1
|
de Vasconcelos Medeiros GKV, Martins ACS, Vasconcelos MG, Garcia EF, Rodrigues NPA, de Albuquerque TMR, Viera VB, da Conceição ML, de Souza EL, de Oliveira MEG. Cereus jamacaru DC. (mandacaru) fruit as a source of lactic acid bacteria with in vitro probiotic-related characteristics and its protective effects on Pediococcus pentosaceus during lyophilization and refrigeration storage. Int J Food Microbiol 2024; 417:110695. [PMID: 38636163 DOI: 10.1016/j.ijfoodmicro.2024.110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/20/2024]
Abstract
This study isolated and identified autochthonous lactic acid bacteria (LAB) from mandacaru fruit and evaluated their potential probiotic and technological aptitudes in vitro, as well as the protective effects of freeze-dried mandacaru fruit on the most promising LAB isolate during lyophilization and refrigeration storage. Initially, 212 colonies were isolated from mandacaru fruit, and 34 were preliminarily identified as LAB. Thirteen isolates identified by 16S-rRNA sequencing as Pediococcus pentosaceus were negative for DNase, gelatinase, hemolytic, and biogenic amine production. The selected isolates showed proteolytic activity, diacetyl and exopolysaccharide production, and good tolerance to different NaCl concentrations while having low cellular hydrophobicity and antagonistic activity against pathogens. The survival of isolates sharply decreased after 3 h of exposure to pH 2 and had a good tolerance to 1 % bile salt. A principal component analysis selected P. pentosaceus 57 as the most promising isolate based on the examined technological and probiotic-related physiological properties. This isolate was lyophilized with mandacaru fruit and stored under refrigeration for 90 days. P. pentosaceus 57 lyophilized with mandacaru fruit had high viable cell counts (9.69 ± 0.03 log CFU/mL) and >50 % of physiologically active cells at 90 days of refrigeration storage. The results indicate that mandacaru fruit is a source of P. pentosaceus with aptitudes to be explored as potential probiotic and technological characteristics of interest for the food industry, besides being a good candidate for use in lyophilization processes and refrigeration storage of LAB due to its cryoprotective effects.
Collapse
Affiliation(s)
| | - Ana Cristina Silveira Martins
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Mateus Gomes Vasconcelos
- Laboratory of Bromatology, Department of Nutrition, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Estefânia Fernandes Garcia
- Department of Gastronomy, Center for Technology and Regional Development, Federal University of Paraíba, João Pessoa 58058-600, Brazil
| | - Noádia Priscila Araújo Rodrigues
- Department of Gastronomy, Center for Technology and Regional Development, Federal University of Paraíba, João Pessoa 58058-600, Brazil
| | | | - Vanessa Bordin Viera
- Laboratory of Bromatology, Center of Education and Health, Federal University of Campina Grande, Cuité 58175-000, Brazil
| | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Maria Elieidy Gomes de Oliveira
- Laboratory of Bromatology, Department of Nutrition, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil.
| |
Collapse
|
2
|
Wiśniewski P, Zakrzewski A, Chajęcka-Wierzchowska W, Zadernowska A. Possibility of transfer and activation of 'silent' tetracycline resistance genes among Enterococcus faecalis under high-pressure processing. Food Microbiol 2024; 120:104481. [PMID: 38431327 DOI: 10.1016/j.fm.2024.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
In this study, the tetracycline resistance of Enterococcus faecalis strains isolated from food was determined and molecular analyses of the resistance background were performed by determining the frequency of selected tetracycline resistance genes. In addition, the effect of high-pressure stress (400 and 500 MPa) on the expression of selected genes encoding tetracycline resistance was determined, as well as changes in the frequency of transfer of these genes in isolates showing sensitivity to tetracyclines. In our study, we observed an increase in the expression of genes encoding tetracyclines, especially the tet(L) gene, mainly under 400 MPa pressure. The study confirmed the possibility of transferring genes encoding tetracyclines such as tet(M), tet(L), tet(K), tet(W) and tet(O) by horizontal gene transfer in both control strains and exposed to high-pressure. Exposure of the strains to 400 MPa pressure had a greater effect on the possibility of gene transfer and expression than the application of a higher-pressure. To our knowledge, this study for the first time determined the effect of high-pressure stress on the expression of selected genes encoding tetracycline resistance, as well as the possibility and changes in the frequency of transfer of these genes in Enterococcus faecalis isolates showing sensitivity to tetracyclines and possessing silent genes. Due to the observed possibility of increased expression of some of the genes encoding tetracycline resistance and the possibility of their spread by horizontal gene transfer to other microorganisms in the food environment, under the influence of high-pressure processing in strains phenotypically susceptible to this antibiotic, it becomes necessary to monitor this ability in isolates derived from foods.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland.
| | - Arkadiusz Zakrzewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland
| | - Anna Zadernowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland
| |
Collapse
|
3
|
Al-Otaibi NM, Alsulaiman B, Alreshoodi FM, Mukhtar LE, Alajel SM, Binsaeedan NM, Alshabrmi FM. Screening for Antibiotic Resistance Genes in Bacteria and the Presence of Heavy Metals in the Upstream and Downstream Areas of the Wadi Hanifah Valley in Riyadh, Saudi Arabia. Antibiotics (Basel) 2024; 13:426. [PMID: 38786154 PMCID: PMC11117234 DOI: 10.3390/antibiotics13050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Valley surface water is considered a focal public health concern owing to the presence of multi-drug-resistant bacteria. The distribution of antimicrobial resistance (AMR) bacteria in the surface water is affected by the presence of multiple factors, including antibiotics coming from wastewater discharge or other contaminant sources such as pharmaceuticals, biocides, and heavy metals. Furthermore, there is evidence suggesting that high levels of antibiotic resistance genes (ARGs) can be transferred within bacterial communities under the influence of heavy metal stress. Hence, the primary aim of this study is to investigate the presence of heavy metals and bacterial ARGs in upstream as well as downstream locations of Wadi Hanifah Valley in Riyadh, Saudi Arabia. Sample collection was conducted at eighteen surface water sites within the valley in total. The selection of ARGs was associated with the most common antibiotics, including β-lactam, tetracycline, erythromycin, gentamicin, sulphonamide, chloramphenicol, vancomycin, trimethoprim, and colistin antibiotics, which were detected qualitatively using polymerase chain reaction (PCR) technology. The tested antibiotic resistance genes (ARGs) included (blaNDM-1 (for the antibiotic class Beta-lactamases), mecA (methicillin-resistant Staphylococcus aureus), tet(M) and tet(B) (for the antibiotic class Tetracycline), ampC (for the antibiotic class Beta-lactamases), vanA (for the antibiotic class vancomycin), mcr-1 (for the antibiotic class colistin), erm(B) (for the antibiotic class erythromycin), aac6'-Ie-aph2-Ia (for the antibiotic class Gentamicin), sulII (for the antibiotic class sulphonamide), catII (for the antibiotic class Chlorophincol), and dfrA1 (for the antibiotic class trimethoprim). Moreover, an assessment of the levels of heavy metals such as lithium (Li), beryllium (Be), chromium (Cr), cobalt (Co), arsenic (As), cadmium (Cd), tin (Sn), mercury (Hg), and lead (Pb) was conducted by using inductively coupled plasma mass spectrometry (ICPMS). According to our findings, the concentrations of sulphonamide, erythromycin, and chloramphenicol ARGs (erm(B), sulII, and catII) were observed to be the most elevated. Conversely, two ARGs, namely mecA and mcr-1, were not detected in the samples. Moreover, our data illustrated a significant rise in ARGs in the bacteria of water samples from the upstream sites as compared with the water samples from the downstream sites of Wadi Hanifah Valley. The mean concentration of Li, Be, Cr, Co, As, Cd, Sn, Hg, and Pb in the water samples was estimated to be 37.25 µg/L, 0.02 µg/L, 0.56 µg/L,0.32 µg/L, 0.93 µg/L, 0.01 µg/L, 200.4 µg/L, 0.027 µg/L, and 0.26 µg/L, respectively, for the selected 18 sites. Furthermore, it was revealed that the concentrations of the screened heavy metals in the water samples collected from various sites did not surpass the maximum limits set by the World Health Organization (WHO). In conclusion, this study offers a concise overview of the presence of heavy metals and ARGs in water samples obtained from the Wadi Hanifah Valley in Riyadh, KSA. Such findings will contribute to the ongoing monitoring and future risk assessment of ARGs spread in surface water.
Collapse
Affiliation(s)
- Norah M. Al-Otaibi
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Bassam Alsulaiman
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Fahad M. Alreshoodi
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Lenah E. Mukhtar
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Sulaiman M. Alajel
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Norah M. Binsaeedan
- Executive Department of Reference Laboratories, Research and Laboratories, Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia; (N.M.A.-O.); (B.A.); (S.M.A.); (N.M.B.)
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
4
|
Lee MG, Kang MJ, Kim S, Jeong H, Kang DK, Paik HD, Park YS. Safety Assessment of Levilactobacillus brevis KU15006: A Comprehensive Analysis of its Phenotypic and Genotypic Properties. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10237-z. [PMID: 38430332 DOI: 10.1007/s12602-024-10237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Levilactobacillus brevis KU15006, isolated from kimchi, exhibits pathogen-antagonistic and anti-diabetic activities; however, the safety of this strain has not been assessed. In the present study, L. brevis KU15006 was evaluated to elucidate its safety as a probiotic strain using phenotypic and genotypic analyses. Its safety was assessed using a minimum inhibitory concentration test comprising nine antibiotics, 26 antibiotic resistance genes, a single conjugative element, virulence gene analysis, hemolysis, cell cytotoxicity, mucin degradation, and toxic metabolite production. L. brevis KU15006 exhibited equal or lower minimum inhibitory concentration for the nine antibiotics than the cut-off value established by the European Food Safety Authority. It did not harbor antibiotic resistance and virulence genes. L. brevis KU15006 lacked β-hemolysis, mucin degradation, cytotoxicity against Caco-2 cells, gelatin liquefaction, bile salt deconjugation, and toxic metabolite production abilities. Based on the results, L. brevis KU15006, which has antagonistic and anti-diabetic effects, could be marketed as a probiotic in the future.
