1
|
Sheu DS, Chen JL, Sheu SY, Jane WN. Enhancing polyhydroxyalkanoate production in Cupriavidus sp. L7L through wcaJ gene deletion. Int J Biol Macromol 2023; 253:127439. [PMID: 37848111 DOI: 10.1016/j.ijbiomac.2023.127439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Cupriavidus sp. L7L synthesizes a high content of ductile polyhydroxyalkanoate. However, during fermentation, the medium's viscosity gradually increases, eventually reaching a level similar to 93 % glycerol, leading to fermentation termination and difficulties in cell harvest. A non-mucoid variant was isolated from a mini-Tn5 mutant library with the transposon inserted at the promoter sequence upstream of the wcaJ gene. Deletion of wcaJ eliminated the mucoid-colony appearance. The complementation experiment confirmed the association between wcaJ gene expression and mucoid-colony formation. Additionally, the wild-type strain exhibited a faster specific growth rate than the deletion strain using levulinate (Lev) as a carbon source. In fed-batch fermentation, Cupriavidus sp. L7L∆wcaJ showed similar PHA content and monomer composition to the wild-type strain. However, the extended fermentation time resulted in a 42 % increase in PHA concentration. After fed-batch fermentation, the deletion strain's medium had only 8.75 % of the wild-type strain's extracellular polymeric substance content. Moreover, the deletion strain's medium had a much lower viscosity (1.04 mPa·s) than the wild-type strain (194.7 mPa·s), making bacterial cell collection easier through centrifugation. In summary, Cupriavidus sp. L7L∆wcaJ effectively addressed difficulties in cell harvest, increased PHA production, and Lev-to-PHA conversion efficiency, making these characteristics advantageous for industrial-scale PHA production.
Collapse
Affiliation(s)
- Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Ji-Long Chen
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Wann-Neng Jane
- Plant Cell Biology Core Lab, Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Chandra R, Thakor A, Mekonnen TH, Charles TC, Lee HS. Production of polyhydroxyalkanoate (PHA) copolymer from food waste using mixed culture for carboxylate production and Pseudomonas putida for PHA synthesis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117650. [PMID: 36878060 DOI: 10.1016/j.jenvman.2023.117650] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Production of polyhydroxyalkanoates (PHAs) with high concentration of carboxylate, that was accumulated from solid state fermentation (SSF) of food waste (FW), was tested using Pseudomonas putida strain KT2440. Mixed-culture SSF of FW supplied in a high concentration of carboxylate, which caused a high PHA production of 0.56 g PHA/g CDM under nutrients control. Interestingly, this high PHA fraction in CDM was almost constant at 0.55 g PHA/g CDM even under high nutrients concentration (25 mM NH4+), probably due to high reducing power maintained by high carboxylate concentration. PHA characterization indicated that the dominant PHA building block produced was 3-hydroxybutyrate, followed by 3-hydroxy-2-methylvalerate and 3-hydroxyhenxanoate. Carboxylate profiles before and after PHA production suggested that acetate, butyrate, and propionate were the main precursors to PHA via several metabolic pathways. Our result support that mixed culture SSF of FW for high concentration carboxylate and P. putida for PHA production enables sustainable production of PHA in cost-effective manners.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Aranksha Thakor
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Trevor C Charles
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada; KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH) 200 Hyeoksin-ro, Naju-si, Jeollanam-do, Republic of Korea.
| |
Collapse
|
3
|
Zhou W, Bergsma S, Colpa DI, Euverink GJW, Krooneman J. Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118033. [PMID: 37156023 DOI: 10.1016/j.jenvman.2023.118033] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Overusing non-degradable plastics causes a series of environmental issues, inferring a switch to biodegradable plastics. Polyhydroxyalkanoates (PHAs) are promising biodegradable plastics that can be produced by many microbes using various substrates from waste feedstock. However, the cost of PHAs production is higher compared to fossil-based plastics, impeding further industrial production and applications. To provide a guideline for reducing costs, the potential cheap waste feedstock for PHAs production have been summarized in this work. Besides, to increase the competitiveness of PHAs in the mainstream plastics economy, the influencing parameters of PHAs production have been discussed. The PHAs degradation has been reviewed related to the type of bacteria, their metabolic pathways/enzymes, and environmental conditions. Finally, the applications of PHAs in different fields have been presented and discussed to induce comprehension on the practical potentials of PHAs.
