1
|
Kharel A, Rookes J, Ziemann M, Cahill D. Viable protoplast isolation, organelle visualization and transformation of the globally distributed plant pathogen Phytophthora cinnamomi. PROTOPLASMA 2024; 261:1073-1092. [PMID: 38702562 PMCID: PMC11358197 DOI: 10.1007/s00709-024-01953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Phytophthora cinnamomi is an oomycete plant pathogen with a host range of almost 5000 plant species worldwide and therefore poses a serious threat to biodiversity. Omics technology has provided significant progress in our understanding of oomycete biology, however, transformation studies of Phytophthora for gene functionalisation are still in their infancy. Only a limited number of Phytophthora species have been successfully transformed and gene edited to elucidate the role of particular genes. There is a need to escalate our efforts to understand molecular processes, gene regulation and infection mechanisms of the pathogen to enable us to develop new disease management strategies. The primary obstacle hindering the advancement of transformation studies in Phytophthora is their challenging and unique nature, coupled with our limited comprehension of why they remain such an intractable system to work with. In this study, we have identified some of the key factors associated with the recalcitrant nature of P. cinnamomi. We have incorporated fluorescence microscopy and flow cytometry along with the organelle-specific dyes, fluorescein diacetate, Hoechst 33342 and MitoTracker™ Red CMXRos, to assess P. cinnamomi-derived protoplast populations. This approach has also provided valuable insights into the broader cell biology of Phytophthora. Furthermore, we have optimized the crucial steps that allow transformation of P. cinnamomi and have generated transformed isolates that express a cyan fluorescent protein, with a transformation efficiency of 19.5%. We therefore provide a platform for these methodologies to be applied for the transformation of other Phytophthora species and pave the way for future gene functionalisation studies.
Collapse
Affiliation(s)
- Aayushree Kharel
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - James Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
- Burnet Institute, Melbourne, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
2
|
Check JC, Harkness RJ, Heger L, Sakalidis ML, Chilvers MI, Mahaffee WF, Miles TD. It's a Trap! Part I: Exploring the Applications of Rotating-Arm Impaction Samplers in Plant Pathology. PLANT DISEASE 2024; 108:1910-1922. [PMID: 38411610 DOI: 10.1094/pdis-10-23-2096-fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Although improved knowledge on the movement of airborne plant pathogens is likely to benefit plant health management, generating this knowledge is often far more complicated than anticipated. This complexity is driven by the dynamic nature of environmental variables, diversity among pathosystems that are targeted, and the unique needs of each research group. When using a rotating-arm impaction sampler, particle collection is dependent on the pathogen, environment, research objectives, and limitations (monetary, environmental, or labor). Consequently, no design will result in 100% collection efficiency. Fortunately, it is likely that multiple approaches can succeed despite these constraints. Choices made during design and implementation of samplers can influence the results, and recognizing this influence is crucial for researchers. This article is for beginners in the art and science of using rotating-arm impaction samplers; it provides a foundation for designing a project, from planning the experiment to processing samples. We present a relatively nontechnical discussion of the factors influencing pathogen dispersal and how placement of the rotating-arm air samplers alters propagule capture. We include a discussion of applications of rotating-arm air samplers to demonstrate their versatility and potential in plant pathology research as well as their limitations.
Collapse
Affiliation(s)
- Jill C Check
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Rebecca J Harkness
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Lexi Heger
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Monique L Sakalidis
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
- Department of Forestry, Michigan State University, East Lansing, MI 48824, U.S.A
- Department of Industries and Regional Development, South Perth, WA 6151, Australia
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Walter F Mahaffee
- USDA Agricultural Research Service, Horticulture Crops Disease and Pest Management Research Unit, Corvallis, OR 97330, U.S.A
| | - Timothy D Miles
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
3
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Evaluation of the Characteristics and Infectivity of the Secondary Inoculum Produced by Plasmopara viticola on Grapevine Leaves by Means of Flow Cytometry and Fluorescence-Activated Cell Sorting. Appl Environ Microbiol 2022; 88:e0101022. [PMID: 36250698 PMCID: PMC9642012 DOI: 10.1128/aem.01010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmopara viticola, the oomycete causing grapevine downy mildew, is one of the most important pathogens in viticulture. P. viticola is a polycyclic pathogen, able to carry out numerous secondary cycles of infection during a single vegetative grapevine season, by producing asexual spores (zoospores) within sporangia. The extent of these infections is strongly influenced by both the quantity (density) and quality (infectivity) of the inoculum produced by the pathogen. To date, the protocols for evaluating all these characteristics are quite limited and time-consuming and do not allow all the information to be obtained in a single run. In this study, a protocol combining flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) was developed to investigate the composition, the infection efficiency and the dynamics of the inoculum produced by P. viticola for secondary infection cycles. In our analyses, we identified different structures within the inoculum, including degenerated and intact sporangia. The latter have been sorted, and single sporangia were directly inoculated on grapevine leaf discs, thus allowing a thorough investigation of the infection dynamics and efficiency. In detail, we determined that, in our conditions, 8% of sporangia were able to infect the leaves and that on a susceptible variety, the time required by the pathogen to reach 50% of total infection is about 10 days. The analytical approach developed in this study could open a new perspective to shed light on the biology and epidemiology of this important pathogen. IMPORTANCE P. viticola secondary infections contribute significantly to the epidemiology of this important plant pathogen. However, the infection dynamics of asexual spores produced by this organism are still poorly investigated. The main challenges in dissecting the grapevine-P. viticola interaction in vitro are attributable to the biotrophic adaptation of the pathogen. This work provides new insights into the infection efficiency and dynamics imputable to P. viticola sporangia, contributing useful information on grapevine downy mildew epidemiology. Moreover, future applications of the sorting protocol developed in this work could yield a significant and positive impact in the study of P. viticola, providing unmatched resolution, precision, and accuracy compared with the traditional techniques.
