1
|
Chen Y, Ren H, Kong X, Wu H, Lu Z. A multicomponent propane monooxygenase catalyzes the initial degradation of methyl tert-butyl ether in Mycobacterium vaccae JOB5. Appl Environ Microbiol 2023; 89:e0118723. [PMID: 37823642 PMCID: PMC10617536 DOI: 10.1128/aem.01187-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
Methyl tert-butyl ether (MTBE) has been recognized as a groundwater contaminant due to its widespread distribution and potential threat to human health. The limited understanding of the enzymes catalyzing MTBE degradation restricts their application in MTBE bioremediation. In this study, an MTBE-degrading soluble di-iron monooxygenase that clusters phylogenetically with a known propane monooxygenase (PRM) encoded by the prmABCD gene cluster was identified and functionally characterized, revealing their role in MTBE metabolism by Mycobacterium vaccae JOB5. Transcriptome analysis demonstrated that the expression of prmABCD was upregulated when JOB5 was induced by MTBE. Escherichia coli Rosetta heterologously expressing prmABCD from JOB5 could transform MTBE, indicating that the PRM of JOB5 is capable of the initial degradation of MTBE. The loss of the gene encoding the oxygenase α-subunit or β-subunit, the coupling protein, or the reductase disrupted MTBE transformation by the recombinant E. coli Rosetta. In addition, the catalytic capacity of PRM is likely affected by residue G95 in the active site pocket and residues I84, P165, A269, and V270 in the substrate tunnel structure. Mutation of amino acids in the active site and substrate tunnel resulted in inefficiency or inactivation of MTBE degradation, and the activity in 1,4-dioxane (1,4-D) degradation was diminished less than that in MTBE degradation.IMPORTANCEMulticomponent monooxygenases catalyzing the initial hydroxylation of MTBE are important in MTBE biodegradation. Previous studies of MTBE degradation enzymes have focused on P450s, alkane monooxygenase and MTBE monooxygenase, but the vital role of soluble di-iron monooxygenases has rarely been reported. In this study, we deciphered the essential catalytic role of a PRM and revealed the key residues of the PRM in MTBE metabolism. Our findings provide new insight into the MTBE-degrading gene cluster and enzymes in bacteria. This characterization of the PRM associated with MTBE degradation expands our understanding of MTBE-degrading gene diversity and provides a novel candidate enzyme for the bioremediation of MTBE-contaminated sites.
Collapse
Affiliation(s)
- Yiyang Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Ren
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyu Kong
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Li A, Wang Y, He Y, Liu B, Iqbal M, Mehmood K, Jamil T, Chang YF, Hu L, Li Y, Guo J, Pan J, Tang Z, Zhang H. Environmental fluoride exposure disrupts the intestinal structure and gut microbial composition in ducks. CHEMOSPHERE 2021; 277:130222. [PMID: 33794430 DOI: 10.1016/j.chemosphere.2021.130222] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Fluorine (F) and its compounds produced from industrial production and coal combustion can cause air, water and soil contamination, which can accumulate in animals, plants and humans via food chain threatening public health. Fluoride exposure affects liver, kidney, gastrointestinal and reproductive system in humans and animals. Literature regarding fluoride influence on intestinal structure and microbiota composition in ducks is scarce. This study was designed to investigate these effects by using simple and electron microscopy and 16S rRNA sequencing techniques. Results indicated an impaired structure with reduced relative distribution of goblet cells in the fluoride exposed group. Moreover, the gut microbiota showed a significant decrease in alpha diversity. Proteobacteria, Firmicutes and Bacteroidetes were the most abundant phyla in both control and fluoride-exposed groups. Specifically, fluoride exposure resulted in a significant decrease in the relative abundance of 9 bacterial phyla and 15 bacterial genera. Among them, 4 phyla (Latescibacteria, Dependentiae, Zixibacteria and Fibrobacteres) and 4 genera (Thauera, Hydrogenophaga, Reyranella and Arenimonas) weren't even detectable in the gut microbiota of the ducks. In summary, higher fluoride exposure can significantly damage the intestinal structure and gut microbial composition in ducks.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajing Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuanyuan He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bingxian Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mudassar Iqbal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tariq Jamil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183597. [PMID: 33652005 DOI: 10.1016/j.bbamem.2021.183597] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/17/2023]
Abstract
This review summarizes the theory of zeta potential (ZP) and the most relevant data about how it has been used for studying bacteria. We have especially focused on the discovery and characterization of novel antimicrobial compounds. The ZP technique may be considered an indirect tool to estimate the surface potential of bacteria, a physical characteristic that is key to maintaining optimal cell function. For this reason, targeting the bacterial surface is of paramount interest in the development of new antimicrobials. Surface-acting agents have been found to display a remarkable bactericidal effect and have simultaneously revealed a low tendency to trigger resistance. Changes in the bacterial surface as a result of various processes can also be followed by ZP measurements. However, due to the complexity of the bacterial surface, some considerations regarding the assessment of ZP must first be taken into account. Evidence on the application of ZP measurements to the characterization of bacteria and biofilm formation is presented next. We finally discuss the feasibility of using the ZP technique to assess antimicrobial-induced changes in the bacterial surface. Among these changes are those related to the interaction of the agent with different components of the cell envelope, membrane permeabilization, and loss of viability.
Collapse
|
4
|
da Silva MLB, He Y, Mathieu J, Alvarez PJJ. Enhanced long-term attenuation of 1,4-dioxane in bioaugmented flow-through aquifer columns. Biodegradation 2020; 31:201-211. [PMID: 32468172 DOI: 10.1007/s10532-020-09903-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Long term natural attenuation of 1,4-dioxane (dioxane) and its enhanced biodegradation after bioaugmentation with Pseudonocardia dioxanivorans CB1190 were assessed using flow-through aquifer columns. Natural attenuation of dioxane was not observed even after 2 years of acclimation. However, dioxane removal was observed in the bioaugmented columns (34% when the influent was 200 µg/L and 92% for 5 mg/L). The thmA gene that encodes the tetrahydrofuran monooxygenase that initiates dioxane degradation by CB1190 was only detected at the inoculation port and persisted for months after inoculation, implying the resiliency of bioaugmentation and its potential to offer long-term enhanced biodegradation capabilities. However, due to extensive clumping and limited mobility of CB1190, the augmented catabolic potential may be restricted to the immediate vicinity of the inoculation port. Accordingly, bioaugmentation with CB1190 seems more appropriate for the establishment of biobarriers. Bioaugmentation efficiency was associated with the availability of oxygen. Aeration of the column influent to increase dissolved oxygen significantly improved dioxane removal (p < 0.05), suggesting that (for sites with oxygen-limiting conditions) bioaugmentation can benefit from engineered approaches for delivering additional oxygen.
