1
|
Ağagündüz D, Keskin FN. The impact of fermentation on development of medical foods (for celiac, irritable bowel syndrome patients). HANDBOOK OF SOURDOUGH MICROBIOTA AND FERMENTATION 2025:161-181. [DOI: 10.1016/b978-0-443-18622-6.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Li D, Cui Y, Wu X, Li J, Min F, Zhao T, Zhang J, Zhang J. Graduate Student Literature Review: Network of flavor compounds formation and influence factors in yogurt. J Dairy Sci 2024; 107:8874-8886. [PMID: 38945263 DOI: 10.3168/jds.2024-24875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
Yogurt is popular as a natural and healthy food, but its flavor greatly affects acceptability by consumers. Flavor compounds of yogurt are generally produced by the metabolism of lactose, protein, and fat, and the resulting flavors include carbonyls, acids, esters, alcohols, and so on. Each flavor compound can individually provide the corresponding flavor, or it can be combined with other compounds to form a new flavor. The flavor network is formed among the metabolites of milk components, and acetaldehyde, as the central compound, plays a role in connecting the whole network. The flavor compounds can be affected by many factors, such as the use of different raw milks, ways of homogenization, sterilization, fermentation, postripening, storage condition, and packaging materials, which can affect the overall flavor of yogurt. This paper provides an overview of the volatile flavor compounds in yogurt, the pathways of production of the main flavor compounds during yogurt fermentation, and the factors that influence the flavor of yogurt, including type of raw milk, processing, and storage. It also aims to provide theoretical guidance for the product of yogurt in ideal flavor, but further research is needed to provide a more comprehensive description of the flavor system of yogurt.
Collapse
Affiliation(s)
- Die Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| | - Yutong Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Xinying Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Jiyong Li
- Shangri-la Kangmei Dairy Products Co. Ltd., Diqing Prefecture 674400, China
| | - Fuhai Min
- Shangri-la Kangmei Dairy Products Co. Ltd., Diqing Prefecture 674400, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Jianming Zhang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Jiliang Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China.
| |
Collapse
|
3
|
Hou C, Song X, Xiong Z, Wang G, Xia Y, Ai L. Genome-scale reconstruction of the metabolic network in Streptococcus thermophilus S-3 and assess urea metabolism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1458-1469. [PMID: 37814322 DOI: 10.1002/jsfa.13026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/16/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengjie Hou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Wa Y, Zhao X, Peng K, Qu H, Chen D, Zhang C, Chen X, Gu R. Effects of Nutrients on the Growth of and Free Exopolysaccharide Biosynthesis by Streptococcus thermophilus 937 in a Chemically Defined Medium. Curr Microbiol 2023; 80:331. [PMID: 37634211 DOI: 10.1007/s00284-023-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/18/2023] [Indexed: 08/29/2023]
Abstract
The free exopolysaccharide (f-EPS) produced by Streptococcus thermophilus is a natural texture modifier with health-promoting properties and has thus become one of the most interesting metabolites for researchers. The present work aimed to further understand the nutritional requirements for the growth of and the f-EPS production by S. thermophilus. The types and concentrations of compounds in the complete chemically defined medium were changed in turn to evaluate the effects of single nutrients on the growth of and f-EPS production by S. thermophilus 937. The results showed that cysteine, glutamine, histidine, methionine, tryptophan, tyrosine, leucine, isoleucine, and valine played an important role in maintaining the rapid and stable growth of S. thermophilus 937. S. thermophilus 937 also required calcium pantothenate, niacin, pyridoxine, riboflavin, and thiamine hydrochloride as essential nutrients for growth. Increases in the concentrations of lactose, glutamate, histidine, or isoleucine significantly increased the production of free exopolysaccharide by S. thermophilus 937, and when the lactose concentration increased to 20 g·L-1 and the concentration of the three-amino-acid combination increased to 15 mM, the f-EPS yield increased to a maximum of 35.34 μg·mL-1. This finding indicated that lactose and the 3 amino acids exert synergistic effects on the promotion of f-EPS production. In addition, lactose and the three amino acids have strain specific promoting effects on f-EPS production by S. thermophilus. This study provides a further understanding of the effects of nutrients on the biosynthesis of f-EPS by S. thermophilus.
Collapse
Affiliation(s)
- Yunchao Wa
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Xia Zhao
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Kuiyao Peng
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Hengxian Qu
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Dawei Chen
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Chenchen Zhang
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Xia Chen
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China
| | - Ruixia Gu
- Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China.
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu Province, China.
| |
Collapse
|
5
|
Zhao R, Chen Z, Liang J, Dou J, Guo F, Xu Z, Wang T. Advances in Genetic Tools and Their Application in Streptococcus thermophilus. Foods 2023; 12:3119. [PMID: 37628118 PMCID: PMC10453384 DOI: 10.3390/foods12163119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Streptococcus thermophilus is a traditional starter. Nowadays, key aspects of S. thermophilus physiology have been revealed concerning the phenotypic traits relevant for industrial applications, including sugar metabolism, protein hydrolysis, and the production of important metabolites that affect the sensory properties of fermented foods as well as the original cooperation with Lactobacillus delbrueckii subsp. bulgaricus. Moreover, significant advances have been made in the synthetic biology toolbox of S. thermophilus based on technological advances in the genome and its sequencing and synthesis. In this review, we discuss the recently developed toolbox for S. thermophilus, including gene expression toolsets (promoters, terminators, plasmids, etc.) and genome editing tools. It can be used for both functionalized foods and therapeutic molecules for consumers. The availability of new molecular tools, including the genome editing toolbox, has facilitated the engineering of physiological studies of S. thermophilus and the generation of strains with improved technical and functional characteristics.
Collapse
Affiliation(s)
- Ruiting Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (R.Z.); (Z.C.); (J.L.); (J.D.); (F.G.); (T.W.)
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
6
|
Zhang L, Zhao G, Yao Y, Zhu W, Xu S, Li H. Research on the aroma properties and microbial succession patterns in the processing of Chinese yellow sticky rice jiuqu steamed bread. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Othman AM, Elshafei AM, Elsayed MA, Ibrahim GE, Hassan MM, Mehanna NS. Biochemical characterization and insights into the potency of the acidic Aspergillus niger NRC114 purified α-galactosidase in removing raffinose family oligosaccharides from soymilk yogurt. BMC Biotechnol 2023; 23:3. [PMID: 36721204 PMCID: PMC9887927 DOI: 10.1186/s12896-023-00773-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Because humans lack α-galactosidase, foods containing certain oligosaccharides from the raffinose family, such as soybeans and other legumes, may disrupt digestion and cause flatulence. RESULTS Aspergillus niger NRC114 α-galactosidase was purified using protein precipitation, gel filtration, and ion exchange chromatography steps, which resulted in a 123-fold purification. The purified enzyme was found to be 64 kDa using the SDS-PAGE approach. The optimum pH and temperature of the purified α-galactosidase were detected at pH 3.5 and 60 ºC, respectively. The pure enzyme exhibited potent acidic pH stability at pH 3.0 and pH 4.0 for 2 h, and it retained its full activity at 50 ºC and 60 ºC for 120 min and 90 min, respectively. The enzyme was activated using 2.5 mM of K+, Mg2+, Co2+, or Zn2+ by 14%, 23%, 28%, and 11%, respectively. The Km and Vmax values of the purified enzyme were calculated to be 0.401 µM and 14.65 μmol min-1, respectively. The soymilk yogurt showed an increase in its total phenolic content and total flavonoids after enzyme treatment, as well as several volatile compounds that were detected and identified using GC-MS analysis. HPLC analysis clarified the enzymatic action in the hydrolysis of raffinose family oligosaccharides. CONCLUSION The findings of this study indicate the importance of A. niger NRC114 α-galactosidase enzyme for future studies, especially its applications in a variety of biological fields.