Collapse
|
5
|
Zand E, Froehling A, Schoenher C, Zunabovic-Pichler M, Schlueter O, Jaeger H. Potential of Flow Cytometric Approaches for Rapid Microbial Detection and Characterization in the Food Industry-A Review. Foods 2021; 10:3112. [PMID: 34945663 PMCID: PMC8701031 DOI: 10.3390/foods10123112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
As microbial contamination is persistent within the food and bioindustries and foodborne infections are still a significant cause of death, the detection, monitoring, and characterization of pathogens and spoilage microorganisms are of great importance. However, the current methods do not meet all relevant criteria. They either show (i) inadequate sensitivity, rapidity, and effectiveness; (ii) a high workload and time requirement; or (iii) difficulties in differentiating between viable and non-viable cells. Flow cytometry (FCM) represents an approach to overcome such limitations. Thus, this comprehensive literature review focuses on the potential of FCM and fluorescence in situ hybridization (FISH) for food and bioindustry applications. First, the principles of FCM and FISH and basic staining methods are discussed, and critical areas for microbial contamination, including abiotic and biotic surfaces, water, and air, are characterized. State-of-the-art non-specific FCM and specific FISH approaches are described, and their limitations are highlighted. One such limitation is the use of toxic and mutagenic fluorochromes and probes. Alternative staining and hybridization approaches are presented, along with other strategies to overcome the current challenges. Further research needs are outlined in order to make FCM and FISH even more suitable monitoring and detection tools for food quality and safety and environmental and clinical approaches.
Collapse
Affiliation(s)
- Elena Zand
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| | - Antje Froehling
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Christoph Schoenher
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Marija Zunabovic-Pichler
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (C.S.); (M.Z.-P.)
| | - Oliver Schlueter
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Quality and Safety of Food and Feed, 14469 Potsdam, Germany; (A.F.); (O.S.)
| | - Henry Jaeger
- Department of Food Science and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria;
| |
Collapse
|
6
|
Tummon F, Arboledas LA, Bonini M, Guinot B, Hicke M, Jacob C, Kendrovski V, McCairns W, Petermann E, Peuch VH, Pfaar O, Sicard M, Sikoparija B, Clot B. The need for Pan-European automatic pollen and fungal spore monitoring: A stakeholder workshop position paper. Clin Transl Allergy 2021; 11:e12015. [PMID: 33934521 PMCID: PMC8120382 DOI: 10.1002/clt2.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background Information about airborne pollen concentrations is required by a range of end users, particularly from the health sector who use both observations and forecasts to diagnose and treat allergic patients. Manual methods are the standard for such measurements but, despite the range of pollen taxa that can be identified, these techniques suffer from a range of drawbacks. This includes being available at low temporal resolution (usually daily averages) and with a delay (usually 3–9 days from the measurement). Recent technological developments have made possible automatic pollen measurements, which are available at high temporal resolution and in real time, although currently only scattered in a few locations across Europe. Materials & Methods To promote the development of an extensive network across Europe and to ensure that this network will respond to end user needs, a stakeholder workshop was organised under the auspices of the EUMETNET AutoPollen Programme. Participants discussed requirements for the groups they represented, ranging from the need for information at various spatial scales, at high temporal resolution, and for targeted services to be developed. Results The provision of real‐time information is likely to lead to a notable decrease in the direct and indirect health costs associated with allergy in Europe, currently estimated between €50–150 billion/year.1 Discussion & Conclusion A European measurement network to meet end user requirements would thus more than pay for itself in terms of potential annual savings and provide significant impetus to research across a range of disciplines from climate science and public health to agriculture and environmental management.
