1
|
Thakur D, Bairwa A, Dipta B, Jhilta P, Chauhan A. An overview of fungal chitinases and their potential applications. PROTOPLASMA 2023; 260:1031-1046. [PMID: 36752884 DOI: 10.1007/s00709-023-01839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023]
Abstract
Chitin, the world's second most abundant biopolymer after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) residues. It is the key structural component of many organisms, including crustaceans, mollusks, marine invertebrates, algae, fungi, insects, and nematodes. There has been a significant increase in the generation of chitinous waste from seafood businesses, resulting in a big amount of scrap. Although several organisms, such as plants, crustaceans, insects, nematodes, and animals, produce chitinases, microorganisms are promising candidates and a sustainable option that mediates chitin degradation. Fungi are the dominant group of chitinase producers among microorganisms. In fungi, chitinases are involved in morphogenesis, cell division, autolysis, chitin acquisition for nutritional purposes, and mycoparasitism. Many efficient chitinolytic fungi with potential applications have been identified in a variety of environments, including soil, water, marine wastes, and plants. The current review highlights the key sources of chitinolytic fungi and the characterization of fungal chitinases. It also discusses the applications of fungal chitinases and the cloning of fungal chitinase genes.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Aarti Bairwa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Prakriti Jhilta
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| |
Collapse
|
2
|
Thakur D, Chauhan A, Jhilta P, Kaushal R, Dipta B. Microbial chitinases and their relevance in various industries. Folia Microbiol (Praha) 2023; 68:29-53. [PMID: 35972681 DOI: 10.1007/s12223-022-00999-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/31/2022] [Indexed: 01/09/2023]
Abstract
Chitin, the second most abundant biopolymer on earth after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) units. It is widely distributed in nature, especially as a structural polysaccharide in the cell walls of fungi, the exoskeletons of crustaceans, insects, and nematodes. However, the principal commercial source of chitin is the shells of marine or freshwater invertebrates. Microbial chitinases are largely responsible for chitin breakdown in nature, and they play an important role in the ecosystem's carbon and nitrogen balance. Several microbial chitinases have been characterized and are gaining prominence for their applications in various sectors. The current review focuses on chitinases of microbial origin, their diversity, and their characteristics. The applications of chitinases in several industries such as agriculture, food, the environment, and pharmaceutical sectors are also highlighted.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Prakriti Jhilta
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Rajesh Kaushal
- Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| |
Collapse
|
3
|
Akram F, Jabbar Z, Aqeel A, Haq IU, Tariq S, Malik K. A Contemporary Appraisal on Impending Industrial and Agricultural Applications of Thermophilic-Recombinant Chitinolytic Enzymes from Microbial Sources. Mol Biotechnol 2022; 64:1055-1075. [PMID: 35397055 DOI: 10.1007/s12033-022-00486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/25/2022] [Indexed: 01/09/2023]
Abstract
The ability of chitinases to degrade the second most abundant polymer, chitin, into potentially useful chitooligomers and chitin derivatives has not only rendered them fit for chitinous waste management but has also made them important from industrial point of view. At the same time, they have also been recognized to have an imperative role as promising biocontrol agents for controlling plant diseases. As thermostability is an important property for an industrially important enzyme, various bacterial and fungal sources are being exploited to obtain such stable enzymes. These stable enzymes can also play a role in agriculture by maintaining their stability under adverse environmental conditions for longer time duration when used as biocontrol agent. Biotechnology has also played its role in the development of recombinant chitinases with enhanced activity, thermostability, fungicidal and insecticidal activity via recombinant DNA techniques. Furthermore, a relatively new approach of generating pathogen-resistant transgenic plants has opened new ways for sustainable agriculture by minimizing the yield loss of valuable crops and plants. This review focuses on the potential applications of thermostable and recombinant microbial chitinases in industry and agriculture.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.,Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Shahbaz Tariq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Kausar Malik
- Centre for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
4
|