Collapse
Affiliation(s)
| | - Ya He
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
5
|
Li S, Wang D, Du D, Qian K, Yan W. Characterization of co-metabolic biodegradation of methyl tert-butyl ether by a Acinetobacter sp. strain. RSC Adv 2019; 9:38962-38972. [PMID: 35540635 PMCID: PMC9076015 DOI: 10.1039/c9ra09507a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022] Open
Abstract
Co-metabolic bioremediation is a promising approach for the elimination of methyl tert-butyl ether (MTBE), which is a common pollutant found worldwide in ground water. In this paper, a bacterial strain able to co-metabolically degrade MTBE was isolated and named as Acinetobacter sp. SL3 based on 16S rRNA gene sequencing analysis. Strain SL3 could grow on n-alkanes (C5-C8) accompanied with the co-metabolic degradation of MTBE. The number of carbons present in the n-alkane substrate significantly influenced the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA), with n-octane resulting in a higher MTBE degradation rate (V max = 36.7 nmol min-1 mgprotein -1, K s = 6.4 mmol L-1) and lower TBA accumulation rate. A degradation experiment in a fed-batch reactor revealed that the efficiency of MTBE degradation by Acinetobacter sp. strain SL3 did not show an obvious decrease after nine rounds of MTBE replenishment ranging from 0.1-0.5 mmol L-1. The results of this paper reveal the preferable properties of Acinetobacter sp. SL3 for the bioremediation of MTBE via co-metabolism and leads towards the development of new MTBE elimination technologies.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Dan Wang
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Dan Du
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Keke Qian
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wei Yan
- Department of Environmental Science & Engineering, Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| |
Collapse
|
6
|
Kucharzyk KH, Rectanus HV, Bartling CM, Rosansky S, Minard-Smith A, Mullins LA, Neil K. Use of omic tools to assess methyl tert-butyl ether (MTBE) degradation in groundwater. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120618. [PMID: 31301927 DOI: 10.1016/j.jhazmat.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 06/10/2023]
Abstract
This study employed innovative technologies to evaluate multiple lines of evidence for natural attenuation (NA) of methyl tertiary-butyl ether (MTBE) in groundwater at the 22 Area of Marine Corps Base (MCB) Camp Pendleton after decommissioning of a biobarrier system. For comparison, data from the 13 Area Gas Station where active treatment of MTBE is occurring was used to evaluate the effectiveness of omic techniques in assessing biodegradation. Overall, the 22 Area Gas Station appeared to be anoxic. MTBE was detected in large portion of the plume. In comparison, concentrations of MTBE at the 13 Area Gas Station were much higher (42,000 μg/L to 2800 μg/L); however, none of the oxygenates were detected. Metagenomic analysis of the indigenous groundwater microbial community revealed the presence of bacterial strains known to aerobically and anaerobically degrade MTBE at both sites. While proteomic analysis at the 22 Area Gas Station showed the presence of proteins of MTBE degrading microorganisms, the MTBE degradative proteins were only found at the 13 Area Gas Station. Taken together, these results provide evidence for previous NA of MTBE in the groundwater at 22 Area Gas Station and demonstrate the effectiveness of innovative-omic technologies to assist monitored NA assessments.
Collapse
Affiliation(s)
| | | | | | - Steve Rosansky
- Battelle Memorial Institute, Columbus, OH, United States
| | | | | | - Kenda Neil
- Naval Facilities Engineering Command (NAVFAC) Engineering and Expeditionary Warfare Center (EXWC), Port Huaneme, CA, United States
| |
Collapse
|
7
|
Aburto-Medina A, Shahsavari E, Salzman SA, Kramer A, Ball AS, Allinson G. Elucidation of the microbial diversity in rivers in south-west Victoria, Australia impacted by rural agricultural contamination (dairy farming). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:356-363. [PMID: 30731266 DOI: 10.1016/j.ecoenv.2019.01.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
We assessed the water quality of south-west Victorian rivers impacted by the dairy industry using traditional water quality assessment together with culture-dependent (colilert/enterolert) and also culture-independent (next generation sequencing) microbial methods. The aim of the study was to identify relationships/associations between dairy farming intensity and water contamination. Water samples with high total and faecal coliforms (>1000 MPN cfu/100 ml), and with high nitrogen levels (TN) were observed in zones with a high proportion of dairy farming. Members of the genus Nitrospira, Rhodobacter and Rhodoplanes were predominant in such high cattle density zones. Samples from sites in zones with lower dairy farming activities registered faecal coliform numbers within the permissible limits (<1000 MPN cfu/100 ml) and showed the presence of a wide variety of microorganisms. However, no bacterial pathogens were found in the river waters regardless of the proportion of cattle. The data suggests that using the spatially weighted proportion of land used for dairy farming is a useful way to target at-risk sub-catchments across south west Victoria; further work is required to confirm that this approach is applicable in other regions.
Collapse
Affiliation(s)
- Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Scott A Salzman
- Department of Information Systems and Business Analytics, Deakin University, Warrnambool, Victoria 3280 Australia
| | - Andrew Kramer
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria 3085 Australia; Waikato Regional Council, Private Bag 3038, Waikato Mail Centre, Hamilton 3240, New Zealand
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
8
|
Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01270-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Wright J, Kirchner V, Bernard W, Ulrich N, McLimans C, Campa MF, Hazen T, Macbeth T, Marabello D, McDermott J, Mackelprang R, Roth K, Lamendella R. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation. Front Microbiol 2017; 8:2300. [PMID: 29213257 PMCID: PMC5702783 DOI: 10.3389/fmicb.2017.02300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.