Collapse
Affiliation(s)
- Fiona Tummon
- Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
| | | | - Maira Bonini
- Agency for Health Protection of Metropolitan Area of Milan (ATS), Milan, Italy
| | - Benjamin Guinot
- Laboratoire d'Aérologie, CNRS, UPS-Université Toulouse III, Toulouse, France.,Réseau National de Surveillance Aérobiologique, Brussieu, France
| | - Martin Hicke
- Bavarian State Ministry of Health and Care, Munich, Germany
| | | | | | | | | | - Vincent-Henri Peuch
- Copernicus Atmospheric Monitoring Services, European Centre for Medium-Range Weather Forecasts, Reading, UK
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Michaël Sicard
- CommSensLab, Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain.,Ciències i Tecnologies de l'Espai-Centre de Recerca de l'Aeronàutica i de l'Espai/Institut d'Estudis Epacials de Catalunya (CTE-CRAE/IEEC), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Branko Sikoparija
- BioSensе Institute-Research Institute for Information Technologies in Biosystems, University of Novi Sad, Serbia
| | - Bernard Clot
- Federal Office of Meteorology and Climatology MeteoSwiss, Payerne, Switzerland
| |
Collapse
|
7
|
Fernández-Castané A, Li H, Thomas ORT, Overton TW. Development of a simple intensified fermentation strategy for growth of Magnetospirillum gryphiswaldense MSR-1: Physiological responses to changing environmental conditions. N Biotechnol 2018; 46:22-30. [PMID: 29864580 PMCID: PMC6109776 DOI: 10.1016/j.nbt.2018.05.1201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/05/2023]
Abstract
Magnetosomes are natural intracellular, membrane-bound, magnetic nanoparticles. Magnetosomes have a variety of clinical and biotechnological applications. Magnetosomes are currently difficult to produce at large scale. We developed a simple, scalable, fermentation strategy for magnetosome production. The methods developed will aid development of magnetosome technologies.
The development of a simple pH-stat fed-batch fermentation strategy for the production of Magnetospirillum gryphiswaldense MSR-1 and magnetosomes (nanoscale magnetic organelles with biotechnological applications) is described. Flow cytometry was exploited as a powerful analytical tool for process development, enabling rapid monitoring of cell morphology, physiology and polyhydroxyalkanoate production. The pH-stat fed-batch growth strategy was developed by varying the concentrations of the carbon source (lactic acid) and the alternative electron acceptor (sodium nitrate) in the feed. Growth conditions were optimized on the basis of biomass concentration, cellular magnetism (indicative of magnetosome production), and intracellular iron concentration. The highest biomass concentration and cellular iron content achieved were an optical density at 565 nm of 15.5 (equivalent to 4.2 g DCW·L−1) and 33.1 mg iron·g−1 DCW, respectively. This study demonstrates the importance of analyzing bacterial physiology during fermentation development and will potentially aid the industrial production of magnetosomes, which can be used in a wide range of biotechnology and healthcare applications.
Collapse
Affiliation(s)
- Alfred Fernández-Castané
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK; Institute of Microbiology & Infection, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Hong Li
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Owen R T Thomas
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK; Institute of Microbiology & Infection, University of Birmingham, B15 2TT, Birmingham, UK.
| |
Collapse
|
8
|
Fernández-Castané A, Li H, Thomas ORT, Overton TW. Flow cytometry as a rapid analytical tool to determine physiological responses to changing O 2 and iron concentration by Magnetospirillum gryphiswaldense strain MSR-1. Sci Rep 2017; 7:13118. [PMID: 29030621 PMCID: PMC5640647 DOI: 10.1038/s41598-017-13414-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a diverse group of bacteria that synthesise magnetosomes, magnetic membrane-bound nanoparticles that have a variety of diagnostic, clinical and biotechnological applications. We present the development of rapid methods using flow cytometry to characterize several aspects of the physiology of the commonly-used MTB Magnetospirillum gryphiswaldense MSR-1. Flow cytometry is an optical technique that rapidly measures characteristics of individual bacteria within a culture, thereby allowing determination of population heterogeneity and also permitting direct analysis of bacteria. Scatter measurements were used to measure and compare bacterial size, shape and morphology. Membrane permeability and polarization were measured using the dyes propidium iodide and bis-(1,3-dibutylbarbituric acid) trimethine oxonol to determine the viability and ‘health’ of bacteria. Dyes were also used to determine changes in concentration of intracellular free iron and polyhydroxylakanoate (PHA), a bacterial energy storage polymer. These tools were then used to characterize the responses of MTB to different O2 concentrations and iron-sufficient or iron-limited growth. Rapid analysis of MTB physiology will allow development of bioprocesses for the production of magnetosomes, and will increase understanding of this fascinating and useful group of bacteria.