Collapse
Affiliation(s)
- Min-Gyu Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Min-Joo Kang
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Suin Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
5
|
Tran HM, Prathan R, Hein ST, Chuanchuen R. Microbiological Quality and Antimicrobial Resistance of Commercial Probiotic Products for Food-Producing Animals. Antibiotics (Basel) 2024; 13:148. [PMID: 38391534 PMCID: PMC10885956 DOI: 10.3390/antibiotics13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Probiotics have been popularly used in livestock production as an alternative to antibiotics. This study aimed to investigate the microbiological quality and phenotypic and genotypic antimicrobial resistance of bacteria in probiotic products sold for food animals. A total of 45 probiotic products were examined for the number of viable cells, species, and antimicrobial susceptibility; the contamination of Escherichia coli and Salmonella; and the presence of 112 genes encoding resistance to clinically important antimicrobials and transferability of AMR determinants. The results showed that 29 of 45 products (64.4%) were incorrectly labeled in either number of viable cells or bacterial species. None of the tested products were contaminated with E. coli and Salmonella. A total of 33 out of 64 bacterial isolates (51.6%) exhibited resistance to at least one antimicrobial agent. Of the 45 products tested, 16 (35.5%) carried AMR genes. Almost all AMR genes detected in probiotic products were not correlated to the AMR phenotype of probiotic strains formulated in the products. Three streptomycin-resistant Lactobacillus isolates could horizontally transfer their AMR determinants. The findings demonstrated that the probiotic products could serve as reservoirs for the spread of AMR genes and may not yield benefits to animals as claimed. The need for the adequate quality control of probiotic products is highlighted.
Collapse
Affiliation(s)
- Hoang My Tran
- The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rangsiya Prathan
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Si Thu Hein
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungtip Chuanchuen
- Research Unit in Microbial Food Safety and Antimicrobial Resistance, Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in Cooperation with WHO), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Adhikari A, Banerjee P, Thornton T, Jones DH, Adeoye C, Sherpa S. Exposure Levels of Airborne Fungi, Bacteria, and Antibiotic Resistance Genes in Cotton Farms during Cotton Harvesting and Evaluations of N95 Respirators against These Bioaerosols. Microorganisms 2023; 11:1561. [PMID: 37375063 DOI: 10.3390/microorganisms11061561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The USA is the third-leading cotton-producing country worldwide and cotton farming is common in the state of Georgia. Cotton harvest can be a significant contributor to airborne microbial exposures to farmers and nearby rural communities. The use of respirators or masks is one of the viable options for reducing organic dust and bioaerosol exposures among farmers. Unfortunately, the OSHA Respiratory Protection Standard (29 CFR Part 1910.134) does not apply to agricultural workplaces and the filtration efficiency of N95 respirators was never field-tested against airborne microorganisms and antibiotic resistance genes (ARGs) during cotton harvesting. This study addressed these two information gaps. Airborne culturable microorganisms were sampled using an SAS Super 100 Air Sampler in three cotton farms during cotton harvesting, and colonies were counted and converted to airborne concentrations. Genomic DNA was extracted from air samples using a PowerSoil® DNA Isolation Kit. A series of comparative critical threshold (2-ΔΔCT) real-time PCR was used to quantify targeted bacterial (16S rRNA) genes and major ARGs. Two N95 facepiece respirator models (cup-shaped and pleated) were evaluated for their protection against culturable bacteria and fungi, total microbial load in terms of surface ATP levels, and ARGs using a field experimental setup. Overall, culturable microbial exposure levels ranged between 103 and 104 CFU/m3 during cotton harvesting, which was lower when compared with bioaerosol loads reported earlier during other types of grain harvesting. The findings suggested that cotton harvesting works can release antibiotic resistance genes in farm air and the highest abundance was observed for phenicol. Field experimental data suggested that tested N95 respirators did not provide desirable >95% protections against culturable microorganisms, the total microbial load, and ARGs during cotton harvesting.
Collapse
Affiliation(s)
- Atin Adhikari
- Department of Biostatistics, Epidemiology & Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taylor Thornton
- Department of Biostatistics, Epidemiology & Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Daleniece Higgins Jones
- Department of Public Health, College of Education, Health, and Human Sciences, The University of Tennessee, Knoxville, TN 37996, USA
| | - Caleb Adeoye
- Department of Biostatistics, Epidemiology & Environmental Health Sciences, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Sonam Sherpa
- Department of Health Policy and Community Health, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
7
|
Obioha PI, Anyogu A, Awamaria B, Ghoddusi HB, Ouoba LII. Antimicrobial Resistance of Lactic Acid Bacteria from Nono, a Naturally Fermented Milk Product. Antibiotics (Basel) 2023; 12:antibiotics12050843. [PMID: 37237746 DOI: 10.3390/antibiotics12050843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the biggest threats to public health. The food chain has been recognised as a vehicle for transmitting AMR bacteria. However, information about resistant strains isolated from African traditional fermented foods remains limited. Nono is a traditional, naturally fermented milk product consumed by many pastoral communities across West Africa. The main aim of this study was to investigate and determine the AMR patterns of lactic acid bacteria (LAB) involved in the traditional fermentation of milk for Nono production, and the presence of transferable AMR determinants. METHODS One hundred (100) LAB isolates from Nono identified in a previous study as Limosilactobacillus fermentum, Lactobacillus delbrueckii, Streptococcus thermophilus, Streptococcus infantarius, Lentilactobacillus senioris, Leuconostoc pseudomesenteriodes, and Enterococcus thailandicus were investigated. The minimum inhibitory concentration (MIC) was determined for 18 antimicrobials using the micro-broth dilution method. In addition, LAB isolates were screened for 28 antimicrobial resistance genes using PCR. The ability of LAB isolates to transfer tetracycline and streptomycin resistance genes to Enterococcus faecalis was also investigated. RESULTS The experiments revealed variable antimicrobial susceptibility according to the LAB isolate and the antimicrobial tested. The tetracycline resistance genes tet(S) and tet(M) were detected in isolates Ent. thailandicus 52 and S. infantarius 10. Additionally, aad(E) encoding resistance to streptomycin was detected in Ent. thailandicus 52. The conjugation experiments suggested that the tet(S) and aad(E) genes were transferable in vitro from isolate Ent. thailandicus 52 to Ent. faecalis JH2-2. SIGNIFICANCE AND IMPACT Traditional fermented foods play a significant role in the diet of millions of people in Africa, yet their contribution to the burden of AMR is largely unknown. This study highlights that LAB involved in traditionally fermented foods could be potential reservoirs of AMR. It also underscores the relevant safety issues of Ent. thailandicus 52 and S. infantarius 10 for use as starter cultures as they carry transferable AMR genes. Starter cultures are an essential aspect of improving the safety and quality attributes of African fermented foods. However, AMR monitoring is an important safety aspect in the selection of starter cultures for improving traditional fermentation technologies.
Collapse
Affiliation(s)
- Promiselynda I Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Amarachukwu Anyogu
- Food Safety and Security, School of Biomedical Sciences, University of West London, St. Marys Road, London W5 5RF, UK
| | - Brigitte Awamaria
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Hamid B Ghoddusi
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Labia Irene I Ouoba
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
- Independent Senior Research Scientist & Consultant, Ouoba-Consulting, London SW16 2DY, UK
| |
Collapse
|
8
|
Ferri G, Lauteri C, Scattolini M, Vergara A. Antibiotic Resistance Profiles and ARG Detection from Isolated Bacteria in a Culture-Dependent Study at the Codfish Industry Level. Foods 2023; 12:foods12081699. [PMID: 37107494 PMCID: PMC10137873 DOI: 10.3390/foods12081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The antibiotic resistance phenomenon horizontally involves numerous bacteria cultured from fresh or processed seafood matrix microbiomes. In this study, the identified bacteria from food-producing processes and industrial environments were screened for phenotypic and genotypic resistance determinants. A total of 684 bacterial strains [537 from processed codfish (Gadus morhua and Gadus macrocephalus) products as salted and seasoned and soaked and 147 from environmental samples] were isolated. Antibiotic susceptibility tests showed resistance against tetracycline, oxacillin, and clindamycin in the Staphylococcus genus (both from food and environmental samples) and against beta-lactams (cefotaxime, carbapenems, etc.) and nitrofurans (nitrofurantoin) from E. coli and Salmonella enterica serovar. Enteritidis isolates. One-thousand and ten genetic determinants-tetracycline tetC (25.17%), tetK (21.06%), tetL (11.70%), clindamycin ermC (17.23%), ermB (7.60%), linezolid cfr (8.22%), optrA (3.62%), poxtA (2.05%), and oxacillin mecA (17.37%)-were amplified from Gram-positive resistant and phenotypically susceptible bacteria. Concerning Gram-negative bacteria, the beta-lactam-resistant genes (blaTEM, blaCIT, blaCTX-M, blaIMP, blaKPC, blaOXA-48-like) represented 57.30% of the amplified ARGs. This study found high antibiotic resistance genes in circulation in the fish food industry chain from the macro- to microenvironment. The obtained data confirmed the diffusion of the "antibiotic resistance phenomenon" and its repercussions on the One-health and food-producing systems.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy
| | - Carlotta Lauteri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy
| | | | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy
| |
Collapse
|
9
|
Characterization of Lactic Acid Bacteria Isolated from Spontaneously Fermented Sausages: Bioprotective, Technological and Functional Properties. Foods 2023; 12:foods12040727. [PMID: 36832801 PMCID: PMC9955731 DOI: 10.3390/foods12040727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Fermentation is one of the most ancient strategies to improve safety and extend shelf-life of the products. Starter cultures are mainly represented by lactic acid bacteria (LAB), which may also be bioprotective agents controlling the fermentation process, the native microbiota and pathogen outgrowth. This work aimed to select new LAB strains from spontaneously fermented sausages produced in different areas of Italy, which can be effective as starter cultures and bioprotective agents in fermented salami. The strains, mainly belonging to the Latilactobacillus sakei species, were characterized for their ability to inhibit major meat pathogens, the presence of antibiotic resistances and amine production. Moreover, technological performances, such as growth and acidification kinetics at increasing NaCl concentrations, were studied. As a result, new autochthonous Lat. sakei strains were obtained, lacking antibiotic resistance, possessing antimicrobial activity against Clostridium sporogenes, Listeria monocytogenes, Salmonella and Escherichia coli and with high growth performance under osmotic pressure. These strains have the potential for future application to improve the safety of fermented meats, even under conditions in which chemical preservatives are reduced or eliminated. Moreover, studies on autochthonous cultures are pivotal for guaranteeing specific characteristics of traditional products that represent an important cultural heritage.