Collapse
Affiliation(s)
- Justin Wright
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
- Wright Labs, LLC, Huntingdon, PA, United States
| | - Veronica Kirchner
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - William Bernard
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Nikea Ulrich
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Christopher McLimans
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Maria F. Campa
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| | - Terry Hazen
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | | | | | | | - Rachel Mackelprang
- Department of Biology, California State University Northridge, Northridge, PA, United States
| | - Kimberly Roth
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
| | - Regina Lamendella
- Lamendella Laboratory, Juniata College, Department of Biology, Huntingdon, PA, United States
- Wright Labs, LLC, Huntingdon, PA, United States
| |
Collapse
|
10
|
Zhong H, Liu G, Jiang Y, Yang J, Liu Y, Yang X, Liu Z, Zeng G. Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review. Biotechnol Adv 2017; 35:490-504. [DOI: 10.1016/j.biotechadv.2017.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
|
11
|
Fuller ME, Hatzinger PB, Condee CW, Andaya C, Rezes R, Michalsen MM, Crocker FH, Indest KJ, Jung CM, Alon Blakeney G, Istok JD, Hammett SA. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions. Appl Microbiol Biotechnol 2017; 101:5557-5567. [DOI: 10.1007/s00253-017-8269-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
12
|
Liu G, Zhong H, Jiang Y, Brusseau ML, Huang J, Shi L, Liu Z, Liu Y, Zeng G. Effect of low-concentration rhamnolipid biosurfactant on Pseudomonas aeruginosa transport in natural porous media. WATER RESOURCES RESEARCH 2017; 53:361-375. [PMID: 28943669 PMCID: PMC5607479 DOI: 10.1002/2016wr019832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of low-concentrations of monorhamnolipid biosurfactant on transport of Pseudomonas aeruginosa ATCC 9027 in natural porous media (silica sand and a sandy soil) was studied with miscible-displacement experiments using artificial groundwater as the background solution. Transport of two types of cells was investigated, glucose- and hexadecane-grown cells with lower and higher cell surface hydrophobicity (CSH), respectively. The effect of hexadecane presence as a residual non-aqueous phase liquid (NAPLs) on transport was also examined. A clean-bed colloid deposition model was used to calculate deposition rate coefficients (k) for quantitative assessment. Significant cell retention was observed in the sand (81% and 82% for glucose- and hexadecane-grown cells, respectively). Addition of a low-concentration rhamnolipid solution enhanced cell transport, with 40 mg/L of rhamnolipid reducing retention to 50% and 60% for glucose- and hexadecane-grown cells, respectively. The k values for both glucose- and hexadecane-grown cells correlate linearly with rhamnolipid-dependent CSH represented as bacterial-adhesion-to-hydrocarbon rate of cells. Retention of cells by the soil was nearly complete (>99%). Addition of 40 mg/L rhamnolipid solution reduced retention to 95%. The presence of NAPLs in the sand increased the retention of hexadecane-grown cells with higher CSH. Transport of cells in the presence of the NAPL was enhanced by rhamnolipid at all concentrations tested, and the relative enhancement was greater than in was in the absence of NAPL. This study shows the importance of hydrophobic interaction on bacterial transport in natural porous media and the potential of using low-concentration rhamnolipid for facilitating the transport in subsurface for bioaugmentation efforts.
Collapse
Affiliation(s)
- Guansheng Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yongbing Jiang
- The Sericultural Research Institute of Hunan Province, Changsha 410127, China
| | - Mark L Brusseau
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721, U.S
| | - Jiesheng Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
| | - Liangsheng Shi
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
13
|
Yan Z, Zhang Y, Wu H, Yang M, Zhang H, Hao Z, Jiang H. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Adv 2017. [DOI: 10.1039/c7ra09274a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pyrene-degrading strainHydrogenophagasp. PYR1 was isolated from PAH-contaminated river sediments and found to be able to degrade high molecular weight-polycyclic aromatic hydrocarbons under both aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Zaisheng Yan
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing
- China
| | - Yu Zhang
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing
- China
| | - Huifang Wu
- College of Environment
- Nanjing University of Technology
- Nanjing
- China
| | - Mingzhong Yang
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing
- China
| | - Haichen Zhang
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing
- China
| | - Zheng Hao
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing
- China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing
- China
| |
Collapse
|
14
|
Biodegradation of Methyl tert-Butyl Ether by Co-Metabolism with a Pseudomonas sp. Strain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13090883. [PMID: 27608032 PMCID: PMC5036716 DOI: 10.3390/ijerph13090883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/17/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022]
Abstract
Co-metabolic bioremediation is supposed to be an impressive and promising approach in the elimination technology of methyl tert-butyl ether (MTBE), which was found to be a common pollutant worldwide in the ground or underground water in recent years. In this paper, bacterial strain DZ13 (which can co-metabolically degrade MTBE) was isolated and named as Pseudomonas sp. DZ13 based on the result of 16S rRNA gene sequencing analysis. Strain DZ13 could grow on n-alkanes (C5-C8), accompanied with the co-metabolic degradation of MTBE. Diverse n-alkanes with different carbon number showed a significant influence on the degradation rate of MTBE and accumulation of tert-butyl alcohol (TBA). When Pseudomonas sp. DZ13 co-metabolically degraded MTBE with n-pentane as the growth substrate, a higher MTBE-degrading rate (Vmax = 38.1 nmol/min/mgprotein, Ks = 6.8 mmol/L) and lower TBA-accumulation was observed. In the continuous degradation experiment, the removal efficiency of MTBE by Pseudomonas sp. Strain DZ13 did not show an obvious decrease after five times of continuous addition.
Collapse
|
15
|
Li S, Li D, Yan W. Cometabolism of methyl tert-butyl ether by a new microbial consortium ERS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10196-10205. [PMID: 25697553 DOI: 10.1007/s11356-015-4211-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
The release of methyl tert-butyl-ether (MTBE) into the environment has increased the worldwide concern about the pollution of MTBE. In this paper, a microbial consortium was isolated from the soil sample near an oil station, which can degrade MTBE directly with a low biomass yield and MTBE degrading efficiency. Further research has indicated that this consortium can degrade MTBE efficiently when grown on n-octane as the cometabolic substrate. The results of 16S rDNA based on phylogenetic analysis of the selected operating taxonomic units (OTUs) involved in the consortium revealed that one OTU was related to Pseudomonas putida GPo1, which could cometabolically degrade MTBE on the growth of n-octane. This may help explain why n-octane could be the optimal cometabolic substrate of the consortium for MTBE degradation. Furthermore, the degradation of MTBE was observed along with the consumption of n-octane. Different K s values for MTBE were observed for cells grown with or without n-octane, suggesting that different enzymes are responsible for the oxidation of MTBE in cells grown on n-octane or MTBE. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | | | | |
Collapse
|
16
|
|
17
|
Laboratory evaluation of bioaugmentation for aerobic treatment of RDX in groundwater. Biodegradation 2014; 26:77-89. [DOI: 10.1007/s10532-014-9717-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
|
18
|
Le Digabel Y, Demanèche S, Benoit Y, Fayolle-Guichard F, Vogel TM. Ethyl tert-butyl ether (ETBE)-degrading microbial communities in enrichments from polluted environments. JOURNAL OF HAZARDOUS MATERIALS 2014; 279:502-510. [PMID: 25108826 DOI: 10.1016/j.jhazmat.2014.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The ethyl tert-butyl ether (ETBE) degradation capacity and phylogenetic composition of five aerobic enrichment cultures with ETBE as the sole carbon and energy source were studied. In all cases, ETBE was entirely degraded to biomass and CO2. Clone libraries of the 16S rRNA gene were prepared from each enrichment. The analyses of the DNA sequences obtained showed different taxonomic compositions with a majority of Proteobacteria in three cases. The two other enrichments have different microbiota with an abundance of Acidobacteria in one case, whereas the microbiota in the second was more diverse (majority of Actinobacteria, Chlorobi and Gemmatimonadetes). Actinobacteria were detected in all five enrichments. Several bacterial strains were isolated from the enrichments and five were capable of degrading ETBE and/or tert-butyl alcohol (TBA), a degradation intermediate. The five included three Rhodococcus sp. (IFP 2040, IFP 2041, IFP 2043), one Betaproteobacteria (IFP 2047) belonging to the Rubrivivax/Leptothrix/Ideonella branch, and one Pseudonocardia sp. (IFP 2050). Quantification of these five strains and two other strains, Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP2049, which had been previously isolated from one of the enrichments was carried out on the different enrichments based on quantitative PCR with specific 16S rRNA gene primers and the results were consistent with the hypothesized role of Actinobacteria and Betaproteobacteria in the degradation of ETBE and the possible role of Bradyrhizobium strains in the degradation of TBA.
