1
|
Overlingė D, Toruńska-Sitarz A, Cegłowska M, Szubert K, Mazur-Marzec H. Phylogenetic and molecular characteristics of two Aphanizomenon strains from the Curonian Lagoon, Southeastern Baltic Sea and their biological activities. Sci Rep 2024; 14:24686. [PMID: 39433845 PMCID: PMC11493949 DOI: 10.1038/s41598-024-76064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024] Open
Abstract
Polyphasic approach has become a generally accepted method for the classification of cyanobacteria. In this study, we present a detailed characterisation of two strains, KUCC C1 and KUCC C2, isolated from the Curonian Lagoon and classified to the Aphanizomenon genus. Despite phylogenetic similarity, the strains differ with respect to morphology, ultrastructure characteristics, and the metabolite profile. In the KUCC C1 extract, three unknown peptides and eight anabaenopeptins were detected, while KUCC C2 produced one unknown peptide and one aeruginosin. In both strains, a total of eleven pigments were detected. The production of myxoxantophyll, chlorophyll-a, chlorophylide-a, and zeaxanthin was higher in KUCC C2 than in KUCC C1. Extracts from both strains of Aphanizomenon also had different effects in antibacterial, anticancer and enzyme inhibition assays. Comprehensive analyses of Aphanizomenon strains performed in this study showed significant diversity between the isolates from the same bloom sample. These differences should be considered when exploring the ecological significance and biotechnological potential of a given population.
Collapse
Affiliation(s)
- Donata Overlingė
- Marine Research Institute, Klaipėda University, Universiteto av. 17, LT-92294, Klaipeda, Lithuania.
| | - Anna Toruńska-Sitarz
- Departament of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Marta Cegłowska
- Department of Marine Chemistry and Biochemistry, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Karolina Szubert
- Departament of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Hanna Mazur-Marzec
- Departament of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
2
|
Cai S, Zhang Y, Pan M, Zhang Z, Lu B, Tian C, Wang C, Fang T, Wu X. Combined effect of freshwater salinization and harmful algae on the benthic invertebrate Chironomus pallidivittatus. CHEMOSPHERE 2024; 359:142149. [PMID: 38685334 DOI: 10.1016/j.chemosphere.2024.142149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Global climate change as well as human activities have been reported to increase the frequency and severity of both salinization and harmful algal blooms (HABs) in many freshwater systems, but their co-effect on benthic invertebrates has rarely been studied. This study simultaneously examined the joint toxicity of salinity and different cyanobacterial diets on the behavior, development, select biomarkers, and partial life cycle of Chironomus pallidivittatus (Diptera). High concentrations of salts (e.g., 1 g/L Ca2+ and Mg2+) and toxic Microcystis had synergistic toxicity, inhibiting development, burrowing ability and causing high mortality of C. pallidivittatus, especially for the Mg2+ treatment, which caused around 90% death. Low Ca2+ concentration (e.g., 0.01 g/L) promoted larval burrowing ability and inhibited toxin accumulation, which increased the tolerance of Chironomus to toxic Microcystis. However, low Mg2+ concentration (e.g., 0.01 g/L) was shown to inhibit the behavior, development and increase algal toxicity to Chironomus. Toxic Microcystis resulted in microcystin (MC) accumulation, inhibited the burrowing ability of larvae, and increased the proportion of male adults (>50%). The combined toxicity level from low to high was verified by the weight of evidence and the grey TOPSIS model, which integrated five lines of evidence to increase the risk assessment accuracy and efficiency. This is the first study that provided insights into ecological risk arising from the joint effect of salinity and harmful algae on benthic organisms. We suggest that freshwater salinization and HABs should be considered together when assessing ecological threats that arise from external stress.
Collapse
Affiliation(s)
- Shenghe Cai
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Pan
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650228, China
| | - Zhizhong Zhang
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650228, China
| | - Bin Lu
- Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650228, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650228, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650228, China
| | - Tao Fang
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650228, China.
| |
Collapse
|
3
|
Deng D, Meng H, Ma Y, Guo Y, Wang Z, He H, Liu JE, Zhang L. Effects of extracellular polymeric substances on the aggregation of Aphanizomenon flos-aquae under increasing temperature. Front Microbiol 2022; 13:971433. [PMID: 36160236 PMCID: PMC9493303 DOI: 10.3389/fmicb.2022.971433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Aphanizomenon flos-aquae (A. flos-aquae) blooms are serious environmental and ecological problems. Extracellular polymeric substances (EPSs) are among the most important indicators for the growth and aggregation of A. flos-aquae. In this study, the secretion of the EPS matrix under temperature rise (7-37°C) was investigated and the role of this matrix in A. flos-aquae aggregation was quantified. First, when the temperature increased, the aggregation ratio increased from 41.85 to 91.04%. Meanwhile, we found that when soluble EPSs (S-EPSs), loosely bound EPSs (LB-EPSs), and tightly bound EPSs (TB-EPSs) were removed successively, the aggregation ratio decreased from 69.29 to 67.45%, 61.47%, and 41.14%, respectively. Second, the content of polysaccharides in the EPS matrix was higher than the content of proteins under temperature change. The polysaccharide in TB-EPSs was closely related to the aggregation ability of A. flos-aquae (P < 0.01). Third, PARAFAC analysis detected two humic-like substances and one protein-like substance in EPSs. Furthermore, Fourier transforms infrared spectroscopy (FTIR) showed that with increasing temperature, the polysaccharide-related functional groups increased, and the absolute value of the zeta potential decreased. In conclusion, these results indicated that a large number of polysaccharides in TB-EPSs were secreted under increasing temperature, and the polysaccharide-related functional groups increased correspondingly, which reduced the electrostatic repulsion between algal cells, leading to the destruction of the stability of the dispersion system, and then the occurrence of aggregation. This helps us to understand the process of filamentous cyanobacterial aggregation in lakes.
Collapse
Affiliation(s)
- Dailan Deng
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
| | - Han Meng
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
| | - You Ma
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
| | - Yongqi Guo
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
| | - Zixuan Wang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
| | - Huan He
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
| | - Jin-e Liu
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Environment, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
| | - Limin Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, China
- Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
4
|
Berthold M, Campbell DA. Restoration, conservation and phytoplankton hysteresis. CONSERVATION PHYSIOLOGY 2021; 9:coab062. [PMID: 34394942 PMCID: PMC8361504 DOI: 10.1093/conphys/coab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/10/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Phytoplankton growth depends not only upon external factors that are not strongly altered by the presence of phytoplankton, such as temperature, but also upon factors that are strongly influenced by activity of phytoplankton, including photosynthetically active radiation, and the availability of the macronutrients carbon, nitrogen, phosphorus and, for some, silicate. Since phytoplankton therefore modify, and to an extent create, their own habitats, established phytoplankton communities can show resistance and resilience to change, including managed changes in nutrient regimes. Phytoplankton blooms and community structures can be predicted from the overall biogeochemical setting and inputs, but restorations may be influenced by the physiological responses of established phytoplankton taxa to nutrient inputs, temperature, second-order changes in illumination and nutrient recycling. In this review we discuss the contributions of phytoplankton ecophysiology to biogeochemical hysteresis and possible effects on community composition in the face of management, conservation or remediation plans.
