1
|
De Souza TPP, Cantão LXS, Rodrigues MQRB, Gonçalves DB, Nagem RAP, Rocha REO, Godoi RR, Lima WJN, Galdino AS, Minardi RCDM, Lima LHFD. Glycosylation and charge distribution orchestrates the conformational ensembles of a biotechnologically promissory phytase in different pHs - a computational study. J Biomol Struct Dyn 2024; 42:5030-5041. [PMID: 37325852 DOI: 10.1080/07391102.2023.2223685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Phytases [myo-inositol(1,2,3,4,5,6) hexakisphosphate phosphohydrolases] are phytate-specific phosphatases not present in monogastric animals. Nevertheless, they are an essential supplement to feeding such animals and for human special diets. It is crucial, hence, the biotechnological use of phytases with intrinsic stability and activity at the acid pHs from gastric environments. Here we use Metadynamics (METADY) simulations to probe the conformational space of the Aspergillus nidulans phytase and the differential effects of pH and glycosylation in this same space. The results suggest that strategic combinations of pH and glycosylation affect the stability of native-like conformations and alternate these structures from a metastable to a stable profile. Furthermore, the protein segments previously reported as more thermosensitive in phytases from this family present a pivotal role in the conformational changes at different conditions, especially H2, H5-7, L8, L10, L12, and L17. Also, the glycosylations and the pH-dependent charge balance modulate the mobility and interactions at these same regions, with consequences for the surface solvation and active site exposition. Finally, although the glycosylations have stabilized the native structure and improved the substrate docking at all the studied pHs, the data suggest a higher phytate receptivity at catalytic poses for the unglycosylated structure at pH 6.5 and the glycosylated one at pH 4.5. This behavior agrees with the exact change in optimum pH reported for this enzyme, expressed on low or high glycosylating systems. We hope the results and insights presented here will be helpful in future approaches for rational engineering of technologically promising phytases and intelligent planning of their heterologous expression systems and conditions for use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thaís P P De Souza
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Letícia Xavier Silva Cantão
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Daniel Bonoto Gonçalves
- Department of Biosystems Engineering, Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Ronaldo Alves Pinto Nagem
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Eduardo Oliveira Rocha
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| | - Renato Ramos Godoi
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - William James Nogueira Lima
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Campus Regional de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Raquel Cardoso de Melo Minardi
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Henrique França de Lima
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| |
Collapse
|
2
|
Singh B, Pragya, Tiwari SK, Singh D, Kumar S, Malik V. Production of fungal phytases in solid state fermentation and potential biotechnological applications. World J Microbiol Biotechnol 2023; 40:22. [PMID: 38008864 DOI: 10.1007/s11274-023-03783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 11/28/2023]
Abstract
Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.
Collapse
Affiliation(s)
- Bijender Singh
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Pragya
- Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh, 123029, Haryana, India
| | - Sandeep Kumar
- Department of Biotechnology, Shobhit Institute of Engineering and Technology (Deemed to Be University), Modipurum, Meerut, 250110, UP, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| |
Collapse
|
3
|
Peng R, Zhang W, Wang Y, Deng Y, Wang B, Gao J, Li Z, Wang L, Fu X, Xu J, Han H, Tian Y, Yao Q. Genetic engineering of complex feed enzymes into barley seed for direct utilization in animal feedstuff. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:560-573. [PMID: 36448454 PMCID: PMC9946151 DOI: 10.1111/pbi.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Currently, feed enzymes are primarily obtained through fermentation of fungi, bacteria, and other microorganisms. Although the manufacturing technology for feed enzymes has evolved rapidly, the activities of these enzymes decline during the granulating process and the cost of application has increased over time. An alternative approach is the use of genetically modified plants containing complex feed enzymes for direct utilization in animal feedstuff. We co-expressed three commonly used feed enzymes (phytase, β-glucanase, and xylanase) in barley seeds using the Agrobacterium-mediated transformation method and generated a new barley germplasm. The results showed that these enzymes were stable and had no effect on the development of the seeds. Supplementation of the basal diet of laying hens with only 8% of enzyme-containing seeds decreased the quantities of indigestible carbohydrates, improved the availability of phosphorus, and reduced the impact of animal production on the environment to an extent similar to directly adding exogenous enzymes to the feed. Feeding enzyme-containing seeds to layers significantly increased the strength of the eggshell and the weight of the eggs by 10.0%-11.3% and 5.6%-7.7% respectively. The intestinal microbiota obtained from layers fed with enzyme-containing seeds was altered compared to controls and was dominated by Alispes and Rikenella. Therefore, the transgenic barley seeds produced in this study can be used as an ideal feedstuff for use in animal feed.