Collapse
Affiliation(s)
- Wen Zhou
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Simon Bergsma
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Dana Irene Colpa
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Gert-Jan Willem Euverink
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands
| | - Janneke Krooneman
- Products and Processes for Biotechnology, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands; Bioconversion and Fermentation Technology, Research Centre Biobased Economy, Hanze University of Applied Sciences, Groningen, the Netherlands.
| |
Collapse
|
4
|
Perdrier C, Doineau E, Leroyer L, Subileau M, Angellier-Coussy H, Preziosi-Belloy L, Grousseau E. Impact of overflow vs. limitation of propionic acid on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
5
|
Thorough Investigation of the Effects of Cultivation Factors on Polyhydroalkanoates (PHAs) Production by Cupriavidus necator from Food Waste-Derived Volatile Fatty Acids. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Volatile fatty acids (VFAs) have become promising candidates for replacing the conventional expensive carbon sources used to produce polyhydroxyalkanoates (PHAs). Considering the inhibitory effect of VFAs at high concentrations and the influence of VFA mixture composition on bacterial growth and PHA production, a thorough investigation of different cultivation parameters such as VFA concentrations and composition (synthetic and waste-derived VFAs) media, pH, aeration, C/N ratio, and type of nitrogen sources was conducted. Besides common VFAs of acetic, butyric and propionic acids, Cupriavidus necator showed good capability for assimilating longer-chained carboxylate compounds of valeric, isovaleric, isobutyric and caproic acids in feasible concentrations of 2.5–5 g/L. A combination of pH control at 7.0, C/N of 6, and aeration of 1 vvm was found to be the optimal condition for the bacterial growth, yielding a maximum PHA accumulation and PHA yield on biomass of 1.5 g/L and 56%, respectively, regardless of the nitrogen sources. The accumulated PHA was found to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with the percentage of hydroxybutyrate in the range 91–96%. Any limitation in the cultivation factors was found to enhance the PHA yield, the promotion of which was a consequence of the reduction in biomass production.
Collapse
|
6
|
Kökpınar Ö, Altun M. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of Cupriavidus necator H16. Prep Biochem Biotechnol 2022; 53:532-541. [PMID: 36007876 DOI: 10.1080/10826068.2022.2114009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Because of its application potential and biodegradability, poly(3-hydroxybutyrate-co-3-hydroxyvalerate;PHBV), a member of the polyhydroxyalkanoates (PHA) biopolymer family, is one of the most extensively studied PHA. High PHBV productivity with a significant amount of hydroxyvalerate (HV) content is very appealing for commercial scale production. The goal of this study was to investigate the efficiency of various defined limitation strategies, namely nitrogen, phosphorus, and oxygen-limitation, for high yield PHBV production by Cupriavidus necator H16 with increased HV unit using waste frying vegetable oil (WFO) and propionic acid (PA) in a high cell density culture (5 L bioreactor). With optimized WFO and PA feeding, highest PHBV harvest (121.7 ± 2.59 g/L; HV 13.9 ± 0.44% (w/w)) and volumetric productivity (2.03 ± 0.04 gPHBV/L·h) were obtained in oxygen-limited operation, while highest HV content (19.8 ± 0.28 wt%) and yield coefficient (0.43 ± 0.017 gHV/gPA) were observed during phosphorus-limited cultivation. Although nitrogen limitation is widely applied in the production of PHA, nitrogen-limited cultivation had the lowest cell dry matter, PHBV production, volumetric productivity, oil-to-HB and PA-to-HV yield coefficients for the given conditions. The results of the present study demonstrate the highest PHBV yield together with the highest HV content using WFO as main carbon source and PA as the HV precursor ever reported in the literature.
Collapse
Affiliation(s)
- Öznur Kökpınar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - Müslüm Altun
- Department of Material Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
7
|
Martínez-Avila O, Llenas L, Ponsá S. Sustainable polyhydroxyalkanoates production via solid-state fermentation: Influence of the operational parameters and scaling up of the process. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. BIORESOURCE TECHNOLOGY 2021; 326:124767. [PMID: 33540213 DOI: 10.1016/j.biortech.2021.124767] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHA) are microbial polyesters which, apart from their primary storage role, enhance the stress robustness of PHA accumulating cells against various stressors. PHA also represent interesting alternatives to petrochemical polymers, which can be produced from renewable resources employing approaches of microbial biotechnology. During biotechnological processes, bacterial cells are exposed to various stressor factors such as fluctuations in temperature, osmolarity, pH-value, elevated pressure or the presence of microbial inhibitors. This review summarizes how PHA helps microbial cells to cope with biotechnological process-relevant stressors and, vice versa, how various stress conditions can affect PHA production processes. The review suggests a fundamentally new strategy for PHA production: the fine-tuned exposure to selected stressors, which might be used to boost PHA production and even to tailor their structure.