Collapse
Affiliation(s)
- Maximilian Berthold
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| | - Douglas A Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick E4L 1C9, Canada
| |
Collapse
|
5
|
Spatial and Temporal Diversity of Cyanometabolites in the Eutrophic Curonian Lagoon (SE Baltic Sea). WATER 2021. [DOI: 10.3390/w13131760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work aims to determine the profiles of cyanopeptides and anatoxin synthetized by cyanobacteria in the Lithuanian part of the Curonian Lagoon (SE Baltic Sea) and to characterize their spatial and temporal patterns in this ecosystem. Cyanometabolites were analysed by a LC-MS/MS system and were coupled to a hybrid triple quadrupole/linear ion trap mass spectrometer. During the investigation period (2013–2017), 10 microcystins, nodularin, anatoxin-a, 16 anabaenopeptins, including 1 oscillamide, 12 aeruginosins, 1 aeruginosamide, 3 cyanopeptolins and 4 microginins were detected. The most frequently detected metabolites were found at all investigated sites. Demethylated microcystin variants and anabaenopeptins had the strongest relationship with Planktothrix agardhii, while non-demethylated microcystin variants and anatoxin had the strongest relationship with Microcystis spp. Low concentrations of some microcystins: [Asp3]MC-RR, MC-RR, MC-LR, as well as a few other cyanopeptides: AP-A and AEG-A were found during the cold period (December–March). Over the study period, Aphanizomenon, Planktothrix and Microcystis were the main dominant cyanobacteria species, while Planktothrix, Microcystis, and Dolichospermum were potentially producers of cyanopeptides and anatoxin detected in samples from the Curonian Lagoon.
Collapse
|
6
|
Wood SM, Kremp A, Savela H, Akter S, Vartti VP, Saarni S, Suikkanen S. Cyanobacterial Akinete Distribution, Viability, and Cyanotoxin Records in Sediment Archives From the Northern Baltic Sea. Front Microbiol 2021; 12:681881. [PMID: 34211448 PMCID: PMC8241101 DOI: 10.3389/fmicb.2021.681881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria of the order Nostocales, including Baltic Sea bloom-forming taxa Nodularia spumigena, Aphanizomenon flosaquae, and Dolichospermum spp., produce resting stages, known as akinetes, under unfavorable conditions. These akinetes can persist in the sediment and germinate if favorable conditions return, simultaneously representing past blooms and possibly contributing to future bloom formation. The present study characterized cyanobacterial akinete survival, germination, and potential cyanotoxin production in brackish water sediment archives from coastal and open Gulf of Finland in order to understand recent bloom expansion, akinete persistence, and cyanobacteria life cycles in the northern Baltic Sea. Results showed that cyanobacterial akinetes can persist in and germinate from Northern Baltic Sea sediment up to >40 and >400 years old, at coastal and open-sea locations, respectively. Akinete abundance and viability decreased with age and depth of vertical sediment layers. The detection of potential microcystin and nodularin production from akinetes was minimal and restricted to the surface sediment layers. Phylogenetic analysis of culturable cyanobacteria from the coastal sediment core indicated that most strains likely belonged to the benthic genus Anabaena. Potentially planktonic species of Dolichospermum could only be revived from the near-surface layers of the sediment, corresponding to an estimated age of 1–3 years. Results of germination experiments supported the notion that akinetes do not play an equally significant role in the life cycles of all bloom-forming cyanobacteria in the Baltic Sea. Overall, there was minimal congruence between akinete abundance, cyanotoxin concentration, and the presence of cyanotoxin biosynthetic genes in either sediment core. Further research is recommended to accurately detect and quantify akinetes and cyanotoxin genes from brackish water sediment samples in order to further describe species-specific benthic archives of cyanobacteria.
Collapse
Affiliation(s)
- Steffaney M Wood
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Anke Kremp
- Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Henna Savela
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Sultana Akter
- Biotechnology, Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Saija Saarni
- Department of Geography and Geology, University of Turku, Turku, Finland
| | - Sanna Suikkanen
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| |
Collapse
|
7
|
Olofsson M, Hagan JG, Karlson B, Gamfeldt L. Large seasonal and spatial variation in nano- and microphytoplankton diversity along a Baltic Sea-North Sea salinity gradient. Sci Rep 2020; 10:17666. [PMID: 33077730 PMCID: PMC7572517 DOI: 10.1038/s41598-020-74428-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 09/30/2020] [Indexed: 11/09/2022] Open
Abstract
Aquatic phytoplankton experience large fluctuations in environmental conditions during seasonal succession and across salinity gradients, but the impact of this variation on their diversity is poorly understood. We examined spatio-temporal variation in nano- and microphytoplankton (> 2 µm) community structure using almost two decades of light-microscope based monitoring data. The dataset encompasses 19 stations that span a salinity gradient from 2.8 to 35 along the Swedish coastline. Spatially, both regional and local phytoplankton diversity increased with broad-scale salinity variation. Diatoms dominated at high salinity and the proportion of cyanobacteria increased with decreasing salinity. Temporally, cell abundance peaked in winter-spring at high salinity but in summer at low salinity. This was likely due to large filamentous cyanobacteria blooms that occur in summer in low salinity areas, but which are absent in higher salinities. In contrast, phytoplankton local diversity peaked in spring at low salinity but in fall and winter at high salinity. Whilst differences in seasonal variation in cell abundance were reasonably well-explained by variation in salinity and nutrient availability, variation in local-scale phytoplankton diversity was poorly predicted by environmental variables. Overall, we provide insights into the causes of spatio-temporal variation in coastal phytoplankton community structure while also identifying knowledge gaps.
Collapse
Affiliation(s)
- Malin Olofsson
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts gata 15, 426 71, Västra Frölunda, Sweden.
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 750 07, Uppsala, Sweden.
| | - James G Hagan
- Department of Marine Sciences, University of Gothenburg, Box 100, 405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden
| | - Bengt Karlson
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts gata 15, 426 71, Västra Frölunda, Sweden
| | - Lars Gamfeldt
- Department of Marine Sciences, University of Gothenburg, Box 100, 405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden
- Centre for Sea and Society, Box 260, 405 30, Gothenburg, Sweden
| |
Collapse
|
8
|
Olofsson M, Suikkanen S, Kobos J, Wasmund N, Karlson B. Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea. HARMFUL ALGAE 2020; 91:101685. [PMID: 32057344 DOI: 10.1016/j.hal.2019.101685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Almost every summer, dense blooms of filamentous cyanobacteria are formed in the Baltic Sea. These blooms may cause problems for tourism and ecosystem services, where surface accumulations and beach fouling are commonly occurring. Future changes in environmental drivers, including climate change and other anthropogenic disturbances, may further enhance these problems. By compiling monitoring data from countries adjacent to the Baltic Sea, we present spatial and temporal genus-specific distribution of diazotrophic filamentous cyanobacteria (Nostocales) during four decades (1979-2017). While the summer surface salinity decreased with a half up to one unit, the surface temperature in July-August increased with 2-3 °C in most sub-basins of the Baltic Sea, during the time period. The biovolumes of the toxic Nodularia spumigena did not change in any of the sub-basins during the period. On the other hand, the biovolume of the non-toxic Aphanizomenon sp. and the potentially toxic Dolichospermum spp. increased in the northern parts of the Baltic Sea, along with the decreased salinity and elevated temperatures, but Aphanizomenon sp. decreased in the southern parts despite decreased salinity and increased temperatures. These contradictory changes in biovolume of Aphanizomenon sp. between the northern and southern parts of the Baltic Sea may be due to basin-specific effects of the changed environmental conditions, or can be related to local adaptation by sub-populations of the genera. Overall, this comprehensive dataset presents insights to genus-specific bloom dynamics by potentially harmful diazotrophic filamentous cyanobacteria in the Baltic Sea.