Collapse
Affiliation(s)
- Yoann Le Digabel
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France; Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Sandrine Demanèche
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| | - Yves Benoit
- Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Françoise Fayolle-Guichard
- Institut Français du Pétrole Energies Nouvelles (IFPEN), Biotechnology Departement, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.
| | - Timothy M Vogel
- Environmental Microbial Genomics, CNRS UMR 5005, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France
| |
Collapse
|
19
|
Gunasekaran V, Stam L, Constantí M. The effect of BTX compounds on the biodegradation of ETBE by an ETBE degrading bacterial consortium. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0132-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Hydrogenophaga carboriunda sp. nov., a Tertiary Butyl Alcohol-Oxidizing, Psychrotolerant Aerobe Derived from Granular-Activated Carbon (GAC). Curr Microbiol 2013; 68:510-7. [DOI: 10.1007/s00284-013-0501-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/13/2013] [Indexed: 11/26/2022]
|
21
|
Arjoon A, Olaniran AO, Pillay B. Enhanced 1,2-dichloroethane degradation in heavy metal co-contaminated wastewater undergoing biostimulation and bioaugmentation. CHEMOSPHERE 2013; 93:1826-1834. [PMID: 23835411 DOI: 10.1016/j.chemosphere.2013.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/25/2013] [Accepted: 06/07/2013] [Indexed: 06/02/2023]
Abstract
Biostimulation, bioaugmentation and dual-bioaugmentation strategies were investigated in this study for efficient bioremediation of water co-contaminated with 1,2-dichloroethane (1,2-DCA) and heavy metals, in a microcosm set-up. 1,2-DCA concentration was periodically measured in the microcosms by gas chromatographic analysis of the headspace samples, while bacterial population and diversity were determined by standard plate count technique and Polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) analysis, respectively. Dual-bioaugmentation, proved to be most effective exhibiting 22.43%, 26.54%, 19.58% and 30.49% increase in 1,2-DCA degradation in microcosms co-contaminated with As(3+), Cd(2+), Hg(2+) and Pb(2+), respectively, followed by bioaugmentation and biostimulation. Dual-bioaugmented microcosms also exhibited the highest increase in the biodegradation rate constant (k1) resulting in 1.76-, 2-, 1.7- and 2.1-fold increase in As(3+), Cd(2+), Hg(2+) and Pb(2+) co-contaminated microcosms respectively, compared to the untreated microcosms. Dominant bacterial strains obtained from the co-contaminated microcosms were found to belong to the genera Burkholderia, Pseudomonas, Bacillus, Enterobacter and Bradyrhizobium, previously reported for 1,2-DCA and other chlorinated compounds degradation. PCR-DGGE analysis revealed variation in microbial diversity over time in the different co-contaminated microcosms. Results obtained in this study have significant implications for developing innovative bioremediation strategies for treating water co-contaminated with chlorinated organics and heavy metals.
Collapse
Affiliation(s)
- Ashmita Arjoon
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | | | | |
Collapse
|
22
|
Enhanced biodegradation of methyl tert-butyl-ether by a microbial consortium. Curr Microbiol 2013; 68:317-23. [PMID: 24162446 DOI: 10.1007/s00284-013-0480-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
The widespread use of Methyl tert-butyl-ether (MTBE) as a gasoline additive has resulted in a higher detection rate of MTBE in groundwater systems. Therefore, the researchers show more concern about the bioremediation of MTBE-impacted aquifers. In this paper, a MTBE-direct-degrading bacterial consortium was enriched (named RS1) and further studied. In order to identify the microbial community of the consortium, 17 and 12 different single strains were isolated from nutrient medium and MSM media (with MTBE as the sole carbon source), respectively. 16S rDNA-based phylogenetic analysis revealed that these diverse bacteria belonged to 14 genera, in which Pseudomonas was dominant. Several strains which can grow with MTBE as the sole carbon and energy source were also identified, such as M1, related to MTBE-degrading Arthrobacter sp. ATCC27778. Furthermore, the appropriate addition of certain single strain in consortium RS1 (M1:RS1 = 1:2) facilitates MTBE degradation by increasing the quantity of efficient MTBE-degrading bacteria. This work will provide microbial source and theoretical fundament for further bioremediation of MTBE-contaminated aquifers, which has applied potential and environmental importance.
Collapse
|
23
|
Effect of pH on the electrophoretic mobility of spores of Bacillus anthracis and its surrogates in aqueous solutions. Appl Environ Microbiol 2012; 78:8470-3. [PMID: 23001659 DOI: 10.1128/aem.01337-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The electrophoretic mobility (EPM) of endospores of Bacillus anthracis and surrogates was measured in aqueous solution across a broad pH range and several ionic strengths. EPM values trended around phylogenetic clustering based on the 16S rRNA gene. Measurements reported here provide new insight for Bacillus anthracis surrogate selection and for attachment/detachment and transport studies.
Collapse
|
24
|
Alekseeva T, Prevot V, Sancelme M, Forano C, Besse-Hoggan P. Enhancing atrazine biodegradation by Pseudomonas sp. strain ADP adsorption to Layered Double Hydroxide bionanocomposites. JOURNAL OF HAZARDOUS MATERIALS 2011; 191:126-135. [PMID: 21596476 DOI: 10.1016/j.jhazmat.2011.04.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 05/30/2023]
Abstract
To mimic the role of hydroxide minerals and their humic complex derivatives on the biodegradability of pesticides in soils, synthetic Mg(R)Al Layered Double Hydroxides (LDH) and Mg(R)Al modified by Humic substances (LDH-HA) were prepared for various R values (2, 3 and 4) and fully characterized. Adsorption properties of LDH and LDH-HA toward Pseudomonas sp. strain ADP were evaluated. The adsorption kinetics were very fast (<5 min to reach equilibrium). The adsorption capacities were greater than previously reported (13.5×10(11), 41×10(11) and 45.5×10(11) cells/gLDH for Mg(2)Al, Mg(3)Al and Mg(4)Al, respectively) and varied with both surface charge and textural properties. Surface modification by HA reduced the adsorption capacities of cells by 2-6-fold. Biodegradation kinetics of atrazine by Pseudomonas sp. adsorbed on both LDHs and LDH-HA complexes were measured for various solid/liquid ratios and adsorbed cell amounts. Biodegradation activity of bacterial cells was strongly boosted after adsorption on LDHs, the effect depending on the quantity and properties of the LDH matrix. The maximum biodegradation rate was obtained in the case of a 100 mg/mL Mg(2)Al LDH suspension (26 times higher than that obtained with cells alone).
