1
|
Kchikich A, Roussi Z, Krid A, Nhhala N, Ennoury A, Benmrid B, Kounnoun A, El Maadoudi M, Nhiri N, Mohamed N. Effects of mycorrhizal symbiosis and Ulva lactuca seaweed extract on growth, carbon/nitrogen metabolism, and antioxidant response in cadmium-stressed sorghum plant. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:605-618. [PMID: 38737317 PMCID: PMC11087393 DOI: 10.1007/s12298-024-01446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024]
Abstract
In our study on the effect of cadmium (Cd) toxicity (200 µM) on the growth of Sorghum bicolor (L.) Moench plants, cultivated with arbuscular mycorrhizal fungi (AMF) (Glomus intraradices) and/or under seaweed treatment (3% Ulva lactuca extract) (U. lactuca), we found that AMF increased the tolerance of sorghum to cadmium stress, either alone or in combination with the seaweed treatment. Morphological parameters were higher in these two culture conditions, with increased chlorophyll content. AMF reduced Cd accumulation in roots and inhibited its translocation to the aerial part, while seaweed treatment alone significantly increased Cd accumulation in leaves and roots without affecting plant growth compared to stressed witnesses. Treatment with AMF and/or U. lactuca attenuated oxidative stress, measured by activation of superoxide dismutase, and resulted in a significant decrease in malondialdehyde and superoxide ions (O2-) in treated plants. Furthermore, it induced significant alterations in carbon and nitrogen metabolic pathways, with a significant increase in the activity of enzymes such as glutamine synthetase, glutamate synthase (GOGAT), glutamate dehydrogenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase and isocitrate dehydrogenase in the leaves of each treated plant. These results confirm that AMF, U. lactuca algae extract and their combination can improve the biochemical parameters of sorghum under Cd stress, through modification of the antioxidant response on one hand, and improved nitrogen absorption and assimilation efficiency on the other.
Collapse
Affiliation(s)
- Anass Kchikich
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
- Laboratory of Analysis, Modeling, Engineering, Natural Substances and Environment, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Zoulfa Roussi
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Azzouz Krid
- Environmental Technologies, Biotechnology and Valorisation of Bio-Ressources Team, Abdelmalek Essaadi University, 93000 Tetouan, Morocco
| | - Nada Nhhala
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Bouchra Benmrid
- AgroBioSciences Research Division, Mohammed VI Polytechnic University, 43150 Ben Guerir, Morocco
| | - Ayoub Kounnoun
- Laboratory of Applied Biology and Pathology, Department of Biology, Faculty of Sciences of Tetouan, Abdelmalek Essaadi University, 93000 Tetouan, Morocco
| | | | - Naima Nhiri
- Institute for the Chemistry of Natural Substances, CNRS, Paris Saclay University, 91190 Gif-Sur-Yvette, France
| | - Nhiri Mohamed
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
2
|
Chen Y, Zhou X, Wang Z, Su X, Liu F, Tian X, Ye Y, Shao Y, Yuan Z. Cd contamination determined assembly processes and network stability of AM fungal communities in an urban green space ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166372. [PMID: 37598964 DOI: 10.1016/j.scitotenv.2023.166372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
The effects of cadmium (Cd) contamination on the assembly mechanism and co-occurrence patterns of arbuscular mycorrhizal (AM) fungal communities remain unclear, especially in urban green spaces. This study sequenced AM fungal communities in greenbelt soils in Zhengzhou (China). The effects of Cd contamination on the AM fungal diversity, community assembly processes, and co-occurrence patterns were explored. We found that (1) an increase in Cd contamination changed the community composition, which resulted in a significant improvement in the diversity of specialists of AM fungi and a significant decrease in the diversity of generalists. (2) Deterministic processes dominated the community assembly of specialists and stochastic processes dominated the community assembly of generalists. (3) Specialists played a more important role than generalists in maintaining the stability of AM fungal networks under Cd contamination. Overall, Cd contamination affected the ecological processes of AM fungi in urban green space ecosystems. However, the effects on the assembly processes and network stability of different AM fungi taxa (specialists and generalists) differed significantly. The present study provides deeper insight into the effect of Cd contamination on the ecological processes of AMF and is helpful in further exploring the ecological risk of Cd contamination in urban green spaces.
Collapse
Affiliation(s)
- Yun Chen
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Xiayan Zhou
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Zhao Wang
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Xiao Su
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Fengqin Liu
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Xiangyu Tian
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Yongzhong Ye
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Yizhen Shao
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China.
| | - Zhiliang Yuan
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China.
| |
Collapse
|
3
|
Zhou W, Dan Z, Meng D, Zhou P, Chang K, Zhuoma Q, Wang J, Xu F, Chen G. Distribution characteristics and potential ecological risk assessment of heavy metals in soils around Shannan landfill site, Tibet. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:393-407. [PMID: 35962211 DOI: 10.1007/s10653-022-01349-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
At present, sanitary landfill is mainly used for domestic waste treatment in Shannan City, Tibet. However, there are few studies on heavy metals in the soil around the landfill in Shannan city. Therefore, the surrounding soil of Luqionggang landfill in Shannan City, Tibet Autonomous Region, is taken as the research object. In the study, the geo-accumulation index method, Nemerow comprehensive pollution index method and potential ecological risk index method are mainly used to evaluate the pollution and risk of heavy metals in the soil around the landfill site. The main results are as follows: The average pH value of the soil around the landfill site is 9.37, belonging to the strong alkaline range. The average values of heavy metals Hg and Ni in soil exceeded the background content, and the average contents of other heavy metals Cu, Pb, Zn, Cr, As and Cd did not exceed the background content. The average content of these eight heavy metals did not exceed the screening value of the national soil environmental quality standard. In the horizontal direction, the average content of heavy metal elements Cu, Cr, Cd, Hg and Ni is relatively high in the west. The average content of heavy metals As, Zn and Pb in the north, east and south is slightly higher than that in the west. And the farther away from the landfill, the less the soil is affected by heavy metals. The evaluation results of geo-accumulation index show that heavy metal Hg is the most affected. The average value of the comprehensive pollution index is 2.969, which is between 2 and 3, belonging to the moderate pollution level. And the west side of the landfill (downstream area) is greatly affected. The evaluation results of potential ecological hazard pollution index show that the potential risk index of single pollutants of heavy metals Cu, Pb, Zn, Cr, Ni, As and Cd belongs to low ecological hazard level, and the potential risk index of single pollutants of heavy metal Hg belongs to relatively heavy ecological hazard level. On the whole, the total potential risk coefficient belongs to medium pollution hazard degree. According to the correlation analysis, there is no significant correlation between heavy metal elements As and Hg and the other six heavy metal elements. In addition, the pollution source of heavy metal As may be mainly soil forming factors and the pollution source of Hg may be mainly human factors.