Collapse
Affiliation(s)
- Malin Olofsson
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts Gata 15, 426 71, Västra Frölunda, Sweden.
| | - Sanna Suikkanen
- Marine Research Centre, Finnish Environment Institute, Latokartanonkaari 11, 00790, Helsinki, Finland.
| | - Justyna Kobos
- University of Gdansk, Faculty of Oceanography and Geography, Institute of Oceanography, Division of Marine Biotechnology, al. Marszałka Józefa Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Norbert Wasmund
- Leibniz Institute for Baltic Sea Research, Warnemünde, Seestrasse 15, D-18119, Rostock, Germany.
| | - Bengt Karlson
- Research and Development, Oceanography, Swedish Meteorological and Hydrological Institute, Sven Källfelts Gata 15, 426 71, Västra Frölunda, Sweden.
| |
Collapse
|
9
|
Shiels K, Browne N, Donovan F, Murray P, Saha SK. Molecular Characterization of Twenty-Five Marine Cyanobacteria Isolated from Coastal Regions of Ireland. BIOLOGY 2019; 8:biology8030059. [PMID: 31394859 PMCID: PMC6784279 DOI: 10.3390/biology8030059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/04/2019] [Indexed: 11/16/2022]
Abstract
Twenty-five marine cyanobacteria isolated from Irish coasts were characterized based on their morphological characters and 16S rRNA gene sequence analysis. In addition, superoxide dismutase (SOD) and malate dehydrogenase (MDH) isoenzyme banding patterns were used to differentiate two morphologically ambiguous isolates. In this study, six new cyanobacteria-specific primers were designed, and a 16S rRNA gene of twenty-five morphologically diverse cyanobacteria was successfully PCR amplified (1198–1396 bps). Assembled 16S rRNA sequences were used both for a basic local alignment search tool (BLAST) analysis for genus-level identification and to generate a phylogenetic tree, which yielded two major clusters: One with morphologically homogenous cyanobacteria and the other with morphologically very diverse cyanobacteria. Kamptonema okenii and Tychonema decoloratum were isolated from a single field sample of Ballybunion and were originally identified as the same ‘Oscillatoria sp.’ based on preliminary morphological observations. However, an alignment of 16S rRNA gene sequences and SOD and MDH isoenzyme banding pattern analyses helped in differentiating the morphologically-indistinguishable ‘Oscillatoria sp.’. Finally, after a re-evaluation of their morphological characters using modern taxonomic publications, the originally identified ‘Oscillatoria sp.’ were re-identified as Kamptonema okenii and Tychonema decoloratum, thus supporting the polyphasic approach of cyanobacteria characterization.
Collapse
Affiliation(s)
- Katie Shiels
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland
| | - Norma Browne
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland
| | - Fiona Donovan
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland
| | - Patrick Murray
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland
| | - Sushanta Kumar Saha
- Shannon Applied Biotechnology Centre, Limerick Institute of Technology, Moylish Park, Limerick V94 E8YF, Ireland.
| |
Collapse
|
10
|
First observation of microcystin- and anatoxin-a-producing cyanobacteria in the easternmost part of the Gulf of Finland (the Baltic Sea). Toxicon 2019; 157:18-24. [DOI: 10.1016/j.toxicon.2018.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/18/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
|
11
|
Molecular Verification of Bloom-forming Aphanizomenon flos-aquae and Their Secondary Metabolites in the Nakdong River. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081739. [PMID: 30104548 PMCID: PMC6121560 DOI: 10.3390/ijerph15081739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/30/2018] [Accepted: 08/10/2018] [Indexed: 11/23/2022]
Abstract
Aphanizomenon spp. have formed harmful cyanobacterial blooms in the Nakdong River during spring, autumn, and now in winter, and the expansion of blooming period and area, associated with the global warming is predicted. The genus Aphanizomenon has been described to produce harmful secondary metabolites such as off-flavors and cyanotoxins. Therefore, the production of harmful secondary metabolites from the Aphanizomenon blooms in the Nakdong River needs to be monitored to minimize the risk to both water quality and public health. Here, we sampled the cyanobacterial blooms in the Nakdong River and isolated ten Aphanizomenon strains, morphologically classified as Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault 1888. Phylogenetic analysis using 16S rRNA and internal transcribed spacer (ITS) region nucleotide sequences confirmed this classification. We further verified the harmful secondary metabolites-producing potential of A. flos-aquae isolates and water samples containing cyanobacterial blooms using PCR with specific primer sets for genes involved in biosynthesis of off-flavor metabolites (geosmin) and toxins (microcystins, saxitoxins and cylindrospermopsins). It was confirmed that these metabolite biosynthesis genes were not identified in all isolates and water samples containing only Aphanizomenon spp. Thus, it is likely that there is a low potential for the production of off-flavor metabolites and cyanotoxins in Aphanizomenon blooms in the Nakdong River.
Collapse
|
12
|
Wulff A, Karlberg M, Olofsson M, Torstensson A, Riemann L, Steinhoff FS, Mohlin M, Ekstrand N, Chierici M. Ocean acidification and desalination: climate-driven change in a Baltic Sea summer microplanktonic community. MARINE BIOLOGY 2018; 165:63. [PMID: 29563649 PMCID: PMC5843668 DOI: 10.1007/s00227-018-3321-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/01/2018] [Indexed: 05/19/2023]
Abstract
Helcom scenario modelling suggests that the Baltic Sea, one of the largest brackish-water bodies in the world, could expect increased precipitation (decreased salinity) and increased concentration of atmospheric CO2 over the next 100 years. These changes are expected to affect the microplanktonic food web, and thereby nutrient and carbon cycling, in a complex and possibly synergistic manner. In the Baltic Proper, the extensive summer blooms dominated by the filamentous cyanobacteria Aphanizomenon sp., Dolichospermum spp. and the toxic Nodularia spumigena contribute up to 30% of the yearly new nitrogen and carbon exported to the sediment. In a 12 days outdoor microcosm experiment, we tested the combined effects of decreased salinity (from 6 to 3) and elevated CO2 concentrations (380 and 960 µatm) on a natural summer microplanktonic community, focusing on diazotrophic filamentous cyanobacteria. Elevated pCO2 had no significant effects on the natural microplanktonic community except for higher biovolume of Dolichospermum spp. and lower biomass of heterotrophic bacteria. At the end of the experimental period, heterotrophic bacterial abundance was correlated to the biovolume of N. spumigena. Lower salinity significantly affected cyanobacteria together with biovolumes of dinoflagellates, diatoms, ciliates and heterotrophic bacteria, with higher biovolume of Dolichospermum spp. and lower biovolume of N. spumigena, dinoflagellates, diatoms, ciliates and heterotrophic bacteria in reduced salinity. Although the salinity effects on diatoms were apparent, they could not clearly be separated from the influence of inorganic nutrients. We found a clear diurnal cycle in photosynthetic activity and pH, but without significant treatment effects. The same diurnal pattern was also observed in situ (pCO2, pH). Thus, considering the Baltic Proper, we do not expect any dramatic effects of increased pCO2 in combination with decreased salinity on the microplanktonic food web. However, long-term effects of the experimental treatments need to be further studied, and indirect effects of the lower salinity treatments could not be ruled out. Our study adds one piece to the complicated puzzle to reveal the combined effects of increased pCO2 and reduced salinity levels on the Baltic microplanktonic community.