Collapse
Affiliation(s)
- Ri‐He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Wen‐Hui Zhang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yu Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yong‐Dong Deng
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Bo Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Jian‐Jie Gao
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Zhen‐Jun Li
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Li‐Juan Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Xiao‐Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Hong‐Juan Han
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yong‐Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Quan‐Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| |
Collapse
|
4
|
Chen ES. Application of the fission yeast Schizosaccharomyces pombe in human nutrition. FEMS Yeast Res 2023; 23:6961766. [PMID: 36574952 DOI: 10.1093/femsyr/foac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
Fission yeast Schizosaccharomyces pombe (S. pombe) is renowned as a powerful genetic model for deciphering cellular and molecular biological phenomena, including cell division, chromosomal events, stress responses, and human carcinogenesis. Traditionally, Africans use S. pombe to ferment the beer called 'Pombe', which continues to be consumed in many parts of Africa. Although not as widely utilized as the baker's yeast Saccharomyces cerevisiae, S. pombe has secured several niches in the food industry for human nutrition because of its unique metabolism. This review will explore three specific facets of human nutrition where S. pombe has made a significant impact: namely, in wine fermentation, animal husbandry and neutraceutical supplementation coenzyme Q10 production. Discussions focus on the current gaps in these areas, and the potential research advances useful for addressing future challenges. Overall, gaining a better understanding of S. pombe metabolism will strengthen production in these areas and potentially spearhead novel future applications.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore.,National University Health System (NUHS), Singapore 119228, Singapore.,NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
5
|
Zhang W, Zhang Y, Lu Y, Herman RA, Zhang S, Hu Y, Zhao W, Wang J, You S. More efficient barley malting under catalyst: thermostability improvement of a β-1,3-1,4-glucanase through surface charge engineering with higher activity. Enzyme Microb Technol 2022; 162:110151. [DOI: 10.1016/j.enzmictec.2022.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022]
|
6
|
Sapara KK, Agarwal P, Gupta K, Agarwal PK. Expression of B. subtilis Phytase gene driven by fruit specific E8 promoter for enhanced minerals, metabolites and phytonutrient in cucumber fruit. Food Res Int 2022; 156:111138. [PMID: 35651010 DOI: 10.1016/j.foodres.2022.111138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/15/2022]
Abstract
The fruit nutrigenomics is an interesting and important research area towards nutrition enhancement. The phytic acid is one of the major antinutrient compound, present in seeded fruits and crops. It hinders the absorption of iron (Fe), zinc (Zn), magnesium (Mg), potassium (K) and calcium (Ca), causing mineral deficiencies. In the present study, the BsPhy gene was overexpressed in the cucumber fruits using the tomato fruit specific E8 and constitutive CaMV 35S promoter. The E8 promoter imparted heterologous expression of GUS gene in cucumber fruits, furthermore, the fruit specific expression of E8 promoter with BsPhy gene was confirmed in transgenics (E8::BsPhy) using anti rabbit-phytase antibody. The physio-biochemical analysis of transgenics revealed, maximum phytase activity in E8::BsPhy cucumber fruits at 10 days after anthesis (DAA) compared to 35S::BsPhy and wild-type (WT) fruits. Consequently, E8::BsPhy fruits also showed increased amount of inorganic phosphorus (Pi), total phosphorus (P), minerals (Zn, Fe, Mg, K, Ca), total carotenoid and other macronutrients at 10 DAA compared to 35S::BsPhy fruits. The metabolite profiling of fruits (10 DAA) showed increased sugars, amino acids, sugar acids and polyols, in both E8::BsPhy and 35S::BsPhy transgenics suggesting higher phytate metabolism, compared to WT fruits. Interestingly, both the transgenic fruits showed higher fruit biomass and yield along with improved nutritional quality, which can be attributed to increased P and Zn contents in transgenic fruits, compared to WT fruits. Our findings reveal that the BsPhy gene enhances minerals and macronutrients in transgenic cucumber fruits making it nutritious and healthy.
Collapse
Affiliation(s)
- Komal K Sapara
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parinita Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Kapil Gupta
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Pradeep K Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Infanzón B, Herrmann KR, Hofmann I, Willbold S, Ruff AJ, Schwaneberg U. Phytase blends for enhanced phosphorous mobilization of deoiled seeds. Enzyme Microb Technol 2021; 153:109953. [PMID: 34847439 DOI: 10.1016/j.enzmictec.2021.109953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 11/03/2022]
Abstract
Phytases are hydrolytic enzymes capable of a stepwise phosphate release from phytate which is the main phosphorous storage in seeds, cereals and legumes. Limitations such as low enzyme activity or incomplete phytate hydrolysis to inositol are a great challenge in phytase applications in food and feed. Herein we report a phytase blend of two enzymes with additive effects on phytate (InsP6) hydrolysis and its application in the enzymatic phosphorous recovery process. Blending the fast 6-phytase rPhyXT52 with the 3-phytase from Debaryomyces castellii, which is capable of fully hydrolyzing InsP6, we achieved rapid phosphate release with higher yields compared to the individual enzymes and a rapid disappearance of InsP6-3 intermediates, monitored by HPLC. NMR data suggest a nearly complete phytate hydrolysis to inositol and phosphate. The blend was applied for phosphate mobilization from phytate-rich biomass, such as deoiled seeds. For this emerging application, an up to 43% increased phosphate mobilization yield was achieved when using 1000 U of the blend per kg biomass compared to using only the E. coli phytase. Even so, the time of enzyme treatment was decreased by more than half (6 h instead of 16 h) when using 4000 U of blend, we reached a 78-90% reduction of the total phosphorous content in the explored deoiled seeds. In summary, the phytase blend of Dc phyt/rPhyXT52 was proven very efficient to obtain inositol phosphate depleted meal which has its potential application in animal feeding and is concomitant with the production of green phosphate from renewable resources.
Collapse
Affiliation(s)
- Belén Infanzón
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Kevin R Herrmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Isabell Hofmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Sabine Willbold
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany; DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52056 Aachen, Germany.
| |
Collapse
|
8
|
Lopes M, Coutinho T, Farinas C. Modification of zeolite with metallic ions improves the immobilization of phytase. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Lopes MM, Coutinho TC, Malafatti JOD, Paris EC, Sousa CPD, Farinas CS. Immobilization of phytase on zeolite modified with iron(II) for use in the animal feed and food industry sectors. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Bioprospecting of Thermophilic Fungal Enzymes and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Medvecky L, Štulajterová R, Giretova M, Luptakova L, Sopčák T. Injectable Enzymatically Hardened Calcium Phosphate Biocement. J Funct Biomater 2020; 11:jfb11040074. [PMID: 33053846 PMCID: PMC7711669 DOI: 10.3390/jfb11040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The preparation and characterization of novel fully injectable enzymatically hardened tetracalcium phosphate/monetite cements (CXI cements) using phytic acid/phytase (PHYT/F3P) hardening liquid with a small addition of polyacrylic acid/carboxymethyl cellulose anionic polyelectrolyte (PAA/CMC) and enhanced bioactivity. (2) Methods: Composite cements were prepared by mixing of calcium phosphate powder mixture with hardening liquid containing anionic polyelectrolyte. Phase and microstructural analysis, compressive strength, release of ions and in vitro testing were used for the evaluation of cement properties. (3) Results: The simple possibility to control the setting time of self-setting CXI cements was shown (7–28 min) by the change in P/L ratio or PHYT/F3P reaction time. The wet compressive strength of cements (up to 15 MPa) was close to cancellous bone. The increase in PAA content to 1 wt% caused refinement and change in the morphology of hydroxyapatite particles. Cement pastes had a high resistance to wash-out in a short time after cement mixing. The noncytotoxic character of CX cement extracts was verified. Moreover, PHYT supported the formation of Ca deposits, and the additional synergistic effect of PAA and CMC on enhanced ALP activity was found, along with the strong up-regulation of osteogenic gene expressions for osteopontin, osteocalcin and IGF1 growth factor evaluated by the RT-qPCR analysis in osteogenic αMEM 50% CXI extracts. (4) Conclusions: The fully injectable composite calcium phosphate bicements with anionic polyelectrolyte addition showed good mechanical and physico-chemical properties and enhanced osteogenic bioactivity which is a promising assumption for their application in bone defect regeneration.