Collapse
Affiliation(s)
- Tatiana Alekseeva
- Institute of Physical, Chemical and Biological Problems of Soil Science, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
25
|
Chen SC, Chen CS, Zhan KV, Yang KH, Chien CC, Shieh BS, Chen WM. Biodegradation of methyl tert-butyl ether (MTBE) by Enterobacter sp. NKNU02. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1744-1750. [PMID: 21227585 DOI: 10.1016/j.jhazmat.2010.12.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/27/2010] [Accepted: 12/15/2010] [Indexed: 05/30/2023]
Abstract
We previously isolated and identified Enterobacter sp. NKNU02 as a methyl tert-butyl ether (MTBE)-degrading bacterial strain from gasoline-contaminated water. In this study, tert-butyl alcohol, acetic acid, 2-propanol, and propenoic acid were detected using gas chromatography/mass spectrometry when MTBE was degraded by rest cells of Enterobacter sp. NKNU02 cells. We also found that biodegradation of MTBE was decreased, but not totally inhibited in mixtures of benzene, toluene, ethylbenzene and xylene. The effects of MTBE on the biology of Enterobacter sp. NKNU02 were elucidated using 2D proteomic analysis. The cytoplasmic proteins isolated from these MTBE-treated and -untreated cells were carried out for proteomic analysis. Results showed that there were 6 differential protein spots and 8 differential protein spots, respectively, as compared to their corresponding control (without MTBE addition), at the indicated incubation times when 40% and 60% of 100 mg/L of MTBE had been removed, Among these proteins, nine were successfully identified with matrix-assisted laser desorption ionization-time of flight-mass spectrometry. Proteins identified included extracellular solute-binding protein, periplasmic-binding protein ytfQ, cationic amino acid ABC transporter, isocitrate dehydrogenase, cysteine synthase A, alkyl hydroperoxide reductase (AhpC), transaldolase, and alcohol dehydrogenase. Based on these differential proteins, we discuss the bacterial responses to MTBE at the molecular level.
Collapse
Affiliation(s)
- Ssu Ching Chen
- Department of Life Sciences, National Central University, Jhongli City, Taoyuan County, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Lebeau T. Bioaugmentation for In Situ Soil Remediation: How to Ensure the Success of Such a Process. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-19769-7_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Saikaly PE, Hicks K, Barlaz MA, de Los Reyes FL. Transport behavior of surrogate biological warfare agents in a simulated landfill: effect of leachate recirculation and water infiltration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:8622-8628. [PMID: 20973546 DOI: 10.1021/es101937a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An understanding of the transport behavior of biological warfare (BW) agents in landfills is required to evaluate the suitability of landfills for the disposal of building decontamination residue (BDR) following a bioterrorist attack on a building. Surrogate BW agents, Bacillus atrophaeus spores and Serratia marcescens, were spiked into simulated landfill reactors that were filled with synthetic building debris (SBD) and operated for 4 months with leachate recirculation or water infiltration. Quantitative polymerase chain reaction (Q-PCR) was used to monitor surrogate transport. In the leachate recirculation reactors, <10% of spiked surrogates were eluted in leachate over 4 months. In contrast, 45% and 31% of spiked S. marcescens and B. atrophaeus spores were eluted in leachate in the water infiltration reactors. At the termination of the experiment, the number of retained cells and spores in SBD was measured over the depth of the reactor. Less than 3% of the total spiked S. marcescens cells and no B. atrophaeus spores were detected in SBD. These results suggest that significant fractions of the spiked surrogates were strongly attached to SBD.
Collapse
Affiliation(s)
- Pascal E Saikaly
- Water Desalination and Reuse Center and, Division of Chemical and Life Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
28
|
Biodegradation of methyl tert-butyl ether by newly identified soil microorganisms in a simple mineral solution. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0522-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Eixarch H, Constantí M. Biodegradation of MTBE by Achromobacter xylosoxidans MCM1/1 induces synthesis of proteins that may be related to cell survival. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Besse-Hoggan P, Alekseeva T, Sancelme M, Delort AM, Forano C. Atrazine biodegradation modulated by clays and clay/humic acid complexes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2837-2844. [PMID: 19419808 DOI: 10.1016/j.envpol.2009.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/07/2009] [Accepted: 04/11/2009] [Indexed: 05/27/2023]
Abstract
The fate of pesticides in the environment is strongly related to the soil sorption processes that control not only their transfer but also their bioavailability. Cationic (Ca-bentonite) and anionic (Layered Double Hydroxide) clays behave towards the ionisable pesticide atrazine (AT) sorption with opposite tendencies: a noticeable sorption capacity for the first whereas the highly hydrophilic LDH showed no interactions with AT. These clays were modified with different humic acid (HA) contents. HA sorbed on the clay surface and increased AT interactions. The sorption effect on AT biodegradation and on its metabolite formation was studied with Pseudomonas sp. ADP. The biodegradation rate was greatly modulated by the material's sorption capacity and was clearly limited by the desorption rate. More surprisingly, it increased dramatically with LDH. Adsorption of bacterial cells on clay particles facilitates the degradation of non-sorbed chemical, and should be considered for predicting pesticide fate in the environment.
Collapse
Affiliation(s)
- Pascale Besse-Hoggan
- Laboratoire de Synthèse et Etude de Systèmes à Intérêt Biologique, UMR-CNRS 6504, Université Blaise Pascal, 63177 Aubière Cedex, France.
| | | | | | | | | |
Collapse
|
31
|
Schaefer CE, Condee CW, Vainberg S, Steffan RJ. Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. CHEMOSPHERE 2009; 75:141-148. [PMID: 19171368 DOI: 10.1016/j.chemosphere.2008.12.041] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 05/27/2023]
Abstract
Batch and column experiments were performed to evaluate the transport, growth and dechlorination activity of Dehalococcoides sp. (DHC) during bioaugmentation for chlorinated ethenes. Batch experiments showed that the reductive dechlorination of trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride (VC), as well as growth of the DHC, were well described by the Monod kinetic model. The measured maximum utilization rate coefficients for TCE, DCE, and VC were 1.3x10(-12), 5.2x10(-13), and 1.4x10(-12)mmol Cl(-) (cellh)(-1), respectively. Results of the column experiments showed that dechlorination occurred throughout the length of the column, and that extractable DHC concentrations associated with the soil phase throughout the column were negligible relative to the aqueous phase concentrations. Dechlorination rates relative to aqueous DHC concentrations in the column were approximately 200-times greater than in the batch experiments. Additional batch experiments performed using column effluent water confirmed this result. Incorporation of these enhanced dechlorination kinetics in the transport model provided a reasonable prediction of the column data. Overall results of this study suggest that aqueous phase (as opposed to soil phase) DHC concentrations can be used to estimate dechlorination activity in saturated soils, and DHC dechlorination activity in porous media may be substantially greater than DHC dechlorination activity measured in batch experiments.