Collapse
Affiliation(s)
- Alfred Fernández-Castané
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,Institute for Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.,School of Engineering and Applied Science, Aston University, Birmingham, B4 7ET, UK
| | - Hong Li
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Owen R T Thomas
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Institute for Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Švajlenka J, Kozlovská M, Pošiváková T. Assessment and biomonitoring indoor environment of buildings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:427-439. [PMID: 28868901 DOI: 10.1080/09603123.2017.1373276] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/26/2017] [Indexed: 05/23/2023]
Abstract
Ensuring hygiene and health protection is one of the basic construction requirements. Such requirements are examined when commissioning new constructions and examining defects in constructions already in use. One substantial defect is biocorrosion which represents a synergistic process with a complex variety of factors. It is caused by biochemical manifestations of various micro-organisms (micromycetes). Micromycetes producing mycotoxins therefore play an important role regarding the so-called 'Sick Building Syndrome' that has become a global problem nowadays. The case study presented here aims to demonstrate the effectiveness of the diagnostic methods used in assessing the presence of micromycetes in a building's internal atmosphere and on the internal surfaces of a construction built using traditional construction methods. The methodology of comparing methods is based on their effectiveness, taking into account the identification of type and intensity of micromycetes presence in the air and on the material surfaces in the monitored areas.
Collapse
Affiliation(s)
- Jozef Švajlenka
- a Department of Construction Technology and Management, Faculty of Civil Engineering , Technical University of Kosice , Košice , Slovak Republic
| | - Mária Kozlovská
- a Department of Construction Technology and Management, Faculty of Civil Engineering , Technical University of Kosice , Košice , Slovak Republic
| | - Terézia Pošiváková
- b Department of Environment, Veterinary Legislative and Economics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| |
Collapse
|
10
|
Ghosh B, Lal H, Srivastava A. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. ENVIRONMENT INTERNATIONAL 2015; 85:254-72. [PMID: 26436919 PMCID: PMC7132379 DOI: 10.1016/j.envint.2015.09.018] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 05/19/2023]
Abstract
Several tiny organisms of various size ranges present in air are called airborne particles or bioaerosol which mainly includes live or dead fungi and bacteria, their secondary metabolites, viruses, pollens, etc. which have been related to health issues of human beings and other life stocks. Bio-terror attacks in 2001 as well as pandemic outbreak of flue due to influenza A H1N1 virus in 2009 have alarmed us about the importance of bioaerosol research. Hence characterization i.e. identification and quantification of different airborne microorganisms in various indoor environments is necessary to identify the associated risks and to establish exposure threshold. Along with the bioaerosol sampling and their analytical techniques, various literatures revealing the concentration levels of bioaerosol have been mentioned in this review thereby contributing to the knowledge of identification and quantification of bioaerosols and their different constituents in various indoor environments (both occupational and non-occupational sections). Apart from recognition of bioaerosol, developments of their control mechanisms also play an important role. Hence several control methods have also been briefly reviewed. However, several individual levels of efforts such as periodic cleaning operations, maintenance activities and proper ventilation system also serve in their best way to improve indoor air quality.
Collapse
Affiliation(s)
- Bipasha Ghosh
- School of Environmental Science, Jawaharlal Nehru University, New Delhi, India
| | - Himanshu Lal
- School of Environmental Science, Jawaharlal Nehru University, New Delhi, India
| | - Arun Srivastava
- School of Environmental Science, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
11
|
Griffith GW, Callaghan TM, Podmirseg SM, Hohlweck D, Edwards JE, Puniya AK, Dagar SS. Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys 2015. [DOI: 10.3897/mycokeys.9.9032] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
12
|
West JS, Kimber RBE. Innovations in air sampling to detect plant pathogens. THE ANNALS OF APPLIED BIOLOGY 2015; 166:4-17. [PMID: 25745191 PMCID: PMC4328459 DOI: 10.1111/aab.12191] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/30/2014] [Indexed: 05/05/2023]
Abstract
Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics.