Collapse
Affiliation(s)
- Lubomir Medvecky
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
- Correspondence:
| | - Radoslava Štulajterová
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
| | - Maria Giretova
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
| | - Lenka Luptakova
- Institute of Biology, Zoology and Radiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia;
| | - Tibor Sopčák
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
| |
Collapse
|
12
|
Characterization of a thermostable phytase from Bacillus licheniformis WHU and further stabilization of the enzyme through disulfide bond engineering. Enzyme Microb Technol 2020; 142:109679. [PMID: 33220867 DOI: 10.1016/j.enzmictec.2020.109679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/16/2020] [Accepted: 10/04/2020] [Indexed: 01/21/2023]
Abstract
Phytases are important industrial enzymes widely used as feed additives to hydrolyze phytate and release inorganic phosphate. In this study, a phytase gene PhyBL isolated from Bacillus licheniformis WHU was cloned and expressed in Escherichia coli. PhyBL showed the highest activity at pH 7.0 and retained more than 40 % of its activity at a wide temperature range from 35 to 65 °C. Ca2+ significantly affected the stability and activity of the enzyme. We further improved the stability of PhyBL through extensively disulfide engineering. After constructing and screening a series of variants, an enhanced stable G197C/A358C variant was obtained. The G197C/A358C variant had a half-life at 60℃ roughly 3.8-fold longer than the wild type. In addition, the G197C/A358C variant also showed enhanced proteolytic resistance to pepsin and trypsin. The potential mechanism underlying these improvements was investigated by molecular dynamics analysis. Our results suggest that the G197C/A358C variant may have potential application as an additive enzyme in aquaculture feed.
Collapse
|
13
|
Medvecky L, Stulajterova R, Giretova M, Sopcak T, Molcanova Z, Koval K. Enzymatically hardened calcium phosphate biocement with phytic acid addition. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:54. [PMID: 32472190 DOI: 10.1007/s10856-020-06387-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Novel enzymatically hardened tetracalcium phosphate/monetite cements were prepared applying phytic acid/phytase (PHYT/F3P) mixture as hardening liquid after dissolving in acetic acid solution (CX cement). Properties of the cements were compared with classic cement hardened with 2% NaH2PO4 (C cement) and cement hardened with acetic acid solution (CAC cement) only. In the microstructure of CX cement, columnar growth of hydroxyapatite particles was found in the form of walls around hydroxyapatite agglomerates originated from tetracalcium phosphate which were mutually separated by a material depleted low density zone. Wet compressive strengths (CS) of all cements were practically identical contrary to about 30% higher dry CS's of CX and CAC cements due to specific microstructure. It was verified noncytotoxic character of CX cement extracts and positive effect of CX cement on ALP activity and cell behavior during cultivation. The final Ca/P molar ratio and setting time of cement were effectively controlled by the amount of phytic acid and the change in PHYT/F3P mass ratio, or reaction time in hardening liquid, respectively.
Collapse
Affiliation(s)
- Lubomir Medvecky
- Institute of Materials Research of SAS, Watsonova 47, 040 01, Kosice, Slovakia.
- Institute of Anatomy, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, Slovakia.
| | | | - Maria Giretova
- Institute of Materials Research of SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Tibor Sopcak
- Institute of Materials Research of SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Zuzana Molcanova
- Institute of Materials Research of SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Karol Koval
- Institute of Materials Research of SAS, Watsonova 47, 040 01, Kosice, Slovakia
| |
Collapse
|
14
|
Martins MP, Martinez-Rossi NM, Sanches PR, Gomes EV, Bertolini MC, Pedersoli WR, Silva RN, Rossi A. The pH Signaling Transcription Factor PAC-3 Regulates Metabolic and Developmental Processes in Pathogenic Fungi. Front Microbiol 2019; 10:2076. [PMID: 31551996 PMCID: PMC6738131 DOI: 10.3389/fmicb.2019.02076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/22/2019] [Indexed: 01/22/2023] Open
Abstract
The zinc finger transcription factor PAC-3/RIM101/PacC has a defined role in the secretion of enzymes and proteins in response to ambient pH, and also contributes to the virulence of species. Herein we evaluated the role of PAC-3 in the regulation of Neurospora crassa genes, in a model that examined the plant-fungi interactions. N. crassa is a model fungal species capable of exhibiting dynamic responses to its environment by employing endophytic or phytopathogenic behavior according to a given circumstance. Since plant growth and productivity are highly affected by pH and phosphorus (P) acquisition, we sought to verify the impact that induction of a Δpac-3 mutation would have under limited and sufficient Pi availability, while ensuring that the targeted physiological adjustments mimicked ambient pH and nutritional conditions required for efficient fungal growth and development. Our results suggest direct regulatory functions for PAC-3 in cell wall biosynthesis, homeostasis, oxidation-reduction processes, hydrolase activity, transmembrane transport, and modulation of genes associated with fungal virulence. Pi-dependent modulation was observed mainly in genes encoding for transporter proteins or related to cell wall development, thereby advancing the current understanding regarding colonization and adaptation processes in response to challenging environments. We have also provided comprehensive evidence that suggests a role for PAC-3 as a global regulator in plant pathogenic fungi, thus presenting results that have the potential to be applied to various types of microbes, with diverse survival mechanisms.