Collapse
Affiliation(s)
- Abdelmageed M. Othman
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Ali M. Elshafei
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Maysa A. Elsayed
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Gamil E. Ibrahim
- grid.419725.c0000 0001 2151 8157Chemistry of Flavor and Aroma Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Mohamed M. Hassan
- grid.419725.c0000 0001 2151 8157Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| | - Nayra S. Mehanna
- grid.419725.c0000 0001 2151 8157Dairy Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki 12622 Giza, Egypt
| |
Collapse
|
8
|
Genome-Scale Metabolic Modeling Combined with Transcriptome Profiling Provides Mechanistic Understanding of Streptococcus thermophilus CH8 Metabolism. Appl Environ Microbiol 2022; 88:e0078022. [PMID: 35924931 PMCID: PMC9477255 DOI: 10.1128/aem.00780-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Streptococcus thermophilus is a lactic acid bacterium adapted toward growth in milk and is a vital component of starter cultures for milk fermentation. Here, we combine genome-scale metabolic modeling and transcriptome profiling to obtain novel metabolic insights into this bacterium. Notably, a refined genome-scale metabolic model (GEM) accurately representing S. thermophilus CH8 metabolism was developed. Modeling the utilization of casein as a nitrogen source revealed an imbalance in amino acid supply and demand, resulting in growth limitation due to the scarcity of specific amino acids, in particular sulfur amino acids. Growth experiments in milk corroborated this finding. A subtle interdependency of the redox balance and the secretion levels of the key metabolites lactate, formate, acetoin, and acetaldehyde was furthermore identified with the modeling approach, providing a mechanistic understanding of the factors governing the secretion product profile. As a potential effect of high expression of arginine biosynthesis genes, a moderate secretion of ornithine was observed experimentally, augmenting the proposed hypothesis of ornithine/putrescine exchange as part of the protocooperative interaction between S. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in yogurt. This study provides a foundation for future community modeling of food fermentations and rational development of starter strains with improved functionality. IMPORTANCEStreptococcus thermophilus is one the main organisms involved in the fermentation of milk and, increasingly, also in the fermentation of plant-based foods. The construction of a functional high-quality genome-scale metabolic model, in conjunction with in-depth transcriptome profiling with a focus on metabolism, provides a valuable resource for the improved understanding of S. thermophilus physiology. An example is the model-based prediction of the most significant route of synthesis for the characteristic yogurt flavor compound acetaldehyde and identification of metabolic principles governing the synthesis of other flavor compounds. Moreover, the systematic assessment of amino acid supply and demand during growth in milk provides insights into the key challenges related to nitrogen metabolism that is imposed on S. thermophilus and any other organism associated with the milk niche.
Collapse
|
9
|
Kazi TA, Acharya A, Mukhopadhyay BC, Mandal S, Arukha AP, Nayak S, Biswas SR. Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review. Microorganisms 2022; 10:1132. [PMID: 35744650 PMCID: PMC9229153 DOI: 10.3390/microorganisms10061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria (LAB) play a very vital role in food production, preservation, and as probiotic agents. Some of these species can colonize and survive longer in the gastrointestinal tract (GIT), where their presence is crucially helpful to promote human health. LAB has also been used as a safe and efficient incubator to produce proteins of interest. With the advent of genetic engineering, recombinant LAB have been effectively employed as vectors for delivering therapeutic molecules to mucosal tissues of the oral, nasal, and vaginal tracks and for shuttling therapeutics for diabetes, cancer, viral infections, and several gastrointestinal infections. The most important tool needed to develop genetically engineered LABs to produce proteins of interest is a plasmid-based gene expression system. To date, a handful of constitutive and inducible vectors for LAB have been developed, but their limited availability, host specificity, instability, and low carrying capacity have narrowed their spectrum of applications. The current review discusses the plasmid-based vectors that have been developed so far for LAB; their functionality, potency, and constraints; and further highlights the need for a new, more stable, and effective gene expression platform for LAB.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Aparupa Acharya
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Bidhan Chandra Mukhopadhyay
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India;
| | - Ananta Prasad Arukha
- Researcher 5 Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Subhendu Nayak
- Sr. Scientist, Clorox, Better Health VMS, Durham, NC 27701, USA;
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| |
Collapse
|
10
|
Pan X, Zhang S, Xu X, Lao F, Wu J. Volatile and non-volatile profiles in jujube pulp co-fermented with lactic acid bacteria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Papaioannou G, Kosma I, Badeka AV, Kontominas MG. Profile of Volatile Compounds in Dessert Yogurts Prepared from Cow and Goat Milk, Using Different Starter Cultures and Probiotics. Foods 2021; 10:foods10123153. [PMID: 34945703 PMCID: PMC8701116 DOI: 10.3390/foods10123153] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to determine the profile of volatile compounds (aroma) and overall flavor in dessert yogurts prepared from cow and goat milk, using three different, commercially available starter cultures, in the presence or absence of probiotic bacteria and to correlate this to organoleptic evaluation results obtained using a consumer acceptability method. The extraction of volatile compounds was carried out by solid phase micro-extraction; separation and analysis by gas chromatography-mass spectrometry. Variations among the different classes of compounds (i.e., aldehydes, alcohols, ketones, volatile acids, hydrocarbons, and terpenes) were recorded for different treatments. The results showed that the main volatiles in the cow milk dessert yogurts without Bifidobacterium BB-12 were: acetaldehyde, 2,3-butanedione, 2,3-pentanedione, 3-OH-2-butanone, 2-propanone, hexanoic acid and limonene). Respective volatiles in cow milk dessert yogurts with Bifidobacterium BB-12 were: acetaldehyde, pentanal, hexanal, the same ketones, acetic acid and limonene). The volatiles in goat milk dessert yogurts without Lactobacillus acidophilus LA-5 were: acetaldehyde, the same ketones, no carboxylic acids, limonene, camphene, α- and β-pinene. Respective volatiles in goat milk dessert yogurts with Lactobacillus acidophilus LA-5 were: aldehydes acetaldehyde, the same ketones, butanoic acid, α-pinene and camphene varying in concentration in different samples. Based on the results of volatiles and organoleptic evaluation, it can be concluded that dessert yogurts from cow milk without probiotic bacterial strains using the mild and classic starter cultures, and dessert yogurts from goat milk with probiotic bacterial strains using the classic and acidic starter cultures are found to be more organoleptically acceptable by consumers. In most cases, a positive correlation was found between dessert yogurt organoleptically determined flavor and volatiles (aldehydes, ketones and carboxylic acids).