Collapse
|
10
|
A Comprehensive Study on Antibiotic Resistance among Coagulase-Negative Staphylococci (CoNS) Strains Isolated from Ready-to-Eat Food Served in Bars and Restaurants. Foods 2023; 12:foods12030514. [PMID: 36766043 PMCID: PMC9914766 DOI: 10.3390/foods12030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The present study aimed to characterize and assess the diversity of CoNS strains as potential vectors for the spread of resistance to antimicrobial agents from RTE foods served in bars and restaurants. Eighty-five CoNS strains, obtained from 198 RTE food samples, were investigated. Sixty-seven CoNS isolates (78.8%) were resistant to at least one antibiotic tested, and 37 (43.5%) were multidrug resistant (MDR-CoNS). Moreover, CoNS strains contained genes conferring resistance to antibiotics critically important in medicine, i.e., β-lactams [mecA (29.4%); blaZ (84.7%)], aminoglycosides [aac(6')-Ie-aph(2″)-Ia (45.9%); aph(2″)-Ic (3.5%)], macrolides, lincosamides and streptogramin B-MLSB [msrA/B (68.2%); ermB (40%) and mphC (4.7%)], tetracyclines [tetK (31.8%); tetM (16.5%) and/or tetL (2.35%)]. We also found the fusB/C/D genes responsible for the acquired low-level fusidic acid resistance (17.6%) and streptogramin resistance determinant vgaA in 30.6% of isolates. In three linezolid resistant strains (2 S. epidermidis and 1 S. warneri), mutation was detected, as demonstrated by L101V and V188I changes in the L3 protein amino acid sequences. The high frequency in RTE food of MDR-CoNS including methicillin-resistant (MR-CoNS) strains constitutes a direct risk to public health as they increase the gene pool from which pathogenic bacteria can pick up resistance traits.
Collapse
|
11
|
Anisimova E, Gorokhova I, Karimullina G, Yarullina D. Alarming Antibiotic Resistance of Lactobacilli Isolated from Probiotic Preparations and Dietary Supplements. Antibiotics (Basel) 2022; 11:1557. [PMID: 36358212 PMCID: PMC9686474 DOI: 10.3390/antibiotics11111557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 09/08/2024] Open
Abstract
In this study, we screened eight commercially available brands of Lactobacillus-containing probiotic preparations and dietary supplements for resistance towards commonly administered antibiotics of different classes. According to disc diffusion results, most of the isolates were resistant to vancomycin and susceptible to penicillin-type antibiotics (ampicillin and amoxicillin), carbapenems (imipenem, meropenem, and ertapenem), and inhibitors of protein synthesis (chloramphenicol, erythromycin, tetracycline, clarithromycin, and linezolid). However, based on minimum inhibitory concentration (MIC) values, six strains were reconsidered as resistant to tetracycline. All tested lactobacilli were resistant towards amikacin, ciprofloxacin, and norfloxacin. Resistance to cephalosporins was highly variable and decreased in the following order: ceftazidime/cefepime, ceftriaxone, cefotaxime, cefazolin, and cefoperazone. PCR screening for antibiotic resistance determinants in probiotic lactobacilli revealed a wide occurrence of vancomycin resistance gene vanX, ciprofloxacin resistance gene parC, and extended-spectrum β-lactamase gene blaTEM. We also detected the tetK gene for tetracycline resistance in one isolate. Additionally, we identified discrepancies between the claims of the manufacturers and the identified species composition, as well as the enumerated amount of viable bacteria, for several products. The results of this study raise concerns about the safety of lactobacilli for human consumption as probiotics, as they may act as reservoirs of transferable antibiotic resistance genes.
Collapse
Affiliation(s)
| | | | | | - Dina Yarullina
- Department of Microbiology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| |
Collapse
|
12
|
Gajewska J, Chajęcka-Wierzchowska W, Zadernowska A. Occurrence and Characteristics of Staphylococcus aureus Strains along the Production Chain of Raw Milk Cheeses in Poland. Molecules 2022; 27:molecules27196569. [PMID: 36235105 PMCID: PMC9573400 DOI: 10.3390/molecules27196569] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Cheeses produced from unpasteurized milk by traditional production methods may contain many groups of microorganisms, including Staphylococcus aureus. The aim of this study was to determine the occurrence of S. aureus in the artisanal cheese production chain from unpasteurized milk. We investigated the prevalence of S. aureus strains isolated from various stages of artisanal cheese of unpasteurized milk production from farms in the northeastern and southern parts of Poland and characterized them. Characterization included antimicrobial susceptibility by microbroth dilution and biofilm formation by in vitro assay. Among all strains, the presence of enterotoxigenic genes and genes involved with biofilm formation and antibiotic resistance were screened by PCR-based methods. A total of 180 samples were examined. A high percentage of strains were resistant to penicillin (54/58.1%) and tobramycin (32/34.4%). Some tested isolates also showed resistance to the macrolide class of antibiotics: azithromycin, clarithromycin, and erythromycin at 17/18.3%, 15/16.1%, and 21/22.6%, respectively. Among tested isolates, we also found phenotypic resistance to oxacillin (9/9.7%) and cefoxitin (12/12.9%). The blaZ gene encoding penicillin resistance was the most common gene encoding antibiotic resistance among the tested strains. All isolates showing phenotypic resistance to cefoxitin possessed the mecA gene. The study also evaluated the prevalence of biofilm-associated genes, with eno the most frequently associated gene. Eighty-nine out of 93 S. aureus isolates (95.7%) possessed at least one enterotoxin-encoding gene. The results of this study showed that production of raw milk cheeses may be a source of antibiotic resistance and virulent S. aureus. Our results suggest that artisanal cheese producers should better control production hygiene.
Collapse
|
13
|
Taxonomical Identification and Safety Characterization of Lactobacillaceae from Mediterranean Natural Fermented Sausages. Foods 2022; 11:foods11182776. [PMID: 36140904 PMCID: PMC9497648 DOI: 10.3390/foods11182776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Fermented meat products represent an important industrial sector in Europe, particularly in the Mediterranean Countries (MC), where the presence of numerous local productions, still obtained through spontaneous fermentation, is recognized as a formidable treasure chest of unexplored microbial biodiversity. Lactobacillaceae naturally occurring in fifteen spontaneously fermented sausages from MC (Italy, Spain, Croatia, and Slovenia) were isolated and taxonomically characterized using molecular techniques. Additionally, a safety assessment for the presence of antibiotic resistances and biogenic amine (BA) production was performed to determine their suitability as autochthonous starter cultures. Molecular typing, performed using REP-PCR, discriminated 151 strains belonging to Latilactobacillus sakei (59.6%), Latilactobacillus curvatus (26.5%) and Companilactobacillus alimentarius (13.9%). The minimum inhibitory concentrations (MICs) of eight different antibiotics revealed a high resistance to streptomycin (27%), tetracycline (16%), followed by gentamycin (14%) and kanamycin (13%). Interestingly, the results showed a geographical distribution of resistant biotypes. tetM/tetS or ermB genes were identified in only six strains. The amino-biogenic potential of the strains was assessed, confirming the absence of this trait among L. sakei, while a high number of producer strains was found among L. curvatus. On the 151 analyzed strains, 45 demonstrated safety traits for their future use as starter food cultures. These results open the way to further studies on the technological properties of these promising autochthonous strains, strongly linked to the Mediterranean environment.
Collapse
|
14
|
Yu L, Chen Y, Duan H, Qiao N, Wang G, Zhao J, Zhai Q, Tian F, Chen W. Latilactobacillus sakei: a candidate probiotic with a key role in food fermentations and health promotion. Crit Rev Food Sci Nutr 2022; 64:978-995. [PMID: 35997270 DOI: 10.1080/10408398.2022.2111402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Latilactobacillus sakei is used extensively in industrial production and food fermentations. The species is primarily derived from fermented meat and vegetable products and is also found in human feces. Genomics and metabolomics have revealed unique metabolic pathways in L. sakei and molecular mechanisms underlying its competitive advantages in different habitats, which are mostly attributed to its flexible carbohydrate metabolism, cold tolerance, acid and salt tolerance, ability to cope with oxygen changes, and heme uptake. In recent years, probiotic effects of L. sakei and its metabolites have been identified, including the ability to effectively alleviate metabolic syndrome, inflammatory bowel disease, and atopic dermatitis. This review summarizes the genomic and metabolic characteristics of L. sakei and its metabolites and describes their applications, laying a foundation for their expanded use across the food and healthcare industries.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Nanzhen Qiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics at Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Zarzecka U, Chajęcka-Wierzchowska W, Zadernowska A. Occurrence of antibiotic resistance among Enterobacterales isolated from raw and ready-to-eat food - phenotypic and genotypic characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1733-1744. [PMID: 33784901 DOI: 10.1080/09603123.2021.1908522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was phenotypic and genotypic characterization of antibiotic-resistant food-borne Enterobacterales. The largest number of isolates was identified as Enterobacter cloacae (42.4%) followed by Escherichia coli (9.8%), Proteus mirabilis, Salmonella enterica, Proteus penneri, Citrobacter freundii (7.6% each), Citrobacter braakii (6.6%), Klebsiella pneumoniae and Klebsiella oxytoca (5.4% each). More than half of isolates (52.2%) were resistant to at least one antibiotic. The majority were resistant to amoxicillin-clavulanate (28.3%) and ampicillin (19.5%). ESBL(+) phenotype was showed by 26 isolates and AmpC(+) phenotype by 32 isolates. The blaCTX-M gene was carried by 53.8% of ESBL-positive isolates, gene from CIT family by 43.8% of AmpC-positive isolates. Our results suggest that more attention should be paid to antibiotic resistance of food-borne Enterobacterales. The presence of transmissible antibiotic resistance markers is an important criterion in the evaluation of food safety.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| | - Anna Zadernowska
- Chair of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
16
|
Chen R, Tu H, Chen T. Potential Application of Living Microorganisms in the Detoxification of Heavy Metals. Foods 2022; 11:1905. [PMID: 35804721 PMCID: PMC9265996 DOI: 10.3390/foods11131905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
Heavy metal (HM) exposure remains a global occupational and environmental problem that creates a hazard to general health. Even low-level exposure to toxic metals contributes to the pathogenesis of various metabolic and immunological diseases, whereas, in this process, the gut microbiota serves as a major target and mediator of HM bioavailability and toxicity. Specifically, a picture is emerging from recent investigations identifying specific probiotic species to counteract the noxious effect of HM within the intestinal tract via a series of HM-resistant mechanisms. More encouragingly, aided by genetic engineering techniques, novel HM-bioremediation strategies using recombinant microorganisms have been fruitful and may provide access to promising biological medicines for HM poisoning. In this review, we summarized the pivotal mutualistic relationship between HM exposure and the gut microbiota, the probiotic-based protective strategies against HM-induced gut dysbiosis, with reference to recent advancements in developing engineered microorganisms for medically alleviating HM toxicity.
Collapse
Affiliation(s)
- Runqiu Chen
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang 330031, China; (R.C.); (H.T.)
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Huaijun Tu
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang 330031, China; (R.C.); (H.T.)
| | - Tingtao Chen
- Departments of Geriatrics, the Second Affiliated Hospital of Nanchang University, Nanchang 330031, China; (R.C.); (H.T.)
