiner M, Littmann S, Meyerdierks A, Amann R, Mußmann M. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems. FEMS Microbiol Ecol 2014; 90:731-46. [DOI: 10.1111/1574-6941.12429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 12/01/2022] Open
Affiliation(s)
- Matthias Winkel
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Petra Pjevac
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Manuel Kleiner
- Department of Symbiosis; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Sten Littmann
- Department of Biogeochemistry; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Anke Meyerdierks
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Rudolf Amann
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Marc Mußmann
- Department of Molecular Ecology; Max Planck Institute for Marine Microbiology; Bremen Germany
| |
Collapse
|
31
|
Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2014; 2:85. [PMID: 25340049 PMCID: PMC4189415 DOI: 10.3389/fchem.2014.00085] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/20/2014] [Indexed: 11/13/2022] Open
Abstract
Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bioactive compounds should also be proposed for a sustainable industry.
Collapse
Affiliation(s)
| | - Corinne Sinquin
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Lou Lebellenger
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Agata Zykwinska
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Sylvia Colliec-Jouault
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| |
Collapse
|
32
|
P P, AB A, PD R. Sulfated exopolysaccharide produced by Labrenzia sp. PRIM-30, characterization and prospective applications. Int J Biol Macromol 2014; 69:290-5. [DOI: 10.1016/j.ijbiomac.2014.05.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
|
33
|
Mehta A, Sidhu C, Pinnaka AK, Roy Choudhury A. Extracellular polysaccharide production by a novel osmotolerant marine strain of Alteromonas macleodii and its application towards biomineralization of silver. PLoS One 2014; 9:e98798. [PMID: 24932690 PMCID: PMC4059621 DOI: 10.1371/journal.pone.0098798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/06/2014] [Indexed: 01/14/2023] Open
Abstract
The present study demonstrates exopolysaccharide production by an osmotolerant marine isolate and also describes further application of the purified polysaccharide for production of colloidal suspension of silver nanoparticles with narrow size distribution. Phylogenetic analysis based on 16S r RNA gene sequencing revealed close affinity of the isolate to Alteromonas macleodii. Unlike earlier reports, where glucose was used as the carbon source, lactose was found to be the most suitable substrate for polysaccharide production. The strain was capable of producing 23.4 gl(-1) exopolysaccharide with a productivity of 7.8 gl(-1) day(-1) when 15% (w/v) lactose was used as carbon source. Furthermore, the purified polysaccharide was able to produce spherical shaped silver nanoparticles of around 70 nm size as characterized by Uv-vis spectroscopy, Dynamic light scattering and Transmission electron microscopy. These observations suggested possible commercial potential of the isolated strain for production of a polysaccharide which has the capability of synthesizing biocompatible metal nanoparticle.
Collapse
Affiliation(s)
- Ananya Mehta
- CSIR - Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Chandni Sidhu
- CSIR - Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Anil Kumar Pinnaka
- CSIR - Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Anirban Roy Choudhury
- CSIR - Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
- * E-mail:
| |
Collapse
|
34
|
Carvalho ML, Doma J, Sztyler M, Beech I, Cristiani P. The study of marine corrosion of copper alloys in chlorinated condenser cooling circuits: The role of microbiological components. Bioelectrochemistry 2014; 97:2-6. [DOI: 10.1016/j.bioelechem.2013.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 10/03/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
35
|
Radchenkova N, Tomova A, Kambourova M. Biosynthesis of an Exopolysaccharide Produced byBrevibacillus Thermoruber438. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Martins A, Vieira H, Gaspar H, Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 2014; 12:1066-101. [PMID: 24549205 PMCID: PMC3944531 DOI: 10.3390/md12021066] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/14/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
The marine environment harbors a number of macro and micro organisms that have developed unique metabolic abilities to ensure their survival in diverse and hostile habitats, resulting in the biosynthesis of an array of secondary metabolites with specific activities. Several of these metabolites are high-value commercial products for the pharmaceutical and cosmeceutical industries. The aim of this review is to outline the paths of marine natural products discovery and development, with a special focus on the compounds that successfully reached the market and particularly looking at the approaches tackled by the pharmaceutical and cosmetic companies that succeeded in marketing those products. The main challenges faced during marine bioactives discovery and development programs were analyzed and grouped in three categories: biodiversity (accessibility to marine resources and efficient screening), supply and technical (sustainable production of the bioactives and knowledge of the mechanism of action) and market (processes, costs, partnerships and marketing). Tips to surpass these challenges are given in order to improve the market entry success rates of highly promising marine bioactives in the current pipelines, highlighting what can be learned from the successful and unsuccessful stories that can be applied to novel and/or ongoing marine natural products discovery and development programs.