Collapse
|
12
|
Microstructural, Volatile Compounds, Microbiological and Organoleptical Characteristics of Low-Fat Buffalo Milk Yogurt Enriched with Whey Protein Concentrate and Ca-Caseinate during Cold Storage. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Yogurt is a popular fermented milk product across the world. Structure, taste, and odor characteristics are created by fermenting yogurt with diverse ingredients and lactic acid bacteria (LAB), which contribute the most to the acceptance and quality of yogurt. In this study, low-fat buffalo milk yogurts (LFBY) were produced with the enrichment of 1% (w/w) whey protein concentrate (WPC) and Ca-caseinate (Ca-CN). Yogurts were analyzed based on microstructural, microbiological, organoleptical properties; volatile compounds (solid-phase microextraction method associated with gas chromatography-mass spectrometry) during cold storage for 21 days. Yogurts enriched with WPC and Ca-CN had higher total solids, total protein contents, and pH values. A total of 36 volatile components were identified in all produced yogurts. Acetic acid, butanoic acid, acetaldehyde, acetoin, 2,3-butanedione, ethanol, and 1-heptanol were found in significant amounts and mainly contributed to organoleptical properties. Interestingly, the focused volatile compounds that improve taste and odor were higher in LFBY+WPC yogurt than in plain LFBY or LFBY+Ca-CN yogurt. The Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus viable counts were higher in LFBY+WPC yogurt than plain LFBY or/and LFBY+Ca-CN. Conclusively, yogurt enriched with 1% WPC exhibited the best organoleptical properties and volatile component concentrations. The microstructure of the LFBY with WPC was less compact and dense, and regular, with tiny pores and long and individualized casein filaments than the other treatments. The microstructure of the Ca-CN samples caused a compact structure and coarse than in the control yogurt.
Collapse
|
13
|
Prado R, Gastl M, Becker T. Aroma and color development during the production of specialty malts: A review. Compr Rev Food Sci Food Saf 2021; 20:4816-4840. [PMID: 34370381 DOI: 10.1111/1541-4337.12806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022]
Abstract
Specialty malts comprise a promising field for innovative approaches concerning their potential in terms of color, aroma, and taste influence on the composition of beer and other beverages. Nevertheless, poor reproducibility of aroma and taste is a recurrent struggle between maltsters, leaving color as a practical parameter for quality control. However, malts with similar coloration can present distinct aroma profiles, leaving open questions concerning key aroma compounds, their dynamic responses to malting process variations and to what extent they may vary in a certain color range. Key aroma volatiles have been identified in the matrix of barley malt, comprising a variety of products of non-enzymatic browning reactions (e.g., caramelization, pyrolysis, and Maillard reactions). Here, water plays a crucial role together with the intensity of the temperature regimes. Nevertheless, the final aroma profile of a malt product is the result of a balance between aroma formation and losses. Therefore, the correlation between color and aroma is of big complexity. That being the case, the present article questions if key aroma compounds responsible for the peculiar flavors of specialties have been defined by scientific literature and whether their production dynamics is unveiled. In this manner, this work proposes an overview of the aroma compounds present in specialty malt products studied up to the current date. More specifically, the process production of specialty malts and its potential impact on the formation of aroma and taste is studied alongside the key aroma-active compounds, their correlation to color, and trending analytical techniques for aroma and color assessment.
Collapse
Affiliation(s)
- Raphael Prado
- Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Martina Gastl
- Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| |
Collapse
|
14
|
Buran İ, Akal C, Ozturkoglu-Budak S, Yetisemiyen A. Rheological, sensorial and volatile profiles of synbiotic kefirs produced from cow and goat milk containing varied probiotics in combination with fructooligosaccharide. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Analysis of the proteolytic system of Streptococcus thermophilus strains CS5, CS9, CS18 and CS20. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Guo S, Wu T, Peng C, Wang J, Sun T, Zhang H. Metabolic footprint analysis of volatile metabolites by gas chromatography-ion mobility spectrometry to discriminate between different fermentation temperatures during Streptococcus thermophilus milk fermentation. J Dairy Sci 2021; 104:8541-8553. [PMID: 34024608 DOI: 10.3168/jds.2020-19555] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/23/2021] [Indexed: 01/03/2023]
Abstract
Streptococcus thermophilus is widely used in the dairy industry to produce fermented milk. Gas chromatography-ion mobility spectrometry-based metabolomics was used to discriminate different fermentation temperatures (37°C and 42°C) at 3 time points (F0: pH = 6.50 ± 0.02; F1: pH = 5.20 ± 0.02; F2: pH = 4.60 ± 0.02) during S. thermophilus milk fermentation, and differences of fermentation physical properties and growth curves were also evaluated. Fermentation was completed (pH 4.60) after 6 h at 42°C and after 8 h at 37°C; there were no significant differences in viable cell counts and titratable acidity; water-holding capacity and viscosity were higher at 37°C than at 42°C. Different fermentation temperatures affected volatile metabolic profiles. After the fermentation was completed, the volatile metabolites that could be used to distinguish the fermentation temperature were hexanal, butyraldehyde, ethyl acetate, ethanol, 3-methylbutanal, 3-methylbutanoic acid, and 2-methylpropionic acid. Specifically, at 37°C of milk fermentation, branched-chain AA had higher levels, and leucine, isoleucine, and valine were involved in growth and metabolism, which promoted accumulation of some short-chain fatty acids such as 3-methylbutanoic acid and 2-methylpanprooic acid. At 42°C, at 3 different time points during fermentation, ethanol from glycolysis all presented higher levels, including acetone and 3-methylbutanal, producing a more pleasant flavor in the fermented milk. This work provides detailed insight into S. thermophilus fermented milk metabolites that differed between incubation temperatures; these data can be used for understanding and eventually predicting metabolic changes during milk fermentation.
Collapse
Affiliation(s)
- Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Ting Wu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Chuantao Peng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, China.
| |
Collapse
|
17
|
Wang Y, Wu J, Lv M, Shao Z, Hungwe M, Wang J, Bai X, Xie J, Wang Y, Geng W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front Bioeng Biotechnol 2021; 9:612285. [PMID: 34055755 PMCID: PMC8149962 DOI: 10.3389/fbioe.2021.612285] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Lactic acid bacteria are a kind of microorganisms that can ferment carbohydrates to produce lactic acid, and are currently widely used in the fermented food industry. In recent years, with the excellent role of lactic acid bacteria in the food industry and probiotic functions, their microbial metabolic characteristics have also attracted more attention. Lactic acid bacteria can decompose macromolecular substances in food, including degradation of indigestible polysaccharides and transformation of undesirable flavor substances. Meanwhile, they can also produce a variety of products including short-chain fatty acids, amines, bacteriocins, vitamins and exopolysaccharides during metabolism. Based on the above-mentioned metabolic characteristics, lactic acid bacteria have shown a variety of expanded applications in the food industry. On the one hand, they are used to improve the flavor of fermented foods, increase the nutrition of foods, reduce harmful substances, increase shelf life, and so on. On the other hand, they can be used as probiotics to promote health in the body. This article reviews and prospects the important metabolites in the expanded application of lactic acid bacteria from the perspective of bioengineering and biotechnology.