Collapse
Affiliation(s)
- Wenwu Zhou
- School of Science, Tibet University, Lhasa, 850000, China
| | - Zeng Dan
- School of Science, Tibet University, Lhasa, 850000, China.
| | - Dean Meng
- School of Science, Tibet University, Lhasa, 850000, China
| | - Peng Zhou
- School of Science, Tibet University, Lhasa, 850000, China
| | - Keke Chang
- School of Science, Tibet University, Lhasa, 850000, China
| | - Qiongda Zhuoma
- School of Science, Tibet University, Lhasa, 850000, China
| | - Jing Wang
- School of Science, Tibet University, Lhasa, 850000, China
| | - Fei Xu
- School of Science, Tibet University, Lhasa, 850000, China
| | - Guanyi Chen
- School of Science, Tibet University, Lhasa, 850000, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Mei X, Wang Y, Li Z, Larousse M, Pere A, da Rocha M, Zhan F, He Y, Pu L, Panabières F, Zu Y. Root-associated microbiota drive phytoremediation strategies to lead of Sonchus Asper (L.) Hill as revealed by intercropping-induced modifications of the rhizosphere microbiome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23026-23040. [PMID: 34799796 PMCID: PMC8979924 DOI: 10.1007/s11356-021-17353-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 10/30/2021] [Indexed: 05/06/2023]
Abstract
Intercropping or assistant endophytes promote phytoremediation capacities of hyperaccumulators and enhance their tolerance to heavy metal (HM) stress. Findings from a previous study showed that intercropping the hyperaccumulator Sonchus asper (L.) Hill grown in HM-contaminated soils with maize improved the remediating properties and indicated an excluder-to-hyperaccumulator switched mode of action towards lead. In the current study, RNA-Seq analysis was conducted on Sonchus roots grown under intercropping or monoculture systems to explore the molecular events underlying this shift in lead sequestering strategy. The findings showed that intercropping only slightly affects S. asper transcriptome but significantly affects expression of root-associated microbial genomes. Further, intercropping triggers significant reshaping of endophytic communities associated with a 'root-to-shoot' transition of lead sequestration and improved phytoremediation capacities of S. asper. These findings indicate that accumulator activities of a weed are partially attributed to the root-associated microbiota, and a complex network of plant-microbe-plant interactions shapes the phytoremediation potential of S. asper. Analysis showed that intercropping may significantly change the structure of root-associated communities resulting in novel remediation properties, thus providing a basis for improving phytoremediation practices to restore contaminated soils.
Collapse
Affiliation(s)
- Xinyue Mei
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Marie Larousse
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Arthur Pere
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Martine da Rocha
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Linlong Pu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Franck Panabières
- Université Côte d'Azur, INRAE, CNRS, ISA, 06903, Sophia Antipolis, France.
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
5
|
Paura B, Di Marzio P. Making a Virtue of Necessity: The Use of Wild Edible Plant Species (Also Toxic) in Bread Making in Times of Famine According to Giovanni Targioni Tozzetti (1766). BIOLOGY 2022; 11:285. [PMID: 35205151 PMCID: PMC8869735 DOI: 10.3390/biology11020285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 04/27/2023]
Abstract
In 1766, the agricultural scientist Giovanni Targioni Tozzetti described for the Grand Duchy of Tuscany, the wild and cultivated plant species that could be used, in times of famine, to increase the quantity of flour or vegetable mass in bread making. These wild plants can be defined as wild edible plants (WEPs) or "alimurgic species", a concept usually traced back to Giovanni Targioni Tozzetti himself. The 342 plant names mentioned in the text are in the Tuscan vernacular, so a research work was done on bibliographic sources from the 1800s in order to match them with their current nomenclature. This process led to an "alimurgic flora" repertoire based on the writing of Targioni Tozzetti; and a comparison with our AlimurgITA database of 1103 wild edible plants used in Italy. It is particularly interesting that in his short treatise, Giovanni Targioni Tozzetti identified eight toxic plants (corresponding to 14 species), indicating how to eliminate the poisonous substances from their useful roots. We treat them in detail, examining their current and past use, their geographical distribution in Italy, and their eventual toxicity. We obtained 343 matches, of which 198 were reliable (certain matches) and 145 possessed some degree of uncertainty (due to generic or collective vernacular names). Among the 198 certain identifications, 140 species are present in the AlimurgITA database (92 mentioned for Tuscany) and 58 are not; for bread-making there are only documentary traces of 53 species for Italy and 7 for Tuscany. Moreover, among the total 198 species, 84 showed some degree of hazard. Researching edible toxic spontaneous species allows: (1) investigation, from an unusual perspective, of a historical period in which the poor conditions of some social strata led to finding unusual solutions to food provision; (2) idea generation to re-enable potentially useful WEPs whose use has been lost. Making a virtue of necessity!
Collapse
Affiliation(s)
- Bruno Paura
- Department of Agricultural, Environmental and Food Sciences University of Molise, 86100 Campobasso, Italy
| | - Piera Di Marzio
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy;
| |
Collapse
|
6
|
Lee SJ, Kong M, St-Arnaud M, Hijri M. Arbuscular Mycorrhizal Fungal Communities of Native Plant Species under High Petroleum Hydrocarbon Contamination Highlights Rhizophagus as a Key Tolerant Genus. Microorganisms 2020; 8:microorganisms8060872. [PMID: 32526923 PMCID: PMC7356029 DOI: 10.3390/microorganisms8060872] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 01/08/2023] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to play an important role in increasing plant fitness in harsh conditions. Therefore, AMF are currently considered to be effective partners in phytoremediation. However, AMF communities in high levels of petroleum pollution are still poorly studied. We investigated the community structures of AMF in roots and rhizospheric soils of two plant species, Eleocharis elliptica and Populus tremuloides, growing spontaneously in high petroleum-contaminated sedimentation basins of a former petrochemical plant (91,000 μg/Kg of C10–C50 was recorded in a basin which is 26-fold higher than the threshold of polluted soil in Quebec, Canada). We used a PCR cloning, and sequencing approach, targeting the 18S rRNA gene to identify AMF taxa. The high concentration of petroleum-contamination largely influenced the AMF diversity, which resulted in less than five AMF operational taxonomical units (OTUs) per individual plant at all sites. The OTUs detected belong mainly to the Glomerales, with some from the Diversisporales and Paraglomerales, which were previously reported in high concentrations of metal contamination. Interestingly, we found a strong phylogenetic signal in OTU associations with host plant species identity, biotopes (roots or soils), and contamination concentrations (lowest, intermediate and highest). The genus Rhizophagus was the most dominant taxon representing 74.4% of all sequences analyzed in this study and showed clear association with the highest contamination level. The clear association of Rhizophagus with high contamination levels suggests the importance of the genus for the use of AMF in bioremediation, as well as for the survey of key AMF genes related to petroleum hydrocarbon resistance. By favoring plant fitness and mediating its soil microbial interactions, Rhizophagus spp. could enhance petroleum hydrocarbon pollutant degradation by both plants and their microbiota in contaminated sites.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Mengxuan Kong
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (M.K.); (M.S.-A.)
| | - Marc St-Arnaud
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (M.K.); (M.S.-A.)