Collapse
Affiliation(s)
- JS West
- Department of Plant Biology and Crop Science, Rothamsted ResearchSt Albans, UK
| | - RBE Kimber
- South Australian Research and Development Institute (SARDI)Adelaide, South Australia, Australia
| |
Collapse
|
13
|
D'Hondt L, Höfte M, Van Bockstaele E, Leus L. Applications of flow cytometry in plant pathology for genome size determination, detection and physiological status. MOLECULAR PLANT PATHOLOGY 2011; 12:815-28. [PMID: 21726378 PMCID: PMC6640489 DOI: 10.1111/j.1364-3703.2011.00711.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Flow cytometers are probably the most multipurpose laboratory devices available. They can analyse a vast and very diverse range of cell parameters. This technique has left its mark on cancer, human immunodeficiency virus and immunology research, and is indispensable in routine clinical diagnostics. Flow cytometry (FCM) is also a well-known tool for the detection and physiological status assessment of microorganisms in drinking water, marine environments, food and fermentation processes. However, flow cytometers are seldom used in plant pathology, despite FCM's major advantages as both a detection method and a research tool. Potential uses of FCM include the characterization of genome sizes of fungal and oomycete populations, multiplexed pathogen detection and the monitoring of the viability, culturability and gene expression of plant pathogens, and many others. This review provides an overview of the history, advantages and disadvantages of FCM, and focuses on the current applications and future possibilities of FCM in plant pathology.
Collapse
Affiliation(s)
- Liesbet D'Hondt
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Caritasstraat 21, 9090 Melle, Belgium.
| | | | | | | |
Collapse
|
14
|
Catal M, King L, Tumbalam P, Wiriyajitsomboon P, Kirk WW, Adams GC. Heterokaryotic nuclear conditions and a heterogeneous nuclear population are observed by flow cytometry in Phytophthora infestans. Cytometry A 2010; 77:769-75. [DOI: 10.1002/cyto.a.20888] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Davey HM, Davey CL. Multivariate data analysis methods for the interpretation of microbial flow cytometric data. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:183-209. [PMID: 21069590 DOI: 10.1007/10_2010_80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Flow cytometry is an important technique in cell biology and immunology and has been applied by many groups to the analysis of microorganisms. This has been made possible by developments in hardware that is now sensitive enough to be used routinely for analysis of microbes. However, in contrast to advances in the technology that underpin flow cytometry, there has not been concomitant progress in the software tools required to analyse, display and disseminate the data and manual analysis, of individual samples remains a limiting aspect of the technology. We present two new data sets that illustrate common applications of flow cytometry in microbiology and demonstrate the application of manual data analysis, automated visualisation (including the first description of a new piece of software we are developing to facilitate this), genetic programming, principal components analysis and artificial neural nets to these data. The data analysis methods described here are equally applicable to flow cytometric applications with other cell types.
Collapse
Affiliation(s)
- Hazel M Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, SY23 3DD, UK,
| | | |
Collapse
|
16
|
Genetic Programming: An Introduction and Tutorial, with a Survey of Techniques and Applications. STUDIES IN COMPUTATIONAL INTELLIGENCE 2008. [DOI: 10.1007/978-3-540-78293-3_22] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Li CS, Chia WC, Chen PS. Fluorochrome and flow cytometry to monitor microorganisms in treated hospital wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2007; 42:195-203. [PMID: 17182391 DOI: 10.1080/10934520601011379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Flow cytometry with a fluorescent technique (FCM/FL), epifluorescence microscopy with a fluorescent technique (EFM/FL), and a culture method were used and compared to study the microorganism population profiles in wastewater treatment. In the two non-culture methods (FCM/FL and EFM/FL), four fluorescent dyes [acridine orange (AO), 4',6-diamino-2-phenylindole dihydrochloride (DAPI), propidium iodide (PI), and YOPRO-1] were used to determine the total concentration and viability of microorganisms in the wastewater samples. Results showed that the total cell concentrations (both the bacteria and fungi) determined by using the non-culture-based methods were 18 to 67 times higher than those by the culture method (p = 0.036): the total cell concentration ranged from 1.10 x 10(7) to 2.44 x 10(8) cells/mL determined by both FCM and EFM with AO-staining method, and from 1.02 x 10(7) to 2.00 x 10(8) cells/mL by EFM with DAPI-staining method, whereas the culturable concentration of bacteria and fungi ranged from 0 to 3.22 x 10(6) CFU/mL and from 0 to 4.13 x 10(5) CFU/mL, respectively. No difference in total concentrations between dyes (AO and DAPI) and methods (FCM and EFM) were observed. By using EFM method, the microorganism viability ranged from 0.24 to 0.86 with PI staining and from 0.09 to 0.74 with YOPRO-1 staining. In the FCM analysis, the microorganism viability ranged from 0.23 to 0.87 with PI staining and from 0.18 to 0.73 with YOPRO-1 staining. In addition, the cultivability of microorganism ranged from 0 to 0.105 by the culture method. The total concentrations and viabilities of microorganisms were highly underestimated by the culture method. Results also showed that the viabilities determined by using either EFM/FL or FCM/FL were significantly higher than the cultivabilities. In addition, significant difference in viability between PI and YOPRO-1 for both EFM and FCM analysis was observed. However, the difference in viability between EFM and FCM depended on dyes. In regard to the difference between bacteria and fungi, significant difference in total concentration, viability, and cultivability was observed. In conclusion, the EFM/FL and FCM/FL methods can effectively assess total concentration and viability of microorganisms in environmental samples.