Collapse
Affiliation(s)
- Yaqi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jiangtao Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxin Lv
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Shao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Meluleki Hungwe
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jinju Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojia Bai
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanping Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Weitao Geng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
18
|
Farag MA, Saleh HA, El Ahmady S, Elmassry MM. Dissecting Yogurt: the Impact of Milk Types, Probiotics, and Selected Additives on Yogurt Quality. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1877301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, the American University in Cairo, New Cairo, Egypt
| | - Haidy A. Saleh
- Department of Chemistry, School of Sciences & Engineering, the American University in Cairo, New Cairo, Egypt
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Egypt
| | - Sherwet El Ahmady
- Pharmacognosy Department, College of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Moamen M. Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
19
|
Hu Y, Zhang L, Wen R, Chen Q, Kong B. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods: A review. Crit Rev Food Sci Nutr 2020; 62:2741-2755. [PMID: 33377402 DOI: 10.1080/10408398.2020.1858269] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Traditional Chinese fermented foods are favored by consumers due to their unique flavor, texture and nutritional values. A large number of microorganisms participate in the process of fermentation, especially lactic acid bacteria (LAB), which are present in almost all fermented foods and contribute to flavor development. The formation process of flavor is complex and involves the biochemical conversion of various food components. It is very important to fully understand the conversion process to direct the flavor formation in foods. A comprehensive link between the LAB community and the flavor formation in traditional Chinese fermented foods is reviewed. The main mechanisms involved in the flavor formation dominated by LAB are carbohydrate metabolism, proteolysis and amino acid catabolism, and lipolysis and fatty acid metabolism. This review highlights some useful novel approaches for flavor enhancement, including the application of functional starter cultures and metabolic engineering, which may provide significant advances toward improving the flavor of fermented foods for a promising market.
Collapse
Affiliation(s)
- Yingying Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Rongxin Wen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Tian H, Yu B, Yu H, Chen C. Evaluation of the synergistic olfactory effects of diacetyl, acetaldehyde, and acetoin in a yogurt matrix using odor threshold, aroma intensity, and electronic nose analyses. J Dairy Sci 2020; 103:7957-7967. [PMID: 32684481 DOI: 10.3168/jds.2019-17495] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 05/05/2020] [Indexed: 01/06/2023]
Abstract
Despite intensive analyses of yogurt flavor, the synergistic effects of the key aroma compounds on sensory responses and their optimum concentration ranges remain less well-documented. This study investigated the odor thresholds, optimum concentration ranges, and perceptual actions of diacetyl, acetaldehyde, and acetoin in a yogurt matrix. Our results show that the odor thresholds of diacetyl, acetaldehyde, and acetoin in the yogurt matrix were 5.43, 15.4, and 29.0 mg/L, respectively, which were significantly higher than the corresponding values in water. The optimum diacetyl, acetaldehyde, and acetoin concentration ranges were found to be 6.65 to 9.12, 25.9 to 35.5, and 37.3 to 49.9 mg/L, respectively. In Feller's additive model, the addition of each compound led to a significant reduction in their odor threshold in the yogurt matrix, thus demonstrating the synergistic effects of the compounds. In the σ-τ plot, various concentrations of compounds were associated with various degrees of additive behavior with respect to the aroma intensity of the yogurt matrix, thus demonstrating the synergism among these compounds in increasing the overall aroma intensity. The optimal simultaneous concentration ratio of diacetyl:acetaldehyde:acetoin was determined to be 4.00:16.0:32.0 mg/L. The specific synergistic effects were also confirmed by an electronic nose analysis and aroma profile comparison. In summary, these 3 aroma compounds exhibited synergistic effects in a yogurt matrix, thus providing a theoretical basis for the enhancement of flavors in dairy products.
Collapse
Affiliation(s)
- Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Benjie Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Research Institute of Fragrance and Flavor Industry, Shanghai 200232, China.
| |
Collapse
|
21
|
Hernandez-Valdes JA, Solopova A, Kuipers OP. Development of Lactococcus lactis Biosensors for Detection of Diacetyl. Front Microbiol 2020; 11:1032. [PMID: 32523575 PMCID: PMC7261850 DOI: 10.3389/fmicb.2020.01032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Some secondary metabolites of fermentative bacteria are desired compounds for the food industry. Examples of these compounds are diacetyl and acetaldehyde, which are produced by species of the lactic acid bacteria (LAB) family. Diacetyl is an aromatic compound, giving the buttery flavor associated with dairy products, and acetaldehyde is the compound responsible for the yogurt flavor and aroma. The quantification of these compounds in food matrices is a laborious task that involves sample preparation and specific analytical methods. The ability of bacteria to naturally sense metabolites has successfully been exploited to develop biosensors that facilitate the identification and quantification of certain metabolites (Mahr and Frunzke, 2016). The presence of a specific metabolite is sensed by the biosensors, and it is subsequently translated into the expression of one or more reporter genes. In this study we aimed to develop fluorescence-based biosensors to detect diacetyl and acetaldehyde. Since the metabolic pathways for production and degradation of these compounds are present in Lactococcus lactis, the sensing mechanisms in this bacterium are expected. Thus, we identified diacetyl and acetaldehyde responsive promoters by performing transcriptome analyses in L. lactis. The characterization of the biosensors showed their response to the presence of these compounds, and a further analysis of the diacetyl-biosensors (its dynamics and orthogonality) was performed. Moreover, we attempted to produce natural diacetyl from producer strains, namely L. lactis subsp. lactis biovar diacetylactis, to benchmark the performance of our biosensors. The diacetyl-biosensors responded linearly to the amounts of diacetyl obtained in the bacterial supernatants, i.e., the increases in GFP expression were proportional to the amounts of diacetyl present in the supernatants of L. lactis subsp. lactis biovar diacetylactis MR3-T7 strain. The biosensors developed in this study may eventually be used to engineer strains or pathways for increased diacetyl and acetaldehyde production, and may facilitate the detection of these metabolites in complex food matrices.
Collapse
Affiliation(s)
- Jhonatan A Hernandez-Valdes
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Ana Solopova
- School of Microbiology, APC Microbiome, University College Cork, Cork, Ireland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Bioaldehydes and beyond: Expanding the realm of bioderived chemicals using biogenic aldehydes as platforms. Curr Opin Chem Biol 2020; 59:37-46. [PMID: 32454426 DOI: 10.1016/j.cbpa.2020.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 01/06/2023]
Abstract
Biofuels and biochemicals derived from renewable resources are sconsidered as potential solutions for the energy crisis and associated environmental problems that human beings are facing today. However, so far the available types of bioderived chemicals are rather limited, and production efficiency is generally low. Expanding the realm of bioderived chemicals and relevant derivatives can help motivate the development of bioenergy and the general bioeconomy. Aldehydes, possessing unique reactivity, hold great promise as platform chemicals for producing a large portfolio of bioproducts. In this review, we focus on production of aldehydes from renewable bioresources and derivatization of aldehydes through chemocatalysis, biocatalysis, or de novo biosynthesis. Perspectives on combining protein engineering and cascade reactions for advanced aldehyde derivatization are also provided.