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
17
|
Kim JH, Lee ES, Kim BM, Ham JS, Oh MH. Broad-spectrum antimicrobial activity of cinnamoyl esterase-producing Lactobacilli and their application in fermented rice bran. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3130-3139. [PMID: 34791662 DOI: 10.1002/jsfa.11654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cinnamoyl esterase (CE) can release antioxidant phenolic acids from its non-digestible ester-linked form. Fermentation using CE-producing lactic acid bacteria (LAB) can be useful in the food industry because of its ability to produce bioactive compounds and antibacterial metabolites. The purpose of this study was to confirm the food applicability of LAB with CE-producing ability and broad-spectrum antibacterial activity. RESULTS Among the 219 bacterial strains identified in infant feces, five Lactobacillus gasseri and six Limosilactobacillus fermentum with a high CE activity were isolated. The survival rate of all selected LABs was > 95% at pH 2.5 for 3 h and > 70% when treated with 0.3% bile salt for 4 h. Moreover, cell-free supernatants of all strains strongly inhibited five food-borne bacterial pathogens (Listeria monocytogenes, Salmonella enterica, Escherichia coli O157:H7, Bacillus cereus, and Staphylococcus aureus) and three toxin-producing fungal pathogens (Aspergillus niger, Penicillium sp., and Fusarium oxysporum). To improve phenolic acid content and rice bran preservation, Limosilactobacillus fermentum J2 with the strongest CE activity and Lactobacillus gasseri N2 with the strongest antibacterial activity were used in rice bran fermentation, respectively. FRB-J2 (fermented rice bran with Limosilactobacillus fermentum J2) and FRB-N2 (fermented rice bran with Lactobacillus gasseri N2) significantly increased caffeic acid and ferulic acid (P < 0.01). FRB-J2 and FRB-N2 artificially inoculated with F. oxysporum showed no visible fungal growth during the test period (21 days). CONCLUSION Fermentation by Limosilactobacillus fermentum J2 and Lactobacillus gasseri N2 can help extend the shelf life of rice bran-based products and produce bioactive compounds. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jong-Hui Kim
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Eun-Seon Lee
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Bu-Min Kim
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jun-Sang Ham
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
18
|
Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Food Microbiol 2022; 103:103934. [DOI: 10.1016/j.fm.2021.103934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023]
|
19
|
Effect of cultured white soft cheese on the histopathological changes in the kidneys and liver of albino rats. Sci Rep 2022; 12:2564. [PMID: 35169197 PMCID: PMC8847355 DOI: 10.1038/s41598-022-06522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/01/2022] [Indexed: 11/29/2022] Open
Abstract
Three different types of lactic acid bacteria (Lactobacillus helveticus, Lactobacillus rhamnosus and Streptococcus thermophilus S3855) were used to manufacture white soft cheese. The resultant white soft cheeses were pickled for 28 days at refrigerator temperatures and were fed to the experimental rats. The chemical and microbiological analyses of white soft cheese were conducted at different storage periods (fresh, 7 days, 14 days, 21 days, and 28 days). The pH values and protein content of white soft cheese gradually decreased during the storage peroid. Conversely, the moisture content, titratable acidity, and fat/DM % of white soft cheese were found to increase with of the increase in pickling periods of up to 28 days. Microbiologically, the total viable count of bacteria in the control samples was lower than that in the other treatments. Furthermore, the treatments containing the L. helveticus and L. rhamnosus strains had the highest lactoacilli counts whereas the treatment containing the S. thermophilus strain had the highest streptococci counts. Twenty-five male Albino rats were used for experiemntal technique. Rats were fed with 70% basal diet with addition of 30% white soft cheese. Several pathological findings were present in all experimental groups apart from the control rats, and the kidney samples exhibited renal vascular congestion especially in the cortical area. The changes of the glomeruli comprise atrophy, distortion, hypocellularity of the glomerular tuft, and focal lymphoid cell reactions. The renal tubular epithelium showed a series of degenerative changes ranging up to necrosis. The liver samples showed variable hepatic injury in the form of thickening in the Glisson capsule, as well as dissociation and disorganization of hepatic cords. Hepatocellular vacuolar degeneration, presence of focal areas of nodular hyperplasia, the hyperplastic cells mixed with lymphocytic infiltration, congestion in the portal vein, periportal fibrosis and edema with the presence of newly formed nonfunctional bile ductulus. Based on the histopathology scores, the severity of renal and hepatic changes was significantly increased (P ≤ 0.05) in all of the experimental groups compared with the control group. Generally, the chemical composition, microbiological analysis and vital organs were significantly affected by using cultured white soft cheese.
Collapse
|
20
|
A potentially probiotic strain of Enterococcus faecalis from human milk that is avirulent, antibiotic sensitive, and nonbreaching of the gut barrier. Arch Microbiol 2022; 204:158. [PMID: 35107663 DOI: 10.1007/s00203-022-02754-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Human milk is a key source of promising probiotic lactic acid bacteria. The Enterococcus species, because of their dual commensal and pathogenic nature, demand critical safety analysis to establish them as probiotic candidates. In this study, eighteen E. faecalis strains from human milk of mothers living in Pakistan were typed at the strain level by riboprinting. The typed strains were then evaluated in vitro for physiological safety and the presence of transmissible antibiotic resistance genes, adhesion genes, biogenic amines, and virulence factors. Selected strains were then checked for tolerance to gastrointestinal acid and bile as criteria for probiotic efficacy. Molecular typing revealed that the strains fell into five distinct clusters or ribotypes. Testing revealed that they were non-hemolytic; however, all strains had gelatinase activity except NPL-493. The isolates were susceptible to most clinically important antibiotics except streptomycin. Molecular screening for antibiotic resistance genes, adhesion genes, biogenic amines, and virulence factors indicated that none of the strains possessed resistance genes for aminoglycosides, vancomycin, bacitracin, tetracycline, or clindamycin. Most virulence factors were absent except for the genes gelE and efaAs associated with gut adhesion and translocation, which were present in all except NPL-493. Strain NPL-493 was the most promising probiotic candidate demonstrating significant tolerance to the acid, bile, and digestive enzymes in the human GIT and antibacterial activity against multiple pathogens. The study concluded that E. faecalis NPL-493 from human milk was safe among all the strains and could be considered a potential probiotic.
Collapse
|
21
|
Fatahi-Bafghi M, Naseri S, Alizehi A. Genome analysis of probiotic bacteria for antibiotic resistance genes. Antonie van Leeuwenhoek 2022; 115:375-389. [PMID: 34989942 DOI: 10.1007/s10482-021-01703-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022]
Abstract
To date, probiotic bacteria are used in the diet and have various clinical applications. There are reports of antibiotic resistance genes in these bacteria that can transfer to other commensal and pathogenic bacteria. The aim of this study was to use whole-genome sequence analysis to identify antibiotic resistance genes in a group of bacterial with probiotic properties. Also, this study followed existing issues about the importance and presence of antibiotic resistance genes in these bacteria and the dangers that may affect human health in the future. In the current study, a collection of 126 complete probiotic bacterial genomes was analyzed for antibiotic resistance genes. The results of the current study showed that there are various resistance genes in these bacteria that some of them are transferable to other bacteria. The tet(W) tetracycline resistance gene was more than other antibiotic resistance genes in these bacteria and this gene was found in Bifidobacterium and Lactobacillus. In our study, the most numbers of antibiotic resistance genes were transferred with mobile genetic elements. We propose that probiotic companies before the use of a micro-organism as a probiotic, perform an antibiotic susceptibility testing for a large number of antibiotics. Also, they perform analysis of complete genome sequence for prediction of antibiotic resistance genes.
Collapse
Affiliation(s)
- Mehdi Fatahi-Bafghi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Sara Naseri
- Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Alizehi
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
22
|
Microorganisms from starter and protective cultures - Occurrence of antibiotic resistance and conjugal transfer of tet genes in vitro and during food fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Jang WJ, Kim CE, Jeon MH, Lee SJ, Lee JM, Lee EW, Hasan MT. Characterization of Pediococcus acidilactici FS2 isolated from Korean traditional fermented seafood and its blood cholesterol reduction effect in mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
24
|
Hammad AM, Aly SS, Hassan HA, Abbas NH, Eltahan A, Khalifa E, Shimamoto T. Occurrence, Phenotypic and Molecular Characteristics of Vancomycin-Resistant Enterococci Isolated from Retail Raw Milk in Egypt. Foodborne Pathog Dis 2021; 19:192-198. [PMID: 34847725 DOI: 10.1089/fpd.2021.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to determine the occurrence, phenotypic and molecular characteristics of vancomycin-resistant enterococci (VRE), isolated from retail raw cow's milk. One hundred milk samples collected from retail shops in Egypt were examined for the occurrence of VRE by using kanamycin aesculin azide agar supplemented with 4 μg/mL vancomycin. PCR was conducted to determine enterococcal species and to screen the isolated strains for the presence of antibiotic resistance and virulence genes. All isolated strains were characterized by antimicrobial susceptibility testing for 12 antibiotics. From 24 samples (24%), we recovered 22 isolates (91.6%) classified as VRE (minimum inhibitory concentration ≥32) and 2 isolates (8.3%) classified as intermediate resistant to vancomycin (≤16). Enterococcus faecium (29.1%), Enterococcus faecalis (12.5%), Enterococcus casseliflavus (16.6%), and Enterococcus gallinarum (4.1%) were identified by using multiplex PCR. The genus Enterococcus was resistant to clindamycin (100%), linezolid (91.6%), teicoplanin (91.6%), erythromycin (87.5%), and tetracycline (29.1%). Co-resistance to vancomycin, teicoplanin, and linezolid was detected in 83.3% of isolates. Antibiotic resistance genes vanB, tet(M), tet(L), and erm(B) were identified in 29.1%, 16.6%, 8.3%, and 4.1% of isolates, respectively. Virulence genes gelE and esp were detected in 16.6% and 12.5% of isolates, respectively. In conclusion, the high occurrence of co-resistance to vancomycin, teicoplanin, and linezolid reported in this study is alarming. The high frequency of linezolid resistance prompts increased the attention of researchers to routinely perform linezolid susceptibility in food isolates. This study declares potential food safety risks from consumption and improper handling of raw milk regarding clinically important bacteria and promotes necessary legislation for forbidding the selling and consumption of retail raw milk.