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke est, Montréal, QC H1X 2B2, Canada; (M.K.); (M.S.-A.)
- AgroBioSciences, Mohammed VI Polytechnic University, Lot 660—Hay Moulay Rachid, 43150 Ben Guerir, Morocco
- Correspondence: ; Tel.: +1-514-343-2120
| |
Collapse
|
7
|
Mesjasz-Przybyłowicz J, Przybyłowicz WJ. Ecophysiology of nickel hyperaccumulating plants from South Africa - from ultramafic soil and mycorrhiza to plants and insects. Metallomics 2020; 12:1018-1035. [PMID: 32459223 DOI: 10.1039/c9mt00282k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An overview of 30 years of studies related to South African nickel hyperaccumulators is presented. Only five species have so far been identified as Ni hyperaccumulator plants among very rich and diversified South African flora. All of them occur on soils derived from ultramafic (serpentine) rocks and belong to the family Asteraceae: Berkheya coddii Roessler, Berkheya zeyheri subsp. rehmannii var. rogersiana, Berkheya nivea, Senecio coronatus, Senecio anomalochrous. Several techniques and methods were used to investigate ecophysiological aspects of the Ni hyperaccumulation phenomenon, from basic field and laboratory studies, to advanced instrumental methods. Analysis of elemental distribution in plant parts showed that in most cases the hyperaccumulated metal was stored in physiologically inactive tissues such as the foliar epidermis. However, an exception is Berkheya coddii, which has a distinctly different pattern of Ni distribution in leaves, with the highest concentration in the mesophyll. Such a distribution suggests that different physiological mechanisms are involved in the Ni transport, storage location and detoxification, compared to other hyperaccumulator species. Berkheya coddii is a plant with high potential for phytoremediation and phytomining due to its large biomass and potentially high Ni yield, that can reach 7.6% of Ni in dry mass of leaves. Senecio coronatus is the only known hyperaccumulator with two genotypes, hyperaccumulating and non-hyperaccumulating, growing on Ni-enriched/metalliferous soil. Detailed ultrastructural studies were undertaken to characterize specialized groups of cells in the root cortex of Ni-hyperaccumulating genotype, that are not known from any other hyperaccumulator. The occurrence of arbuscular mycorrhiza (AM) in Ni-hyperaccumulating plants was found for the first time in South African hyperaccumulator plants, and this type of symbiosis has been proved obligatory in all of them. There is a significant influence of mycorrhiza on the concentration and distribution of several elements. Three highly specialized herbivore insects feeding only on Ni hyperaccumulator plants were identified: Chrysolina clathrata (formerly Chrysolina pardalina), Epilachna nylanderi and Stenoscepa sp. The Ni-elimination strategies of these specialised insects have been established. Microbiological studies have revealed several genera of fungi and bacteria isolated from B. coddii leaves as well as presence of specialised, Ni-resistant yeasts in the C. clathrata gut. Understanding ecophysiological response to harsh environment broadens our knowledge and can have practical applications in cleaning polluted environments through phytomining/agromining. Finally, conservation aspects are also discussed and lines for future research are proposed.
Collapse
|
8
|
Wu S, You F, Wu Z, Bond P, Hall M, Huang L. Molecular diversity of arbuscular mycorrhizal fungal communities across the gradient of alkaline Fe ore tailings, revegetated waste rock to natural soil sites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11968-11979. [PMID: 31983001 DOI: 10.1007/s11356-020-07780-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are important to the establishment of native vegetation for mined land rehabilitation, particularly in semi-arid and infertile landscapes. However, the information has been scarce about the colonization of AM fungal community in alkaline magnetite Fe ore tailing sites (without toxic metal (loid) contamination). The present study has characterized the diversity of AM fungi across typical domains of a magnetite Fe ore mine located in 200 km south-east of Geraldton, Western Australia, by adopting high throughput Illumina Miseq sequencing. The investigated domains included two tailing sites without top soil covering (T1 and T2), a rehabilitated area of tailings with top soil covering (R1), a revegetated waste rock area (R2), and two native undisturbed soil sites (S1 and S2). The results indicated that the T1/T2 sites had different AM fungal community structure, compared with R1/R2 and S1/S2 sites. The dominant families were Glomeraceae, Claroideoglomeraceae, Archaeosporaceae, Ambisporaceae, and Paraglomeraceae, with Paraglomeraceae (more than 50%) as the most abundant in the T1/T2 and R1/R2 sites. At genus level, Ambispora spp. and Archaeospora spp. were rich in T1/T2 sites (> 10%), while Glomus spp. were preferably dominant in S1/S2 sites (> 10%). Furthermore, amorphous Fe and available P were found to explain the variations associated with AM fungal community composition, particularly the abundance of Archaeosporaceae and Glomeraceae. The study revealed the AM fungal community composition shift across the gradient of Fe ore mine sites, as well as the effects of revegetation on AM fungal community development. The findings indicate the possible restoration of AM fungal community in the tailings undergoing revegetation, and potential adoption of indigenous AM fungi to rapid phytostabilization of the Fe ore tailings under semi-arid climatic conditions.