Collapse
|
32
|
Newby DT, Pepper IL, Maier RM. Microbial Transport. Environ Microbiol 2009. [DOI: 10.1016/b978-0-12-370519-8.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Vosahlíková-Kolárová M, Krejcík Z, Cajthaml T, Demnerová K, Pazlarová J. Biodegradation of methyl tert-butyl ether using bacterial strains. Folia Microbiol (Praha) 2008; 53:411-6. [PMID: 19085075 DOI: 10.1007/s12223-008-0062-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 04/17/2008] [Indexed: 11/25/2022]
Abstract
Prospective methyl tert-butyl ether (MTBE) degrading bacterial strains and/or consortia were identified. The potential for aerobic degradation of MTBE was examined using bacterial isolates from contaminated soils and groundwater. Using the 16S rDNA protocol, two isolates capable of degrading MTBE (Rhodococcus pyridinivorans 4A and Achromobacter xylosoxidans 6A) were identified. The most efficient consortium of microorganisms was acquired from contaminated groundwater. The growth of both strains and the consortium on MTBE was supported by various organic substrates, and monitored using Bioscreen. The biochemical oxygen demand of the cultures was measured using OxiTop, and their MTBE concentrations were estimated by gas chromatography. After 3 weeks of aerobic cultivation using n-alkanes as cosubstrate, the concentration of MTBE in R. pyridinivorans 4A was reduced to 62.4 % of its initial amount (50 ppm).
Collapse
Affiliation(s)
- M Vosahlíková-Kolárová
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, 166 28, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
34
|
Fahy A, Ball A, Lethbridge G, Timmis K, McGenity T. Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer. Lett Appl Microbiol 2008; 47:60-6. [DOI: 10.1111/j.1472-765x.2008.02386.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
recA mediated spontaneous deletions of the icaADBC operon of clinical Staphylococcus epidermidis isolates: a new mechanism of phenotypic variations. Antonie van Leeuwenhoek 2008; 94:317-28. [PMID: 18454346 PMCID: PMC2480603 DOI: 10.1007/s10482-008-9249-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/23/2008] [Indexed: 10/26/2022]
Abstract
Phenotypic variation of Staphylococcus epidermidis involving the slime related ica operon results in heterogeneity in surface characteristics of individual bacteria in axenic cultures. Five clinical S. epidermidis isolates demonstrated phenotypic variation, i.e. both black and red colonies on Congo Red agar. Black colonies displayed bi-modal electrophoretic mobility distributions at pH 2, but such phenotypic variation was absent in red colonies of the same strain as well as in control strains without phenotypic variation. All red colonies had lost ica and the ability to form biofilms, in contrast to black colonies of the same strain. Real time PCR targeting icaA indicated a reduction in gene copy number within cultures exhibiting phenotypic variation, which correlated with phenotypic variations in biofilm formation and electrophoretic mobility distribution of cells within a culture. Loss of ica was irreversible and independent of the mobile element IS256. Instead, in high frequency switching strains, spontaneous mutations in lexA were found which resulted in deregulation of recA expression, as shown by real time PCR. RecA is involved in genetic deletions and rearrangements and we postulate a model representing a new mechanism of phenotypic variation in clinical isolates of S. epidermidis. This is the first report of S. epidermidis strains irreversibly switching from biofilm-positive to biofilm-negative phenotype by spontaneous deletion of icaADBC.
Collapse
|
36
|
Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol 2008; 74:2559-64. [PMID: 18344352 DOI: 10.1128/aem.02839-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
van Merode AEJ, Duval JFL, van der Mei HC, Busscher HJ, Krom BP. Increased adhesion of Enterococcus faecalis strains with bimodal electrophoretic mobility distributions. Colloids Surf B Biointerfaces 2008; 64:302-6. [PMID: 18358705 DOI: 10.1016/j.colsurfb.2008.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 11/19/2022]
Abstract
Initial adhesion is a determinant in the development of microbial biofilms. It is influenced, amongst others, by the surface hydrophobicity and the electrostatic characteristics of the substratum and adhering organisms. Enterococcus faecalis strains, grown in pure cultures, generally display subpopulations with different electrokinetic features, reflected in a bimodal electrophoretic mobility distribution. Here, the initial adhesion kinetics of five heterogeneous and five homogeneous E. faecalis strains were followed in a parallel-plate flow chamber. After 4h of flow, heterogeneous strains adhered in significantly higher numbers than homogeneous strains (7.3 x 10(6) and 1.9 x 10(6)cm(-2), respectively), but the initial deposition rates were not significantly influenced (740 and 600 cm(-2)s(-1), respectively). Apparently, initial deposition of bacteria is mainly governed by attractive Lifshitz-Van der Waals forces that overwhelm the electrostatic repulsion energy barrier, thus resulting in similar initial deposition rates for the various bacterial populations investigated. In contrast, during later stages of adhesion, bacteria in heterogeneous cultures likely experience a lower electrostatic repulsion from already adhering bacteria than bacteria in homogeneous cultures, thus allowing a closer proximity of the bacteria with respect to each other, which ultimately leads to increased adhesion after 4 h.
Collapse
Affiliation(s)
- Annet E J van Merode
- Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Zaitsev GM, Uotila JS, Häggblom MM. Biodegradation of methyl tert-butyl ether by cold-adapted mixed and pure bacterial cultures. Appl Microbiol Biotechnol 2007; 74:1092-102. [PMID: 17146651 DOI: 10.1007/s00253-006-0737-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/16/2006] [Accepted: 10/25/2006] [Indexed: 11/28/2022]
Abstract
An aerobic mixed bacterial culture (CL-EMC-1) capable of utilizing methyl tert-butyl ether (MTBE) as the sole source of carbon and energy with a growth temperature range of 3 to 30 degrees C and optimum of 18 to 22 degrees C was enriched from activated sludge. Transient accumulation of tert-butanol (TBA) occurred during utilization of MTBE at temperatures from 3 degrees C to 14 degrees C, but TBA did not accumulate above 18 degrees C. The culture utilized MTBE at a concentration of up to 1.5 g l(-1) and TBA of up to 7 g l(-1). The culture grew on MTBE at a pH range of 5 to 9, with an optimum pH of 6.5 to 7.1. The specific growth rate of the CL-EMC-1 culture on 0.1 g l(-1) of MTBE at 22 degrees C and pH 7.1 was 0.012 h(-1), and the growth yield was 0.64 g (dry weight) g(-1). A new MTBE-utilizing bacterium, Variovorax paradoxus strain CL-8, isolated from the mixed culture utilized MTBE, TBA, 2-hydroxy isobutyrate, lactate, methacrylate, and acetate as sole sources of carbon and energy but not 2-propanol, acetone, methanol, formaldehyde, or formate. Two other isolates, Hyphomicrobium facilis strain CL-2 and Methylobacterium extorquens strain CL-4, isolated from the mixed culture were able to grow on C(1) compounds. The combined consortium could thus utilize all of the carbon of MTBE.