Collapse
Affiliation(s)
- Ana Martins
- BIOALVO, S.A., Tec Labs Centro de Inovação, Campus da FCUL, Campo Grande, Lisboa 1749-016, Portugal.
| | - Helena Vieira
- BIOALVO, S.A., Tec Labs Centro de Inovação, Campus da FCUL, Campo Grande, Lisboa 1749-016, Portugal.
| | - Helena Gaspar
- Centro de Química e Bioquímica (CQB) and Departamento de Química e Bioquímica (DQB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| | - Susana Santos
- Centro de Química e Bioquímica (CQB) and Departamento de Química e Bioquímica (DQB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| |
Collapse
|
37
|
Zhang Z, Li Z, Jiao N. Effects of d-Amino Acids on the EPS Production and Cell Aggregation of Alteromonas macleodii Strain JL2069. Curr Microbiol 2014; 68:751-5. [DOI: 10.1007/s00284-014-0520-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/27/2013] [Indexed: 02/02/2023]
|
38
|
Zhao S, Cao F, Zhang H, Zhang L, Zhang F, Liang X. Structural Characterization and Biosorption of Exopolysaccharides from Anoxybacillus sp. R4-33 Isolated from Radioactive Radon Hot Spring. Appl Biochem Biotechnol 2014; 172:2732-46. [DOI: 10.1007/s12010-013-0680-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
39
|
Ecological roles and biotechnological applications of marine and intertidal microbial biofilms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 146:163-205. [PMID: 24817086 DOI: 10.1007/10_2014_271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This review is a retrospective of ecological effects of bioactivities produced by biofilms of surface-dwelling marine/intertidal microbes as well as of the industrial and environmental biotechnologies developed exploiting the knowledge of biofilm formation. Some examples of significant interest pertaining to the ecological aspects of biofilm-forming species belonging to the Roseobacter clade include autochthonous bacteria from turbot larvae-rearing units with potential application as a probiotic as well as production of tropodithietic acid and indigoidine. Species of the Pseudoalteromonas genus are important examples of successful surface colonizers through elaboration of the AlpP protein and antimicrobial agents possessing broad-spectrum antagonistic activity against medical and environmental isolates. Further examples of significance comprise antiprotozoan activity of Pseudoalteromonas tunicata elicited by violacein, inhibition of fungal colonization, antifouling activities, inhibition of algal spore germination, and 2-n-pentyl-4-quinolinol production. Nitrous oxide, an important greenhouse gas, emanates from surface-attached microbial activity of marine animals. Marine and intertidal biofilms have been applied in the biotechnological production of violacein, phenylnannolones, and exopolysaccharides from marine and tropical intertidal environments. More examples of importance encompass production of protease, cellulase, and xylanase, melanin, and riboflavin. Antifouling activity of Bacillus sp. and application of anammox bacterial biofilms in bioremediation are described. Marine biofilms have been used as anodes and cathodes in microbial fuel cells. Some of the reaction vessels for biofilm cultivation reviewed are roller bottle, rotating disc bioreactor, polymethylmethacrylate conico-cylindrical flask, fixed bed reactor, artificial microbial mats, packed-bed bioreactors, and the Tanaka photobioreactor.
Collapse
|
40
|
Role of Bacterial Exopolysaccharides (EPS) in the Fate of the Oil Released during the Deepwater Horizon Oil Spill. PLoS One 2013; 8:e67717. [PMID: 23826336 PMCID: PMC3694863 DOI: 10.1371/journal.pone.0067717] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/21/2013] [Indexed: 11/19/2022] Open
Abstract
Halomonas species are recognized for producing exopolysaccharides (EPS) exhibiting amphiphilic properties that allow these macromolecules to interface with hydrophobic substrates, such as hydrocarbons. There remains a paucity of knowledge, however, on the potential of Halomonas EPS to influence the biodegradation of hydrocarbons. In this study, the well-characterized amphiphilic EPS produced by Halomonas species strain TG39 was shown to effectively increase the solubilization of aromatic hydrocarbons and enhance their biodegradation by an indigenous microbial community from oil-contaminated surface waters collected during the active phase of the Deepwater Horizon oil spill. Three Halomonas strains were isolated from the Deepwater Horizon site, all of which produced EPS with excellent emulsifying qualities and shared high (97-100%) 16S rRNA sequence identity with strain TG39 and other EPS-producing Halomonas strains. Analysis of pyrosequence data from surface water samples collected during the spill revealed several distinct Halomonas phylotypes, of which some shared a high sequence identity (≥97%) to strain TG39 and the Gulf spill isolates. Other bacterial groups comprising members with well-characterized EPS-producing qualities, such as Alteromonas, Colwellia and Pseudoalteromonas, were also found enriched in surface waters, suggesting that the total pool of EPS in the Gulf during the spill may have been supplemented by these organisms. Roller bottle incubations with one of the Halomonas isolates from the Deepwater Horizon spill site demonstrated its ability to effectively produce oil aggregates and emulsify the oil. The enrichment of EPS-producing bacteria during the spill coupled with their capacity to produce amphiphilic EPS is likely to have contributed to the ultimate removal of the oil and to the formation of oil aggregates, which were a dominant feature observed in contaminated surface waters.