Collapse
Affiliation(s)
- Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Maria Karlberg
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Malin Olofsson
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Anders Torstensson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
- Present Address: School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195 USA
| | - Lasse Riemann
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Franciska S. Steinhoff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Malin Mohlin
- Swedish Meteorological and Hydrological Institute, Sven Källfelts gata 15, 426 71 Västra Frölunda, Sweden
| | - Nina Ekstrand
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
| | - Melissa Chierici
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden
- Present Address: Institute of Marine Research, Sykehusveien 23, Tromsø, Norway
| |
Collapse
|
13
|
Bauersachs T, Talbot HM, Sidgwick F, Sivonen K, Schwark L. Lipid biomarker signatures as tracers for harmful cyanobacterial blooms in the Baltic Sea. PLoS One 2017; 12:e0186360. [PMID: 29036222 PMCID: PMC5642901 DOI: 10.1371/journal.pone.0186360] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/29/2017] [Indexed: 11/19/2022] Open
Abstract
The recent proliferation of harmful cyanobacterial blooms (cyanoHABs) in the Baltic and other marginal seas poses a severe threat for the health of infested ecosystems as e.g. the massive export and decay of cyanobacterial biomass facilitates the spread of bottom water hypoxia. There is evidence that cyanoHABs occurred repeatedly in the Baltic Sea but knowledge of their spatiotemporal distribution and the cyanobacteria that contributed to them is limited. In this study, we examined representatives of the major bloom-forming heterocystous cyanobacteria (i.e. Aphanizomenon, Dolichospermum (formerly Anabaena) and Nodularia) to establish lipid fingerprints that allow tracking these environmentally important diazotrophs in the modern and past Baltic Sea. The distribution of normal and mid-chain branched alkanes, fatty acid methyl esters, bacteriohopanepolyols and heterocyst glycolipids permitted a clear chemotaxonomic separation of the different heterocystous cyanobacteria but also indicated a close phylogenetic relationship between representatives of the genera Aphanizomenon and Dolichospermum. Compared to the discontinuous nature of phytoplankton surveys studies, the distinct lipid profiles reported here will allow obtaining detailed spatiotemporal information on the frequency and intensity of Baltic Sea cyanoHABs as well as their community composition using the time-integrated biomarker signatures recorded in surface and subsurface sediments. As heterocystous cyanobacteria of the genera Aphanizomenon, Dolichospermum and Nodularia are generally known to form massive blooms in many brackish as well as lacustrine systems worldwide, the chemotaxonomic markers introduced in this study may allow investigating cyanoHABs in a great variety of contemporary environments from polar to tropical latitudes.
Collapse
Affiliation(s)
- Thorsten Bauersachs
- Department of Organic Geochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Helen M. Talbot
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Frances Sidgwick
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kaarina Sivonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lorenz Schwark
- Department of Organic Geochemistry, Christian-Albrechts-University, Kiel, Germany
- Department of Chemistry, Curtin University, Perth, Australia
| |
Collapse
|
14
|
Coloma SE, Dienstbier A, Bamford DH, Sivonen K, Roine E, Hiltunen T. Newly isolatedNodulariaphage influences cyanobacterial community dynamics. Environ Microbiol 2017; 19:273-286. [DOI: 10.1111/1462-2920.13601] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/18/2022]
Affiliation(s)
- S. E. Coloma
- Department of Food and Environmental SciencesViikinkaari 9, 00014 University of HelsinkiHelsinki Finland
| | - A. Dienstbier
- Department of BiosciencesViikinkaari 9, 00014 University of HelsinkiHelsinki Finland
| | - D. H. Bamford
- Department of BiosciencesViikinkaari 9, 00014 University of HelsinkiHelsinki Finland
- Institute of BiotechnologyViikinkaari 9, 00014 University of HelsinkiHelsinki Finland
| | - K. Sivonen
- Department of Food and Environmental SciencesViikinkaari 9, 00014 University of HelsinkiHelsinki Finland
| | - E. Roine
- Department of BiosciencesViikinkaari 9, 00014 University of HelsinkiHelsinki Finland
- Institute of BiotechnologyViikinkaari 9, 00014 University of HelsinkiHelsinki Finland
| | - T. Hiltunen
- Department of Food and Environmental SciencesViikinkaari 9, 00014 University of HelsinkiHelsinki Finland
| |
Collapse
|
15
|
Cirés S, Ballot A. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). HARMFUL ALGAE 2016; 54:21-43. [PMID: 28073477 DOI: 10.1016/j.hal.2015.09.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/22/2015] [Indexed: 05/16/2023]
Abstract
The traditional genus Aphanizomenon comprises a group of filamentous nitrogen-fixing cyanobacteria of which several memebers are able to develop blooms and to produce toxic metabolites (cyanotoxins), including hepatotoxins (microcystins), neurotoxins (anatoxins and saxitoxins) and cytotoxins (cylindrospermopsin). This genus, representing geographically widespread and extensively studied cyanobacteria, is in fact heterogeneous and composed of at least five phylogenetically distant groups (Aphanizomenon, Anabaena/Aphanizomenon like cluster A, Cuspidothrix, Sphaerospermopsis and Chrysosporum) whose taxonomy is still under revision. This review provides a thorough insight into the phylogeny, ecology, biogeography and toxicogenomics (cyr, sxt, and ana genes) of the five best documented "Aphanizomenon" species with special relevance for water risk assessment: Aphanizomenon flos-aquae, Aphanizomenon gracile, Cuspidothrix issatschenkoi, Sphaerospermopsis aphanizomenoides and Chrysosporum ovalisporum. Aph. flos-aquae, Aph. gracile and C. issatschenkoi have been reported from temperate areas only whereas S. aphanizomenoides shows the widest distribution from the tropics to temperate areas. Ch. ovalisporum is found in tropical, subtropical and Mediterranean areas. While all five species show moderate growth rates (0.1-0.4day-1) within a wide range of temperatures (15-30°C), Aph. gracile and A. flos-aquae can grow from around (or below) 10°C, whereas Ch. ovalisporum and S. aphanizomenoides are much better competitors at high temperatures over 30°C or even close to 35°C. A. gracile has been confirmed as the producer of saxitoxins and cylindrospermopsin, C. issatschenkoi of anatoxins and saxitoxins and Ch. ovalisporum of cylindrospermopsin. The suspected cylindrospermopsin or anatoxin-a production of A. flos-aquae or microcystin production of S. aphanizomenoides is still uncertain. This review includes a critical discussion on the the reliability of toxicity reports and on the invasive potential of "Aphanizomenon" species in a climate change scenario, together with derived knowledge gaps and research needs. As a whole, this work is intended to represent a key reference for scientists and water managers involved in the major challenges of identifying, preventing and mitigating toxic Aphanizomenon blooms.