Collapse
Affiliation(s)
- G M Zaitsev
- ARMI, Arctic Microbiology Research Consortium, Finnish Forest Research Institute, Rovaniemi Research Station, Box 16, 96301 Rovaniemi, Finland.
| | | | | |
Collapse
|
39
|
|
40
|
Singh A, Van Hamme JD, Ward OP. Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 2006; 25:99-121. [PMID: 17156965 DOI: 10.1016/j.biotechadv.2006.10.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 10/25/2006] [Accepted: 10/25/2006] [Indexed: 10/24/2022]
Abstract
Surfactants are amphiphilic compounds which can reduce surface and interfacial tensions by accumulating at the interface of immiscible fluids and increase the solubility, mobility, bioavailability and subsequent biodegradation of hydrophobic or insoluble organic compounds. Chemically synthesized surfactants are commonly used in the petroleum, food and pharmaceutical industries as emulsifiers and wetting agents. Biosurfactants produced by some microorganisms are becoming important biotechnology products for industrial and medical applications due to their specific modes of action, low toxicity, relative ease of preparation and widespread applicability. They can be used as emulsifiers, de-emulsifiers, wetting and foaming agents, functional food ingredients and as detergents in petroleum, petrochemicals, environmental management, agrochemicals, foods and beverages, cosmetics and pharmaceuticals, and in the mining and metallurgical industries. Addition of a surfactant of chemical or biological origin accelerates or sometimes inhibits the bioremediation of pollutants. Surfactants also play an important role in enhanced oil recovery by increasing the apparent solubility of petroleum components and effectively reducing the interfacial tensions of oil and water in situ. However, the effects of surfactants on bioremediation cannot be predicted in the absence of empirical evidence because surfactants sometimes stimulate bioremediation and sometimes inhibit it. For medical applications, biosurfactants are useful as antimicrobial agents and immunomodulatory molecules. Beneficial applications of chemical surfactants and biosurfactants in various industries are discussed in this review.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
41
|
van Merode AEJ, van der Mei HC, Busscher HJ, Krom BP. Influence of culture heterogeneity in cell surface charge on adhesion and biofilm formation by Enterococcus faecalis. J Bacteriol 2006; 188:2421-6. [PMID: 16547028 PMCID: PMC1428413 DOI: 10.1128/jb.188.7.2421-2426.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm formation is an increasing problem in medicine, due to the intrinsic resistance of microorganisms in the biofilm mode of growth against the host immune system and antimicrobial therapy. Adhesion is an important step in biofilm formation, influenced, among other factors, by the surface hydrophobicities and charges of both the substratum and the adhering microorganisms. Enterococcus faecalis strains generally display subpopulations with different surface charges, expressed as bimodal zeta potential distributions. Two-thirds of E. faecalis strains isolated from clogged biliary stents displayed such heterogeneity of surface charges in culture. In this study, the influence of this culture heterogeneity on initial adhesion and subsequent biofilm formation was investigated. Heterogeneous strains were retained in higher numbers on polystyrene than homogeneous strains. Also, biofilm formation was much more pronounced for heterogeneous strains than for homogeneous strains. In a population enriched to display only one subpopulation, fewer bacteria were retained than in its original heterogeneous culture. Also, the enriched subpopulation formed less biofilm than its original heterogeneous culture. The presence of ox bile during adhesion resulted in fewer retained bacteria, although heterogeneous strains were still retained in significantly higher numbers than were homogeneous strains, and, in general, the presence of ox bile reduced biofilm formation. The initial adhesion and biofilm formation were independent of the presence of the gene encoding the enterococcal surface protein (esp) or the expression of gelatinase (GelE). It is concluded that heterogeneity in cell surface charge represents an advantage for bacteria in the colonization of surfaces.
Collapse
Affiliation(s)
- Annet E J van Merode
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
42
|
Cunliffe M, Kertesz MA. Autecological properties of soil sphingomonads involved in the degradation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 2006; 72:1083-9. [PMID: 16568318 DOI: 10.1007/s00253-006-0374-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 11/27/2022]
Abstract
Autecological properties that are thought to be important for polycyclic aromatic hydrocarbon (PAH)-degradation by bacteria in contaminated soils include the ability to utilize a broad range of carbon sources, efficient biofilm formation, cell-surface hydrophobicity, surfactant production, motility, and chemotaxis. Sphingomonas species are common PAH-degraders, and a selection of PAH-degrading sphingomonad strains isolated from contaminated soils was therefore characterized in terms of these properties. All the sphingomonads tested were relatively hydrophilic and were able to grow as biofilms on a phenanthrene-coated surface, though biofilm formation under other conditions was variable. Sphingobium yanoikuyae B1 was able to utilize the greatest range of carbon sources, though it was not chemotaxic towards any of the substrates tested. Other sphingomonad strains were considerably less flexible in their catabolic range. None of the strains produced detectable surfactant and swimming motility varied between the strains. Examination of the total Sphingomonas community in the soils tested showed that one of the isolates studied was present at significant levels, suggesting that it can thrive under PAH-contaminated conditions despite the lack of many of the tested characteristics. We conclude that these properties are not essential for survival and persistence of Sphingomonas in PAH-contaminated soils.
Collapse
Affiliation(s)
- Michael Cunliffe
- Faculty of Life Sciences, University of Manchester, 1.800 Stopford Bldg, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
43
|
van Merode AEJ, van der Mei HC, Busscher HJ, Waar K, Krom BP. Enterococcus faecalis strains show culture heterogeneity in cell surface charge. Microbiology (Reading) 2006; 152:807-814. [PMID: 16514160 DOI: 10.1099/mic.0.28460-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Adhesion of micro-organisms to biotic and abiotic surfaces is an important virulence factor and involves different types of interactions.Enterococcus faecalis, a human commensal and an important opportunistic pathogen, has the ability to adhere to surfaces. Biliary stents frequently become clogged with bacterial biofilms, withE. faecalisas one of the predominant species. SixE. faecalisstrains isolated from clogged biliary stents were investigated for the presence of specific biochemical factors involved in their adhesion: aggregation substances (Aggs) and the enterococcal surface protein (encoded by theespgene). In addition, physico-chemical factors involved in adhesion (zeta potential and cell surface hydrophobicity) were determined, as well as the influence of ox bile on these properties. Two-thirds of the biliary stent isolates displayed culture heterogeneity in the pH dependence of their zeta potentials. Moreover, 24 out of 46 clinical isolates ofE. faecalis, including 11 laboratory strains, also displayed such heterogeneity. The culture heterogeneity was demonstrated to be a stable trait, not caused by quorum sensing, not plasmid mediated, and independent of the presence ofespand Agg. Data presented show that culture heterogeneity in zeta potential enhances adhesion to an abiotic surface. A higher prevalence of culture heterogeneity in zeta potential in pathogenic as compared to non-pathogenic isolates could indicate that this phenomenon might play a role in virulence and putatively in pathogenesis.