Collapse
Affiliation(s)
- Songlin Wu
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Fang You
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhaoxiang Wu
- Jiangxi Engineering and Technology Research Center for Ecological Remediation of Heavy Metal Pollution, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Philip Bond
- Advanced Water Management Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Merinda Hall
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Longbin Huang
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
9
|
The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Guo H, Nasir M, Lv J, Dai Y, Gao J. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017. [PMID: 28645031 DOI: 10.1016/j.ecoenv.2017.06.048] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
To improve the understanding of bacterial community in heavy metals contaminated soils, we studied the effects of environmental factors on the bacterial community structure in contaminated fields located in Shaanxi Province of China. Our results showed that microbial community structure varied among sites, and it was significantly affected by soil environmental factors such as pH, soil organic matter (SOM), Cd, Pb and Zn. In addition, Spearman's rank-order correlation indicated heavy metal sensitive (Ralstonia, Gemmatimona, Rhodanobacter and Mizugakiibacter) and tolerant (unidentified-Nitrospiraceae, Blastocatella and unidentified-Acidobacteria) microbial groups. Our findings are crucial to understanding microbial diversity in heavy metal polluted soils of China and can be used to evaluate microbial communities for scientific applications such as bioremediation projects.
Collapse
Affiliation(s)
- Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Mubasher Nasir
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Yunchao Dai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, China
| | - Jiakai Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, China
| |
Collapse
|
11
|
Deng Z, Cao L. Fungal endophytes and their interactions with plants in phytoremediation: A review. CHEMOSPHERE 2017; 168:1100-1106. [PMID: 28029384 DOI: 10.1016/j.chemosphere.2016.10.097] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/15/2016] [Accepted: 10/24/2016] [Indexed: 05/29/2023]
Abstract
Endophytic microorganisms (including bacteria and fungi) are likely to interact closely with their hosts and are more protected from adverse changes in the environment. The microbiota contribute to plant growth, productivity, carbon sequestration, and phytoremediation. Elevated levels of contaminants (i.e. metals) are toxic to most plants, the plant's metabolism and growth were impaired and their potential for metal phytoextraction is highly restricted. Exploiting endophytic microorganisms to reduce metal toxicity to plants have been investigated to improve phytoremediation efficiencies. Fungi play an important role in organic and inorganic transformation, element cycling, rock and mineral transformations, bioweathering, mycogenic mineral formation, fungal-clay interactions, and metal-fungal interactions. Endophytic fungi also showed potentials to enhance phytoremediation. Compared to bacteria, most fungi exhibit a filamentous growth habit, which provides the ability to adopt both explorative or exploitative growth strategies and form linear organs of aggregated hyphae to protect fungal translocation. However, the information regarding the role of endophytic fungi in phytoremediation are incomplete, this review highlights the taxa, physiological properties, and interaction of endophytic fungi with plants in phytoremediation.
Collapse
Affiliation(s)
- Zujun Deng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
12
|
Shi Y, Xie H, Cao L, Zhang R, Xu Z, Wang Z, Deng Z. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:417-426. [PMID: 27726080 DOI: 10.1007/s11356-016-7693-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/12/2016] [Indexed: 05/24/2023]
Abstract
Metal-resistant endophytic fungi from roots improved phytoremediation efficacy of host plants; however, the effects of endophytic fungi from plant aerial parts on host plants are unknown. The aim of this study was to develop a feasible method to screen fungal endophytes from stems and roots of Brassica napus and to investigate effects of the endophytic fungi on growth and phytoremediation efficiency of the plant. Endophytic Fusarium sp. CBRF44, Penicillium sp. CBRF65, and Alternaria sp. CBSF68 with different traits were isolated from roots and stems of rapes grown in a metal-contaminated soil. Fusarium sp. CBRF44 (resistant to 5 mM Cd and 15 mM Pb, isolated from roots) and Alternaria sp. CBSF68 (resistant to 1 mM Cd and 10 mM Pb, isolated from stems) could produce indole-3-acetic acid (IAA) and siderophore; Penicillium sp. CBRF65 (tolerate 2 mM Cd and 20 mM Pb, isolated from roots) could not produce IAA and siderophore but showed the highest phosphate-solubilizing activities. Fusarium sp. CBRF44 and Penicillium sp. CBRF65 significantly increased the rape biomass and promoted the extraction efficacy of Pb and Cd, while Alternaria sp. CBSF68 did not show similar results. Penicillium sp. CBRF65 and Fusarium sp. CBRF44 could be frequently recovered from inoculated rape roots, while Alternaria sp. CBSF68 was scarcely recovered. The results indicate that the colonizing capacity of endophytic fungi in roots is important to improve phytoremediation efficacy of host plants.
Collapse
Affiliation(s)
- Yanan Shi
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Huarong Xie
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Lixiang Cao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Renduo Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zaichao Xu
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zhuoya Wang
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zujun Deng
- School of Basic Courses, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
13
|
Markowicz A, Woźniak G, Borymski S, Piotrowska-Seget Z, Chmura D. Links in the functional diversity between soil microorganisms and plant communities during natural succession in coal mine spoil heaps. Ecol Res 2015. [DOI: 10.1007/s11284-015-1301-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
The Arbuscular Mycorrhiza Rhizophagus intraradices Reduces the Negative Effects of Arsenic on Soybean Plants. AGRONOMY-BASEL 2015. [DOI: 10.3390/agronomy5020188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Schneider J, Stürmer SL, Guilherme LRG, de Souza Moreira FM, Soares CRFDS. Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:1105-1115. [PMID: 23102714 DOI: 10.1016/j.jhazmat.2012.09.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 05/30/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous and establish important symbiotic relationships with the majority of the plants, even in soils contaminated with arsenic (As). In order to better understand the ecological relationships of these fungi with excess As in soils and their effects on plants in tropical conditions, occurrence and diversity of AMF were evaluated in areas affected by gold mining activity in Minas Gerais State, Brazil. Soils of four areas with different As concentrations (mg dm(-3)) were sampled: reference Area (10); B1 (subsuperficial layer) (396); barren material (573), and mine waste (1046). Soil sampling was carried out in rainy and dry seasons, including six composite samples per area (n = 24). AMF occurred widespread in all areas, being influenced by As concentrations and sampling periods. A total of 23 species were identified, belonging to the following genus: Acaulospora (10 species), Scutellospora (4 species), Racocetra (3 species), Glomus (4 species), Gigaspora (1 species) and Paraglomus (1 species). The most frequent species occurring in all areas were Paraglomus occultum, Acaulospora morrowiae and Glomus clarum. The predominance of these species indicates their high tolerance to excess As. Although arsenic contamination reduced AMF species richness, presence of host plants tended to counterbalance this reduction.
Collapse
Affiliation(s)
- Jerusa Schneider
- Departamento de Ciência do Solo, Universidade Federal de Lavras (UFLA), Cx.P. 3037, Lavras, MG 37200-000, Brazil.