Collapse
Affiliation(s)
- Stanislav Obruca
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Petr Sedlacek
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/VI, 8010 Graz, Austria; ARENA Arbeitsgemeinschaft für Ressourcenschonende & Nachhaltige Technologien, Inffeldgasse 21b, 11 8010 Graz, Austria
| |
Collapse
|
9
|
Miscevic D, Mao JY, Mozell B, Srirangan K, Abedi D, Moo-Young M, Chou CP. Bio-based production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated monomeric fraction in Escherichia coli. Appl Microbiol Biotechnol 2021; 105:1435-1446. [PMID: 33484319 DOI: 10.1007/s00253-021-11108-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 01/10/2023]
Abstract
In this study, we applied metabolic engineering and bioprocessing strategies to enhance heterologous production of an important biodegradable copolymer, i.e., poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with a modulated 3-hydroxyvalerate (3-HV) monomeric fraction from structurally unrelated carbon of glycerol in engineered Escherichia coli under different oxygenic conditions. We used our previously derived propanologenic (i.e., 1-propanol-producing) E. coli strain with an activated genomic Sleeping beauty mutase (Sbm) operon as a host for heterologous expression of the phaCAB operon. The 3-HV monomeric fraction was modulated by regulating dissimilated carbon flux channeling from the tricarboxylic acid (TCA) cycle into the Sbm pathway for biosynthesis of propionyl-CoA, which is a key precursor to (R)-3-hydroxyvaleryl-CoA (3-HV-CoA) monomer. The carbon flux channeling was regulated either by manipulating a selection of genes involved in the TCA cycle or varying oxygenic condition of the bacterial culture. With these consolidated strategies being implemented, we successfully achieved high-level PHBV biosynthesis with a wide range of 3-HV monomeric fraction from ~ 4 to 50 mol%, potentially enabling the fine-tuning of PHBV mechanical properties at the biosynthesis stage. We envision that similar strategies can be applied to enhance bio-based production of chemicals derived from succinyl-CoA. KEY POINTS: • TCA cycle engineering was applied to enhance 3-HV monomeric fraction in E. coli. • Effects of oxygenic conditions on 3-HV incorporation into PHBV in E. coli were investigated. • Bacterial cultivation for high-level PHBV production in engineered E. coli was performed.
Collapse
Affiliation(s)
- Dragan Miscevic
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Bradley Mozell
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Kajan Srirangan
- Biotechnology Research Institute, National Research Council of Canada, Montreal, QC, H4P 2R2, Canada
| | - Daryoush Abedi
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.,Department of Drug & Food Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
10
|
Mahansaria R, Bhowmik S, Dhara A, Saha A, Mandal MK, Ghosh R, Mukherjee J. Production enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Halogeometricum borinquense, characterization of the bioplastic and desalination of the bioreactor effluent. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Accumulation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Azotobacter vinelandii with different 3HV fraction in shake flasks and bioreactor. Bioprocess Biosyst Eng 2020; 43:1469-1478. [PMID: 32266468 DOI: 10.1007/s00449-020-02340-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
In the present study, the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by Azotobacter vinelandii was evaluated in shake flasks and bioreactors, utilizing different precursors and oxygen transfer rates (OTRs). In shake flask cultures, the highest PHBV yield from sucrose (0.16 g g-1) and 3-hydroxyvalerate (3HV) fraction in the PHA chain (27.4 mol%) were obtained with valerate (1.0 g L-1). In the bioreactor, the cultures were grown under oxygen-limited conditions, and the maximum OTR (OTRmax) was varied by adjusting the agitation rate. In the cultures grown at low OTRmax (4.3 mmol L-1 h-1), the intracellular content of PHBV (73% w w-1) was improved, whereas a maximum 3HV fraction (35 mol %) was obtained when a higher OTRmax (17.2 mmol L-1 h-1, to 600 rpm) was employed. The findings obtained suggest that the PHBV production and the content of 3HV incorporated into the polymer were affected by the OTR. Based on the evidence, it is possible to produce PHBV with a different composition by varying the OTR of the culture; thus, the approach in this study could be used to scale up PHBV production.