Collapse
Affiliation(s)
- Annet E J van Merode
- Department of Biomedical Engineering, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Karola Waar
- Department of Medical Microbiology, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Bastiaan P Krom
- Department of Biomedical Engineering, University Medical Center Groningen, and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
44
|
Priestley JT, Coleman NV, Duxbury T. Growth rate and nutrient limitation affect the transport of Rhodococcus sp. strain DN22 through sand. Biodegradation 2006; 17:571-6. [PMID: 16477351 DOI: 10.1007/s10532-005-9027-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2005] [Indexed: 11/27/2022]
Abstract
Rhodococcus strain DN22 grows on the nitramine explosive RDX as a sole nitrogen source, and is potentially useful for bioremediation of explosives-contaminated soil. In order for strain DN22 to be effectively applied in situ, inoculum cells must reach zones of RDX contamination via passive transport, a process that is difficult to predict at field-scale. We examined the effect of growth conditions on the transport of DN22 cells through sand columns, using chemostat-grown cultures. Strain DN22 formed smaller coccoid cells at low dilution rate (0.02 h(-1)) and larger rods at high dilution rate (0.1 h(-1)). Under all nutrient limitation conditions studied, smaller cells grown at low dilution rate were retained more strongly by sand columns than larger cells grown at high dilution rate. At a dilution rate of 0.05, cells from nitrate-limited cultures were retained more strongly than cells from RDX-limited or succinate-limited cultures. Breakthrough concentrations (C/C (0)) from sand columns ranged from 0.04 (nitrate-limited, D=0.02 h(-1)) to 0.98 (succinate-limited, D=0.1 h(-1)). The observed strong effect of culture conditions on transport of DN22 cells emphasizes the importance of physiology studies in guiding the development of bioremediation technologies.
Collapse
Affiliation(s)
- James T Priestley
- School of Molecular and Microbial Biosciences, University of Sydney, Building G08, 2006, Maze Crescent, Australia.
| | | | | |
Collapse
|
45
|
El Fantroussi S, Agathos SN. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 2005; 8:268-75. [PMID: 15939349 DOI: 10.1016/j.mib.2005.04.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/25/2005] [Indexed: 11/29/2022]
Abstract
Microorganisms can degrade numerous organic pollutants owing to their metabolic machinery and to their capacity to adapt to inhospitable environments. Thus, microorganisms are major players in site remediation. However, their efficiency depends on many factors, including the chemical nature and the concentration of pollutants, their availability to microorganisms, and the physicochemical characteristics of the environment. The capacity of a microbial population to degrade pollutants within an environmental matrix (e.g. soil, sediment, sludge or wastewater) can be enhanced either by stimulation of the indigenous microorganisms by addition of nutrients or electron acceptors (biostimulation) or by the introduction of specific microorganisms to the local population (bioaugmentation). Although it has been practiced in agriculture and in wastewater treatment for years, bioaugmentation is still experimental. Many factors (e.g. predation, competition or sorption) conspire against it. However, several strategies are currently being explored to make bioaugmentation a successful technology in sites that lack significant populations of biodegrading microorganisms. Under optimal local conditions, the rate of pollutant degradation might increase upon addition of an inoculant to remediate a chemical spill; however, the most successful cases of bioaugmentation occur in confined systems, such as bioreactors in which the conditions can be controlled to favour survival and prolonged activity of the exogenous microbial population.
Collapse
Affiliation(s)
- Saïd El Fantroussi
- Unit of Bioengineering, Catholic University of Louvain, Place Croix du Sud 2/19, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
46
|
Scow KM, Hicks KA. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol 2005; 16:246-53. [PMID: 15961025 DOI: 10.1016/j.copbio.2005.03.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 03/15/2005] [Accepted: 03/24/2005] [Indexed: 11/22/2022]
Abstract
An area of intense scientific and practical interest is the biogeochemical and microbial processes determining the success of natural attenuation, biostimulation and/or bioaugmentation treatments for organic contaminants in groundwater. Recent studies in this area have focused on the reductive dechlorination of chlorinated solvents, the degradation of the fuel additive methyl tert-butyl ether, and the removal of long-term hydrocarbon contamination. These studies have been facilitated by the use of stable isotope analysis to demonstrate in situ bioremediation and push-pull tests, in which isotopes are injected into aquifers and then quickly retrieved and analyzed, to measure in situ activity. Molecular tools such as quantitative PCR, the detection of mRNA expression, and numerous DNA fingerprinting methods have also proved valuable, being employed to identify and sometimes quantify environmentally important organisms or changes in communities. Methods to track bacteria and tools to characterize bacterial attachment properties have also offered insight into bacterial transport in situ.
Collapse
Affiliation(s)
- Kate M Scow
- Land, Air and Water Resources, University of California, 1 Shields Avenue Davis, California 95616, USA
| | | |
Collapse
|
47
|
Davis LC, Erickson LE. A review of bioremediation and natural attenuation of MTBE. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/ep.10028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. FEMS Microbiol Ecol 2004; 49:121-8. [DOI: 10.1016/j.femsec.2004.02.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Zein MM, Suidan MT, Venosa AD. MtBE biodegradation in a gravity flow, high-biomass retaining bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:3449-3456. [PMID: 15260347 DOI: 10.1021/es030652y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aerobic biodegradation of methyl tert-butyl ether (MtBE), a widely used fuel oxygenate, was investigated using a pilot-scale biomass-retaining bioreactor called a Biomass Concentrator Reactor (BCR). The reactor was operated for a year at a flow rate of 2500 L/d on Cincinnati dechlorinated tap water and an influent MtBE concentration of 5 mg/L. Treatment efficiency of MtBE in the reactor during stable operations exceeded 99.9%. The upper 95% confidence levels of effluent MtBE concentrations and its degradation byproduct tert-butyl alcohol (TBA) were 2.9 and 0.9 microg/L, respectively, during these stable conditions. In addition, the effluent was found to be of better quality than the influent tap water as reflected by dissolved organic carbon analysis. Microbial community DNA profiling was carried out using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction amplified 16s rDNA. The BCR was found to be inhabited by a wide spectrum of bacterial species, most notably microorganisms related to the genera Hydrogenophaga, Methylobacterium, Sphingomonas, and Pseudomonas. These organisms were previously reported to be associated with MtBE degradation. With the contamination of groundwater by MtBE being a wide-ranging problem throughout the United States, it is essential to develop a technology capable of effectively remediating such aquifers in order to protect public health and the environment. The BCR's simple operation and low maintenance requirements may render it an economically attractive approach to remediating groundwater contaminated with MtBE.
Collapse
Affiliation(s)
- Maher M Zein
- Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | |
Collapse
|