Collapse
Affiliation(s)
- Ahmed M Hammad
- Departement of Food Microbiology and Hygiene, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Seham S Aly
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Hamdy A Hassan
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.,Department of Biological Science, Faculty of Science and Humanity Studies at Al-Quwayiyah, Shaqra University, Al-Quwayiyah, Saudi Arabia
| | - Nasser H Abbas
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Amira Eltahan
- Departement of Food Microbiology and Hygiene, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima, Japan
| |
Collapse
|
25
|
Fazli NA, Hanifian S. Biodiversity, antibiotic resistance and virulence traits of Enterococcus species in artisanal dairy products. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Incidence of Tetracycline and Erythromycin Resistance in Meat-Associated Bacteria: Impact of Different Livestock Management Strategies. Microorganisms 2021; 9:microorganisms9102111. [PMID: 34683432 PMCID: PMC8537249 DOI: 10.3390/microorganisms9102111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
The extensive use of antibiotics as growth promoters, or their continued abusive misuse to cure or prevent the onset of bacterial infections as occurs in the intensive farming, may have played a pivotal role in the spread of reservoirs of antibiotic resistance (AR) among food-associated bacteria including pathogens representing risks to human health. The present study compares the incidence of tetracycline and erythromycin resistances in lactic acid bacteria (LAB) and coagulase negative staphylococci (CNS) from fermented products manufacturing using meat from intensive animal husbandry (industrialized manufacturing Italian salami) and from extensive farms (artisanal sausages facilities pork and llama Argentinean sausages). A higher incidence of tetracycline resistance (TET-R) compared to erythromycin resistance (ERY-R) was observed among the 205 isolates. Unlike CNS strains, the LAB showed a significant correlation between the TET-R and the ERY-R phenotypes. Genotypic assessment shows a high correlation with tetK and tetM for the TET-R strains and with ermB and ermC for the ERY-R strains. Multiple correspondence analyses have highlighted the association between AR phenotypes and CNS species isolated from Italian salami, while the susceptible phenotypes were associated with the LAB species from Argentinean sausages. Since antibiotic resistance in meat-associated bacteria is a very complex phenomenon, the assessment of bacterial resistance in different environmental contexts with diverse farming practices and food production technologies will help in monitoring the factors influencing AR emergence and spread in animal production.
Collapse
|
27
|
Li M, Tang Y, Guo L, Lei T, Deng Y, Wang L, Zhang Q, Li C. Antibiotic Resistance Characterization of Bacteria Isolated from Traditional Chinese Paocai. Curr Microbiol 2021; 78:3853-3862. [PMID: 34390373 DOI: 10.1007/s00284-021-02629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
In this work, the antibiotic resistance of 218 isolates to 9 different antibiotics was analyzed with minimum inhibitory concentration method. All Lactobacillus pentosus strains were found to be resistant to streptomycin sulfate and ciprofloxacin hydrochloride. Lactococcus lactis strains were resistant to streptomycin sulfate. Specifically, 90% Klebsiella oxytoca and all Citrobacter freundii strains were resistant to ampicillin sodium. 30% K. oxytoca strains were resistant to ciprofloxacin hydrochloride. All Bacillus albus strains were resistant to erythromycin and 80% strains were resistant to ampicillin sodium. Results from PCR analysis revealed that 90 isolates carried the aadE gene. The tetM gene was detected in four L. pentosus isolates. And the streptomycin resistant gene aadA was detected in one L. pentosus isolate. Metagenome analysis revealed that 74.7% genes associated with antibiotic resistance were antibiotic resistance genes. The tetM and aadA genes, detected in PCR analysis, were also retrieved from the paocai metagenome. In brief, this study generated the antibiotic resistance profile of some paocai-originated bacteria strains. L. pentosus found in the final edible paocai were inherently resistant to antibiotics, such as streptomycin and ciprofloxacin. Results in this work reminds us to carefully choose the LAB strains for traditional Chinese paocai production to avoid potential spreading of antibiotic resistant genes.
Collapse
Affiliation(s)
- Mei Li
- Meishan Product Quality Supervision and Inspection Institute, Meishan, 620000, China
- National Pickle Quality Inspection Center, Meishan, 620000, China
| | - Yao Tang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan, 620000, China
| | - Liyan Guo
- Meishan Product Quality Supervision and Inspection Institute, Meishan, 620000, China
- National Pickle Quality Inspection Center, Meishan, 620000, China
| | - Tao Lei
- Meishan Product Quality Supervision and Inspection Institute, Meishan, 620000, China
- National Pickle Quality Inspection Center, Meishan, 620000, China
| | - Yunfei Deng
- School of Life Science and Food Engineering, Yibin University, Yibin, 644007, China
| | - Liang Wang
- Sichuan Yingshan Vocational Senior High School, Nanchong, 637000, China
| | - Qisheng Zhang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan, 620000, China
| | - Chengkang Li
- Meishan Product Quality Supervision and Inspection Institute, Meishan, 620000, China.
- National Pickle Quality Inspection Center, Meishan, 620000, China.
| |
Collapse
|
28
|
Flórez AB, Vázquez L, Rodríguez J, Mayo B. Directed Recovery and Molecular Characterization of Antibiotic Resistance Plasmids from Cheese Bacteria. Int J Mol Sci 2021; 22:7801. [PMID: 34360567 PMCID: PMC8346141 DOI: 10.3390/ijms22157801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Resistance to antimicrobials is a growing problem of worldwide concern. Plasmids are thought to be major drivers of antibiotic resistance spread. The present work reports a simple way to recover replicative plasmids conferring antibiotic resistance from the bacteria in cheese. Purified plasmid DNA from colonies grown in the presence of tetracycline and erythromycin was introduced into plasmid-free strains of Lactococcus lactis, Lactiplantibacillus plantarum and Lacticaseibacillus casei. Following antibiotic selection, the plasmids from resistant transformants were isolated, analyzed by restriction enzyme digestion, and sequenced. Seven patterns were obtained for the tetracycline-resistant colonies, five from L. lactis, and one each from the lactobacilli strains, as well as a single digestion profile for the erythromycin-resistant transformants obtained in L. lactis. Sequence analysis respectively identified tet(S) and ermB in the tetracycline- and erythromycin-resistance plasmids from L. lactis. No dedicated resistance genes were detected in plasmids conferring tetracycline resistance to L. casei and L. plantarum. The present results highlight the usefulness of the proposed methodology for isolating functional plasmids that confer antibiotic resistance to LAB species, widen our knowledge of antibiotic resistance in the bacteria that inhabit cheese, and emphasize the leading role of plasmids in the spread of resistance genes via the food chain.
Collapse
Affiliation(s)
- Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.V.); (J.R.); (B.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.V.); (J.R.); (B.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.V.); (J.R.); (B.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.V.); (J.R.); (B.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| |
Collapse
|
29
|
Begunova AV, Savinova OS, Moiseenko KV, Glazunova OA, Rozhkova IV, Fedorova TV. Characterization and Functional Properties of Lactobacilli Isolated from Kefir Grains. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Kwiecień E, Stefańska I, Chrobak-Chmiel D, Kizerwetter-Świda M, Moroz A, Olech W, Spinu M, Binek M, Rzewuska M. Trueperella pyogenes Isolates from Livestock and European Bison ( Bison bonasus) as a Reservoir of Tetracycline Resistance Determinants. Antibiotics (Basel) 2021; 10:380. [PMID: 33916765 PMCID: PMC8065510 DOI: 10.3390/antibiotics10040380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Determinants of tetracycline resistance in Trueperella pyogenes are still poorly known. In this study, resistance to tetracycline was investigated in 114 T. pyogenes isolates from livestock and European bison. Tetracycline minimum inhibitory concentration (MIC) was evaluated by a microdilution method, and tetracycline resistance genes were detected by PCR. To determine variants of tetW and their linkage with mobile elements, sequencing analysis was performed. Among the studied isolates, 43.0% were tetracycline resistant (MIC ≥ 8 µg/mL). The highest MIC90 of tetracycline (32 µg/mL) was noted in bovine and European bison isolates. The most prevalent determinant of tetracycline resistance was tetW (in 40.4% of isolates), while tetA(33) was detected only in 8.8% of isolates. Four variants of tetW (tetW-1, tetW-2, tetW-3, tetW-4) were recognized. The tetW-3 variant was the most frequent and was linked to the ATE-1 transposon. The tetW-2 variant, found in a swine isolate, was not previously reported in T. pyogenes. This is the first report on determinants of tetracycline resistance in T. pyogenes isolates from European bison. These findings highlight that wild animals, including wild ruminants not treated with antimicrobials, can be a reservoir of tetracycline-resistant bacteria carrying resistance determinants, which may be easily spread among pathogenic and environmental microorganisms.
Collapse
Affiliation(s)
- Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Magdalena Kizerwetter-Świda
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Agata Moroz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c St., 02-786 Warsaw, Poland;
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Marina Spinu
- Department of Infectious Diseases and Preventive Medicine, Law and Ethics, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Marian Binek
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland; (I.S.); (D.C.-C.); (M.K.-Ś.); (M.B.)
| |
Collapse
|
31
|
Enterococci isolated from plant-derived food - Analysis of antibiotic resistance and the occurrence of resistance genes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Motey GA, Owusu-Kwarteng J, Obiri-Danso K, Ofori LA, Ellis WO, Jespersen L. In vitro properties of potential probiotic lactic acid bacteria originating from Ghanaian indigenous fermented milk products. World J Microbiol Biotechnol 2021; 37:52. [PMID: 33594545 DOI: 10.1007/s11274-021-03013-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/28/2021] [Indexed: 01/17/2023]
Abstract
Fermented milk products are a major source of health-promoting microorganisms known as probiotics. To characterize the probiotic properties of lactic acid bacteria isolated from Ghanaian traditionally fermented milk, thirty (30) isolates comprising Enterococcus faecium (1), Lactobacillus fermentum (14), Lb. plantarum (2) and Pediococcus acidilactici (13) identified by 16S rRNA gene sequencing, were tested for survival at low pH (2.5) and bile salts (0.3% (w/v)), hydrophobicity, co-aggregation, auto-aggregation and antimicrobial activities against selected pathogens. Safety of potential probiotic bacteria was assessed by hemolytic activity on blood agar and susceptibility to nine different antibiotics. Majority (90%) of the strains showed survival rates above 80% at pH (2.5) and in bile salts (0.3% (w/v)). Hydrophobicity ranged from 5 to 61% while cell auto-aggregation ranged from 41 to 80% after 24 h. Co-aggregation with E. coli (3.7-43.9%) and S. Typhimurium (1.3-49.5%) were similar for the LAB strains at 24 h. Cell- free supernatants of all LAB strains inhibited E. coli while S. Typhimurium was not sensitive to cell-free supernatants of five Pd. acidilactici strains: OS24h20, OS18h3, OY9h19, OS9h8 and 24NL38. None of the LAB strains showed β-hemolysis but 38% of strains showed α-hemolysis. Susceptibilities to antibiotics were strain-specific; only four strains, two Lb. fermentum and two Pd. acidilactici were susceptible to all nine antibiotics tested. Based on high survival rates in bile salts, low pH and generally good hydrophobicity, auto-aggregation, co-aggregation and inhibitory activities, 15 out of 30 strains tested were considered qualified candidates for development of probiotic cultures for fermented milk products in sub-Saharan Africa.