Collapse
|
23
|
Sharma A, Gupta G, Ahmad T, Kaur B, Hakeem KR. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. J Microbiol Methods 2020; 170:105862. [DOI: 10.1016/j.mimet.2020.105862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/04/2023]
|
24
|
Markakiou S, Gaspar P, Johansen E, Zeidan AA, Neves AR. Harnessing the metabolic potential of Streptococcus thermophilus for new biotechnological applications. Curr Opin Biotechnol 2020; 61:142-152. [DOI: 10.1016/j.copbio.2019.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 01/07/2023]
|
25
|
Medlock GL, Papin JA. Guiding the Refinement of Biochemical Knowledgebases with Ensembles of Metabolic Networks and Machine Learning. Cell Syst 2020; 10:109-119.e3. [PMID: 31926940 PMCID: PMC6975163 DOI: 10.1016/j.cels.2019.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/27/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
Mechanistic models explicitly represent hypothesized biological knowledge. As such, they offer more generalizability than data-driven models. However, identifying model curation efforts that improve performance for mechanistic models is nontrivial. Here, we develop a solution to this problem for genome-scale metabolic models. We generate an ensemble of models, each equally consistent with experimental data, then perform simulations with them. We apply machine learning to the simulation output to identify model structure variation that maximally influences simulations. These variants are high-priority candidates for curation through removal, addition, or reannotation in the model. We apply this approach, automated metabolic model ensemble-driven elimination of uncertainty with statistical learning (AMMEDEUS), to 29 bacterial species to improve gene essentiality predictions. We explore targets for individual species and compile pan-species targets to improve the database used during model construction. AMMEDEUS is an automated and performance-driven recommendation system that complements intuition during curation of biochemical knowledgebases.
Collapse
Affiliation(s)
- Gregory L Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
26
|
Vilela A, Bacelar E, Pinto T, Anjos R, Correia E, Gonçalves B, Cosme F. Beverage and Food Fragrance Biotechnology, Novel Applications, Sensory and Sensor Techniques: An Overview. Foods 2019; 8:E643. [PMID: 31817355 PMCID: PMC6963671 DOI: 10.3390/foods8120643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Flavours and fragrances are especially important for the beverage and food industries. Biosynthesis or extraction are the two main ways to obtain these important compounds that have many different chemical structures. Consequently, the search for new compounds is challenging for academic and industrial investigation. This overview aims to present the current state of art of beverage fragrance biotechnology, including recent advances in sensory and sensor methodologies and statistical techniques for data analysis. An overview of all the recent findings in beverage and food fragrance biotechnology, including those obtained from natural sources by extraction processes (natural plants as an important source of flavours) or using enzymatic precursor (hydrolytic enzymes), and those obtained by de novo synthesis (microorganisms' respiration/fermentation of simple substrates such as glucose and sucrose), are reviewed. Recent advances have been made in what concerns "beverage fragrances construction" as also in their application products. Moreover, novel sensory and sensor methodologies, primarily used for fragrances quality evaluation, have been developed, as have statistical techniques for sensory and sensors data treatments, allowing a rapid and objective analysis.
Collapse
Affiliation(s)
- Alice Vilela
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Eunice Bacelar
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Teresa Pinto
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Rosário Anjos
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Elisete Correia
- CQ-VR, Chemistry Research Centre, Department of Mathematics, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Berta Gonçalves
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal; (E.B.); (T.P.); (R.A.); (B.G.)
| | - Fernanda Cosme
- CQ-VR, Chemistry Research Centre, Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
27
|
Sarwar A, Aziz T, Al-Dalali S, Zhao X, Zhang J, Ud Din J, Chen C, Cao Y, Yang Z. Physicochemical and Microbiological Properties of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii in Combination with Inulin. Foods 2019; 8:E468. [PMID: 31658700 PMCID: PMC6835504 DOI: 10.3390/foods8100468] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Saccharomyces boulardii is a unique species of yeast previously characterized as a probiotic strain (CNCM I-745) among a few probiotic yeasts reported to date. Inulin is one of the most common prebiotics that exhibit twisted hydrocolloidal properties in dairy products. The present study was designed to develop a synbiotic yogurt by incorporation of S. boulardii and inulin at 1%, 1.5%, and 2% (w/v), comparing with the probiotic and control plain yogurts. Microrheological, microstructural, microbiological, sensory properties, and volatile compounds of the yogurt samples were evaluated. Microrheological analysis showed that addition of inulin to yogurt slightly reduced the values of G' and G″, while solid-liquid balance (SLB) values confirmed more solid properties of the synbiotic yogurt (0.582~0.595) than the plain yogurt (0.503~0.518). A total of 18 volatile compounds were identified in the synbiotic yogurt, while only five and six compounds were identified in plain and probiotic yogurts, respectively. Physiochemical parameters such as pH, acidity, and protein content were in the normal range (as with the control), while fat content in the synbiotic yogurt decreased significantly. Addition of 1% inulin not only reduced syneresis but also maintained viability of S. boulardii after 28 days of storage. Microstructural and microrheological studies confirmed the dense, compressed, homogeneous structure of the synbiotic yogurt. Thus, addition of inulin improved the textural and sensory properties of the synbiotic yogurt, as well as survival of S. boulardii with viable count above 6.0 log CFU/g in yogurt, as generally required for probiotics. Therefore, novel synbiotic yogurt with desirable quality was developed as an effective carrier for delivery of the probiotic yeast exerting its beneficial health effects.
Collapse
Affiliation(s)
- Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Sam Al-Dalali
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiao Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jian Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Jalal Ud Din
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Chao Chen
- Dongjun Dairy (Yucheng) Co., Ltd., Yucheng 251200, China.
| | - Yongqiang Cao
- Dongjun Dairy (Yucheng) Co., Ltd., Yucheng 251200, China.
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
- Dongjun Dairy (Yucheng) Co., Ltd., Yucheng 251200, China.
| |
Collapse
|
28
|
Dan T, Ren W, Liu Y, Tian J, Chen H, Li T, Liu W. Volatile Flavor Compounds Profile and Fermentation Characteristics of Milk Fermented by Lactobacillus delbrueckii subsp. bulgaricus. Front Microbiol 2019; 10:2183. [PMID: 31620117 PMCID: PMC6759748 DOI: 10.3389/fmicb.2019.02183] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus is one of the predominant lactic acid bacterial species used as starter cultures in industrial fermented dairy manufacturing, as it strongly affects the quality of the products. Volatile flavor compound profiles and fermentation characteristics are considered to be the most important indicators for starter culture screening. In the present study, volatile compounds in milk fermented by 17 test strains of L. delbrueckii subsp. bulgaricus and a commercial strain used as a control were identified using solid-phase microextraction (SPME) methods coupled with gas chromatography mass spectrometry (GC-MS). In total, 86 volatile flavor compounds were identified in the fermented milk upon completion of fermentation, including 17 carboxylic acids, 14 aldehydes, 13 ketones, 29 alcohols, 8 esters, and 5 aromatic hydrocarbon compounds. Various volatile flavor compounds (acetaldehyde, 3-methyl-butanal, (E)-2-pentenal, hexanal, (E)-2-octenal, nonanal, 2,3-butanedione, acetoin, 2-heptanone, 2-non-anone, formic acid ethenyl ester) were identified due to their higher odor activity values (>1). In addition, of the 17 test strains of L. delbrueckii subsp. bulgaricus, IMAU20312 (B14) and IMAU62081 (B16) strains exhibited good fermentation characteristics in milk compared with the control strain. The combination of the volatile flavor compound profile and fermentation characteristics in this work could be useful when selecting lactic acid bacteria that may serve as important resources in the development of novel fermented milk products.