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Miransari M, Abrishamchi A, Khoshbakht K, Niknam V. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol 2012; 34:123-33. [PMID: 23113535 DOI: 10.3109/07388551.2012.731684] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are non-specific symbionts developing mutual and beneficial symbiosis with most terrestrial plants. Because of the obligatory nature of the symbiosis, the presence of the host plant during the onset and proceeding of symbiosis is necessary. However, AM fungal spores are able to germinate in the absence of the host plant. The fungi detect the presence of the host plant through some signal communications. Among the signal molecules, which can affect mycorrhizal symbiosis are plant hormones, which may positively or adversely affect the symbiosis. In this review article, some of the most recent findings regarding the signaling effects of plant hormones, on mycorrhizal fungal symbiosis are reviewed. This may be useful for the production of plants, which are more responsive to mycorrhizal symbiosis under stress.
Collapse
Affiliation(s)
- Mohammad Miransari
- Department of Plant Sciences, College of Sciences, Tarbiat Modarres University , Tehran , Iran
| | | | | | | |
Collapse
|
18
|
Perry VR, Krogstad EJ, El-Mayas H, Greipsson S. Chemically enhanced phytoextraction of lead-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:703-713. [PMID: 22908638 DOI: 10.1080/15226514.2011.619236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effects of the combined application of soil fungicide (benomyl) and ethylenediaminetetraacetic acid (EDTA) on lead (Pb) phytoextraction by ryegrass (Lolium perenne) were examined. Twenty-five pots of Pb-contaminated soil (200 mg Pb kg(-1)) were seeded with ryegrass and randomly arranged into the following treatments: (1) Control, (2) benomyl, (3) EDTA, (4) benomyl and EDTA (B+E), and (5) benomyl followed by an application of EDTA 14 days later (B .. . E). Chemicals were applied when plants had reached maximum growth. Plants were analyzed for foliage Pb concentration using inductively coupled argon plasma (ICAP) spectrometry. The synergistic effects of the combined benomyl and EDTA application (treatments 4 and 5) were made evident by the significantly (p < 0.05) highest foliage Pb concentrations. However, the foliage dry biomass was significantly lowest for plants in treatments 4 and 5. The bioaccumulation factor (BF) and phytoextraction ratio (PR) were highest for plants in treatment 5 followed by plants in treatment 4.
Collapse
Affiliation(s)
- V Ryan Perry
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
19
|
Pérez-Sanz A, Millán R, Sierra MJ, Alarcón R, García P, Gil-Díaz M, Vazquez S, Lobo MC. Mercury uptake by Silene vulgaris grown on contaminated spiked soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S233-7. [PMID: 20708330 DOI: 10.1016/j.jenvman.2010.07.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 04/07/2010] [Accepted: 07/12/2010] [Indexed: 05/23/2023]
Abstract
Mercury is a highly toxic pollutant with expensive clean up, because of its accumulative and persistent character in the biota. The objective of this work was to evaluate the effectiveness of Silene vulgaris, facultative metallophyte which have populations on both non-contaminated and metalliferous soils, to uptake Hg from artificially polluted soils. A pot experiment was carried out in a rain shelter for a full growth period. Two soils (C pH = 8.55 O.M. 0.63% and A pH = 7.07 O.M. 0.16%) were used, previously contaminated with Hg as HgCl(2) (0.6 and 5.5 mg Hg kg(-1) soil). Plants grew healthy and showed good appearance throughout the study without significantly decreasing biomass production. Mercury uptake by plants increased with the mercury concentration found in both soils. Differences were statistically significant between high dosage and untreated soil. The fact that S. vulgaris retains more mercury in root than in shoot and also, the well known effectiveness of these plants in the recovering of contaminated soils makes S. vulgaris a good candidate to phytostabilization technologies.
Collapse
Affiliation(s)
- Araceli Pérez-Sanz
- Dpto. de Investigación Agroambiental, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentación, IMIDRA, Finca El Encín, A-II Km, 38.200, 28800, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:3730-3738. [PMID: 21835516 DOI: 10.1016/j.envpol.2011.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/10/2011] [Accepted: 07/14/2011] [Indexed: 05/31/2023]
Abstract
The effect of arbuscular mycorrhizal fungi (AMF) on growth and element uptake by Ni-hyperaccumulating plant, Berkheya coddii, was studied. Plants were grown under laboratory conditions on ultramafic soil without or with the AM fungi of different origin. The AM colonization, especially with the indigenous strain, significantly enhanced plants growth and their survival. AMF affected also the elemental concentrations that were studied with Particle-induced X-ray emission (PIXE). AMF (i) increased K and Fe in shoots, Zn and Mn in roots, P and Ca both, in roots and shoots; (ii) decreased Mn in shoots, Co and Ni both, in shoots and roots. Due to higher biomass of mycorrhizal plants, total Ni content was up to 20 times higher in mycorrhizal plants compared to the non-mycorrhizal ones. The AMF enhancement of Ni uptake may therefore provide an improvement of a presently used technique of nickel phytomining.
Collapse
Affiliation(s)
- Elżbieta Orłowska
- Materials Research Department, iThemba LABS, PO Box 722, Somerset West 7129, South Africa.
| | | | | | | | | |
Collapse
|
21
|
Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 2011; 29:645-53. [PMID: 21557996 DOI: 10.1016/j.biotechadv.2011.04.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 04/02/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
Use of plants, with hyperaccumulating ability or in association with soil microbes including the symbiotic fungi, arbuscular mycorrhiza (AM), are among the most common biological methods of treating heavy metals in soil. Both hyperaccumulating plants and AM fungi have some unique abilities, which make them suitable to treat heavy metals. Hyperaccumulator plants have some genes, being expressed at the time of heavy metal pollution, and can accordingly localize high concentration of heavy metals to their tissues, without showing the toxicity symptoms. A key solution to the issue of heavy metal pollution may be the proper integration of hyperaccumulator plants and AM fungi. The interactions between the soil microbes and the host plant can also be important for the treatment of soils polluted with heavy metals.
Collapse
Affiliation(s)
- Mohammad Miransari
- Department of Soil Science, College of Agricultural Sciences, Shahed University, Tehran, Qom Highway, Tehran 18151/159, Iran.
| |
Collapse
|
22
|
Wu SC, Wong CC, Shu WS, Khan AG, Wong MH. Mycorrhizo-remediation of lead/zinc mine tailings using vetiver: a field study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13:61-74. [PMID: 21598768 DOI: 10.1080/15226511003671353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A field study of Pb/Zn mine tailings was conducted to assess the influence of AM fungi and refuse compost on phytoremediation using vetiver grass slips. Our investigation revealed that vetiver could thrive on Pb/Zn mine tailings. The addition of refuse compost resulted in biomass that was more than 3-times higher when compared with the control, and were mainly attributed to an improvement of soil properties, as well as better nutrient supply than untreated control. AMF inoculation also significantly increased the dry matter of vetiver by a rate of 8.1-13.8%. It was observed that concentrations of N and P in the shoots were significantly higher in mycorrhizal treatments than those without AMF inoculation. However, AMF inoculation significantly decreased the metal concentrations in root, but not in shoot. Based on the results, it seems clear that AMF can play an essential role in the phytostabilization of metal contaminated soils.