Collapse
Affiliation(s)
- Samuel Cirés
- Departamento de Biología, Darwin, 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain; College of Marine and Environmental Sciences, James Cook University, Townsville 4811, QLD, Australia.
| | - Andreas Ballot
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
| |
Collapse
|
16
|
Using Remote Sensing to Assess the Impact of Human Activities on Water Quality: Case Study of Lake Taihu, China. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-14212-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
17
|
Zhang XJ, Feng J, Wang GH, Xie SL. A morphological and phylogenetic study of a filamentous cyanobacterium, Microcoleus vaginatus, associated with the moss Mnium cuspidatum. Symbiosis 2014. [DOI: 10.1007/s13199-014-0301-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Gupta V, Ratha SK, Sood A, Chaudhary V, Prasanna R. New insights into the biodiversity and applications of cyanobacteria (blue-green algae)—Prospects and challenges. ALGAL RES 2013. [DOI: 10.1016/j.algal.2013.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Tahvanainen P, Alpermann TJ, Figueroa RI, John U, Hakanen P, Nagai S, Blomster J, Kremp A. Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga. PLoS One 2012; 7:e53602. [PMID: 23300940 PMCID: PMC3534129 DOI: 10.1371/journal.pone.0053602] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/30/2012] [Indexed: 11/18/2022] Open
Abstract
This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F(ST)) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.
Collapse
Affiliation(s)
- Pia Tahvanainen
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Cerritos R, Eguiarte LE, Avitia M, Siefert J, Travisano M, Rodríguez-Verdugo A, Souza V. Diversity of culturable thermo-resistant aquatic bacteria along an environmental gradient in Cuatro Ciénegas, Coahuila, México. Antonie van Leeuwenhoek 2010; 99:303-18. [PMID: 20711674 DOI: 10.1007/s10482-010-9490-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
At the desert oasis of Cuatro Ciénegas in Coahuila, México, more than 300 oligotrophic pools can be found and a large number of endemic species of plants and animals. The most divergent taxa of diatoms, snail and fishes are located in the Churince hydrological system, where we analyzed the local diversification of cultivable Firmicutes and Actinobacteria. The Churince hydrological system is surrounded by gypsum dunes and has a strong gradient for salinity, temperature, pH and dissolved oxygen. In August 2003, surface water samples were taken in 10 sites along the Churince system together with the respective environmental measurements. 417 thermo-resistant bacteria were isolated and DNA was extracted to obtain their BOX-PCR fingerprints, revealing 55 different patterns. In order to identify similarities and differences in the diversity of the various sampling sites, an Ordination Analysis was applied using Principal Component Analysis. This analysis showed that conductivity is the environmental factor that explains the distribution of most of the microbial diversity. Phylogenetic reconstruction from their 16S rRNA sequences was performed for a sample of 150 isolates. Only 17 sequences had a 100% match in the Gene Bank (NCBI), representing 10 well known cosmopolitan taxa. The rest of the sequences cluster in 22 clades for Firmicutes and another 22 clades for Actinobacteria, supporting the idea of high diversity and differentiation for this site.
Collapse
Affiliation(s)
- René Cerritos
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito exterior s/n anexo al Jardín Botánico Exterior, Mexico, DF, Mexico
| | | | | | | | | | | | | |
Collapse
|
21
|
Characterization of a Synechocystis sp. from Egypt with the potential of bioactive compounds production. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0280-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Sabart M, Pobel D, Latour D, Robin J, Salençon MJ, Humbert JF. Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:263-272. [PMID: 23765856 DOI: 10.1111/j.1758-2229.2009.00042.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microcystis aeruginosa is a toxic cyanobacterium, which is able to bloom in a wide range of freshwater ecosystems. By sequencing the Internal Transcribed Spacer (ITS) of the ribosomal operon, we compared the genetic composition of several French bloom-forming M. aeruginosa populations from two reservoirs located on the Loire River, at two sampling points located between these reservoirs, and finally in two ponds closely linked to this river. No significant difference was found in the genetic diversity of the six Microcystis populations but we evidenced a strong genetic differentiation between most of these populations. Indeed, the Microcystis population in the Grangent reservoir was genetically differentiated from the other three populations sampled further downstream, implying that no massive transfer of population occurs from this reservoir to downstream segments. We also found genetic differentiation between the populations from the two ponds, and between these populations and those from the Loire River. On the other hand, the same dominant genotype was found in the populations sampled both in the river and in the Villerest reservoir, suggesting the selection of a distinct genotype adapted to river conditions and also an accumulation of this genotype in the downstream reservoir. Finally, by comparing our ITS sequences with those available in the GenBank, no biogeographical differentiation could be detected at a global scale, suggesting that most of the Microcystis genotypes seem to be ubiquitous.
Collapse
Affiliation(s)
- Marion Sabart
- Institut Pasteur, CNRS URA 2172, Unité des Cyanobactéries, 75015 Paris, France. Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 6023, 24 avenue des Landais, 63177 Aubière cedex, France. ISARA, Equipe Ecosystèmes et ressources aquatiques, 23 rue Jean Baldassini 69364 Lyon cedex 07, France. EDF R&D, Département LNHE, 6 quai Watier 78400 Chatou, France. INRA, UMR 42 CARRTEL, 74203 Thonon Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Tan X, Kong F, Zeng Q, Cao H, Qian S, Zhang M. Seasonal variation of Microcystis in Lake Taihu and its relationships with environmental factors. J Environ Sci (China) 2009; 21:892-899. [PMID: 19862953 DOI: 10.1016/s1001-0742(08)62359-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In order to monitor the changes of Microcystis along with temporal and spatial variations, seasonal variation of Microcystis in Lake Taihu was investigated by 16S-23S rRNA internal transcribed spacer denaturing gradient gel electrophoresis (16S-23S rRNA-ITS DGGE) and microscopic evaluation. Samples were collected quarterly at four sites (River Mouth, Meiliang Bay, Cross Area, and Lake Center) from August 2006 to April 2007. Results showed that Microcystis dominated total phytoplankton abundance at the four sites in all seasons except winter. The average annual abundance of Microcystis was relatively high at River Mouth and Meiliang Bay, reaching 81.22 x 10(6) and 61.32 x 10(6) cells/L, respectively. For temporal variations, Shannon-Wiener diversity index (H') according to DGGE profile revealed the richness of Microcystis in summer (H' = 1.375 +/- 0.034) and winter (H' = 1.650 +/- 0.032) was lower than that in spring (H' = 2.078 +/- 0.031) and autumn (H' = 2.365 +/- 0.032) (P <0.05). While for spatial variations, the richness of Microcystis at River Mouth (H' = 2.015 +/- 0.074) was higher than at other sites during four seasons (P < 0.01). Very few differences of Microcystis diversity in the same season were observed among the other three sites (P > 0.05). Canonical correspondence analysis (CCA) was performed to elucidate the relationships between Microcystis operational taxonomic units (OTUs) composition and the environmental factors. Results of CCA revealed that temperature was strongly positively correlated with the first axis (r = 0.963), while TSS was negative correlated with the second axis (r = -0.716). Phylogenetic tree based on the sequencing results of target bands on DGGE gel indicated that samples collected in summer and winter constituted two separated clusters.