Collapse
Affiliation(s)
- Maíra Pompeu Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Célia Bertolini
- Department of Biochemistry and Technological Chemistry, São Paulo State University, UNESP, Institute of Chemistry, Araraquara, Brazil
| | - Wellington R Pedersoli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
15
|
Pudney A, Gandini C, Economou CK, Smith R, Goddard P, Napier JA, Spicer A, Sayanova O. Multifunctionalizing the marine diatom Phaeodactylum tricornutum for sustainable co-production of omega-3 long chain polyunsaturated fatty acids and recombinant phytase. Sci Rep 2019; 9:11444. [PMID: 31391507 PMCID: PMC6686013 DOI: 10.1038/s41598-019-47875-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 07/23/2019] [Indexed: 11/09/2022] Open
Abstract
There is an urgent requirement for sustainable sources of food and feed due to world population growth. Aquaculture relies heavily on the fish meal and fish oils derived from capture fisheries, challenging sustainability of the production system. Furthermore, substitution of fish oil with vegetable oil and fish meal with plant seed meals in aquaculture feeds reduces the levels of valuable omega-3 long chain polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, and lowers the nutritional value due to the presence of phytate. Addition of exogenous phytase to fish feed is beneficial for enhancing animal health and reducing phosphorus pollution. We have engineered the marine diatom Phaeodactylum tricornutum, accumulating high levels of EPA and DHA together with recombinant proteins: the fungal Aspergillus niger PhyA or the bacterial Escherichia coli AppA phytases. The removal of the N-terminal signal peptide further increased phytase activity. Strains engineered with fcpA and CIP1 promoters showed the highest level of phytase activity. The best engineered strain achieved up to 40,000 phytase activity units (FTU) per gram of soluble protein, thus demonstrating the feasibility of development of multifunctionalized microalgae to simultaneously produce industrially useful proteins and fatty acids to meet the demand of intensive fish farming activity.
Collapse
Affiliation(s)
- Alex Pudney
- Algenuity, Eden Laboratory, Broadmead Road, Stewartby, BEDS MK43 9ND, UK
| | - Chiara Gandini
- Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Chloe K Economou
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Richard Smith
- Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Paul Goddard
- Amalga Technologies Ltd, 80 Park Road, Hampton Wick, Kingston on Thames, Surrey, KT14AY, UK
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Andrew Spicer
- Algenuity, Eden Laboratory, Broadmead Road, Stewartby, BEDS MK43 9ND, UK
| | - Olga Sayanova
- Department of Plant Sciences, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK.
| |
Collapse
|
16
|
Herrmann KR, Ruff AJ, Infanzón B, Schwaneberg U. Engineered phytases for emerging biotechnological applications beyond animal feeding. Appl Microbiol Biotechnol 2019; 103:6435-6448. [DOI: 10.1007/s00253-019-09962-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
|
17
|
Ajith S, Ghosh J, Shet D, ShreeVidhya S, Punith BD, Elangovan AV. Partial purification and characterization of phytase from Aspergillus foetidus MTCC 11682. AMB Express 2019; 9:3. [PMID: 30610388 PMCID: PMC6320329 DOI: 10.1186/s13568-018-0725-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/24/2018] [Indexed: 11/23/2022] Open
Abstract
Phytase is a phosphatase enzyme widely used as feed additive to release inorganic phosphorus from plant phytate and enhance its uptake in monogastric animals. Although engineered fungal phytases are used most, a natural enzyme gives opportunity to understand novel properties, if any. In the current study, a novel fungal strain, Aspergillus foetidus MTCC 11682 was immobilized on poly urethane cubes and used for phytase production, purification and molecular characterization. Phytase produced by this method was partially purified by ammonium sulphate precipitation and Sephacryl S-200HR gel filtration to 23.4-fold (compared to crude extract) with recovery of 13% protein. Electrophoresis analysis revealed that phytase has molecular weight of 90.5 kDa on non-reducing and 129.6 kDa on reducing SDS-PAGE. The purified phytase exhibited a wider pH and temperature stability. Analysis of the cloned sequence showed that the gene has 1176 bp that encodes for a peptide of 391 amino acids of the core catalytic region. It was also found that phytase from A. foetidus has a sequence identity of 99% with the phytase gene of other Aspergillus species at nucleotide level and 100% at protein level in A. niger, A. awamori, A. oryzae. In silico analysis of sequence identified the presence of two consecutive and one non-consecutive intra chain disulfide bonds in the phytase. This probably contributed to the differential migration of phytase on reducing and non-reducing SDS-PAGE. There are predicted 11 O-glycosylation sites and 8 N-glycosylation sites, possibly contributed to an enhanced stability of enzyme produced by this organism. This study opened up a new horizon for exploring the novel properties of phytase for other applications.
Collapse
|
18
|
Purification and characterization of phytase from Aspergillus fumigatus Isolated from African Giant Snail (Achatina fulica). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Balaban NP, Suleimanova AD, Shakirov EV, Sharipova MR. Histidine Acid Phytases of Microbial Origin. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718060024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Greiner R. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9603-9607. [PMID: 29052415 DOI: 10.1021/acs.jafc.7b03897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Kinetic parameters for the dephosphorylation of sodium phytate and a series of partially phosphorylated myo-inositol phosphates were determined at pH 3.0 and pH 5.0 for three phytase preparations (Aspergillus niger, Escherichia coli, rye). The enzymes showed lower affinity and turnover numbers at pH 3 compared to pH 5 toward all myo-inositol phosphates included in the study. The number and distribution of phosphate groups on the myo-inositol ring affected the kinetic parameters. Representatives of the individual phytate dephosphorylation pathways were identified as the best substrates of the phytases. Within the individual phytate dephosphorylation pathways, the pentakisphosphates were better substrates compared to the tetrakisphosphates or phytate itself. E. coli and rye phytase showed comparable activities at both pH values toward the tetrakis- and trisphosphate, whereas A. niger phytase exhibited a higher activity toward the tetrakisphosphate. A myo-inositol phosphate with alternate phosphate groups was shown to be not significantly dephosphorylated by the phytases.