Collapse
|
12
|
Burkholderia glumae MA13: A newly isolated bacterial strain suitable for polyhydroxyalkanoate production from crude glycerol. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Soto LR, Byrne E, van Niel EWJ, Sayed M, Villanueva CC, Hatti-Kaul R. Hydrogen and polyhydroxybutyrate production from wheat straw hydrolysate using Caldicellulosiruptor species and Ralstonia eutropha in a coupled process. BIORESOURCE TECHNOLOGY 2019; 272:259-266. [PMID: 30352368 DOI: 10.1016/j.biortech.2018.09.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
This report presents an integrated biorefinery concept in which wheat straw hydrolysate was treated with co-cultures of osmotolerant thermophilic bacterial strains, Caldicellulosiruptor saccharolyticus and C. owensensis to obtain hydrogen, while the liquid effluent containing acetate and residual glucose was used as feed for polyhydroxybutyrate (PHB) production by Ralstonia eutropha. The Caldicellulosiruptor spp. co-culture consumed 10.8 g/L of pretreated straw sugars, glucose and xylose, producing 134 mmol H2/L. PHB accumulation by R. eutropha was first studied in minimal salts medium using acetate with/without glucose as carbon source. Addition of salts promoted cell growth and PHB production in the effluent. Fed-batch cultivation in a nitrogen limited medium with 40% (v/v) aeration resulted in a cell density of 15.1 g/L with PHB content of 80.1% w/w and PHB concentration of 12.1 g/L, while 20% aeration gave a cell density of 11.3 g/L with 83.4% w/w PHB content and 9.4 g/L PHB concentration.
Collapse
Affiliation(s)
- Luis Romero Soto
- Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden; Instituto de Investigación y Desarrollo de Procesos Químicos(3), Facultad de Ingeniería, Universidad Mayor de San Andrés, P.O. Box 12958, La Paz, Bolivia
| | - Eoin Byrne
- Applied Microbiology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Ed W J van Niel
- Applied Microbiology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Mahmoud Sayed
- Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Cristhian Carrasco Villanueva
- Instituto de Investigación y Desarrollo de Procesos Químicos(3), Facultad de Ingeniería, Universidad Mayor de San Andrés, P.O. Box 12958, La Paz, Bolivia
| | - Rajni Hatti-Kaul
- Biotechnology, Department of Chemistry, Center for Chemistry & Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
14
|
The role of dissolved oxygen content as a modulator of microbial polyhydroxyalkanoate synthesis. World J Microbiol Biotechnol 2018; 34:106. [DOI: 10.1007/s11274-018-2488-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
|
15
|
A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4020030] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Koller M. Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications. Molecules 2018; 23:E362. [PMID: 29419813 PMCID: PMC6017587 DOI: 10.3390/molecules23020362] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are bio-based microbial biopolyesters; their stiffness, elasticity, crystallinity and degradability are tunable by the monomeric composition, selection of microbial production strain, substrates, process parameters during production, and post-synthetic processing; they display biological alternatives for diverse technomers of petrochemical origin. This, together with the fact that their monomeric and oligomeric in vivo degradation products do not exert any toxic or elsewhere negative effect to living cells or tissue of humans or animals, makes them highly stimulating for various applications in the medical field. This article provides an overview of PHA application in the therapeutic, surgical and tissue engineering area, and reviews strategies to produce PHA at purity levels high enough to be used in vivo. Tested applications of differently composed PHA and advanced follow-up products as carrier materials for controlled in vivo release of anti-cancer drugs or antibiotics, as scaffolds for tissue engineering, as guidance conduits for nerve repair or as enhanced sutures, implants or meshes are discussed from both a biotechnological and a material-scientific perspective. The article also describes the use of traditional processing techniques for production of PHA-based medical devices, such as melt-spinning, melt extrusion, or solvent evaporation, and emerging processing techniques like 3D-printing, computer-aided wet-spinning, laser perforation, and electrospinning.
Collapse
Affiliation(s)
- Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/III, 8010 Graz, Austria.
- Association for Resource Efficient and Sustainable Technologies-ARENA, Inffeldgasse 21b, 8010 Graz, Austria.
| |
Collapse
|
17
|
Ghysels S, Mozumder MSI, De Wever H, Volcke EIP, Garcia-Gonzalez L. Targeted poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic production from carbon dioxide. BIORESOURCE TECHNOLOGY 2018; 249:858-868. [PMID: 29136942 DOI: 10.1016/j.biortech.2017.10.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 05/21/2023]
Abstract
A microbial production process was developed to convert CO2 and valeric acid into tailored poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) bioplastics. The aim was to understand microbial PHBV production in mixotrophic conditions and to control the monomer distribution in the polymer. Continuous sparging of CO2 with pulse and pH-stat feeding of valeric acid were evaluated to produce PHBV copolyesters with predefined properties. The desired random monomer distribution was obtained by limiting the valeric acid concentration (below 1 gL-1). 1H-NMR, 13C-NMR and chromatographic analysis of the PHBV copolymer confirmed both the monomer distribution and the 3-hydroxyvalerate (3HV) fraction in the produced PHBV. A physical-based model was developed for mixotrophic PHBV production, which was calibrated and validated with independent experimental datasets. To produce PHBV with a predefined 3HV fraction, an operating diagram was constructed. This tool was able to predict the 3HV fraction with a very good accuracy (2% deviation).