Collapse
|
41
|
Teramoto M, Queck SY, Ohnishi K. Specialized Hydrocarbonoclastic Bacteria Prevailing in Seawater around a Port in the Strait of Malacca. PLoS One 2013; 8:e66594. [PMID: 23824553 PMCID: PMC3688937 DOI: 10.1371/journal.pone.0066594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Major degraders of petroleum hydrocarbons in tropical seas have been indicated only by laboratory culturing and never through observing the bacterial community structure in actual environments. To demonstrate the major degraders of petroleum hydrocarbons spilt in actual tropical seas, indigenous bacterial community in seawater at Sentosa (close to a port) and East Coast Park (far from a port) in Singapore was analyzed. Bacterial species was more diverse at Sentosa than at the Park, and the composition was different: γ-Proteobacteria (57.3%) dominated at Sentosa, while they did not at the Park. Specialized hydrocarbonoclastic bacteria (SHCB), which use limited carbon sources with a preference for petroleum hydrocarbons, were found as abundant species at Sentosa, indicating petroleum contamination. On the other hand, SHCB were not the abundant species at the Park. The abundant species of SHCB at Sentosa were Oleibacter marinus and Alcanivorax species (strain 2A75 type), which have previously been indicated by laboratory culturing as important petroleum-aliphatic-hydrocarbon degraders in tropical seas. Together with the fact that SHCB have been identified as major degraders of petroleum hydrocarbons in marine environments, these results demonstrate that the O. marinus and Alcanivorax species (strain 2A75 type) would be major degraders of petroleum aliphatic hydrocarbons spilt in actual tropical seas.
Collapse
Affiliation(s)
- Maki Teramoto
- Oceanography Section, Kochi University, Kohasu, Oko, Nankoku, Kochi, Japan
- * E-mail:
| | - Shu Yeong Queck
- School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore, Singapore
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
42
|
Modeling the Impact of Diffuse Vent Microorganisms Along Mid-Ocean Ridges and Flanks. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/178gm11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
43
|
Besaury L, Bodilis J, Delgas F, Andrade S, De la Iglesia R, Ouddane B, Quillet L. Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. MARINE POLLUTION BULLETIN 2013; 67:16-25. [PMID: 23298430 DOI: 10.1016/j.marpolbul.2012.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/01/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed in copper and non-copper-impacted Chilean marine sediment cores by the use of molecular tools. We demonstrated that number of copA and cusA genes per bacterial cell was higher in the contaminated sediment, and that copA gene was more abundant than cusA gene in the impacted sediment. The molecular phylogeny of the two copper-resistance genes was studied and reveals an impact of copper on the genetic composition of copA and cusA genes.
Collapse
Affiliation(s)
- Ludovic Besaury
- Faculté des Sciences, Université de Rouen, CNRS UMR 6143-M2C, Groupe de Microbiologie, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Wery N, Cambon-Bonavita MA, Lesongeur F, Barbier G. Diversity of anaerobic heterotrophic thermophiles isolated from deep-sea hydrothermal vents of the Mid-Atlantic Ridge. FEMS Microbiol Ecol 2012; 41:105-14. [PMID: 19709244 DOI: 10.1111/j.1574-6941.2002.tb00971.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Abstract During the 'MARVEL' oceanographical cruise performed in September 1997, samples were collected from the deep-sea vents of hydrothermal sites on the Mid-Atlantic Ridge. Eighty-four thermophilic and hyperthermophilic heterotrophic microorganisms were isolated using different culture media containing cellobiose, xylan, starch, lipidic or proteic substrates. These isolates were obtained in anaerobic conditions, at 65 degrees C, 85 degrees C and 95 degrees C. Fifty of them were classified using amplified ribosomal DNA restriction analysis, random amplified polymorphic DNA and 16S rDNA sequencing. The strains classified have been assigned to the archaeal order Thermococcales and to the bacterial orders Thermotogales and Clostridiales. Variations in growth temperature and carbon sources were efficient enough to generate taxonomic diversity within enrichment cultures. Presumptive new genera and new species were isolated. Two isolates were confirmed as type strains of new species of new genera recently described: Marinitoga camini and Caloranaerobacter azorensis.