Collapse
Affiliation(s)
- Xiao Tan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | | | | | | | | | | |
Collapse
|
24
|
Briand E, Escoffier N, Straub C, Sabart M, Quiblier C, Humbert JF. Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME JOURNAL 2008; 3:419-29. [PMID: 19092863 DOI: 10.1038/ismej.2008.121] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The variations in microcystin concentrations during cyanobacterial blooms in freshwater ecosystems appear to depend on numerous factors, which have still not been fully identified. To contribute to clarify the situation, we have developed a spatial sampling approach to determine the dynamics and genetic diversity of a bloom-forming population of Microcystis aeruginosa in a large French reservoir, and the variations in the proportions of microcystin-producing genotypes. We demonstrated that marked changes occurred in the internal transcribed spacer (ITS) genotype composition of the M. aeruginosa population during the development of the bloom. These changes led progressively to the selection of one dominant ITS genotype throughout the entire reservoir when the cell number reached its maximum. At the same time, we identified a decrease in the proportion of the mcyB+ genotype, and a significant negative correlation between this proportion and that of the dominant ITS genotype during the bloom. Thus, it appeared that favorable conditions for Microcystis cell growth led to the selection, within the Microcystis population, of a non-microcystin-producing genotype, whereas potentially microcystin-producing genotypes were dominant in this population before and after the bloom, when environmental conditions were less favorable for growth.
Collapse
Affiliation(s)
- Enora Briand
- MNHN, USM505/EA4105 Ecosystèmes et interactions toxiques, Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
25
|
Han D, Fan Y, Hu Z. An evaluation of four phylogenetic markers in Nostoc: implications for cyanobacterial phylogenetic studies at the intrageneric level. Curr Microbiol 2008; 58:170-6. [PMID: 18972163 DOI: 10.1007/s00284-008-9302-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2006] [Accepted: 10/12/2006] [Indexed: 11/24/2022]
Abstract
The success of some phylogenetic markers in cyanobacteria owes to the design of cyanobacteria-specific primers, but a few studies have directly investigated the evolution "behavior" of the loci. In this study, we performed a case study in Nostoc to evaluate rpoC1, hetR, rbcLX, and 16S rRNA-tRNA(Ile)-tRNA(Ala)-23S rRNA internal transcribed spacer (ITS) as phylogenetic markers. The results indicated that the gene trees of these loci are not congruent with the phylogeny based on 16S rRNA gene. The mechanisms contributing to the incongruence include randomized variation and recombination. As the results suggested, one should be careful to choose the molecular markers for phylogenetic reconstruction at the intrageneric level in cyanobacteria.
Collapse
Affiliation(s)
- D Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
26
|
Halinen K, Fewer DP, Sihvonen LM, Lyra C, Eronen E, Sivonen K. Genetic diversity in strains of the genus Anabaena isolated from planktonic and benthic habitats of the Gulf of Finland (Baltic Sea). FEMS Microbiol Ecol 2008; 64:199-208. [PMID: 18336556 DOI: 10.1111/j.1574-6941.2008.00461.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Late summer cyanobacterial blooms in the Baltic Sea contain Anabaena sp. together with Nodularia spumigena and Aphanizomenon flos-aquae. Although Anabaena is common especially in the Gulf of Finland, very little is known about its genetic diversity. Here we undertook a molecular phylogenetic study of 68 Anabaena strains isolated from the brackish Gulf of Finland. We sequenced the 16S rRNA genes from 54 planktonic and 14 benthic Anabaena strains, and rbcL and rpoC1 genes from a subset of these strains. Phylogenetic trees showed that Anabaena strains, from both planktonic and benthic habitats, were genetically diverse. Although the Anabaena strains were morphologically diverse, in our study only one genetically valid species was found to exist in the plankton. Evolutionary distances between benthic Anabaena strains were greater than between planktonic strains, suggesting that benthic habitats allow for the maintenance of greater genetic diversity than planktonic habitats. A number of novel lineages containing only sequences obtained in this study were compiled in the phylogenetical analyses. Thus, it seemed that novel lineages of the genus Anabaena may be present in the Baltic Sea. Our results demonstrate that the Baltic Sea Anabaena strains show surprisingly high genetic diversity.
Collapse
Affiliation(s)
- Katrianna Halinen
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.
Collapse
Affiliation(s)
- Ted H M Mes
- Marine Microbiology, NIOO-CEME, Netherlands Institute of Ecology, Korringaweg 7, 4400 AC Yerseke, The Netherlands. /
| |
Collapse
|
28
|
Halinen K, Jokela J, Fewer DP, Wahlsten M, Sivonen K. Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. Appl Environ Microbiol 2007; 73:6543-50. [PMID: 17766456 PMCID: PMC2075070 DOI: 10.1128/aem.01377-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anabaena is a filamentous, N(2)-fixing, and morphologically diverse genus of cyanobacteria found in freshwater and brackish water environments worldwide. It contributes to the formation of toxic blooms in freshwater bodies through the production of a range of hepatotoxins or neurotoxins. In the Baltic Sea, Anabaena spp. form late summer blooms, together with Nodularia spumigena and Aphanizomenon flos-aquae. It has been long suspected that Baltic Sea Anabaena may produce microcystins. The presence of microcystins has been reported for the coastal regions of the Baltic proper, and a recent report also indicated the presence of the toxin in the open Gulf of Finland. However, at present there is no direct evidence linking Baltic Sea Anabaena spp. to microcystin production. Here we report on the isolation of microcystin-producing strains of the genus Anabaena in the open Gulf of Finland. The dominant microcystin variants produced by these strains included the highly toxic MCYST-LR as well as [d-Asp(3)]MCYST-LR, [d-Asp(3)]MCYST-HtyR, MCYST-HtyR, [d-Asp(3),Dha(7)]MCYST-HtyR, and [Dha(7)]MCYST-HtyR variants. Toxic strains were isolated from the coastal Gulf of Finland as well as from the easternmost open-sea sampling station, where there were lower salinities than at other stations. This result suggests that lower salinity may favor microcystin-producing Anabaena strains. Furthermore, we sequenced 16S rRNA genes and found evidence for pronounced genetic heterogeneity of the microcystin-producing Anabaena strains. Future studies should take into account the potential presence of microcystin-producing Anabaena sp. in the Gulf of Finland.
Collapse
Affiliation(s)
- Katrianna Halinen
- Department of Applied Chemistry and Microbiology, P.O. Box 56, Viikki Biocenter (Viikinkaari 9), FIN-00014 University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
29
|
Sivonen K, Halinen K, Sihvonen LM, Koskenniemi K, Sinkko H, Rantasärkkä K, Moisander PH, Lyra C. Bacterial diversity and function in the Baltic Sea with an emphasis on cyanobacteria. AMBIO 2007; 36:180-5. [PMID: 17520932 DOI: 10.1579/0044-7447(2007)36[180:bdafit]2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this article we summarize the current knowledge of Baltic Sea cyanobacteria, focusing on diversity, toxicity, and nitrogen fixation in the filamentous heterocystous taxa. We also review the recent results of our microbial diversity studies in planktonic and benthic habitats in the Baltic Sea. Based on molecular analyses, we have improved the understanding of cyanobacterial population structure by assessing genetic diversity within species that are morphologically inseparable. Moreover, we have studied microbial functions such as toxin production and nitrogen fixation in situ under different environmental conditions. Phosphorus limitation of bloom-forming, nitrogen-fixing cyanobacteria was clearly verified, emphasizing the importance of continuous efforts to reduce this element in the Baltic Sea. We have designed a rapid and reliable detection method for the toxic cyanobacterium Nodularia spumigena, which can be used to study bloom formation of this important toxin producer.