Collapse
Affiliation(s)
- Stef Ghysels
- Ghent University, Department of Biosystems Engineering, Coupure Links 653, 9000 Gent, Belgium.
| | - Md Salatul Islam Mozumder
- Shahjalal University of Science and Technology, Department of Chemical Engineering and Polymer Science, Sylhet, Bangladesh
| | - Heleen De Wever
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| | - Eveline I P Volcke
- Ghent University, Department of Biosystems Engineering, Coupure Links 653, 9000 Gent, Belgium
| | - Linsey Garcia-Gonzalez
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
18
|
Ferre-Guell A, Winterburn J. Biosynthesis and Characterization of Polyhydroxyalkanoates with Controlled Composition and Microstructure. Biomacromolecules 2018; 19:996-1005. [DOI: 10.1021/acs.biomac.7b01788] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anna Ferre-Guell
- School of Chemical Engineering and Analytical Science, The Mill, The University of Manchester, Manchester M13 9PL, U.K
| | - James Winterburn
- School of Chemical Engineering and Analytical Science, The Mill, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
19
|
Synthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) with high 4HB composition and PHA content using 1,4-butanediol and 1,6-hexanediol for medical application. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1345-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Blunt W, Dartiailh C, Sparling R, Gapes D, Levin DB, Cicek N. Microaerophilic environments improve the productivity of medium chain length polyhydroxyalkanoate biosynthesis from fatty acids in Pseudomonas putida LS46. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Huong KH, Azuraini MJ, Aziz NA, Amirul AAA. Pilot scale production of poly(3-hydroxybutyrate- co -4-hydroxybutyrate) biopolymers with high molecular weight and elastomeric properties. J Biosci Bioeng 2017; 124:76-83. [DOI: 10.1016/j.jbiosc.2017.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 11/16/2022]
|
22
|
Montano-Herrera L, Laycock B, Werker A, Pratt S. The Evolution of Polymer Composition during PHA Accumulation: The Significance of Reducing Equivalents. Bioengineering (Basel) 2017; 4:bioengineering4010020. [PMID: 28952499 PMCID: PMC5590436 DOI: 10.3390/bioengineering4010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 11/18/2022] Open
Abstract
This paper presents a systematic investigation into monomer development during mixed culture Polyhydroxyalkanoates (PHA) accumulation involving concurrent active biomass growth and polymer storage. A series of mixed culture PHA accumulation experiments, using several different substrate-feeding strategies, was carried out. The feedstock comprised volatile fatty acids, which were applied as single carbon sources, as mixtures, or in series, using a fed-batch feed-on-demand controlled bioprocess. A dynamic trend in active biomass growth as well as polymer composition was observed. The observations were consistent over replicate accumulations. Metabolic flux analysis (MFA) was used to investigate metabolic activity through time. It was concluded that carbon flux, and consequently copolymer composition, could be linked with how reducing equivalents are generated.
Collapse
Affiliation(s)
| | - Bronwyn Laycock
- School of Chemical Engineering, University of Queensland, St Lucia QLD 4072, Australia.
| | - Alan Werker
- Veolia Water Technologies AB-AnoxKaldnes, Klosterängsvägen 11A SE-226 47 Lund, Sweden.
| | - Steven Pratt
- School of Chemical Engineering, University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
23
|
|
24
|
Poly(3-hydroxybutyrate- co -3-hydroxyvalerate) production in a system with external cell recycle and limited nitrogen feeding during the production phase. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Optimisation of the use of products from the cane sugar industry for poly(3-hydroxybutyrate) production by Azohydromonas lata DSM 1123 in fed-batch cultivation. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Koller M, Rodríguez-Contreras A. Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400228] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Martin Koller
- Department of Physical and Theoretical Chemistry, Institute of Chemistry; University of Graz; Graz Austria
| | | |
Collapse
|
27
|
Islam Mozumder MS, Garcia-Gonzalez L, Wever HD, Volcke EI. Poly(3-hydroxybutyrate) (PHB) production from CO2: Model development and process optimization. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Agustín Martinez G, Bertin L, Scoma A, Rebecchi S, Braunegg G, Fava F. Production of polyhydroxyalkanoates from dephenolised and fermented olive mill wastewaters by employing a pure culture of Cupriavidus necator. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Huschner F, Grousseau E, Brigham CJ, Plassmeier J, Popovic M, Rha C, Sinskey AJ. Development of a feeding strategy for high cell and PHA density fed-batch fermentation of Ralstonia eutropha H16 from organic acids and their salts. Process Biochem 2015. [DOI: 10.1016/j.procbio.2014.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Amulya K, Jukuri S, Venkata Mohan S. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. BIORESOURCE TECHNOLOGY 2015; 188:231-9. [PMID: 25682477 DOI: 10.1016/j.biortech.2015.01.070] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 05/06/2023]
Abstract
Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery.