Collapse
Affiliation(s)
- Chih S Li
- Institute of Environmental Health, National Taiwan University, Taipei, Taiwan.
| | | | | |
Collapse
|
18
|
Abstract
Bioaerosol detection in real time is an urgent civilian and military requirement. In this article, bioaerosol mass spectrometry, an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence, real-time qPCR, and FCM/FL were discussed. Although, challenging work remains to determine the interfering substances (e.g. particulates) of different environments, distinguish the specific species with specific probe, and overcome the high detection limit of FCM (10(4)-10(8) cells ml(-1)), literature reports suggested that FCM/FL has a great potential for real-time monitoring of bioaerosols.
Collapse
Affiliation(s)
- Pei-Shih Chen
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
19
|
Stambuk BU, Alves SL, Hollatz C, Zastrow CR. Improvement of maltotriose fermentation by Saccharomyces cerevisiae. Lett Appl Microbiol 2006; 43:370-6. [PMID: 16965366 DOI: 10.1111/j.1472-765x.2006.01982.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To enhance the fermentation of maltotriose by industrial Saccharomyces cerevisiae strains. METHODS AND RESULTS The capability to ferment maltotriose by an industrial yeast strain that uses this sugar aerobically was tested in shake flasks containing rich medium. While the presence of maltose in the medium did not improve maltotriose fermentation, enhanced and constitutive expression of the AGT1 permease not only increased the uptake of maltotriose, but allowed efficient maltotriose fermentation by this strain. Supplementation of the growth medium with 20 mmol magnesium l(-1) also increased maltotriose fermentation. CONCLUSIONS Over expression of the AGT1 permease and magnesium supplementation improved maltotriose fermentation by an industrial yeast strain that respired but did not ferment this sugar. SIGNIFICANCE AND IMPACT OF THE STUDY This work contributes to the elucidation of the roles of the AGT1 permease and nutrients in the fermentation of all sugars present in starch hydrolysates, a highly desirable trait for several industrial yeasts.
Collapse
Affiliation(s)
- B U Stambuk
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
| | | | | | | |
Collapse
|
20
|
Skottrup P, Nicolaisen M, Justesen AF. Rapid determination of Phytophthora infestans sporangia using a surface plasmon resonance immunosensor. J Microbiol Methods 2006; 68:507-15. [PMID: 17157943 DOI: 10.1016/j.mimet.2006.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 10/19/2006] [Accepted: 10/19/2006] [Indexed: 11/29/2022]
Abstract
Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia is presented. The specificity of an existing mouse monoclonal antibody (phyt/G1470 mAb) against P. infestans was investigated in plate-trapped antigen ELISA and in subtractive inhibition ELISA. No or only limited cross-reactivity was observed against representatives having air-borne spores from Ascomycetes, Deuteromycetes as well as Basidiomycetes. phyt/G1470 mAb was incorporated in a subtractive inhibition SPR assay, consisting of a pre-incubation of mAb and sporangia, a centrifugation step to remove sporangia-bound phyt/G1470 mAb and quantification of remaining phyt/G1470 mAb by SPR. Good intra- and interday assay variability was observed and the assay had a detection limit of 2.2x10(6) sporangia/ml. Analysis time was 75 min, which is superior to existing P. infestans detection methods.
Collapse
Affiliation(s)
- Peter Skottrup
- Danish Institute of Agricultural Sciences, Department of Integrated Pest Management, Research Centre Flakkebjerg, DK-4200 Slagelse, Denmark.