Collapse
Affiliation(s)
- Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Weiyi Ren
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Yang Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiale Tian
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Haiyan Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Ting Li
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Dairy Processing Laboratory of National Dairy Production Technology and Research Center, Ministry of Education of the People's Republic of China, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
29
|
Liu W, Su X, Duo N, Yu J, Song Y, Sun T, Zha M, Menghe B, Zhang H, Sun Z. A survey of the relationship between functional genes and acetaldehyde production characteristics in Streptococcus thermophilus by multilocus sequence typing. J Dairy Sci 2019; 102:9651-9662. [PMID: 31495625 DOI: 10.3168/jds.2018-16203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/09/2019] [Indexed: 11/19/2022]
Abstract
Streptococcus thermophilus is an important bacterium used in the production of fermented dairy products. Yogurt with good flavor is preferred by consumers; thus, variation in flavor-formation characteristics among isolates is attracting attention. Here, acetaldehyde production characteristics of 30 isolates were evaluated in parallel with genotyping and multilocus sequence typing of key functional genes involved in acetaldehyde production. The results showed that isolates could be divided into 3 phenotypically distinct groups: high-acetaldehyde-yielding isolates (>10 mg/L), medium-acetaldehyde-yielding isolates (5-10 mg/L) and low-acetaldehyde-yielding (<5 mg/L) based on evaluation of acetaldehyde production during yogurt storage. These groups, distinguishable by phenotypic characteristics, were clustered in corresponding groups based on functional gene multilocus sequence typing analysis. Combining functional gene sequence analysis of 30 Strep. thermophilus isolates with phenotypic evaluation of their flavor-related characteristics (specifically acetaldehyde production) demonstrated that groups of isolates established using genotype data analysis corresponded with groups identified based on their phenotypic traits. Interestingly, the 30 isolates of Strep. thermophilus showed significant phylogenetic clustering in acetaldehyde content by functional gene and acetaldehyde content analysis. A corresponding relationship exists between functional gene phylogenetic clustering and acetaldehyde content variation.
Collapse
Affiliation(s)
- Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xin Su
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Nala Duo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yuqing Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
30
|
Ozturkoglu-Budak S, Akal HC, Buran İ, Yetişemiyen A. Effect of inulin polymerization degree on various properties of synbiotic fermented milk including Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12. J Dairy Sci 2019; 102:6901-6913. [DOI: 10.3168/jds.2019-16479] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/23/2019] [Indexed: 11/19/2022]
|
31
|
Jiang B, Li Z, Ou B, Duan Q, Zhu G. Targeting ideal oral vaccine vectors based on probiotics: a systematical view. Appl Microbiol Biotechnol 2019; 103:3941-3953. [PMID: 30915504 DOI: 10.1007/s00253-019-09770-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
Abstract
Probiotics have great potential to be engineered into oral vaccine delivery systems, which can facilitate elicitation of mucosal immunity without latent risks of pathogenicity. Combined with the progressive understanding of probiotics and the mucosal immune system as well as the advanced biotechniques of genetic engineering, the development of promising oral vaccine vectors based on probiotics is available while complicated and demanding. Therefore, a systematical view on the design of practical probiotic vectors is necessary, which will help to logically analyze and resolve the problems that might be neglected during our exploration. Here, we attempt to systematically summarize several fundamental issues vital to the effectiveness of the vector of probiotics, including the stability of the engineered vectors, the optimization of antigen expression, the improvement of colonization, and the enhancement of immunoreactivity. We also compared the existent strategies and some developing ones, attempting to figure out an optimal strategy that might deserve to be referred in the future development of oral vaccine vectors based on probiotics.
Collapse
Affiliation(s)
- Boyu Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Zhendong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China
| | - Bingming Ou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.,College of Life Science, Zhaoqing University, Zhaoqing, 526061, China
| | - Qiangde Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou, 225009, China.
| |
Collapse
|
32
|
Vénica CI, Wolf IV, Suárez VB, Bergamini CV, Perotti MC. Effect of the carbohydrates composition on physicochemical parameters and metabolic activity of starter culture in yogurts. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Wang S, Li S, Zhao H, Gu P, Chen Y, Zhang B, Zhu B. Acetaldehyde released by Lactobacillus plantarum enhances accumulation of pyranoanthocyanins in wine during malolactic fermentation. Food Res Int 2018; 108:254-263. [DOI: 10.1016/j.foodres.2018.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/15/2022]
|
34
|
Synbiotic Microencapsulation from Slow Digestible Colored Rice and Its Effect on Yoghurt Quality. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Dan T, Wang D, Wu S, Jin R, Ren W, Sun T. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Molecules 2017; 22:E1633. [PMID: 28961194 PMCID: PMC6151417 DOI: 10.3390/molecules22101633] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus are key factors in the fermentation process and the final quality of dairy products worldwide. This study was performed to investigate the effects of the proportions of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus isolated from traditionally fermented dairy products in China and Mongolia on the profile of volatile compounds produced in samples. Six proportional combinations (1:1, 1:10, 1:50, 1:100, 1:1000, and 1:10,000) of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 were considered, and the volatiles were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) against an internal standard. In total, 89 volatile flavor compounds, consisting of aldehydes, ketones, acids, alcohols, esters, and aromatic hydrocarbons, were identified. Among these, some key flavor volatile compounds were identified, including acetaldehyde, 3-methylbutanal, acetoin, 2-heptanone, acetic acid, butanoic acid, and 3-methyl-1-butanol. The of L. delbrueckii subsp. bulgaricus IMAU20401 to S. thermophilus ND03 influenced the type and concentration of volatiles produced. In particular, aldehydes and ketones were present at higher concentrations in the 1:1000 treatment combination than in the other combinations. Our findings emphasize the importance of selecting the appropriate proportions of L. delbrueckii subsp. bulgaricus and S. thermophilus for the starter culture in determining the final profile of volatiles and the overall flavor of dairy products.
Collapse
Affiliation(s)
- Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Dan Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Shimei Wu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Rulin Jin
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Weiyi Ren
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
36
|
Balagurunathan B, Tan L, Zhao H. Metabolic engineering of Escherichia coli for acetaldehyde overproduction using pyruvate decarboxylase from Zymomonas mobilis. Enzyme Microb Technol 2017; 109:58-65. [PMID: 29224627 DOI: 10.1016/j.enzmictec.2017.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
For the sustainable production of acetaldehyde, a key raw-material for a large number of chemical products, microbial production is a promising alternative. We have engineered an Escherichia coli strain for acetaldehyde production from glucose by introducing the pyruvate decarboxylase (Pdc) from Zymomonas mobilis and NADH oxidase (Nox) from Lactococcus lactis. Acetaldehyde production was systematically improved by knocking out the competing metabolic pathways. Multiple knockout strains were created and a final acetaldehyde titre of 0.73g/L was achieved using a quadruple knockout strain E. coli MC4100 ΔadhE ΔldhA ΔfrdC ΔackA-pta. In addition to acetaldehyde, about 0.37g/L acetoin was produced by these strains due to the additional carboligase activity exhibited by pyruvate decarboxylase resulting in a total carbon yield of 0.27g/g glucose.