Collapse
Affiliation(s)
- K Amulya
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Srinivas Jukuri
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| |
Collapse
|
31
|
Kourmentza C, Ntaikou I, Lyberatos G, Kornaros M. Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions. Int J Biol Macromol 2014; 74:202-10. [PMID: 25542172 DOI: 10.1016/j.ijbiomac.2014.12.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/23/2023]
Abstract
The present study aimed at investigating the ability of bacteria isolated from an enriched mixed culture to produce polyhydroxyalkanoates (PHAs) and examining the effect of nitrogen and dual nitrogen-oxygen limitation on PHAs production, by using both synthetic and olive mill wastewater (OMW). PHAs production was performed through batch experiments using both the enriched culture and the isolated strains (belonging to the genus of Pseudomonas) aiming to compare PHAs accumulation capacity, yields and rates. The use of enriched culture and synthetic wastewater under nitrogen limitation resulted in the highest PHA accumulation, i.e. 64.4%gPHAs/g of cell dry mass (CDM). However, when OMW was used, PHAs accumulation significantly decreased, i.e. 8.8%gPHAs/g CDM. The same trend was followed by the isolated strains, nevertheless, their ability to synthesize PHAs was lower. Although, dual nitrogen-oxygen limitation generally slowed down PHAs biosynthesis, in certain strains PHAs production was positively affected.
Collapse
Affiliation(s)
- C Kourmentza
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Caratheodory Str., 26500 Patras, Greece; Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (ICE-HT/FORTH), 26504 Patras, Greece.
| | - I Ntaikou
- Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (ICE-HT/FORTH), 26504 Patras, Greece
| | - G Lyberatos
- Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (ICE-HT/FORTH), 26504 Patras, Greece; School of Chemical Engineering, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece
| | - M Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Caratheodory Str., 26500 Patras, Greece
| |
Collapse
|
32
|
Shamala T, Rohinishree Y, Vijayendra S. Biosynthesis of multiple biopolymers by Sinorhizobium meliloti CFR 14 in high cell density cultures through fed batch fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Grousseau E, Blanchet E, Déléris S, Albuquerque MGE, Paul E, Uribelarrea JL. Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in Cupriavidus necator. BIORESOURCE TECHNOLOGY 2014; 153:206-215. [PMID: 24365742 DOI: 10.1016/j.biortech.2013.11.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
Properties of polyhydroxybutyrate-co-hydroxyvalerate (P(3HB-co-3HV)) depend on their 3HV content. 3HV can be produced by Cupriavidus necator from propionic acid. Few studies explored carbon distribution and dynamics of 3HV and 3HB monomers production, and none of them have been done with phosphorus as limiting nutrient. In this study, fed-batch cultures of C. necator with propionic acid, as sole carbon source or mixed with butyric acid, were performed. Phosphorus deficiency allowed sustaining 3HV production rate and decreasing 3HB production rate, leading to an instant production of up to 100% of 3HV. When a residual growth is sustained by a phosphorus feeding, the maximum 3HV percentage produced from propionic acid is limited to 33% (Mole.Mole(-1)). The association of a second carbon source like butyric acid lead to higher conversion of propionic acid into 3HV. This study showed the importance of the limiting nutrient and of the culture strategy to get the appropriate product.
Collapse
Affiliation(s)
- Estelle Grousseau
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France; VEOLIA Environnement, Centre de Recherche sur l'Eau, Chemin de la Digue, BP 76, F-78603 Maisons-Laffitte Cedex, France.
| | - Elise Blanchet
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France; VEOLIA Environnement, Centre de Recherche sur l'Eau, Chemin de la Digue, BP 76, F-78603 Maisons-Laffitte Cedex, France.
| | - Stéphane Déléris
- VEOLIA Environnement, Centre de Recherche sur l'Eau, Chemin de la Digue, BP 76, F-78603 Maisons-Laffitte Cedex, France.
| | - Maria G E Albuquerque
- VEOLIA Environnement, Centre de Recherche sur l'Eau, Chemin de la Digue, BP 76, F-78603 Maisons-Laffitte Cedex, France.
| | - Etienne Paul
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France.
| | - Jean-Louis Uribelarrea
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR5504, F-31400 Toulouse, France.