Collapse
Affiliation(s)
- Ralf Greiner
- Federal Research Institute of Nutrition and Food, Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut , Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Proteomic analysis of phytase transgenic and non-transgenic maize seeds. Sci Rep 2017; 7:9246. [PMID: 28835691 PMCID: PMC5569035 DOI: 10.1038/s41598-017-09557-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023] Open
Abstract
Proteomics has become a powerful technique for investigating unintended effects in genetically modified crops. In this study, we performed a comparative proteomics of the seeds of phytase-transgenic (PT) and non-transgenic (NT) maize using 2-DE and iTRAQ techniques. A total of 148 differentially expressed proteins (DEPs), including 106 down-regulated and 42 up-regulated proteins in PT, were identified. Of these proteins, 32 were identified through 2-DE and 116 were generated by iTRAQ. It is noteworthy that only three proteins could be detected via both iTRAQ and 2-DE, and most of the identified DEPs were not newly produced proteins but proteins with altered abundance. These results indicated that many DEPs could be detected in the proteome of PT maize seeds and the corresponding wild type after overexpression of the target gene, but the changes in these proteins were not substantial. Functional classification revealed many DEPs involved in posttranscriptional modifications and some ribosomal proteins and heat-shock proteins that may generate adaptive effects in response to the insertion of exogenous genes. Protein-protein interaction analysis demonstrated that the detected interacting proteins were mainly ribosomal proteins and heat-shock proteins. Our data provided new information on such unintended effects through a proteomic analysis of maize seeds.
Collapse
|
22
|
Tan Y, Yi X, Wang L, Peng C, Sun Y, Wang D, Zhang J, Guo A, Wang X. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety. FRONTIERS IN PLANT SCIENCE 2016; 7:1211. [PMID: 27582747 PMCID: PMC4987384 DOI: 10.3389/fpls.2016.01211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
To investigate unintended effects in genetically modified crops (GMCs), a comparative proteomic analysis between the leaves of the phytase-transgenic maize and the non-transgenic plants was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed proteins (DEPs) were successfully identified, which represents 44 unique proteins. Functional classification of the identified proteins showed that these DEPs were predominantly involved in carbohydrate transport and metabolism category, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Among them, 15 proteins were found to show protein-protein interactions with each other, and these proteins were mainly participated in glycolysis and carbon fixation. Comparison of the changes in the protein and tanscript levels of the identified proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially different between the leaves of the phytase-transgenic maize and the non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences between the leaf proteome might be attributed to both genetic modification and hybrid influence.
Collapse
Affiliation(s)
- Yanhua Tan
- College of Agriculture, Hainan UniversityHaikou, China
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaoping Yi
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Limin Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Cunzhi Peng
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yong Sun
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Jiaming Zhang
- College of Agriculture, Hainan UniversityHaikou, China
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Anping Guo
- College of Agriculture, Hainan UniversityHaikou, China
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xuchu Wang
- College of Agriculture, Hainan UniversityHaikou, China
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| |
Collapse
|
23
|
Niu C, Luo H, Shi P, Huang H, Wang Y, Yang P, Yao B. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites. Appl Environ Microbiol 2016; 82:1004-1014. [PMID: 26637601 PMCID: PMC4751849 DOI: 10.1128/aem.02881-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022] Open
Abstract
N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed.
Collapse
Affiliation(s)
- Canfang Niu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
24
|
Last D, Müller J, Dawood AWH, Moldenhauer EJ, Pavlidis IV, Bornscheuer UT. Highly efficient and easy protease-mediated protein purification. Appl Microbiol Biotechnol 2015; 100:1945-1953. [DOI: 10.1007/s00253-015-7206-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 11/29/2022]
|
25
|
Spier MR, Behsnilian D, Zielinski A, Konietzny U, Greiner R. Studies Towards the Stabilisation of a Mushroom Phytase Produced by Submerged Cultivation. Protein J 2015; 34:367-79. [DOI: 10.1007/s10930-015-9631-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Appl Microbiol Biotechnol 2015; 100:227-42. [PMID: 26403922 DOI: 10.1007/s00253-015-6959-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE, an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.
Collapse
|
27
|
Zhou X, Hui E, Yu XL, Lin Z, Pu LK, Tu Z, Zhang J, Liu Q, Zheng J, Zhang J. Development of a Rapid Immunochromatographic Lateral Flow Device Capable of Differentiating Phytase Expressed from Recombinant Aspergillus niger phyA2 and Genetically Modified Corn. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4320-4326. [PMID: 25901899 DOI: 10.1021/acs.jafc.5b00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytase is a phosphohydrolase considered highly specific for the degradation of phytate to release bound phosphorus for animal consumption and aid in the reduction of environmental nutrient loading. New sources of phytase have been sought that are economically and efficiently productive including the construction of genetically modified (GM) phytase products designed to bypass the costs associated with feed processing. Four monoclonal antibodies (EH10a, FA7, AF9a, and CC1) raised against recombinant Aspergillus niger phyA2 were used to develop a highly specific and sensitive immunochromatographic lateral flow device for rapid detection of transgenic phytase, such as in GM corn. Antibodies sequentially paired and tested along lateral flow strips showed that the EH10a-FA7 antibody pair was able to detect the recombinant yeast-phytase at 5 ng/mL, whereas the AF9a-CC1 antibody pair to GM phytase corn was able to detect at 2 ng/mL. Concurrent to this development, evidence was revealed which suggests that antibody binding sites may be glycosylated.