Collapse
Affiliation(s)
- Balaji Balagurunathan
- Bioprocess Engineering Center, Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Lily Tan
- Bioprocess Engineering Center, Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Hua Zhao
- Industrial Biotechnology Division, Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore.
| |
Collapse
|
37
|
Kaminarides S, Aktypis A, Koronios G, Massouras T, Papanikolaou S. Effect of ‘in situ
’ produced bacteriocin thermophilin T on the microbiological and physicochemical characteristics of Myzithra whey cheese. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stelios Kaminarides
- Laboratory of Dairy Science and Technology; Department of Food Science and Human Nutrition; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Anastasios Aktypis
- Laboratory of Dairy Science and Technology; Department of Food Science and Human Nutrition; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - George Koronios
- Laboratory of Dairy Science and Technology; Department of Food Science and Human Nutrition; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Theophilos Massouras
- Laboratory of Dairy Science and Technology; Department of Food Science and Human Nutrition; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology & Biotechnology; Department of Food Science and Human Nutrition; Agricultural University of Athens; Iera Odos 75 11855 Athens Greece
| |
Collapse
|
38
|
Chen C, Zhao S, Hao G, Yu H, Tian H, Zhao G. Role of lactic acid bacteria on the yogurt flavour: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1295988] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Shanshan Zhao
- College of Agriculture, Hebei University of Engineering, Handan, P.R. China
| | - Guangfei Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, P.R. China
- College of Agriculture, Hebei University of Engineering, Handan, P.R. China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, P.R. China
| | - Guozhong Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, P.R. China
| |
Collapse
|
39
|
Lin J, Hua B, Xu Z, Li S, Ma C. The Impact of Proteolytic Pork Hydrolysate on Microbial, Flavor and Free Amino Acids Compounds of Yogurt. Korean J Food Sci Anim Resour 2016; 36:558-65. [PMID: 27621698 PMCID: PMC5018517 DOI: 10.5851/kosfa.2016.36.4.558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/22/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to investigate the influence of proteolytic pork hydrolysate (PPH) on yoghurt production by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Fresh lean pork was cut into pieces and mixed with deionized water and dealt with protease, then the resulting PPH was added to milk to investigate the effects of PPH on yoghurt production. The fermentation time, the viable cell counts, the flavor, free amino acids compounds, and sensory evaluation of yoghurt were evaluated. These results showed that PPH significantly stimulated the growth and acidification of the both bacterial strains. When the content of PPH reached 5% (w/w), the increased acidifying rate occurred, which the fermentation time was one hour less than that of the control, a time saving of up to 20% compared with the control. The viable cell counts, the total free amino acids, and the scores of taste, flavor and overall acceptability in PPH-supplemented yoghurt were higher than the control. Furthermore, the contents of some characteristic flavor compounds including acids, alcohols, aldehydes, ketones and esters were richer than the control. We concluded that the constituents of PPH such as small peptide, vitamins, and minerals together to play the stimulatory roles and result in beneficial effect for the yoghurt starter cultures growth.
Collapse
Affiliation(s)
- Jinzhong Lin
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd., Shanghai 200436, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Baozhen Hua
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd., Shanghai 200436, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Zhiping Xu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd., Shanghai 200436, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Sha Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd., Shanghai 200436, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| | - Chengjie Ma
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Technology Center of Bright Dairy & Food Co., Ltd., Shanghai 200436, China; Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
40
|
Nsogning Dongmo S, Procopio S, Sacher B, Becker T. Flavor of lactic acid fermented malt based beverages: Current status and perspectives. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Peyer LC, Zannini E, Arendt EK. Lactic acid bacteria as sensory biomodulators for fermented cereal-based beverages. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Zha M, Yu J, Zhang Y, Wang H, Bai N, Qin Y, Liangliang D, Liu W, Zhang H, Bilige M. Study on Streptococcus thermophilus isolated from Qula and associated characteristic of acetaldehyde and diacetyl in their fermented milk. J GEN APPL MICROBIOL 2016; 61:50-6. [PMID: 26018501 DOI: 10.2323/jgam.61.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study, the lactic acid bacterial population of Qula cheese from the Gansu and Sichuan provinces of China were isolated and identified. Eight strains of Streptococcus thermophilus were isolated, of which five strains were selected for further characterization based on their fermentation properties. The changes in a number of parameters, including titration acidity, pH, viable counts, PrtS protease activity and the production of acetaldehyde, diacetyl and organic acid, were monitored during fermentation and the storage of fermented milks produced by the respective strain. All of the strains displaying acidifying capacity and all five fermented milks maintained high viable counts of S. thermophilus from fermentation to storage. Our study found that the changes in the monitored parameters were strain-specific and varied considerably among the five tested strains. Fermented milks produced by strain IMAU80809 had the highest concentration of acetaldehyde and were most favorable in the sensory evaluation. This study confirms that Qula cheese is a good source for isolating novel lactic acid bacterial strains with different fermentation properties, which will be very useful for further development and industrialization of traditionally fermented dairy products.
Collapse
Affiliation(s)
- Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry Education of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Landete JM. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 2016; 37:296-308. [PMID: 26918754 DOI: 10.3109/07388551.2016.1144044] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lactic acid bacteria (LAB) have a long history of use in fermented foods and as probiotics. Genetic manipulation of these microorganisms has great potential for new applications in food safety, as well as in the development of improved food products and in health. While genetic engineering of LAB could have a major positive impact on the food and pharmaceutical industries, progress could be prevented by legal issues related to the controversy surrounding this technology. The safe use of genetically modified LAB requires the development of food-grade cloning systems containing only the DNA from homologous hosts or generally considered as safe organisms, and not dependent antibiotic markers. The rationale for the development of cloning vectors derived from cryptic LAB plasmids is the need for new genetic engineering tools, therefore a vision from cryptic plasmids to applications in food-grade vectors for LAB plasmids is shown in this review. Replicative and integrative vectors for the construction of food-grade vectors, and the relationship between resistance mechanism and expression systems, will be treated in depth in this paper. Finally, we will discuss the limited use of these vectors, and the problems arising from their use.
Collapse
Affiliation(s)
- José Maria Landete
- a Departamento De Tecnología De Alimentos , Instituto Nacional De Investigación Y Tecnología Agraria Y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
44
|
Gursel A, Gursoy A, Anli EAK, Budak SO, Aydemir S, Durlu-Ozkaya F. Role of milk protein-based products in some quality attributes of goat milk yogurt. J Dairy Sci 2016; 99:2694-2703. [PMID: 26874417 DOI: 10.3168/jds.2015-10393] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/25/2015] [Indexed: 11/19/2022]
Abstract
Goat milk yogurts were manufactured with the fortification of 2% (wt/vol) skim goat milk powder (SGMP), sodium caseinate (NaCn), whey protein concentrate (WPC), whey protein isolate (WPI), or yogurt texture improver (YTI). Yogurts were characterized based on compositional, microbiological, and textural properties; volatile flavor components (with gas chromatography); and sensory analyses during storage (21d at 5 °C). Compared with goat milk yogurt made by using SGMP, the other goat milk yogurt variants had higher protein content and lower acidity values. Goat milk yogurts with NaCn and WPC, in particular, had better physical characteristics. Using WPI caused the hardest structure in yogurt, leading to higher syneresis values. Acetaldehyde and ethanol formation increased with the incorporation of WPI, WPC, or YTI to yogurt milk. The tyrosine value especially was higher in the samples with NaCn and YTI than in the samples with WPC and WPI. Counts of Streptococcus thermophilus were higher than the counts of Lactobacillus delbrueckii ssp. bulgaricus, possibly due to a stimulatory effect of milk protein-based ingredients other than SGMP on the growth of S. thermophilus. Yogurt with NaCn was the best accepted among the yogurts. For the parameters used, milk protein-based products such as NaCn or WPC have promising features as suitable ingredients for goat milk yogurt manufacture.