| |
Collapse
|
34
|
Špoljarić IV, Lopar M, Koller M, Muhr A, Salerno A, Reiterer A, Malli K, Angerer H, Strohmeier K, Schober S, Mittelbach M, Horvat P. Mathematical modeling of poly[(R)-3-hydroxyalkanoate] synthesis by Cupriavidus necator DSM 545 on substrates stemming from biodiesel production. BIORESOURCE TECHNOLOGY 2013; 133:482-494. [PMID: 23454805 DOI: 10.1016/j.biortech.2013.01.126] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 06/01/2023]
Abstract
Two low structured mathematical models for fed-batch production of polyhydroxybutyrate and poly[hydroxybutyrate-co-hydroxyvalerate] by Cupriavidus necator DSM 545 on renewable substrates (glycerol and fatty acid methyl esters-FAME) combined with glucose and valeric acid, were established. The models were used for development/optimization of feeding strategies of carbon and nitrogen sources concerning PHA content and polymer/copolymer composition. Glycerol/glucose fermentation featured a max. specific growth rate of 0.171 h(-1), a max. specific production rate of 0.038 h(-1) and a PHB content of 64.5%, whereas the FAME/valeric acid fermentation resulted in a max. specific growth rate of 0.046 h(-1), a max. specific production rate of 0.07 h(-1) and 63.6% PHBV content with 4.3% of 3-hydroxyvalerate (3HV) in PHBV. A strong inhibition of glycerol consumption by glucose was confirmed (inhibition constant ki,G=4.28×10(-4) g L(-1)). Applied concentration of FAME (10-12 g L(-1)) positively influenced on PHBV synthesis. HV/PHBV ratio depends on applied VA concentration.
Collapse
Affiliation(s)
- Ivna Vrana Špoljarić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cavalheiro JM, Almeida MCMD, Fonseca MMRD, Carvalho CCD. Adaptation of Cupriavidus necator to conditions favoring polyhydroxyalkanoate production. J Biotechnol 2013; 164:309-17. [DOI: 10.1016/j.jbiotec.2013.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/08/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
36
|
Keshavarz T, Roy I. Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 2010; 13:321-6. [DOI: 10.1016/j.mib.2010.02.006] [Citation(s) in RCA: 364] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/19/2010] [Indexed: 01/27/2023]
|
37
|
Du GC, Chen J, Yu J, Lun S. Feeding strategy of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Ralstonia eutropha. Biochem Eng J 2001. [DOI: 10.1016/s1369-703x(01)00091-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Wang Y, Inoue Y. Effect of dissolved oxygen concentration in the fermentation medium on transformation of the carbon sources during the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxypropionate) by Alcaligenes latus. Int J Biol Macromol 2001; 28:235-43. [PMID: 11251231 DOI: 10.1016/s0141-8130(01)00119-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effects of fermentation conditions on the comonomer composition and its distribution of poly(3-hydroxybutyrate-co-3-hydroxypropionate) [P(3HB-co-3HP)] have been investigated for bacterial synthesis of P(3HB-co-3HP)s by Alcaligenes latus from sucrose and 3-hydroxypropionate (3HPA) mixed carbon sources. Comparison of the microstructures of these samples drew a conclusion that when the concentration of oxygen dissolved (DO) in the fermentation medium was controlled between 5 and 20% (based on the concentration at saturation), the 3HP content and the comonomer compositional distribution (CCD) of the copolymer would not be influenced by the DO values. The concentration of the carbon sources was monitored during the fermentation. The results indicated that the comonomer composition and its distribution of P(3HB-co-3HP)s were interrelated to the amounts of carbon sources transported into the bacterial cells. When the bacteria consumed more sucrose, the more 3HPA they would utilize, and the broader the CCD of the copolymer would be. Furthermore, the efficiencies of the transformation of the two carbon sources to the copolymer constituents were found to be similar.