Collapse
Affiliation(s)
- Sheng Chun Wu
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
23
|
Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F. Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2757-2765. [PMID: 20546984 DOI: 10.1016/j.envpol.2010.04.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 05/29/2023]
Abstract
Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department of Soil Science, College of Agriculture, University of Shiraz, Shiraz, Iran
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Miransari M. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:563-9. [PMID: 20636898 DOI: 10.1111/j.1438-8677.2009.00308.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of symbioses between soil fungi, arbuscular mycorrhizae (AM), and most terrestrial plants can be very beneficial to both partners and hence to the ecosystem. Among such beneficial effects, the alleviation of soil stresses by AM is of especial significance. It has been found that AM fungi can alleviate the unfavourable effects on plant growth of stresses such as heavy metals, soil compaction, salinity and drought. In this article, such mechanisms are reviewed, in the hope that this may result in more efficient use of AM under different stress conditions.
Collapse
Affiliation(s)
- M Miransari
- Department of Soil Science, College of Agricultural Sciences, Shahed University, Tehran, Iran.
| |
Collapse
|
25
|
Ortega-Larrocea MDP, Xoconostle-Cázares B, Maldonado-Mendoza IE, Carrillo-González R, Hernández-Hernández J, Garduño MD, López-Meyer M, Gómez-Flores L, González-Chávez MDCA. Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1922-1931. [PMID: 19910092 DOI: 10.1016/j.envpol.2009.10.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 10/22/2009] [Accepted: 10/24/2009] [Indexed: 05/28/2023]
Abstract
Plant establishment, presence of arbuscular mycorrhizal fungi (AMF) and other rhizospheric fungi were studied in mine wastes from Zimapan, Hidalgo state, Mexico, using a holistic approach. Two long-term afforested and three non-afforested mine tailings were included in this research. Fifty-six plant species belonging to 29 families were successfully established on the afforested sites, while unmanaged tailings had only a few native plant species colonizing the surrounding soils. Almost all plant roots collected were associated to AMF in these sites. The genus Glomus was the most abundant AMF species found in their rhizosphere; however, the Acaulospora genus was also observed. Other rhizospheric fungi were identified by 18S rDNA sequencing analysis. Their role in these substrates, i.e. biocontrol, pollutant- and organic matter-degradation, and aides that increase plant metal tolerance is discussed. Our results advance the understanding of fungal diversity in sites polluted with metals and present alternative plants for remediation use.
Collapse
|
26
|
Martínez-Iñigo MJ, Pérez-Sanz A, Ortiz I, Alonso J, Alarcón R, García P, Lobo MC. Bulk soil and rhizosphere bacterial community PCR-DGGE profiles and beta-galactosidase activity as indicators of biological quality in soils contaminated by heavy metals and cultivated with Silene vulgaris (Moench) Garcke. CHEMOSPHERE 2009; 75:1376-1381. [PMID: 19345981 DOI: 10.1016/j.chemosphere.2009.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 03/05/2009] [Accepted: 03/05/2009] [Indexed: 05/27/2023]
Abstract
The biological quality of two heavy metal contaminated soils (soil C: Typic Calcixerept, pH 8.3 and soil H: Typic Haploxeraf, pH 7.3) was investigated after growing the metal-tolerant plant Silene vulgaris (Moench) Garcke for two vegetative periods. The activity of the enzyme beta-galactosidase, which is sensitive to the presence of contaminants in soil, and the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of 16S rRNA gene fragments of culturable bacteria from bulk soil and rhizosphere were determined. The microbial enzymatic activity was higher in planted soils than in bare soils at the contamination level of 600 mg of total heavy metals kg(-1) soil. After growing S. vulgaris, beta-galactosidase activity was almost recovered in the calcareous soil. In this soil new bands appeared in the PCR-DGGE profiles of the rhizosphere bacterial community as a response to the exposure to heavy metals.
Collapse
Affiliation(s)
- M J Martínez-Iñigo
- Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario, IMIDRA, Km, 38.2 A-II, 28800 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gucwa-Przepióra E, Małkowski E, Sas-Nowosielska A, Kucharski R, Krzyzak J, Kita A, Römkens PFAM. Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Waryński at different soil depths. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2007; 150:338-46. [PMID: 17408823 DOI: 10.1016/j.envpol.2007.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/22/2007] [Accepted: 01/27/2007] [Indexed: 05/09/2023]
Abstract
The effects of chemophytostabilization practices on arbuscular mycorrhiza (AM) of Deschampsia cespitosa roots at different depths in soils highly contaminated with heavy metals were studied in field trials. Mycorrhizal parameters, including frequency of mycorrhization, intensity of root cortex colonization and arbuscule abundance were studied. Correlations between concentration of bioavailable Cd, Zn, Pb and Cu in soil and mycorrhizal parameters were estimated. An increase in AM colonization with increasing soil depth was observed in soils with spontaneously growing D. cespitosa. A positive effect of chemophytostabilization amendments (calcium phosphate, lignite) on AM colonization was found in the soil layers to which the amendments were applied. Negative correlation coefficients between mycorrhizal parameters and concentration of bioavailable Cd and Zn in soil were obtained. Our results demonstrated that chemophytostabilization practices enhance AM colonization in D. cespitosa roots, even in soils fertilized with high rates of phosphorus.