Collapse
Affiliation(s)
- Xiaojin Zhou
- †Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | - Elizabeth Hui
- ‡Artron BioResearch Inc., 3938 North Fraser Way, Burnaby, British Columbia V5J 5H6, Canada
| | | | | | - Ling-Kui Pu
- †Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing 100081, People's Republic of China
| | | | - Jun Zhang
- ‡Artron BioResearch Inc., 3938 North Fraser Way, Burnaby, British Columbia V5J 5H6, Canada
- #Ji Nan Kangbo Biotechnology, 2711 Ying Xiu Road, Jinan, Shandong Province 250101, People's Republic of China
| | - Qi Liu
- #Ji Nan Kangbo Biotechnology, 2711 Ying Xiu Road, Jinan, Shandong Province 250101, People's Republic of China
- ⊥Beijing Artron Jingbiao Biotech Inc., 19 Tianrong Street, Daxing Bio-medicine Industry Park, Daxing District, Beijing 102600, People's Republic of China
| | | | - Juan Zhang
- ΔBlood Transfusion Department, Second Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, People's Republic of China
| |
Collapse
|
28
|
Hydrolysis of phytate and formation of inositol phosphate isomers without or with supplemented phytases in different segments of the digestive tract of broilers. J Nutr Sci 2015; 4:e1. [PMID: 26090091 PMCID: PMC4463934 DOI: 10.1017/jns.2014.62] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/31/2014] [Accepted: 11/03/2014] [Indexed: 11/29/2022] Open
Abstract
The objective was to characterise degradation of myo-inositol
1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) and formation of inositol
phosphate (InsP) isomers in different segments of the broiler digestive tract. Influence
of an Aspergillus niger (PhyA) and two Escherichia
coli-derived (PhyE1 and PhyE2) phytases was also investigated. A total of 600
16-d-old broilers were allocated to forty floor pens (ten pens per treatment). Low-P
(5·2 g/kg DM) maize–soyabean meal-based diets were fed without (basal diet; BD) or with a
phytase added. On day 25, digesta from different digestive tract segments were pooled per
segment on a pen-basis, freeze-dried and analysed for P, InsP isomers and the marker
TiO2. InsP6 degradation until the lower ileum (74 %) in BD-fed
birds showed a high potential of broilers and their gut microbiota to hydrolyse
InsP6 in low-P diets. Different InsP patterns in different gut segments
suggested the involvement of phosphatases of different origin. Supplemented phytases
increased InsP6 hydrolysis in the crop (P < 0·01) but
not in the lower ileum. Measurements in the crop and proventriculus/gizzard confirmed
published in vitro degradation pathways of 3- and 6-phytases for the
first time. In the intestinal segments, specifically formed InsP4–5 isomers of
supplemented phytases were still present, indicating further activity of these enzymes.
Myo-inositol tetrakisphosphate (InsP4) accumulation differed
between PhyE1 and PhyE2 compared with PhyA in the anterior segments of the gut
(P < 0·01). Thus, the hydrolytic cleavage of the first phosphate
group is not the only limiting step in phytate degradation in broilers.
Collapse
Key Words
- BD, basal diet
- Broilers
- Inositol phosphate isomers
- InsP, inositol phosphate
- InsP3, myo-inositol trisphosphate
- InsP4, myo-inositol tetrakisphosphate
- InsP5, myo-inositol pentakisphosphate
- InsP6, myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate)
- PhyA, Aspergillus-derived phytase Finase® P
- PhyE1, Escherichia coli-derived phytase Quantum®
- PhyE2, E. coli-derived phytase Quantum® Blue
- Phytases
- Phytate hydrolysis
- tP, total P
Collapse
|
29
|
Lee SH, Cho J, Bok J, Kang S, Choi Y, Lee PCW. Characterization, Gene Cloning, and Sequencing of a Fungal Phytase, PhyA, FromPenicillium oxalicumPJ3. Prep Biochem Biotechnol 2014; 45:336-47. [DOI: 10.1080/10826068.2014.923446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Oh TK, Oh S, Kim S, Park JS, Vinod N, Jang KM, Kim SC, Choi CW, Ko SM, Jeong DK, Udayakumar R. Expression of Aspergillus nidulans phy gene in Nicotiana benthamiana produces active phytase with broad specificities. Int J Mol Sci 2014; 15:15571-91. [PMID: 25192284 PMCID: PMC4200759 DOI: 10.3390/ijms150915571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/09/2014] [Accepted: 08/22/2014] [Indexed: 11/16/2022] Open
Abstract
A full-length phytase gene (phy) of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR), and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa) was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa) was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5), an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F), the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs.
Collapse
Affiliation(s)
- Tae-Kyun Oh
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 302-735, Korea.
| | - Sung Oh
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 302-735, Korea.
| | - Seongdae Kim
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 302-735, Korea.
| | - Jae Sung Park
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 302-735, Korea.
| | - Nagarajan Vinod
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 302-735, Korea.
| | - Kyung Min Jang
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 302-735, Korea.
| | - Sei Chang Kim
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 302-735, Korea.
| | - Chang Won Choi
- Department of Biology & Medicinal Science, Pai Chai University, Daejeon 302-735, Korea.
| | - Suk-Min Ko
- Research Institute for Subtropical Agriculture and Animal Biotechnology, Jeju National University, Jeju-si 690-756, Jeju Special Self-Governing Province, Korea.
| | - Dong Kee Jeong
- Faculty of Biotechnology, Jeju National University, Jeju-si 690-756, Jeju Special Self-Governing Province, Korea.
| | - Rajangam Udayakumar
- Department of Biochemistry, Government Arts College (Autonomous), Kumbakonam-612 001, Tamilnadu, India.
| |
Collapse
|
31
|
Malavazi I, Goldman GH, Brown NA. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Brief Funct Genomics 2014; 13:456-70. [PMID: 25060881 DOI: 10.1093/bfgp/elu027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the external environment, or within a host organism, filamentous fungi experience sudden changes in nutrient availability, osmolality, pH, temperature and the exposure to toxic compounds. The fungal cell wall represents the first line of defense, while also performing essential roles in morphology, development and virulence. A polarized secretion system is paramount for cell wall biosynthesis, filamentous growth, nutrient acquisition and interactions with the environment. The unique ability of filamentous fungi to secrete has resulted in their industrial adoption as fungal cell factories. Protein maturation and secretion commences in the endoplasmic reticulum (ER). The unfolded protein response (UPR) maintains ER functionality during exposure to secretion and cell wall stress. UPR, therefore, influences secretion and cell wall homeostasis, which in turn impacts upon numerous fungal traits important to pathogenesis and biotechnology. Subsequently, this review describes the relevance of the cell wall and UPR systems to filamentous fungal pathogens or industrial microbes and then highlights interconnections between the two systems. Ultimately, the possible biotechnological applications of an enhanced understanding of such regulatory systems in combating fungal disease, or the removal of natural bottlenecks in protein secretion in an industrial setting, are discussed.
Collapse
|
32
|
Singh B. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol 2014; 36:59-69. [PMID: 25025273 DOI: 10.3109/07388551.2014.923985] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45 °C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.