| | | | | |
Collapse
|
21
|
Bacsi A, Choudhury BK, Dharajiya N, Sur S, Boldogh I. Subpollen particles: carriers of allergenic proteins and oxidases. J Allergy Clin Immunol 2006; 118:844-50. [PMID: 17030236 PMCID: PMC3079542 DOI: 10.1016/j.jaci.2006.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/22/2006] [Accepted: 07/05/2006] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pollen is known to induce allergic asthma in atopic individuals, although only a few inhaled pollen grains penetrate into the lower respiratory tract. OBJECTIVE We sought to provide evidence that subpollen particles (SPPs) of respirable size, possessing both antigenic and redox properties, are released from weed pollen grains and to test their role in allergic airway inflammation. METHODS The release of SPPs was analyzed by means of microscopic imaging and flow cytometry. The redox properties of SPPs and the SPP-mediated oxidative effect on epithelial cells were determined by using redox-sensitive probes and specific inhibitors. Western blotting and amino acid sequence analysis were used to examine the protein components of the SPP. The allergenic properties of the SPP were determined in a murine model of experimental asthma. RESULTS Ragweed pollen grains released 0.5 to 4.5 microm of SPPs on hydration. These contained Amb a 1, along with other allergenic proteins of ragweed pollen, and possessed nicotinamide adenine dinucleotide (reduced) or nicotinamide adenine dinucleotide phosphate (reduced) [NAD(P)H] oxidase activity. The SPPs significantly increased the levels of reactive oxygen species (ROS) in cultured cells and induced allergic airway inflammation in the experimental animals. Pretreatment of the SPPs with NAD(P)H oxidase inhibitors attenuated their capacity to increase ROS levels in the airway epithelial cells and subsequent airway inflammation. CONCLUSIONS The allergenic potency of SPPs released from ragweed pollen grains is mediated in tandem by ROS generated by intrinsic NAD(P)H oxidases and antigenic proteins. CLINICAL IMPLICATIONS Severe clinical symptoms associated with seasonal asthma might be explained by immune responses to inhaled SPPs carrying allergenic proteins and ROS-producing NAD(P)H oxidases.
Collapse
Affiliation(s)
- Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex
| | - Barun K. Choudhury
- Division of Allergy, Pulmonary, Immunology, Critical Care and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Nilesh Dharajiya
- Division of Allergy, Pulmonary, Immunology, Critical Care and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Sanjiv Sur
- Division of Allergy, Pulmonary, Immunology, Critical Care and Sleep, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex
| |
Collapse
|
22
|
Abstract
Traditional culture and microscopy methods for evaluation of bioaerosols are slow, tedious, and rather imprecise. In this study, the application of flow cytometry that was combined with a fluorescent technique (FCM/FL) was evaluated as a technique to quickly and accurately determine and quantify the total concentration and viability of bioaerosols. The optimal conditions of five fluorescent dyes [acridine orange (AO), SYTO-13, propidium iodide (PI), YOPRO-1, and 5-cyano-2,3-ditolytetrazolium chloride (CTC)] used in FCM/FL were determined for laboratory samples of bacterial aerosols (Escherichia coli, and endospores of Bacillus subtilis) and fungal aerosols (Candida famata and Penicillium citrinum spores). Based on the measured cell concentration, fluorescence intensity, and staining efficiency as indicators for dye performance evaluation, SYTO-13 was found to be the most suitable fluorescent dye for determining the total concentration of the bioaerosols, as well as YOPRO-1 was the most suitable for determining viability. Moreover, the established optimal FCM/FL with dyes was validated for characterizing microorganism profiles from both air and water samples from the aeration tank of hospital wastewater treatment plant. In conclusion, the FCM/FL successfully assessed the total concentration and viability for bacterial and fungal microorganisms in environmental field samples.
Collapse
Affiliation(s)
- Pei-Shih Chen
- Graduate Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, 100, Taiwan, ROC
| | | |
Collapse
|
23
|
Chen PS, Li CS. Real-time quantitative PCR with gene probe, fluorochrome and flow cytometry for microorganism analysis. ACTA ACUST UNITED AC 2005; 7:257-62. [PMID: 15735784 DOI: 10.1039/b415250f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microorganism concentrations and viability can be better understood and clarified by using both culture and non-culture methods. Here, using pure suspensions of E. coli, three non-culture methods, namely, flow cytometry (FCM), epifluorescence microscopy (EFM), and real-time quantitative polymerase chain reaction (real-time qPCR), were compared with a traditional culture-based method. Using fluorocome-labeling methods with FCM and EFM applications, acridine orange (AO) and propidium iodide (PI) dyes were used to determine the total cell concentration and microorganism viability, respectively. The results indicated that total cell concentrations determined using FCM were statistically higher (2.62-4.94 times) than those determined using EFM. The difference might be due to cell losses induced by extensive preparations needed for EFM. In addition, EFM and FCM were highly associated for both the total cell concentration and viability. FCM-measured viability was the highest, whereas the culture-measured viability was the lowest. Furthermore, DNA concentrations measured by real-time qPCR with gene probe were highly associated with the total number concentrations measured by either the EFM or FCM. In summary, the three non-culture methods compared here could provide rapid and accurate information about microorganism concentrations and viabilities.