Collapse
Affiliation(s)
- Ewa Gucwa-Przepióra
- Department of Plant Systematics, Faculty of Biology and Environmental Protection, University of Silesia, 28 Jagiellońska Street, 40-032 Katowice, Poland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wu FY, Ye ZH, Wu SC, Wong MH. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance. PLANTA 2007; 226:1363-78. [PMID: 17624548 DOI: 10.1007/s00425-007-0575-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 06/06/2007] [Indexed: 05/16/2023]
Abstract
Although Pteris vittata L. and Sedum alfredii Hance have been identified as an As hyperaccumulator and a Zn/Cd hyperaccumulator, respectively, for a few years, variations in metal accumulation among populations and their arbuscular mycorrhizal (AM) status have not been fully explored. Six populations of P. vittata and four populations of S. alfredii from southeast China were investigated. Up to 1,373 As, 680 Pb, 376 Zn, 4.8 Cd, 169 Cu mg kg(-1) in fronds of P. vittata and 358 As, 2,290 Pb, 23,403 Zn, 708 Cd, 342 Cu mg kg(-1 )in shoots of S. alfredii were detected. Constitutive properties of As and Zn hyperaccumulation in metallicolous populations of P. vittata and S. alfredii, respectively, were confirmed. However, Cd hyperaccumulation in S. alfredii varied among populations. The two hyperaccumulators varied in efficiency in taking up other heavy metals. Different metal tolerance strategies adopted by the two hyperaccumulators varied among plant species and metal species. Low to moderate levels of AM colonization in P. vittata (4.2-12.8%) and S. alfredii (8.5-45.8%) were observed at uncontaminated and metal-contaminated sites. The relationship between metal concentrations and AM colonization in the two hyperacumulators was also examined. The abundance of AM fungal spores ranged from 16 to 190 spores per 25 g soil. Glomus microaggregatum, Glomus mosseae, Glomus brohultii and Glomus geosporum were the most common species associated with both P. vittata and S. alfredii. To our knowledge, this is the first report of AM fungal status in rhizosphere of P. vittata and S. alfredii.
Collapse
Affiliation(s)
- F Y Wu
- Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Wong CC, Wu SC, Kuek C, Khan AG, Wong MH. The Role of Mycorrhizae Associated with Vetiver Grown in Pb-/Zn-Contaminated Soils: Greenhouse Study. Restor Ecol 2007. [DOI: 10.1111/j.1526-100x.2006.00190.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Regvar M. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 139:362-71. [PMID: 15998561 DOI: 10.1016/j.envpol.2005.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 05/03/2005] [Indexed: 05/03/2023]
Abstract
Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment.
Collapse
Affiliation(s)
- Katarina Vogel-Mikus
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
31
|
Rosén K, Weiliang Z, Mårtensson A. Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2005; 338:283-290. [PMID: 15713335 DOI: 10.1016/j.scitotenv.2004.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 06/27/2004] [Accepted: 07/01/2004] [Indexed: 05/24/2023]
Abstract
In a first experiment of soil contaminated with 137Cs, inoculation with a mixture of arbuscular mycorrhizae enhanced the uptake of 137Cs by leek under greenhouse conditions, while no effect on the uptake by ryegrass was observed. The mycorrhizal infection frequency in leek was independent of whether the 137Cs-contaminated soil was inoculated with mycorrhizal spores or not. The lack of mycorrhizae-mediated uptake of 137Cs in ryegrass could be due to the high root density, which was about four times that of leek, or due to a less well functioning mycorrhizal symbiosis than of leek. In a second experiment, ryegrass was grown for a period of four cuts. Additions of fungi enhanced 137Cs uptake of all harvests, improved dry weight production in the first cut, and also improved the mycorrhizal infection frequencies in the roots. No differences were obtained between the two fungal inoculums investigated with respect to biomass production or 137Cs uptake, but root colonization differed. We conclude that, under certain circumstances, mycorrhizae affect plant uptake of 137Cs. There may be a potential for selecting fungal strains that stimulate 137Cs accumulation in crops. The use of ryegrass seems to be rather ineffective for remediation of 137Cs-contaminated soil.
Collapse
Affiliation(s)
- Klas Rosén
- Department of Soil Sciences, Swedish University of Agricultural Sciences P.O. Box 7014, SE-750 07 Uppsala, Sweden.
| | | | | |
Collapse
|
32
|
da Silva GA, Trufem SFB, Saggin Júnior OJ, Maia LC. Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil. MYCORRHIZA 2005; 15:47-53. [PMID: 14767726 DOI: 10.1007/s00572-004-0293-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 12/18/2003] [Indexed: 05/24/2023]
Abstract
The occurrence of arbuscular mycorrhizal fungi (AMF) in a copper mining area was investigated. Soil samples were collected from six sites at the Mineração Caraiba, Bahia State, northeastern Brazil, comprising: (1) a site that receives the waste product; (2) a site that receives low grade deposits; (3) the interface between the caatinga and site 1; (4) the surroundings of the industrial area; (5) the site for extracting topsoil for land filling; (6) the preserved caatinga. Thirty-two plant species were identified around the collection locations. Trap cultures were maintained in the greenhouse for 3 months, using bahia grass ( Paspalum notatum Flügge) as the host plant. Spores were extracted from soil and 21 AMF species (15 Glomus and one of each of Acaulospora, Archaeospora, Entrophospora, Gigaspora , Paraglomus and Scutellospora) were identified. In site 1, plants or AMF were not found during the dry season. Site 6, with native vegetation, had the highest number of plants and AMF species. The disturbed sites showed less plant diversification, with the community of AMF being quantitative and qualitatively affected by disturbance.
Collapse
Affiliation(s)
- Gladstone Alves da Silva
- Departamento de Micologia, CCB, Universidade Federal de Pernambuco, Av. Prof. Nelson Chaves, s/n. 50670-420, Recife, PE, Brasil
| | | | | | | |
Collapse
|
33
|
Vogel-Mikus K, Drobne D, Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2005; 133:233-42. [PMID: 15519454 DOI: 10.1016/j.envpol.2004.06.021] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 06/15/2004] [Indexed: 05/06/2023]
Abstract
Significant hyperaccumulation of Zn, Cd and Pb in field samples of Thlaspi praecox Wulf. collected from a heavy metal polluted area in Slovenia was found, with maximal shoot concentrations of 14,590 mg kg(-1) Zn, 5960 mg kg(-1) Cd and 3500 mg kg(-1) Pb. Shoot/root ratios of 9.6 for Zn and 5.6 for Cd show that the metals were preferentially transported to the shoots. Shoot bioaccumulation factors exceeded total soil Cd levels 75-fold and total soil Zn levels 20-fold, further supporting the hyperaccumulation of Cd and Zn. Eighty percent of Pb was retained in roots, thus indicating exclusion as a tolerance strategy for Pb. Low level colonisation with arbuscular mycorrhizal fungi (AMF) of a Paris type was observed at the polluted site, whereas at the non-polluted site Arum type colonisation was more common. To our knowledge this is the first report of Cd hyperaccumulation and AMF colonisation in metal hyperaccumulating T. praecox.