Collapse
Affiliation(s)
- Bijender Singh
- a Laboratory of Bioprocess Technology, Department of Microbiology , Maharshi Dayanand University , Rohtak-124001 , Haryana , India
| |
Collapse
|
33
|
Xu H, Liu Y, Wang F, Yuan L, Wang Y, Ma S, Beneš H, Xia Q. Overexpression and functional characterization of an Aspergillus niger phytase in the fat body of transgenic silkworm, Bombyx mori. Transgenic Res 2014; 23:669-77. [PMID: 24719047 DOI: 10.1007/s11248-014-9797-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/03/2014] [Indexed: 11/26/2022]
Abstract
In a previous study, we isolated 1,119 bp of upstream promoter sequence from Bmlp3, a gene encoding a member of the silkworm 30 K storage protein family, and demonstrated that it was sufficient to direct fat body-specific expression of a reporter gene in a transgenic silkworm, thus highlighting the potential use of this promoter for both functional genomics research and biotechnology applications. To test whether the Bmlp3 promoter can be used to produce recombinant proteins in the fat body of silkworm pupae, we generated a transgenic line of Bombyx mori which harbors a codon-optimized Aspergillus niger phytase gene (phyA) under the control of the Bmlp3 promoter. Here we show that the Bmlp3 promoter drives high levels of phyA expression in the fat body, and that the recombinant phyA protein is highly active (99.05 and 54.80 U/g in fat body extracts and fresh pupa, respectively). We also show that the recombinant phyA has two optimum pH ranges (1.5-2.0 and 5.5-6.0), and two optimum temperatures (55 and 37 °C). The activity of recombinant phyA was lost after high-temperature drying, but treating with boiling water was less harmful, its residual activity was approximately 84% of the level observed in untreated samples. These results offer an opportunity not only for better utilization of large amounts of silkworm pupae generated during silk production, but also provide a novel method for mass production of low-cost recombinant phytase using transgenic silkworms.
Collapse
Affiliation(s)
- Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sanikommu S, Pasupuleti M, Vadalkonda L. COMPARISON OF PHOSPHATE ESTIMATING METHODS IN THE PRESENCE OF PHYTIC ACID FOR THE DETERMINATION OF PHYTASE ACTIVITY. Prep Biochem Biotechnol 2013; 44:231-41. [DOI: 10.1080/10826068.2013.797434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Site-Directed Mutagenesis Improves the Thermostability and Catalytic Efficiency of Aspergillus niger N25 Phytase Mutated by I44E and T252R. Appl Biochem Biotechnol 2013; 171:900-15. [DOI: 10.1007/s12010-013-0380-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
36
|
Rivera-Solís RA, Peraza-Echeverria S, Echevarría-Machado I, Herrera-Valencia VA. Chlamydomonas reinhardtii has a small family of purple acid phosphatase homologue genes that are differentially expressed in response to phytate. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0688-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
37
|
Wang Y, Ye X, Ding G, Xu F. Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica napus. PLoS One 2013; 8:e60801. [PMID: 23573285 PMCID: PMC3616117 DOI: 10.1371/journal.pone.0060801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/03/2013] [Indexed: 11/23/2022] Open
Abstract
Phytate is the major storage form of organic phosphorus in soils and plant seeds, and phosphorus (P) in this form is unavailable to plants or monogastric animals. In the present study, the phytase genes phyA and appA were introduced into Brassica napus cv Westar with a signal peptide sequence and CaMV 35S promoter, respectively. Three independent transgenic lines, P3 and P11 from phyA and a18 from appA, were selected. The three transgenic lines exhibited significantly higher exuded phytase activity when compared to wild-type (WT) controls. A quartz sand culture experiment demonstrated that transgenic Brassica napus had significantly improved P uptake and plant biomass. A soil culture experiment revealed that seed yields of transgenic lines P11 and a18 increased by 20.9% and 59.9%, respectively, when compared to WT. When phytate was used as the sole P source, P accumulation in seeds increased by 20.6% and 46.9% with respect to WT in P11 and a18, respectively. The P3 line accumulated markedly more P in seeds than WT, while no significant difference was observed in seed yields when phytate was used as the sole P source. Phytase activities in transgenic canola seeds ranged from 1,138 to 1,605 U kg(-1) seeds, while no phytase activity was detected in WT seeds. Moreover, phytic acid content in P11 and a18 seeds was significantly lower than in WT. These results introduce an opportunity for improvement of soil and seed phytate-P bioavailability through genetic manipulation of oilseed rape, thereby increasing plant production and P nutrition for monogastric animals.
Collapse
Affiliation(s)
- Yi Wang
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Center, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiangsheng Ye
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, and Microelement Research Center, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
Abstract
Phytases are phosphohydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate, the major form of phosphorus in plant-based feeds. Consequently, this enzyme is supplemented in these species’ diets to decrease their phosphorus excretion, and it has emerged as one of the most effective and lucrative feed additives. This chapter provides a comprehensive review of the evolving course of phytase science and technology. It gives realistic estimates of the versatile roles of phytase in animal feeding, environmental protection, rock phosphorus preservation, human nutrition and health, and industrial applications. It elaborates on new biotechnology and existing issues related to developing novel microbial phytases as well as phytase-transgenic plants and animals. And it targets critical and integrated analyses on the global impact, novel application, and future demand of phytase in promoting animal agriculture, human health, and societal sustainability.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | | | | | | | - Michael J. Azain
- Department of Animal Science, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
39
|
Akhter S, Saeed A, Irfan M, Malik KA. In vitro dephytinization and bioavailability of essential minerals in several wheat varieties. J Cereal Sci 2012. [DOI: 10.1016/j.jcs.2012.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Biesebeke RT, Record E. Scientific Advances with Aspergillus Species that Are Used for Food and Biotech Applications. Microbes Environ 2012; 23:177-81. [PMID: 21558706 DOI: 10.1264/jsme2.23.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Yeast and filamentous fungi have been used for centuries in diverse biotechnological processes. Fungal fermentation technology is traditionally used in relation to food production, such as for bread, beer, cheese, sake and soy sauce. Last century, the industrial application of yeast and filamentous fungi expanded rapidly, with excellent examples such as purified enzymes and secondary metabolites (e.g. antibiotics), which are used in a wide range of food as well as non-food industries. Research on protein and/or metabolite secretion by fungal species has focused on identifying bottlenecks in (post-) transcriptional regulation of protein production, metabolic rerouting, morphology and the transit of proteins through the secretion pathway. In past years, genome sequencing of some fungi (e.g. Aspergillus oryzae, Aspergillus niger) has been completed. The available genome sequences have enabled identification of genes and functionally important regions of the genome. This has directed research to focus on a post-genomics era in which transcriptomics, proteomics and metabolomics methodologies will help to explore the scientific relevance and industrial application of fungal genome sequences.