Collapse
Affiliation(s)
- Pei-Shih Chen
- Graduate Institute of Environmental Health, College of Public Health, National Taiwan University, Room 1449, No. 1, Jen Ai Road, 1st Section 100, Taipei, Taiwan R.O.C
| | | |
Collapse
|
24
|
Prigione V, Filipello Marchisio V. Methods to maximise the staining of fungal propagules with fluorescent dyes. J Microbiol Methods 2004; 59:371-9. [PMID: 15488280 DOI: 10.1016/j.mimet.2004.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 07/19/2004] [Accepted: 07/26/2004] [Indexed: 10/26/2022]
Abstract
The spores and conidia of most fungi have very thick and resistant cell walls that severely impede the staining with fluorescent dyes to allow epifluorescence microscopy to be employed for their direct detection and quantification in natural habitats. In this study, oxidation by sodium hypochlorite and microwave irradiation (MWI) were used to enhance the staining of Aspergillus fumigatus and Penicillium brevicompactum conidia with six fluorescent dyes. Sodium hypochlorite resulted in high percentages of stained conidia (up to 98.8% with 4',6-diamidino-2-phenylindole [DAPI]), but had to be removed prior to staining with consequent heavy conidia losses. By contrast, MWI gave very high percentages, while its enhancement of fluorescence intensity facilitated observation by epifluorescence microscopy.
Collapse
Affiliation(s)
- Valeria Prigione
- Dipartimento di Biologia Vegetale, Università degli Studi di Torino, Viale Mattioli 25, Turin I-10125, Italy
| | | |
Collapse
|
25
|
Abstract
Air sampling provides information about the bioaerosol composition of the atmosphere. Principal methods of volumetric sample collection include impaction, impingement, and filtration. Many instruments have been developed based on these collection methods. The most widely used devices are slit impactors, rotating arm impactors, and sieve impactors. Samples can be analyzed by various methods, with microscopy and culturing the most important approaches; however, immunoassays, molecular methods such as polymerase chain reaction, and other new techniques are becoming more widely used to analyze samples.
Collapse
Affiliation(s)
- Estelle Levetin
- Faculty of Biological Science, The University of Tulsa, 600 S. College, Tulsa, OK 74104, USA.
| |
Collapse
|
26
|
Prigione V, Lingua G, Marchisio VF. Development and use of flow cytometry for detection of airborne fungi. Appl Environ Microbiol 2004; 70:1360-5. [PMID: 15006754 PMCID: PMC368332 DOI: 10.1128/aem.70.3.1360-1365.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Traditional methods for the enumeration of airborne fungi are slow, tedious, and rather imprecise. In this study, the possibility of using flow cytometry (FCM) for the assessment of exposure to the fungus aerosol was evaluated. Epifluorescence microscopy direct counting was adopted as the standard for comparison. Setting up of the method was achieved with pure suspensions of Aspergillus fumigatus and Penicillium brevicompactum conidia at different concentrations, and then analyses were extended to field samples collected by an impinger device. Detection and quantification of airborne fungi by FCM was obtained combining light scatter and propidium iodide red fluorescence parameters. Since inorganic debris are unstainable with propidium iodide, the biotic component could be recognized, whereas the preanalysis of pure conidia suspensions of some species allowed us to select the area corresponding to the expected fungal population. A close agreement between FCM and epifluorescence microscopy counts was found. Moreover, data processing showed that FCM can be considered more precise and reliable at any of the tested concentrations.
Collapse
Affiliation(s)
- Valeria Prigione
- Dipartimento di Biologia Vegetale, Università degli Studi di Torino, I-10125 Turin, Italy.
| | | | | |
Collapse
|
27
|
Abstract
Changes in climate are altering pollen distribution. Predictive modeling can be used to forecast long- and short-term changes in pollen concentrations. Increasing evidence confirms the presence of pollen allergens on small, respirable particles in the air, explaining the occurrence of pollen-season increases in asthma. Like pollens, aboveground indoor fungal aerosols primarily reflect outdoor concentrations. Basement spore concentrations might be higher and reflective of local sources. Fungal presence in the indoor or outdoor air can be monitored on an area basis or with personal monitors. The samples can be analyzed by means of microscopy, culture, DNA probes, HPLC, or immunodetection. Total fungal biomass can be estimated on the basis of measurements of ergosterol or glucan in environmental samples. Unfortunately, there are no generally accepted standards for interpretation of fungal levels in indoor or outdoor air. At present, the best approach to indoor fungal control is moisture control in the indoor environment. This will essentially prevent fungal growth, except from extraordinary events.
Collapse
Affiliation(s)
- Harriet A Burge
- Harvard School of Public Health, Landmark Center, Room 404M, West, 401 Park Drive, PO Box 15677, Boston, MA 02215, USA
| |
Collapse
|