Collapse
Affiliation(s)
- Kaarina Sivonen
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Vahtera E, Conley DJ, Gustafsson BG, Kuosa H, Pitkänen H, Savchuk OP, Tamminen T, Viitasalo M, Voss M, Wasmund N, Wulff F. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. AMBIO 2007; 36:186-94. [PMID: 17520933 DOI: 10.1579/0044-7447(2007)36[186:iefenc]2.0.co;2] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eutrophication of the Baltic Sea has potentially increased the frequency and magnitude of cyanobacteria blooms. Eutrophication leads to increased sedimentation of organic material, increasing the extent of anoxic bottoms and subsequently increasing the internal phosphorus loading. In addition, the hypoxic water volume displays a negative relationship with the total dissolved inorganic nitrogen pool, suggesting greater overall nitrogen removal with increased hypoxia. Enhanced internal loading of phosphorus and the removal of dissolved inorganic nitrogen leads to lower nitrogen to phosphorus ratios, which are one of the main factors promoting nitrogenfixing cyanobacteria blooms. Because cyanobacteria blooms in the open waters of the Baltic Sea seem to be strongly regulated by internal processes, the effects of external nutrient reductions are scale-dependent. During longer time scales, reductions in external phosphorus load may reduce cyanobacteria blooms; however, on shorter time scales the internal phosphorus loading can counteract external phosphorus reductions. The coupled processes inducing internal loading, nitrogen removal, and the prevalence of nitrogen-fixing cyanobacteria can qualitatively be described as a potentially self-sustaining "vicious circle." To effectively reduce cyanobacteria blooms and overall signs of eutrophication, reductions in both nitrogen and phosphorus external loads appear essential.
Collapse
Affiliation(s)
- Emil Vahtera
- Department of Biological Oceanography, Finnish Institute of Marine Research, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Marquardt J, Palinska KA. Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol 2006; 187:397-413. [PMID: 17186222 DOI: 10.1007/s00203-006-0204-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 11/23/2006] [Accepted: 11/28/2006] [Indexed: 11/27/2022]
Abstract
In this study, 30 strains of filamentous, non-heterocystous cyanobacteria from different habitats and different geographical regions assigned to diverse oscillatorian genera but here collectively referred to as members of the Phormidium group have been characterized using a polyphasic approach by comparing phenotypic and molecular characteristics. The phenotypic analysis dealt with cell and filament morphology, ultrastructure, phycoerythrin content, and complementary chromatic adaptation. The molecular phylogenetic analyses were based on sequences of the 16S rRNA gene and the adjacent intergenic transcribed spacer (ITS). The sequences were located on multiple branches of the inferred cyanobacterial 16S rRNA tree. For some, but not all, strains with identical 16S rDNA sequences, a higher level of discrimination was achieved by analyses of the less conserved ITS sequences. As shown for other cyanobacteria, no correlation was found between position of the strains in the phylogenetic tree and their geographic origin. Genetically similar strains originated from distant sites while other strains isolated from the same sampling site were in different phylogenetic clusters. Also the presence of phycoerythrin was not correlated with the strains' position in the phylogenetic trees. In contrast, there was some correlation among inferred phylogenetic relationship, original environmental habitat, and morphology. Closely related strains came from similar ecosystems and shared the same morphological and ultrastructural features. Nevertheless, structural properties are insufficient in themselves for identification at the genus or species level since some phylogenetically distant members also showed similar morphological traits. Our results reconfirm that the Phormidium group is not phylogenetically coherent and requires revision.
Collapse
Affiliation(s)
- Jürgen Marquardt
- Geomicrobiology, ICBM, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26111 Oldenburg, Germany
| | | |
Collapse
|
32
|
Wilson AE, Sarnelle O, Neilan BA, Salmon TP, Gehringer MM, Hay ME. Genetic variation of the bloom-forming Cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 2005; 71:6126-33. [PMID: 16204530 PMCID: PMC1265933 DOI: 10.1128/aem.71.10.6126-6133.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To measure genetic variation within and among populations of the bloom-forming cyanobacterium Microcystis aeruginosa, we surveyed a suite of lakes in the southern peninsula of Michigan that vary in productivity (total phosphorus concentrations of approximately 10 to 100 microg liter(-1)). Survival of M. aeruginosa isolates from lakes was relatively low (i.e., mean of 7% and maximum of 30%) and positively related to lake total phosphorus concentration (P = 0.014, r2 = 0.407, n = 14). In another study (D. F. Raikow, O. Sarnelle, A. E. Wilson, and S. K. Hamilton, Limnol. Oceanogr. 49:482-487, 2004), survival rates of M. aeruginosa isolates collected from an oligotrophic lake (total phosphorus of approximately 10 mug liter(-1) and dissolved inorganic nitrogen:total phosphorus ratio of 12.75) differed among five different medium types (G test, P of <0.001), with higher survival (P = 0.003) in low-nutrient media (28 to 37% survival) than in high-nutrient media. Even with the relatively low isolate survivorship that could select against detecting the full range of genetic variation, populations of M. aeruginosa were genetically diverse within and among lakes (by analysis of molecular variance, Phi(sc) = 0.412 [Phi(sc) is an F-statistic derivative which evaluates the correlation of haplotypic diversity within populations relative to the haplotypic diversity among all sampled populations], P = 0.001), with most clones being distantly related to clones collected from lakes directly attached to Lake Michigan (a Laurentian Great Lake) and culture collection strains collected from Canada, Scotland, and South Africa. Ninety-one percent of the 53 genetically unique M. aeruginosa clones contained the microcystin toxin gene (mcyA). Genotypes with the toxin gene were found in all lakes, while four lakes harbored both genotypes possessing and genotypes lacking the toxin gene.
Collapse
Affiliation(s)
- Alan E Wilson
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Lyra C, Laamanen M, Lehtimäki JM, Surakka A, Sivonen K. Benthic cyanobacteria of the genus Nodularia are non-toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia. Int J Syst Evol Microbiol 2005; 55:555-568. [PMID: 15774625 DOI: 10.1099/ijs.0.63288-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diversity and ecological features of cyanobacteria of the genus Nodularia from benthic, periphytic and soil habitats are less well known than those of Nodularia from planktonic habitats. Novel benthic Nodularia strains were isolated from the Baltic Sea and their morphology, the presence of gas vacuoles, nodularin production, gliding, 16S rRNA gene sequences, rpoB, rbcLX and ndaF genes, and gvpA-IGS regions were examined, as well as short tandemly repeated repetitive sequence fingerprints. Strains were identified as Nodularia spumigena, Nodularia sphaerocarpa or Nodularia harveyana on the basis of the size and shape of the different types of cells and the presence or absence of gas vacuoles. The planktonic strains of N. spumigena mostly had gas vacuoles and produced nodularin, whereas the benthic strains of N. sphaerocarpa and N. harveyana lacked gas vacuoles and did not produce nodularin (except for strain PCC 7804). The benthic strains were also able to glide on surfaces. In the genetic analyses, the planktonic N. spumigena and benthic N. sphaerocarpa formed monophyletic clusters, but the clusters were very closely related. Benthic strains determined as N. harveyana formed the most diverse and distant group of strains. In addition to phylogenetic analyses, the lack of the gvpA-IGS region and ndaF in N. sphaerocarpa and N. harveyana distinguished these species from the planktonic N. spumigena. Therefore, ndaF can be considered as a potential diagnostic tool for detecting and quantifying Baltic Sea bloom-forming, nodularin-producing N. spumigena strains. The data confirm that only one morphologically and genetically distinct planktonic species of Nodularia, N. spumigena, and at least two benthic species, N. sphaerocarpa and N. harveyana, exist in the Baltic Sea.