Collapse
Affiliation(s)
- Grace Adzo Motey
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana.
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - James Owusu-Kwarteng
- Department of Food Science and Technology, University of Energy and Natural Resources, Sunyani, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Linda Aurelia Ofori
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - William Otoo Ellis
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| |
Collapse
|
33
|
Performance of Layer-by-Layer-Modified Multibore ® Ultrafiltration Capillary Membranes for Salt Retention and Removal of Antibiotic Resistance Genes. MEMBRANES 2020; 10:membranes10120398. [PMID: 33291315 PMCID: PMC7762176 DOI: 10.3390/membranes10120398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022]
Abstract
Polyether sulfone Multibore® ultrafiltration membranes were modified using polyelectrolyte multilayers via the layer-by-layer (LbL) technique in order to increase their rejection capabilities towards salts and antibiotic resistance genes. The modified capillary membranes were characterized to exhibit a molecular weight cut-off (at 90% rejection) of 384 Da. The zeta-potential at pH 7 was −40 mV. Laboratory tests using single-fiber modified membrane modules were performed to evaluate the removal of antibiotic resistance genes; the LbL-coated membranes were able to completely retain DNA fragments from 90 to 1500 nt in length. Furthermore, the pure water permeability and the retention of single inorganic salts, MgSO4, CaCl2 and NaCl, were measured using a mini-plant testing unit. The modified membranes had a retention of 80% toward MgSO4 and CaCl2 salts, and 23% in case of NaCl. The modified membranes were also found to be stable against mechanical backwashing (up to 80 LMH) and chemical regeneration (in acidic conditions and basic/oxidizing conditions).
Collapse
|
34
|
Stange C, Tiehm A. Occurrence of antibiotic resistance genes and microbial source tracking markers in the water of a karst spring in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140529. [PMID: 32629259 DOI: 10.1016/j.scitotenv.2020.140529] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
The emergence of antimicrobial resistances causes serious public health concerns worldwide. In recent years, the aquatic ecosystem has been recognized as a reservoir for antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). The prevalence of 11 ARGs, active against six antibiotic classes (β-lactams, aminoglycosides, tetracycline, macrolides, trimethoprim, and sulfonamides), was evaluated at a karst spring (Gallusquelle) in Germany, using molecular biological methods. In addition, fecal indicator bacteria (FIB), turbidity, electrical conductivity, spring discharge, and microbial source tracking markers specific for human, horse, chicken, and cow were determined. The ARGs most frequently detected were ermB (42.1%), tet(C) (40.8%), sul2 (39.5%), and sul1 (36.8%), which code for resistance to macrolides, tetracycline and sulfonamides, respectively. After a heavy rain event, the increase in FIB in the spring water was associated with the increase in ARGs and human-specific microbial source tracking (MST) markers. The determined correlations of the microbiological parameters, the observed overflow of a combined sewer overflow basin a few days before the increase of these parameters, and the findings of previous studies indicate that the overflow of this undersized basin located 9 km away from the spring could be a factor affecting the water quality of the karst spring. Our results provide a scientific basis for minimization of the input of fecal pollution and thus ARGs into the karst spring.
Collapse
Affiliation(s)
- C Stange
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, D-76139 Karlsruhe, Germany
| | - A Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, D-76139 Karlsruhe, Germany.
| |
Collapse
|
35
|
Characterization of Lactic Acid Bacteria in Raw Buffalo Milk: a Screening for Novel Probiotic Candidates and Their Transcriptional Response to Acid Stress. Probiotics Antimicrob Proteins 2020; 13:468-483. [PMID: 32829420 DOI: 10.1007/s12602-020-09700-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactic acid bacteria (LAB) are important microorganisms for the food industry due to their functional activity, as starters and potential probiotic strains. With that in mind, we explored the LAB diversity in raw buffalo milk, screening for novel potential probiotic strains. A total of 11 strains were identified by combination of MALDI-TOF and partial 16S rDNA sequencing and selected as potential probiotic candidates. Bacteria innocuity assessment was performed by determining antimicrobial susceptibility and the presence of virulence factors. Antagonism activity against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus was assessed, as well as milk proteolytic activity and exopolysaccharides production. Seven strains were identified as innocuous and two of them, Lactobacillus rhamnosus LB1.5 and Lactobacillus paracasei LB6.4 were selected for further probiotic potential analyses. Both strains demonstrated adhesion ability to Caco-2 cells, coaggregated with S. aureus and E. coli and maintained cell viability after gastrointestinal simulation in vitro, suggesting their probiotic potential. Furthermore, the transcriptional response of Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 to in vitro acid stress was assessed by RT-qPCR targeting seven genes related to adhesion, aggregation, stress tolerance, DNA repair and central metabolism. The association between the transcriptional responses and the maintenance of cell viability after gastrointestinal simulation highlights the genetic ability as probiotic of the two selected strains. Finally, we have concluded that Lact. rhamnosus LB1.5 and Lact. paracasei LB6.4 are important probiotic candidates to further in vivo studies.
Collapse
|
36
|
Sağlam H, Karahan AG. Plasmid stability of potential probiotic Lactobacillus plantarum strains in artificial gastric juice, at elevated temperature, and in the presence of novobiocin and acriflavine. Arch Microbiol 2020; 203:183-191. [PMID: 32803345 DOI: 10.1007/s00203-020-02017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
Abstract
In this study, the presence of plasmids responsible for carbohydrate fermentation and antibiotic resistance and the stability of these plasmids in artificial gastric juice were investigated in 20 Lactobacillus plantarum strains with probiotic properties. Plasmid curing was performed with novobiocin, acriflavine and elevated incubation temperature to identify plasmids encoded with carbohydrate fermentation and antibiotic resistance genes and to compare them with artificial gastric juice. Plasmid profiling of the strains revealed that 100% of the strains were harbouring plasmids in varying sizes and numbers. The plasmid number of the potential probiotic strains ranged between 1 and 4, and the plasmid size ranged between 5.779 and 16.138 kb. The potential probiotic strains could not survive in the artificial gastric juice at pH 2.0. Although the strains maintained their viability in an artificial gastric juice at pH 2.5 and 3.0, and their derivatives lost their plasmids at a high rate (100%). Similarly, high levels of cured derivatives were obtained with 8 µg/mL novobiocin and 100 µg/mL acriflavine applications, and 24 h incubation at 43 °C. All the experiments were also performed to compare with two L. plantarum-type strains containing plasmids responsible for tetracycline and tetracycline + erythromycin resistances. Artificial gastric juice and other plasmid curing treatments caused a high-frequency loss in the antibiotic resistances of type strains. Determining plasmid stability in artificial gastric juice is a novel approach. Plasmid stability in the gastrointestinal tract is important for maintaining the plasmid-encoded probiotic properties.
Collapse
Affiliation(s)
- H Sağlam
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kilis 7 Aralık University, Kilis, Turkey.
| | - A G Karahan
- Department of Food Engineering, Faculty of Engineering, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
37
|
Dec M, Stępień-Pyśniak D, Nowaczek A, Puchalski A, Urban-Chmiel R. Phenotypic and genotypic antimicrobial resistance profiles of fecal lactobacilli from domesticated pigeons in Poland. Anaerobe 2020; 65:102251. [PMID: 32781109 DOI: 10.1016/j.anaerobe.2020.102251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Lactobacillus species play an important role in the host and although they are non-pathogenic, they could act as reservoirs for antibiotic resistance genes, with the potential risk of transfer to other bacteria inhabiting the gastrointestinal tract. The aim of this study was to identify Lactobacillus species derived from feces of domesticated pigeons and to characterize their phenotypic and genotypic antimicrobial resistance (AMR) profiles. A total of 57 Lactobacillus isolates were classified into six species using the MALDI-TOF technique and 16S rDNA restriction analysis. Strains of L. ingluviei (31%), L. salivarius (28%) and L. agilis (23%) were the dominant species isolated. Determination of antimicrobial susceptibility by the microdilution broth method showed widespread resistance to kanamycin (89%), tetracycline (84%), streptomycin (63%), and enrofloxacin (37%). Less than 30% of the isolates were resistant to erythromycin, lincosamides, gentamycin, chloramphenicol and vancomycin. Over half (51%) of the lactobacilli were classified as multidrug resistant. Tet genes were detected in 79% of isolates; the lnuA, cat, ermB, ermC, ant(6)-Ia, ant(4')-Ia, and int-Tn genes were found at a lower frequency. Sequence analysis of the quinolone resistance-determining region (QRDR)of the gyrA gene showed that fluoroquinolone resistance in lactobacilli was the result of a mutation that lead to a change in the amino acid sequence (Ser83→Tyr/Leu/Phe). Domesticated pigeons could be a reservoir for AMR Lactobacillus strains and AMR genes.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| | - Anna Nowaczek
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| | - Andrzej Puchalski
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033, Lublin, Poland.
| |
Collapse
|
38
|
A critical review of antibiotic resistance in probiotic bacteria. Food Res Int 2020; 136:109571. [PMID: 32846610 DOI: 10.1016/j.foodres.2020.109571] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit upon the host. At present, probiotics are gaining popularity worldwide and are widely used in food and medicine. Consumption of probiotics is increasing with further in-depth research on the relationship between intestinal flora and host health. Most people pay more attention to the function of probiotics but ignore their potential risks, such as infection and antibiotic resistance transfer to pathogenic microbes. Physiological functions, effects and mechanisms of action of probiotics were covered in this review, as well as the antibiotic resistance phenotypes, mechanisms and genes found in probiotics. Typical cases of antibiotic resistance of probiotics were also highlighted, as well as the potential risks (including pathogenicity, infectivity and excessive immune response) and corresponding strategies (dosage, formulation, and administration route). This timely study provides an avenue for further research, development and application of probiotics.