Collapse
Affiliation(s)
- Katarina Vogel-Mikus
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
34
|
Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M. Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. MICROBIAL ECOLOGY 2004. [PMID: 15546041 DOI: 10.1007/s00248-003-0149-1d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Serpentine soils are characterized by high levels of heavy metals (Ni, Co, Cr), and low levels of important plant nutrients (P, Ca, N). Because of these inhospitable edaphic conditions, serpentine soils are typically home to a very specialized flora including endemic species as the nickel hyperaccumulator Alyssum bertolonii. Although much is known about the serpentine flora, few researches have investigated the bacterial communities of serpentine areas. In the present study bacterial communities were sampled at various distances from A. bertolonii roots in three different serpentine areas and their genetic diversity was assessed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The obtained results indicated the occurrence of a high genetic diversity and heterogeneity of the bacterial communities present in the different serpentine areas. Moreover, TRFs (terminal restriction fragments) common to all the investigated A. bertolonii rhizosphere samples were found. A new cloning strategy was applied to 27 TRFs that were sequenced and taxonomically interpreted as mainly belonging to Gram-positive and alpha-Proteobacteria representatives. In particular, cloned TRFs which discriminated between rhizosphere and soil samples were mainly interpreted as belonging to Proteobacteria representatives.
Collapse
Affiliation(s)
- A Mengoni
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, via Romana 17, I-50125, Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Mengoni A, Grassi E, Barzanti R, Biondi EG, Gonnelli C, Kim CK, Bazzicalupo M. Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plant Alyssum bertolonii. MICROBIAL ECOLOGY 2004; 48:209-217. [PMID: 15546041 DOI: 10.1007/s00248-003-0149-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 12/18/2003] [Indexed: 05/24/2023]
Abstract
Serpentine soils are characterized by high levels of heavy metals (Ni, Co, Cr), and low levels of important plant nutrients (P, Ca, N). Because of these inhospitable edaphic conditions, serpentine soils are typically home to a very specialized flora including endemic species as the nickel hyperaccumulator Alyssum bertolonii. Although much is known about the serpentine flora, few researches have investigated the bacterial communities of serpentine areas. In the present study bacterial communities were sampled at various distances from A. bertolonii roots in three different serpentine areas and their genetic diversity was assessed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The obtained results indicated the occurrence of a high genetic diversity and heterogeneity of the bacterial communities present in the different serpentine areas. Moreover, TRFs (terminal restriction fragments) common to all the investigated A. bertolonii rhizosphere samples were found. A new cloning strategy was applied to 27 TRFs that were sequenced and taxonomically interpreted as mainly belonging to Gram-positive and alpha-Proteobacteria representatives. In particular, cloned TRFs which discriminated between rhizosphere and soil samples were mainly interpreted as belonging to Proteobacteria representatives.
Collapse
Affiliation(s)
- A Mengoni
- Dipartimento di Biologia Animale e Genetica, Università di Firenze, via Romana 17, I-50125, Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Nichols K, Wright S. Contributions of Fungi to Soil Organic Matter in Agroecosystems. SOIL ORGANIC MATTER IN SUSTAINABLE AGRICULTURE 2004. [DOI: 10.1201/9780203496374.ch6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
37
|
Gremion F, Chatzinotas A, Kaufmann K, Sigler W, Harms H. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol Ecol 2004; 48:273-83. [DOI: 10.1016/j.femsec.2004.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Gremion F, Chatzinotas A, Harms H. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 2004; 5:896-907. [PMID: 14510843 DOI: 10.1046/j.1462-2920.2003.00484.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial diversity in 16S ribosomal DNA and reverse-transcribed 16S rRNA clone libraries originating from the heavy metal-contaminated rhizosphere of the metal-hyperaccumulating plant Thlaspi caerulescens was analysed and compared with that of contaminated bulk soil. Partial sequence analysis of 282 clones revealed that most of the environmental sequences in both soils affiliated with five major phylogenetic groups, the Actinobacteria, alpha-Proteobacteria, beta-Proteobacteria, Acidobacteria and the Planctomycetales. Only 14.7% of all phylotypes (sequences with similarities> 97%), but 45% of all clones, were common in the rhizosphere and the bulk soil clone libraries. The combined use of rDNA and rRNA libraries indicated which taxa might be metabolically active in this soil. All dominant taxa, with the exception of the Actinobacteria, were relatively less represented in the rRNA libraries compared with the rDNA libraries. Clones belonging to the Verrucomicrobiales, Firmicutes, Cytophaga-Flavobacterium-Bacteroides and OP10 were found only in rDNA clone libraries, indicating that they might not represent active constituents in our samples. The most remarkable result was that sequences belonging to the Actinobacteria dominated both bulk and rhizosphere soil libraries derived from rRNA (50% and 60% of all phylotypes respectively). Seventy per cent of these clone sequences were related to the Rubrobacteria subgroups 2 and 3, thus providing for the first time evidence that this group of bacteria is probably metabolically active in heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Fabienne Gremion
- Swiss Federal Institute of Technology Lausanne, ISTE-Laboratory of Soil Science, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
39
|
Garbisu C, Hernández-Allica J, Barrutia O, Alkorta I, Becerril JM. Phytoremediation: a technology using green plants to remove contaminants from polluted areas. REVIEWS ON ENVIRONMENTAL HEALTH 2002; 17:173-188. [PMID: 12462482 DOI: 10.1515/reveh.2002.17.3.173] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phytoremediation is an emerging cost-effective, non-intrusive, esthetically pleasing, and low cost technology using the remarkable ability of plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues. Phytoremediation technology is applicable to a broad range of contaminants, including metals and radionuclides, as well as organic compounds like chlorinated solvents, polychlorobiphenyls, polycyclic aromatic hydrocarbons, pesticides/insecticides, explosives, and surfactants. The use of plants to transport and concentrate metals from the soil into the harvestable parts of roots and above-ground shoots, usually called 'phytoextraction', has appeared on the scene as a valid alternative to traditional physicochemical remediation methods that do not provide acceptable solutions for the removal of metals from soils. Positive results are becoming available regarding the ability of plants to degrade certain organic compounds. Nonetheless, despite the firm establishment of phytoremediation technology in the literature and in extensive research study and in small-scale demonstrations, full-scale applications are currently limited to a small number of projects. At present, the phytoremediation of metal pollutants from the environment could be approaching commercialization.
Collapse
Affiliation(s)
- Carlos Garbisu
- NEIKER, Basque Institute of Agricultural Research and Development, Department of Agrosystems and Animal Production, Derio, Spain.
| | | | | | | | | |
Collapse
|