Collapse
Affiliation(s)
- Christina Lyra
- Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Maria Laamanen
- Finnish Institute of Marine Research, PO Box 33, FIN-000931, Helsinki, Finland
| | - Jaana M Lehtimäki
- Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Anu Surakka
- Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Applied Chemistry and Microbiology, PO Box 56, FIN-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Humbert JF, Duris-Latour D, Berre BL, Giraudet H, Salençon MJ. Genetic diversity in Microcystis populations of a French storage reservoir assessed by sequencing of the 16S-23S rRNA intergenic spacer. MICROBIAL ECOLOGY 2005; 49:308-14. [PMID: 15965717 DOI: 10.1007/s00248-004-0004-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 03/03/2004] [Indexed: 05/03/2023]
Abstract
We compared the genetic diversity of the 16S-23S spacer of the rRNA gene (ITS1) in benthic and pelagic colonies of the Microcystis genus isolated from two different sampling stations with different depths and at two different sampling times (winter and summer) in the French storage reservoir of Grangent. In all, 66 ITS1 sequences were found in the different clone libraries. The nucleotide diversity of all the sampled isolates were in the same range (average number = 0.022) regardless of their origin, showing that several clones are involved in the summer bloom event and contribute to the high biomass production. Phylogenetic study and analysis of molecular variance (AMOVA) revealed no obvious genetic differentiation between the benthic and pelagic isolates. This finding confirms that the Microcystis genus in this lake is characterized by having both a benthic phase in winter and spring allowing this organism to survive in unfavorable environmental conditions, and a pelagic phase in summer and autumn when environmental conditions allow them to grow in the water column. Finally, comparing these sequences with those available in the GenBank database showed that some highly conserved genotypes are found throughout the world.
Collapse
Affiliation(s)
- J F Humbert
- INRA, UMR CARRTEL, BP 511, 74203, Thonon Cedex, France.
| | | | | | | | | |
Collapse
|
35
|
Dvornyk V, Nevo E. Evidence for multiple lateral transfers of the circadian clock cluster in filamentous heterocystic cyanobacteria Nostocaceae. J Mol Evol 2004; 58:341-7. [PMID: 15045489 DOI: 10.1007/s00239-003-2556-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 10/09/2003] [Indexed: 10/26/2022]
Abstract
Cyanobacteria are the first prokaryotes reported to show circadian rhythmicity, which is regulated by a cluster of three genes: kaiA, kaiB, and kaiC. Phylogenetic analysis of the kaiBC cluster in filamentous cyanobacteria of the family Nostocaceae including Nodularia spumigena and Nostoc linckia from Arubotaim Cave, Mt. Sedom, Israel, indicated that this cluster has experienced multiple lateral transfers. The transfers have occurred in different periods of the species' evolution. The data obtained suggest that lateral transfers of the circadian clock cluster in filamentous cyanobacteria have been common and might have adaptive significance.
Collapse
Affiliation(s)
- Volodymyr Dvornyk
- Institute of Evolution, University of Haifa, Mount Carmel, 31905 Haifa, Israel.
| | | |
Collapse
|
36
|
Thacker RW, Paul VJ. Morphological, chemical, and genetic diversity of tropical marine cyanobacteria Lyngbya spp. and Symploca spp. (Oscillatoriales). Appl Environ Microbiol 2004; 70:3305-12. [PMID: 15184125 PMCID: PMC427736 DOI: 10.1128/aem.70.6.3305-3312.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although diverse natural products have been isolated from the benthic, filamentous cyanobacterium Lyngbya majuscula, it is unclear whether this chemical variation can be used to establish taxonomic relationships among disparate collections. We compared morphological characteristics, secondary-metabolite compositions, and partial 16S ribosomal DNA (rDNA) sequences among several collections of L. majuscula Gomont, Lyngbya spp., and Symploca spp. from Guam and the Republic of Palau. The morphological characteristics examined were cell length, cell width, and the presence or absence of a calyptra. Secondary metabolites were analyzed by two-dimensional thin-layer chromatography. Each collection possessed a distinct cellular morphology that readily distinguished Lyngbya spp. from Symploca spp. Each collection yielded a unique chemotype, but common chemical characteristics were shared among four collections of L. majuscula. A phylogeny based on secondary-metabolite composition supported the reciprocal monophyly of Lyngbya and Symploca but yielded a basal polytomy for Lyngbya. Pairwise sequence divergence among species ranged from 10 to 14% across 605 bp of 16S rDNA, while collections of L. majuscula showed 0 to 1.3% divergence. Although the phylogeny of 16S rDNA sequences strongly supported the reciprocal monophyly of Lyngbya and Symploca as well as the monophyly of Lyngbya bouillonii and L. majuscula, genetic divergence was not correlated with chemical and morphological differences. These data suggest that 16S rDNA sequence analyses do not predict chemical variability among Lyngbya species. Other mechanisms, including higher rates of evolution for biosynthetic genes, horizontal gene transfer, and interactions between different genotypes and environmental conditions, may play important roles in generating qualitative and quantitative chemical variation within and among Lyngbya species.
Collapse
Affiliation(s)
- Robert W Thacker
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA.
| | | |
Collapse
|
37
|
Janse I, Meima M, Kardinaal WEA, Zwart G. High-resolution differentiation of Cyanobacteria by using rRNA-internal transcribed spacer denaturing gradient gel electrophoresis. Appl Environ Microbiol 2004; 69:6634-43. [PMID: 14602623 PMCID: PMC262283 DOI: 10.1128/aem.69.11.6634-6643.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For many ecological studies of cyanobacteria, it is essential that closely related species or strains can be discriminated. Since this is often not possible by using morphological features, cyanobacteria are frequently studied by using DNA-based methods. A powerful method for analysis of the diversity and dynamics of microbial populations and for checking the purity and affiliation of cultivated strains is denaturing gradient gel electrophoresis (DGGE). We realized high-resolution discrimination of a variety of cyanobacteria by means of DGGE analysis of sections of the internal transcribed spacer between the 16S and 23S rRNA genes (rRNA-ITS). A forward primer specific for cyanobacteria, targeted at the 3' end of the 16S rRNA gene, was designed. The combination of this primer and three different reverse primers targeted to the rRNA-ITS or to the 23S rRNA gene yielded PCR products of different sizes from cultures of all 16 cyanobacterial genera that were tested but not from other bacteria. DGGE profiles produced from the shortest section of rRNA-ITS consisted of one band for all but one cyanobacterial genera, and those generated from longer stretches of rRNA-ITS yielded DGGE profiles containing one to four bands. The suitability of DGGE for detecting intrageneric and intraspecific variation was tested by using strains of the genus Microcystis: Many strains could be discriminated by means of rRNA-ITS DGGE, and the resolution of this method was strikingly higher than that obtained with previously described methods. The applicability of the developed DGGE assays for analysis of cyanobacteria in field samples was demonstrated by using samples from freshwater lakes. The advantages and disadvantages associated with the use of each developed primer set are discussed.
Collapse
Affiliation(s)
- Ingmar Janse
- Department of Microbial Ecology, Centre for Limnology, Netherlands Institute for Ecology, 3631 AC Nieuwersluis, The Netherlands.
| | | | | | | |
Collapse
|