Collapse
|
39
|
Margalho LP, Feliciano MD, Silva CE, Abreu JS, Piran MVF, Sant'Ana AS. Brazilian artisanal cheeses are rich and diverse sources of nonstarter lactic acid bacteria regarding technological, biopreservative, and safety properties-Insights through multivariate analysis. J Dairy Sci 2020; 103:7908-7926. [PMID: 32684468 DOI: 10.3168/jds.2020-18194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
In this study a total of 220 isolates of lactic acid bacteria (LAB) recovered from 10 types of Brazilian artisanal cheeses marketed in 4 main regions of Brazil were evaluated regarding their safety and ability to produce diacetyl (a precursor of aromatic compounds), exopolysaccharides (EPS; from different sugar sources), and antagonistic activity against Listeria monocytogenes and Staphylococcus aureus. The results indicated that 131 isolates (59.6%) were classified as strong (40.5%) and moderate (19.1%) diacetyl producers; 28 isolates (12.7%) stood out due to their remarkable production of EPS from different sugars, including sucrose (3.2%), fructose (2.3%), lactose (2.3%), and glucose (6%). Furthermore, 94.1% and 95.9% of isolates presented antagonistic activity against S. aureus and L. monocytogenes, respectively, even though only 27 isolates (12.3%) exhibited positive results in the bacteriocin production test. None of the isolates tested presented hemolytic activity, and 117 were classified as safe, due to their intrinsic resistance to a maximum of 4 different antibiotics. The data obtained for assessment of antibiogram profile and technological potential (moderate and high production of diacetyl, EPS, and bacteriocins) were submitted to a multiple correspondence analysis to correlate them with the cheese of isolation. Regarding the antimicrobial profile of LAB strains, it was possible to verify an association between isolates from Minas artisanal cheeses from Araxá and resistance to tetracycline; Minas artisanal cheeses from Serro and resistance to erythromycin; Coalho and Minas artisanal cheese from Cerrado and resistance to penicillin; and isolates from Serrano and Colonial cheeses with clindamycin and ceftazidime resistance. Although the susceptibility of strains to these antibiotics was considered high (71.8-80.5%), these data may be related to the horizontal transfer of genes in the production chain of these cheeses. Results of multiple correspondence analysis also showed that isolates with antagonistic activity were mostly isolated from Manteiga, Colonial, and Coalho cheeses. The isolates with high or moderate EPS-producer ability from sucrose, glucose, and fructose were mainly associated with Minas artisanal cheeses from Cerrado. In contrast, isolates with high or moderate EPS-producer ability from lactose were isolated from Serrano, Minas artisanal cheeses from Canastra, and Campo das Vertentes microregions. Finally, isolates from Minas artisanal cheeses (from Araxá microregion), Coalho, and Caipira cheeses were associated with moderate/high diacetyl production. To the best of the authors' knowledge, this study provides, for the first time, data indicating that the dominant technological, biopreservative, and safety properties of LAB isolates can be correlated with the type of Brazilian artisanal cheeses, which denotes its singularity. This knowledge is of utmost relevance for the development of starter or adjunct cultures with tailored properties.
Collapse
Affiliation(s)
- Larissa P Margalho
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Marcelo D'Elia Feliciano
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Christian E Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Júlia S Abreu
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil
| | | | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP 13083-862, Brazil.
| |
Collapse
|
40
|
Wu L, Wang W, Wu Z, Pan D, Zeng X, Guo Y, Lian L. Effect of acid and alkali stress on extracellular metabolite profile of Lactobacillus plantarum ATCC 14917. J Basic Microbiol 2020; 60:722-729. [PMID: 32452552 DOI: 10.1002/jobm.202000203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/19/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022]
Abstract
As a multifunctional lactic acid bacterium, Lactobacillus plantarum has been proved to survive in the human gastrointestinal tract, and it can also colonize this tract. In this study, the effects of L. plantarum ATCC 14917 metabolic profile caused by initial acid-base (pH 5.5 and 8.5) stress were investigated using 1 H nuclear magnetic resonance spectroscopy and multivariate data analysis. The results showed that the metabolome mainly consisted of 14 metabolites, including the components like amino acids, sugars, organic acids, and alkaloids. According to the nontargeted principal component analysis, there was a decrease in most of the metabolites in the alkali-treated group (mainly change in PC1) except acetate, whereas the production of lactate and glycine was increased in the acid-treated group (mainly change in PC2). Furthermore, the initial alkali stress inhibits the secretion of lactic acid, as a decrease was observed in the activity of lactate dehydrogenase and acetic dehydrogenase of L. plantarum ATCC 14917 in the alkali group. All these findings revealed that alkali stress could limit the acid environment formation of L. plantarum 14917 in the fermentation process; however, low acid pH is more suitable for the growth of L. plantarum.
Collapse
Affiliation(s)
- Lingyi Wu
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Wenwen Wang
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xiaoqun Zeng
- State Key Laboratory for Quality and Safety of Agro-products and Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Liwei Lian
- Ningbo Dairy Group, Ningbo, Zhejiang, China
| |
Collapse
|
41
|
Sirichoat A, Flórez AB, Vázquez L, Buppasiri P, Panya M, Lulitanond V, Mayo B. Antibiotic Susceptibility Profiles of Lactic Acid Bacteria from the Human Vagina and Genetic Basis of Acquired Resistances. Int J Mol Sci 2020; 21:E2594. [PMID: 32276519 PMCID: PMC7178285 DOI: 10.3390/ijms21072594] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
Lactic acid bacteria can act as reservoirs of antibiotic resistance genes that can be ultimately transferred to pathogens. The present work reports on the minimum inhibitory concentration (MIC) of 16 antibiotics to 25 LAB isolates of five Lactobacillus and one Bifidobacterium species from the human vagina. Acquired resistances were detected to kanamycin, streptomycin, chloramphenicol, gentamicin, and ampicillin. A PCR analysis of lactobacilli failed to identify genetic determinants involved in any of these resistances. Surprisingly, a tet(W) gene was detected by PCR in two Bifidobacterium bifidum strains, although they proved to be tetracycline-susceptible. In agreement with the PCR results, no acquired genes were identified in the genome of any of the Lactobacillus spp. strains sequenced. A genome analysis of B. bifidum VA07-1AN showed an insertion of two guanines in the middle of tet(W) interrupting the open reading frame. By growing the strain in the presence of tetracycline, stable tetracycline-resistant variants were obtained. An amino acid substitution in the ribosomal protein S12 (K43R) was further identified as the most likely cause of VA07-1AN being streptomycin resistance. The results of this work expand our knowledge of the resistance profiles of vaginal LAB and provide evidence for the genetic basis of some acquired resistances.
Collapse
Affiliation(s)
- Auttawit Sirichoat
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Pranom Buppasiri
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Marutpong Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Viraphong Lulitanond
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300 Villaviciosa, Asturias, Spain; (A.S.); (A.B.F.); (L.V.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| |
Collapse
|
42
|
Asadi A, Abdi M, Kouhsari E, Panahi P, Sholeh M, Sadeghifard N, Amiriani T, Ahmadi A, Maleki A, Gholami M. Minocycline, focus on mechanisms of resistance, antibacterial activity, and clinical effectiveness: Back to the future. J Glob Antimicrob Resist 2020; 22:161-174. [PMID: 32061815 DOI: 10.1016/j.jgar.2020.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The increasing crisis regarding multidrug-resistant (MDR) and extensively drug-resistant microorganisms leads to appealing therapeutic options. METHODS During the last 30 years, minocycline, a wide-spectrum antimicrobial agent, has been effective against MDR Gram-positive and Gram-negative bacterial infections. As with other tetracyclines, the mechanism of action of minocycline involves attaching to the bacterial 30S ribosomal subunit and preventing protein synthesis. RESULTS This antimicrobial agent has been approved for the treatment of acne vulgaris, some sexually transmitted diseases and rheumatoid arthritis. Although many reports have been published, there remains limited information regarding the prevalence, mechanism of resistance and clinical effectiveness of minocycline. CONCLUSION Thus, we summarize here the currently available data concerning pharmacokinetics and pharmacodynamics, mechanism of action and resistance, antibacterial activity and clinical effectiveness of minocycline.
Collapse
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Kouhsari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran; Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Pegah Panahi
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sholeh
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Taghi Amiriani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
43
|
Colombo M, Nero LA, Todorov SD. Safety profiles of beneficial lactic acid bacteria isolated from dairy systems. Braz J Microbiol 2020; 51:787-795. [PMID: 31970700 DOI: 10.1007/s42770-020-00227-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to assess the safety aspects of 15 lactic acid bacteria (LAB) strains previously isolated from a dairy environment with relation to their beneficial features. LAB strains were assessed using phenotypic methods according to their production of virulence factors at 25 °C and 37 °C, as well as by examining their potential resistance to 15 antibiotics. Polymerase chain reaction (PCR) was also used to identify the presence of 50 genes associated with virulence factors and antibiotic resistance in the strains. None of the strains presented hemolytic activity or the production of gelatinase, lipase, deoxyribonuclease, or the tested biogenic amines. Based on the disk diffusion assay, all strains were resistant to oxacillin and sulfa/trimethoprim. Further, some were resistant to gentamicin (14), clindamycin (11), vancomycin (9), rifampicin (8), erythromycin (5), tetracycline (4), ampicillin (2), and chloramphenicol (1); no strain was resistant to imipenem. Regarding virulence- and antibiotic-resistance-related genes, 19 out of 50 tested genes were present in some strains; there was a variable association of expression. Based on the obtained data, the isolates presented relatively safe characteristics and behavior, findings that should lead to further studies to assess their potential usage as beneficial cultures in the food industry.
Collapse
Affiliation(s)
- Monique Colombo
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Viçosa s/n - Centro, Viçosa, MG, 36570-900, Brazil
| | - Luis Augusto Nero
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Viçosa s/n - Centro, Viçosa, MG, 36570-900, Brazil.
| | - Svetoslav Dimitrov Todorov
- Departamento de Veterinária, InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Campus Viçosa s/n - Centro, Viçosa, MG, 36570-900, Brazil. .,Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Nutrição Experimental, Laboratório de Microbiologia de Alimentos, Universidade de São Paulo, Av. Prof. Lineu Prestes 580 Bloco 14, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
44
|
Maia LF, Giraldi C, Terra MR, Furlaneto MC. Vancomycin and tetracycline-resistant enterococci from from raw and processed meats: phenotypic and genotypic characteristics of isolates. CIÊNCIA ANIMAL BRASILEIRA 2020. [DOI: 10.1590/1809-6891v21e-57674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract The ubiquitous nature of enterococci and their ability to colonize different habitats account for their easy spread throughout the food chain. Here, we evaluated the distribution and antimicrobial susceptibility of Enterococcus isolates from meats obtained from different supermarkets. We acquired and cultured 100 products (raw chicken meat, raw pork, and boiled meats) to screen for the presence of Enterococcus spp. In total, 194 isolates were recovered from the samples, with contamination rates of 63.6% in the chicken samples, 31% in the raw pork meat, and 1.4% in the boiled meat samples. PCR amplification with specific primers was performed to screen the DNA of Enterococcus spp. (95/96), E. faecalis (66/96), E. faecium (30/96), and E. casseliflavus/E. flavescens (3/96). The antimicrobial susceptibility tests showed that all the isolates were resistant to at least one of the antibiotics. All E. faecium isolates were resistant to vancomycin, streptomycin, ciprofloxacin, norfloxacin, erythromycin, and tetracycline. The E. casseliflavus/E. flavescens isolates were resistant to gentamicin, streptomycin, ciprofloxacin, norfloxacin, erythromycin, and tetracycline. E. faecalis isolates were resistant to ciprofloxacin, tetracycline, and erythromycin (92%), norfloxacin (83%), vancomycin, and streptomycin (50%). The resistance genes tetL and vanB were detected by genotyping. The presence of these antimicrobial-resistant microorganisms in food might pose problems for public health.