Collapse
Affiliation(s)
- Nathalie Wery
- Laboratoire de Microbiologie et de Biotechnologie des Extrêmophiles, DRV-VP, IFREMER Centre de Brest, BP70, 29280 Plouzané, France
| | | | | | | |
Collapse
|
45
|
Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain. Carbohydr Polym 2012; 90:49-59. [DOI: 10.1016/j.carbpol.2012.04.059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/19/2012] [Accepted: 04/25/2012] [Indexed: 11/20/2022]
|
46
|
Le Costaouëc T, Cérantola S, Ropartz D, Ratiskol J, Sinquin C, Colliec-Jouault S, Boisset C. Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.04.059 pmid: 2475100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Gugliandolo C, Lentini V, Spanò A, Maugeri T. New bacilli from shallow hydrothermal vents of Panarea Island (Italy) and their biotechnological potential. J Appl Microbiol 2012; 112:1102-12. [DOI: 10.1111/j.1365-2672.2012.05272.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Michotey V, Guasco S, Boeuf D, Morezzi N, Durieux B, Charpy L, Bonin P. Spatio-temporal diversity of free-living and particle-attached prokaryotes in the tropical lagoon of Ahe atoll (Tuamotu Archipelago) and its surrounding oceanic waters. MARINE POLLUTION BULLETIN 2012; 65:525-537. [PMID: 22289391 DOI: 10.1016/j.marpolbul.2012.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
Spatio-temporal variability of prokaryotic water column communities inside and outside a Polynesian tropical lagoon subjected to pearl oysters farming was assessed in terms of abundance by quantitative PCR and diversity by DGGE. Communities and operational taxonomic units (OTUs) were analysed according to dry/rainy seasons and free-living/particle-attached state. Bacterial density was higher in the lagoon compared to ocean and a seasonal trend was observed. No influence of the localisation within lagoon or of the planktonic/attached states was noticed on bacterial abundance and diversity. The OTUs belonged to Cyanobacteria, to heterotrophic groups in Proteobacteria and Flavobacteria. Archaeal abundance showed seasonal tendency and particle-prevalence, but no effect of lagoon or oceanic location was observed. Lagoon and oceanic archaeal diversity were different and Euryarchaeota (MG-II, MBG, and Halobacteria) were detected. During the dry season, planktonic and particle-associated community differed, whereas at rainy season, both communities were similar and included members usually associated with coral.
Collapse
Affiliation(s)
- V Michotey
- Aix-Marseille Université, Mediterranean Institute of Oceanography (MIO), 13288 Marseille Cedex 09, France.
| | | | | | | | | | | | | |
Collapse
|
49
|
Rigouin C, Delbarre-Ladrat C, Ratiskol J, Sinquin C, Colliec-Jouault S, Dion M. Screening of enzymatic activities for the depolymerisation of the marine bacterial exopolysaccharide HE800. Appl Microbiol Biotechnol 2012; 96:143-51. [DOI: 10.1007/s00253-011-3822-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 12/19/2022]
|
50
|
Abstract
Polysaccharides are ubiquitous in animals and plant cells where they play a significant role in a number of physiological situations e.g. hydration, mechanical properties of cell walls and ionic regulation. This review concentrates on heparin-like entities from marine procaryotes and eukaryotes. Carbohydrates from marine prokaryotes offer a significant structural chemodiversity with novel material and biological properties. Cyanobacteria are Gram-negative photosynthetic prokaryotes considered as a rich source of novel molecules, and marine bacteria are a rich source of polysaccharides with novel structures, which may be a good starting point from which to synthesise heparinoid molecules. For example, some sulphated polysaccharides have been isolated from gamma-proteobacteria such as Alteromonas and Pseudoalteromonas sp. In contrast to marine bacteria, all marine algae contain sulphated wall polysaccharides, whereas such polymers are not found in terrestrial plants. In their native form, or after chemical modifications, a range of polysaccharides isolated from marine organisms have been described that have anticoagulant, anti-thrombotic, anti-tumour, anti-proliferative, anti-viral or anti-inflammatory activities.In spite of the enormous potential of sulphated oligosaccharides from marine sources, their technical and pharmaceutical usage is still limited because of the high complexity of these molecules. Thus, the production of tailor-made oligo- and polysaccharidic structures by biocatalysis is also a growing field of interest in biotechnology.
Collapse
Affiliation(s)
- S Colliec-Jouault
- Laboratoire de Biotechnologie et Molécules Marines, Nantes Cedex 3, France.
| | | | | |
Collapse
|