Collapse
Affiliation(s)
- Y Wang
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, 226-8501, Yokohama, Japan
| | | |
Collapse
|
39
|
Savenkova L, Gercberga Z, Bibers I, Kalnin M. Effect of 3-hydroxy valerate content on some physical and mechanical properties of polyhydroxyalkanoates produced by Azotobacter chroococcum. Process Biochem 2000. [DOI: 10.1016/s0032-9592(00)00235-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Durner R, Witholt B, Egli T. Accumulation of Poly[(R)-3-hydroxyalkanoates] in Pseudomonas oleovorans during growth with octanoate in continuous culture at different dilution rates. Appl Environ Microbiol 2000; 66:3408-14. [PMID: 10919799 PMCID: PMC92163 DOI: 10.1128/aem.66.8.3408-3414.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas oleovorans ATCC 29347 was grown in chemostat culture at different dilution rates with mineral media varying in their ratios of octanoate to ammonia (C(0)/N(0) ratio). At all dilution rates tested, three distinct growth regimes were observed: (i) carbon limitation with NH(4)(+) in excess at low C(0)/N(0) ratios, (ii) purely nitrogen-limited growth conditions at high C(0)/N(0) ratios with residual octanoate in the culture supernatant, and (iii) an intermediate zone of dual-nutrient-limited growth conditions where both the concentration of octanoate and that of ammonia were very low. The dual-nutrient-limited growth zone shifted to higher C(0)/N(0) ratios with decreasing dilution rates, and the extension of the dual-nutrient-limited growth zone was inversely proportional to the growth rate. The cells accumulated the storage compound medium-chain-length poly[(R)-3-hydroxyalkanoate] (mcl-PHA) during dual (C and N)-nutrient-limited and N-limited growth conditions. Within the dual-nutrient-limited growth zone, the cellular mcl-PHA contents increased when the C(0)/N(0) ratio in the feed was increased, whereas the cellular mcl-PHA level was independent from the feed C(0)/N(0) ratio during N-limited growth. The monomeric composition of the accumulated mcl-PHA was independent of both the dilution rate and the feed C(0)/N(0) ratio and consisted of 12 mol% 3-hydroxyhexanoic acid and 88 mol% 3-hydroxyoctanoic acid. Accumulation of mcl-PHA led to an increase in the cellular C/N ratio and to changes in elemental growth yields for nitrogen and carbon.
Collapse
Affiliation(s)
- R Durner
- Department of Microbiology, Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | | | |
Collapse
|
41
|
Madison LL, Huisman GW. Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 1999; 63:21-53. [PMID: 10066830 PMCID: PMC98956 DOI: 10.1128/mmbr.63.1.21-53.1999] [Citation(s) in RCA: 888] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly(3-hydroxyalkanoates) (PHAs) are a class of microbially produced polyesters that have potential applications as conventional plastics, specifically thermoplastic elastomers. A wealth of biological diversity in PHA formation exists, with at least 100 different PHA constituents and at least five different dedicated PHA biosynthetic pathways. This diversity, in combination with classical microbial physiology and modern molecular biology, has now opened up this area for genetic and metabolic engineering to develop optimal PHA-producing organisms. Commercial processes for PHA production were initially developed by W. R. Grace in the 1960s and later developed by Imperial Chemical Industries, Ltd., in the United Kingdom in the 1970s and 1980s. Since the early 1990s, Metabolix Inc. and Monsanto have been the driving forces behind the commercial exploitation of PHA polymers in the United States. The gram-negative bacterium Ralstonia eutropha, formerly known as Alcaligenes eutrophus, has generally been used as the production organism of choice, and intracellular accumulation of PHA of over 90% of the cell dry weight have been reported. The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in PHAs, and the biosynthetic machinery for PHA metabolism has been studied in great detail over the last two decades. Because the structure and monomeric composition of PHAs determine the applications for each type of polymer, a variety of polymers have been synthesized by cofeeding of various substrates or by metabolic engineering of the production organism. Classical microbiology and modern molecular bacterial physiology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHAs. This review provides an overview of the different PHA biosynthetic systems and their genetic background, followed by a detailed summation of how this natural diversity is being used to develop commercially attractive, recombinant processes for the large-scale production of PHAs.
Collapse
Affiliation(s)
- L L Madison
- Metabolix, Inc., Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
42
|
Braunegg G, Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 1998; 65:127-61. [PMID: 9828458 DOI: 10.1016/s0168-1656(98)00126-6] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Polyhdroxyalkanoates (PHAs), stored as bacterial reserve materials for carbon and energy, are biodegradable substitutes to fossil fuel plastics that can be produced from renewable raw materials. PHAs can be produced under controlled conditions by biotechnological processes. By varying the producing strains, substrates and cosubstrates, a number of polyesters can be synthesized which differ in monomer composition. By this means, PHAs with tailored interesting physical features can be produced. All of them are completely degradable to carbon dioxide and water through natural microbiological mineralization. Consequently, neither their production nor their use or degradation have a negative ecological impact. After a historical review, possibilities for the synthesis of novel PHAs applying different micro-organisms are discussed, and pathways of PHA synthesis and degradation are shown in detail for important PHA producers. This is followed by a discussion of the physiological role of the accumulation product in different micro-organisms. Detection, analysis, and extraction methods of PHAs from microbial biomass are shown, in addition to methods for polyester characterization. Strategies for PHA production under discontinuous and continuous regimes are discussed in detail in addition to the use of different cheap carbon sources from the point of view of different PHA producing strains. An outlook on PHA production by transgenic plants closes the review.
Collapse
Affiliation(s)
- G Braunegg
- Institut für Biotechnologie, TU Graz, Austria
| | | | | |
Collapse
|