Collapse
|
45
|
Antibiotic Resistance of LACTOBACILLUS Strains. Curr Microbiol 2019; 76:1407-1416. [PMID: 31555856 DOI: 10.1007/s00284-019-01769-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
The study provides phenotypic and molecular analyses of the antibiotic resistance in 20 Lactobacillus strains including 11 strains newly isolated from fermented plant material. According to the results of disc diffusion method, 90% of tested lactobacilli demonstrated sensitivity to clindamycin and 95% of strains were susceptible to tetracycline, erythromycin, and rifampicin. Ampicillin and chloramphenicol were found to inhibit all bacteria used in this study. The vast majority of tested strains revealed phenotypic resistance to vancomycin, ciprofloxacin, and aminoglycosides. Most of Lactobacillus strains showed high minimum inhibitory concentrations (MICs) of cefotaxime, ceftriaxone, and cefazolin and therefore were considered resistant to cephalosporins. All the strains exhibited multidrug resistance. The occurrence of resistance genes was associated with phenotypic resistance, with the exception of phenotypically susceptible strains that contained genes for tetracycline (tetK, tetL) and erythromycin (ermB, mefA) resistance. The vanX gene for vancomycin resistance was among the most frequently identified among the lactobacilli (75% of strains), but the occurrence of the parC gene for ciprofloxacin resistance was sporadic (20% of strains). Our results mainly evidence the intrinsic nature of the resistance to aminoglycosides in lactobacilli, though genes for enzymatic modification of streptomycin aadA and aadE were found in 20% of tested strains. The occurrence of extended spectrum beta-lactamases (ESBL) was unknown in Lactobacillus, but our results revealed the blaTEM gene in 80% of strains, whereas blaSHV and blaOXA-1 genes were less frequent (20% and 15% of strains, respectively).
Collapse
|
46
|
Hammer P, Jordan J, Jacobs C, Klempt M. Characterization of coagulase-negative staphylococci from brining baths in Germany. J Dairy Sci 2019; 102:8734-8744. [PMID: 31421877 DOI: 10.3168/jds.2018-15610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
Brining is an important step in cheese making, and using brine baths for this purpose is common practice in German dairies. Time of brining, brine concentration, and composition of the complex and heterogeneous microbiota, including coagulase-negative staphylococci (CNS), contribute to the ripening and taste of cheese. As well as producing staphylococcal enterotoxins, some CNS show antibiotic resistance; therefore, we isolated 52 strains of presumptive CNS from cheese brines from 13 factories in Germany. Species identification by sodA gene sequencing revealed that 50 isolates were CNS: 31 Staphylococcus saprophyticus, 4 Staphylococcus carnosus, 4 Staphylococcus equorum, 3 Staphylococcus sciuri, 2 Staphylococcus hominis, and 2 Staphylococcus warneri. One isolate each was identified as Staphylococcus epidermidis, Staphylococcus pasteurii, Staphylococcus succinus, and Staphylococcus xylosus. Further subtyping of the Staph. saprophyticus isolates to the subspecies level revealed the presence of 6 Staph. saprophyticus ssp. saprophyticus. Using pulsed-field gel electrophoresis with the identified Staph. saprophyticus strains, 12 independent clones were identified, resulting in the exclusion of 18 strains from further testing. In 19 of the remaining 32 CNS isolates, resistance to antibiotics was observed. Resistance was found against oxacillin (17), penicillin (5), and cefoxitin (1). Four isolates expressed resistance to both oxacillin and penicillin. No resistance was found to enrofloxacin, tetracycline, gentamicin, or erythromycin. Then, PCR analysis for antibiotic resistance genes was performed for 22 different genes. Only genes blaZ and blaTEM were found in 7 isolates. These isolates were selected for challenge tests with different concentrations of lactic acid and NaCl to examine whether expression of antibiotic resistance was influenced by these stressors. An increase in the minimal inhibitory concentration from 0 to 2.0 µg/mL was seen for trimethoprim/sulfamethoxazole only in one isolate of Staph. saprophyticus at an increased lactic acid concentration. Finally, all isolates were tested for genetic determinants (entA, entB, entC, entD, and entE) of the most common staphylococcal enterotoxins; none of these genes were detected. We found no indication for unacceptable risks originating from the isolated CNS.
Collapse
Affiliation(s)
- P Hammer
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany.
| | - J Jordan
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany
| | - C Jacobs
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany
| | - M Klempt
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany
| |
Collapse
|
47
|
Liu G, Wang Y, Li X, Hao X, Xu D, Zhou Y, Mehmood A, Wang C. Genetic and Biochemical Evidence That Enterococcus faecalis Gr17 Produces a Novel and Sec-Dependent Bacteriocin, Enterocin Gr17. Front Microbiol 2019; 10:1806. [PMID: 31456764 PMCID: PMC6700250 DOI: 10.3389/fmicb.2019.01806] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Bacteriocins are ribosomally synthesized antibacterial peptides or proteins from microorganisms. We report a novel bacteriocin producing strain, Enterococcus faecalis Gr17, that was isolated from the Chinese traditional low-salt fermented whole fish product Suan yu. E. faecalis Gr17 displayed potent antibacterial activity against foodborne pathogenic and spoilage bacteria. The complete genome of E. faecalis Gr17 contained one circular chromosome and plasmid. The gene cluster of a novel bacteriocin designated enterocin Gr17 was identified. The enterocin Gr17 structural gene encodes a precursor of the bacteriocin. Two other transporter genes and an immunity gene within two divergent operons were identified as being associated with enterocin Gr17 secretion and protection. The novel enterocin Gr17 was purified by ammonium sulfate precipitation, cation exchange, gel filtration, and reverse-phase high-performance liquid chromatography. The molecular weight of enterocin Gr17 was 4,531.01 Da as determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its mature amino acid sequence of enterocin Gr17 was RSYGNGVYCNNSKCWVNWGEAKENIIGIVISGWATGLAGMGR. Sequence alignment revealed that enterocin Gr17 is a class IIa bacteriocin with similarities to enterocin P. The merits of bactericidal activity, sensitivity to enzymes, and pronounced stability to chemicals, temperature (60°C, 30 min and 121°C, 15 min), and pH (2-10) indicated practicality and safety of enterocin Gr17 in the food industry. The complete genome information of E. faecalis Gr17 will improve the understanding of the biosynthetic mechanism of enterocin Gr17, which has potential value as a food biopreservative.
Collapse
Affiliation(s)
- Guorong Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yao Wang
- Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xue Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xu Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yingning Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Chengtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
48
|
Das DJ, Shankar A, Johnson JB, Thomas S. Critical insights into antibiotic resistance transferability in probiotic Lactobacillus. Nutrition 2019; 69:110567. [PMID: 31733594 DOI: 10.1016/j.nut.2019.110567] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 11/26/2022]
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, with respect to metabolism, immune function, and nutrition. Any perturbation of these beneficial microbes leads to gut dysbiosis, which triggers the development of various disorders in the gastrointestinal system. Probiotics play a key role in resolving the dysbiosis posed by external factors such as antibiotics, other substances, or interventions. Supplementing probiotics with antibiotics is favorable in reducing the harmful effects of antibiotics on gut flora. These microbes also possess specific intrinsic drug resistance mechanisms that aid their survival in the internal environment. According to US Food and Drug Administration reports, species belonging to Lactobacillus and Bifidobacterium genera are the most common probiotics consumed by humans through commercial products. However, various studies have reported the tendency of microbes to acquire specific drug resistance, in recent years, through various mechanisms. The reports on transferable resistance among probiotics are of major concern, of which minimal information is available to date. The aim of this review was to describe the pros and cons of drug resistance among these beneficial microorganisms with emphasis on the recommended selection criteria for specific probiotics, devoid of transferable drug resistance genes, suitable for human consumption.
Collapse
Affiliation(s)
- Devika J Das
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India; University of Kerala, Thiruvananthapuram, Kerala, India
| | - Aparna Shankar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - John B Johnson
- Viral Disease Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India.
| |
Collapse
|
49
|
Terra MR, Tosoni NF, Furlaneto MC, Furlaneto-Maia L. Assessment of vancomycin resistance transfer among enterococci of clinical importance in milk matrix. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:925-929. [PMID: 31382830 DOI: 10.1080/03601234.2019.1647753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dissemination of vancomycin resistance in enterococci has been associated with horizontal transfer of mobile genetic elements. Aim of the study was to evaluate if milk matrix is a suitable environment to support transferability of vancomycin resistance (vanA) gene from clinical vancomycin-resistant Enterococcus faecium to vancomycin-sensitive Enterococcus faecalis. Enterococci strains were firstly screened for the presence of cpd (inducible sex pheromone determinant) gene, vanA and tetL genes (vancomycin and tetracycline resistance markers, respectively) and the gelE (extracellular metalloendopeptidase) gene to define the mating pairs. Based on these selection markers, we investigated the transferability of eight plasmid-borne vanA harbored by E. faecium (vanA+, cpd-, tetL- and gelE-) into two E. faecalis (vanA-, cpd+, tetL + and gelE+) recipient strains in milk matrix. The strains were mated in a 1:1 ratio in 7% reconstituted milk and incubated at 37 °C. Transconjugants emerged from all 16 matings within 2 h of incubation and were evidenced by dual antibiotic resistance (vancomycin and tetracycline). The vancomycin-resistance of trasconjugants was maintained even after ten subsequent passages on nonselective medium. Transconjugants were positive for vanA, tetL and gelE genes. This study indicates milk matrix as suitable environment to support gene exchange between Enterococcus species.
Collapse
Affiliation(s)
- Marcia R Terra
- Department of Microbiology, Universitry Campus, State University of Londrina, Londrina, Brazil
| | - Natara F Tosoni
- Department of Food Technology, Campus of Londrina, Federal Technological University of Paraná, Londrina, Brazil
| | - Marcia C Furlaneto
- Department of Microbiology, Universitry Campus, State University of Londrina, Londrina, Brazil
| | - Luciana Furlaneto-Maia
- Department of Food Technology, Campus of Londrina, Federal Technological University of Paraná, Londrina, Brazil
| |
Collapse
|
50
|
Sotoudegan F, Daniali M, Hassani S, Nikfar S, Abdollahi M. Reappraisal of probiotics’ safety in human. Food Chem Toxicol 2019; 129:22-29. [DOI: 10.1016/j.fct.2019.04.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
|