Collapse
|
41
|
Salem TM, Barberini ML, Wengier DL, Cabanas ML, de Paz P, Muschietti J. Oligomerization studies show that the kinase domain of the tomato pollen receptor kinase LePRK2 is necessary for interaction with LePRK1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 53:40-45. [PMID: 22306355 DOI: 10.1016/j.plaphy.2012.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/09/2012] [Indexed: 05/31/2023]
Abstract
LePRK1 and LePRK2 are two pollen-specific receptor-like kinases from Solanum lycopersicum that are involved in signaling during pollen-pistil communication. Previously, we showed that both proteins interact in pollen and when expressed in yeast. We also showed that pollen tube length was regulated by phosphorylation of specific residues in the juxtamembrane domain of LePRK2. To determine the domains responsible for the interaction between LePRK1 and LePRK2, we constructed a series of deletions, expressed them in yeast and determined their association by co-immunoprecipitation assays. We show that deletions containing extracellular domains of LePRK1 and LePRK2 were glycosylated in yeast and were sufficient for interaction with the corresponding full-length receptor. The juxtamembrane domain of LePRK1 was sufficient for its interaction with LePRK2, whereas LePRK2 required its kinase domain for interaction with LePRK1. These findings suggest a role for the juxtamembrane domain of LePRK2 in mediating intracellular dimerization and thus receptor kinase phosphorylation.
Collapse
Affiliation(s)
- Tamara Marcela Salem
- Instituto de Ingeniería Genética y Biología Molecular INGEBI - Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
42
|
N-linked glycosylation influences on the catalytic and biochemical properties of Penicillium purpurogenum β-d-glucuronidase. J Biotechnol 2012; 157:399-404. [DOI: 10.1016/j.jbiotec.2011.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 02/04/2023]
|
43
|
YOSHINO-YASUDA S, HASEGAWA O, IGA Y, SHIRAISHI Y, WAGU Y, SUZUKI T, SUGIMOTO T, KUSUMOTO KI, KATO M, KITAMOTO N. Disruption and Overexpression of Acid Phosphatase Gene (aphA) from a Miso Koji Mold, Aspergillus oryzae KBN630, and Characterization of the Gene Product. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Improving Phytase Enzyme Activity in a Recombinant phyA Mutant Phytase from Aspergillus niger N25 by Error-Prone PCR. Appl Biochem Biotechnol 2011; 166:549-62. [DOI: 10.1007/s12010-011-9447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 10/26/2011] [Indexed: 01/17/2023]
|
45
|
Singh B, Satyanarayana T. Phytases from thermophilic molds: Their production, characteristics and multifarious applications. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
A construct-specific qualitative and quantitative PCR detection method of transgenic maize BVLA430101. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1501-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Pandee P, Summpunn P, Wiyakrutta S, Isarangkul D, Meevootisom V. A Thermostable phytase from Neosartorya spinosa BCC 41923 and its expression in Pichia pastoris. J Microbiol 2011; 49:257-64. [PMID: 21538247 DOI: 10.1007/s12275-011-0369-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/03/2010] [Indexed: 11/28/2022]
Abstract
A phytase gene was cloned from Neosartorya spinosa BCC 41923. The gene was 1,455 bp in size, and the mature protein contained a polypeptide of 439 amino acids. The deduced amino acid sequence contains the consensus motif (RHGXRXP) which is conserved among phytases and acid phosphatases. Five possible disulfide bonds and seven potential N-glycosylation sites have been predicted. The gene was expressed in Pichia pastoris KM71 as an extracellular enzyme. The purified enzyme had specific activity of 30.95 U/mg at 37°C and 38.62 U/mg at 42°C. Molecular weight of the deglycosylated recombinant phytase, determined by SDS-PAGE, was approximately 52 kDa. The optimum pH and temperature for activity were pH 5.5 and 50°C. The residual phytase activity remained over 80% of initial activity after the enzyme was stored in pH 3.0 to 7.0 for 1 h, and at 60% of initial activity after heating at 90°C for 20 min. The enzyme exhibited broad substrate specificity, with phytic acid as the most preferred substrate. Its K (m) and V (max) for sodium phytate were 1.39 mM and 434.78 U/mg, respectively. The enzyme was highly resistant to most metal ions tested, including Fe(2+), Fe(3+), and Al(3+). When incubated with pepsin at a pepsin/phytase ratio of 0.02 (U/U) at 37°C for 2 h, 92% of its initial activity was retained. However, the enzyme was very sensitive to trypsin, as 5% of its initial activity was recovered after treating with trypsin at a trypsin/phytase ratio of 0.01 (U/U).
Collapse
Affiliation(s)
- Patcharaporn Pandee
- Department of Biotechnology, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
48
|
Engineering of protease-resistant phytase from Penicillium sp.: High thermal stability, low optimal temperature and pH. J Biosci Bioeng 2010; 110:638-45. [DOI: 10.1016/j.jbiosc.2010.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/13/2010] [Accepted: 08/05/2010] [Indexed: 11/16/2022]
|
49
|
AZEKE MARSHALLA, GREINER RALPH, JANY KLAUSDIETER. PURIFICATION AND CHARACTERIZATION OF TWO INTRACELLULAR PHYTASES FROM THE TEMPEH FUNGUS RHIZOPUS OLIGOSPORUS. J Food Biochem 2010. [DOI: 10.1111/j.1745-4514.2010.00377.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Shivange AV, Schwaneberg U, Roccatano D. Conformational dynamics of active site loop in Escherichia coli phytase. Biopolymers 2010; 93:994-1002. [DOI: 10.1002/bip.21513] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|