Collapse
Affiliation(s)
- A Gursel
- Department of Dairy Technology, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey.
| | - A Gursoy
- Department of Dairy Technology, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey
| | - E A K Anli
- Department of Dairy Technology, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey
| | - S O Budak
- Department of Dairy Technology, Faculty of Agriculture, Ankara University, 06110 Ankara, Turkey
| | - S Aydemir
- Enka Dairy and Food Products Industry and Commerce Ltd., 42150 Konya, Turkey
| | - F Durlu-Ozkaya
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Gazi University, 06830 Gölbaşı, Ankara, Turkey
| |
Collapse
|
45
|
Ren Y, Liu W, Zhang H. Identification of Coccoidal Bacteria in Traditional Fermented Milk Products from Mongolia, and the Fermentation Properties of the Predominant Species, Streptococcus thermophilus. Korean J Food Sci Anim Resour 2016; 35:683-91. [PMID: 26761898 PMCID: PMC4670899 DOI: 10.5851/kosfa.2015.35.5.683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to identify the coccoidal bacteria present in 188 samples of fermented yaks', mares' and cows' milk products collected from 12 different regions in Mongolia. Furthermore, we evaluated the fermentation properties of ten selected isolates of the predominant species, Streptococcus (S.) thermophiles, during the process of milk fermentation and subsequent storage of the resulting yoghurt at 4℃. Overall, 159 isolates were obtained from 188 samples using M17 agar. These isolates were presumed to be lactic acid bacteria based on their gram-positive and catalase-negative properties, and were identified to species level using 16S rRNA gene sequence analysis. These coccoid isolates were distributed in four genera and six species: Enterococcus (E.) durans, Enterococcus (E.) faecalis, Lactococcus (Lac.) subsp. lactis, Leuconostoc (Leuc.) lactis, Leuconostoc (Leuc.) mesenteroides. subsp. mesenteroides and S. thermophilus. Among these S. thermophilus was the most common species in most samples. From evaluation of the fermentation characteristics (viable counts, pH, titratable acidity [TA]) of ten selected S. thermophilus isolates we could identify four isolates (IMAU 20246, IMAU20764, IMAU20729 and IMAU20738) that were fast acid producers. IMAU20246 produced the highest concentrations of lactic acid and formic acid. These isolates have potential as starter cultures for yoghurt production.
Collapse
Affiliation(s)
- Yan Ren
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
46
|
Liu W, Yu J, Sun Z, Song Y, Wang X, Wang H, Wuren T, Zha M, Menghe B, Heping Z. Relationships between functional genes in Lactobacillus delbrueckii ssp. bulgaricus isolates and phenotypic characteristics associated with fermentation time and flavor production in yogurt elucidated using multilocus sequence typing. J Dairy Sci 2016; 99:89-103. [DOI: 10.3168/jds.2015-10209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/24/2015] [Indexed: 01/26/2023]
|
47
|
Basyigit Kilic G, Akpinar Kankaya D. Assessment of technological characteristics of non-fat yoghurt manufactured with prebiotics and probiotic strains. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:864-71. [PMID: 26788009 PMCID: PMC4711476 DOI: 10.1007/s13197-015-2055-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
Microbiological, physicochemical, aroma and organic acid characteristics of non-fat yoghurt incorporated with β-glucan and probiotic Lactobacillus plantarum strains (AB6-25, AC18-82 and AK4-11) combination as adjunct culture were investigated during a 21 day storage period at 4 °C. Four treatment yoghurts contained 0.25, 0.5, 1 and 1.5 % β-glucan. Treatments also included probiotic combination and commercial culture. Treatments were compared with three controls produced containing commercial culture, commercial culture and probiotic combination, and commercial culture, Lactobacillus acidophilus and inulin. The results indicated that β-glucan promote the viability of lactobacilli. However, the addition of β-glucan (except 0.25 %) resulted in enhanced syneresis (P < 0.05). In general, the use of 0.25 % β-glucan had no significant effect on pH, fat, protein and organic acid content of non-fat yoghurt. The results obtained from this research demonstrated that the use of 0.25 % β-glucan has no adverse effect on the characteristics of non-fat yogurt produced with probiotic combination.
Collapse
Affiliation(s)
- Gülden Basyigit Kilic
- />Department of Food Engineering, Faculty of Engineering-Architecture, Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Didem Akpinar Kankaya
- />Department of Food Engineering, Institute of Science and Technology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
48
|
Salmerón I, Loeza-Serrano S, Pérez-Vega S, Pandiella SS. Headspace gas chromatography (HS-GC) analysis of imperative flavor compounds in Lactobacilli-fermented barley and malt substrates. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0175-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Cloning and Overexpression of the als, pflA, and adhB Genes in Streptococcus thermophilus and Their Effects on Metabolite Formation. Mol Biotechnol 2015; 57:923-30. [DOI: 10.1007/s12033-015-9882-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Benozzi E, Romano A, Capozzi V, Makhoul S, Cappellin L, Khomenko I, Aprea E, Scampicchio M, Spano G, Märk TD, Gasperi F, Biasioli F. Monitoring of lactic fermentation driven by different starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. Food Res Int 2015; 76:682-688. [PMID: 28455053 DOI: 10.1016/j.foodres.2015.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
Abstract
In this work, we used Proton Transfer Reaction-Mass Spectrometry (PTR-ToF-MS), coupled with an automated sampling system, to monitor lactic fermentation driven by different yogurt commercial starter cultures via direct injection mass spectrometric analysis of flavour-related volatile compounds. The aim is the identification of markers for real-time and non-invasive bioprocess control and optimisation as an industrial driver of innovation in food technology and biotechnology. We detected more than 300 mass peaks, tentatively identifying all major yogurt aroma volatiles. Thirteen mass peaks showed statistically significant differences among the four commercial starters. Among these are acetaldehyde, methanethiol, butanoic acid, 2-butanone, diacetyl, acetoin, 2-hydroxy-3-pentanone/pentanoic acid, heptanoic acid and benzaldehyde which play a key role in yogurt flavour. These volatile described the diverse flavour properties claimed by food biotechnological companies and, considering the possible contribution to yogurt flavour, are potential markers for the rapid screening of starter cultures and for the quality design in this fermentation-driven production. The strength of our approach lies in the identification, for the first time, of specific depletion kinetics of four sulphur containing compounds occurring during fermentation (hydrogen sulphide, methanethiol, S-methyl thioacetate/S-ethyl thioformate, pentane-thiol), which suggest a new possible protechnological feature of yogurt starter cultures.
Collapse
Affiliation(s)
- Elisabetta Benozzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universitӓt Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Andrea Romano
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Vittorio Capozzi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Salim Makhoul
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Department of Chemistry, University of Balamand, P. O. Box 100, Tripoli, Lebanon; UMR PAM - équipe VALMIS, IUVV, 1 rue Claude Ladrey, 21078 Dijon Cedex, France
| | - Luca Cappellin
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Iuliia Khomenko
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy; Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universitӓt Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Eugenio Aprea
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Matteo Scampicchio
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122 Foggia, Italy
| | - Tilmann D Märk
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universitӓt Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Flavia Gasperi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Franco Biasioli
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), via E. Mach 1, 38010 San Michele all'Adige, Italy.
| |
Collapse
|