Akram F, Akram R, Ikram Ul Haq, Nawaz A, Jabbar Z, Ahmed Z. Biotechnological Eminence of Chitinases: A Focus on Thermophilic Enzyme Sources, Production Strategies and Prominent Applications. Protein Pept Lett 2021; 28:1009-1022. [PMID: 33602064 DOI: 10.2174/0929866528666210218215359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/24/2020] [Accepted: 01/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chitin, the second most abundant polysaccharide in nature, is a constantly valuable and renewable raw material after cellulose. Due to advancement in technology, industrial interest has grown to take advantage of the chitin. OBJECTIVE Now, biomass is being treated with diverse microbial enzymes or cells for the production of desired products under best industrial conditions. Glycosidic bonds in chitin structure are degraded by chitinase enzymes, which are characterized into number of glycoside hydrolase (GHs) families. METHODS Thermophilic microorganisms are remarkable sources of industrially important thermostable enzymes, having ability to survive harsh industrial processing conditions. Thermostable chitinases have an edge over mesophilic chitinases as they can hydrolyse the substrate at relatively high temperatures and exhibit decreased viscosity, significantly reduced contamination risk, thermal and chemical stability and increased solubility. Various methods are employed to purify the enzyme and increase its yield by optimizing various parameters such as temperature, pH, agitation, and by investigating the effect of different chemicals and metal ions etc. Results: Thermostable chitinase enzymes show high specific activity at elevated temperature which distinguish them from mesophiles. Genetic engineering can be used for further improvement of natural chitinases, and unlimited potential for the production of thermophilic chitinases has been highlighted due to advancement in synthetic biological techniques. Thermostable chitinases are then used in different fields such as bioremediation, medicine, agriculture and pharmaceuticals. CONCLUSION This review will provide information about chitinases, biotechnological potential of thermostable enzyme and the methods by which they are being produced and optimized for several industrial applications. Some of the applications of thermostable chitinases have also been briefly described.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Rabia Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Ali Nawaz
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Zuriat Jabbar
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, GC University, Lahore-54000, . Pakistan
| |
Collapse
|
5
|
Computational Analysis of Thermal Adaptation in Extremophilic Chitinases: The Achilles' Heel in Protein Structure and Industrial Utilization. Molecules 2021; 26:molecules26030707. [PMID: 33572971 PMCID: PMC7866400 DOI: 10.3390/molecules26030707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022] Open
Abstract
Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a “weak link” from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop “hot spots” for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure–stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions
Collapse
|
6
|
Dutta B, Deska J, Bandopadhyay R, Shamekh S. In silico characterization of bacterial chitinase: illuminating its relationship with archaeal and eukaryotic cousins. J Genet Eng Biotechnol 2021; 19:19. [PMID: 33495874 PMCID: PMC7835276 DOI: 10.1186/s43141-021-00121-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/14/2021] [Indexed: 11/23/2022]
Abstract
Background Chitin is one of the most abundant biopolymers on Earth, only trailing second after cellulose. The enzyme chitinase is responsible for the degradation of chitin. Chitinases are found to be produced by wide range of organisms ranging from archaea to higher plants. Though chitin is a major component of fungal cell walls and invertebrate exoskeletons, bacterial chitinase can be industrially generated at low cost, in facile downstream processes at high production rate. Microbial chitinases are more stable, active, and economically practicable compared to the plant- and animal-derived enzymes. Results In the present study, computationally obtained results showed functional characteristics of chitinase with particular emphasis on bacterial chitinase which is fulfilling all the required qualities needed for commercial production. Sixty-two chitinase sequences from four different groups of organisms were collected from the RCSB Protein Data Bank. Considering one suitable exemplary sequence from each group is being compared with others. Primary, secondary, and tertiary structures are determined by in silico models. Different physical parameters, viz., pI, molecular weight, instability index, aliphatic index, GRAVY, and presence of functional motifs, are determined, and a phylogenetic tree has been constructed to elucidate relationships with other groups of organisms. Conclusions This study provides novel insights into distribution of chitinase among four groups and their characterization. The results represent valuable information toward bacterial chitinase in terms of the catalytic properties and structural features, can be exploited to produce a range of chitin-derived products. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00121-6.
Collapse
Affiliation(s)
- Bhramar Dutta
- Juva Truffle Center, Huttulantie 1C, Juva, Finland.,Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal 713104, India
| | - Jan Deska
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 11000 (Otakaari 1B), FI 00076, Aalto, Finland
| | - Rajib Bandopadhyay
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal 713104, India.
| | | |
Collapse
|
7
|
Mathew GM, Madhavan A, Arun KB, Sindhu R, Binod P, Singhania RR, Sukumaran RK, Pandey A. Thermophilic Chitinases: Structural, Functional and Engineering Attributes for Industrial Applications. Appl Biochem Biotechnol 2020; 193:142-164. [PMID: 32827066 DOI: 10.1007/s12010-020-03416-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Chitin is the second most widely found natural polymer next to cellulose. Chitinases degrade the insoluble chitin to bioactive chitooligomers and monomers for various industrial applications. Based on their function, these enzymes act as biocontrol agents against pathogenic fungi and invasive pests compared with conventional chemical fungicides and insecticides. They have other functional roles in shellfish waste management, fungal protoplast generation, and Single-Cell Protein production. Among the chitinases, thermophilic and thermostable chitinases are gaining popularity in recent years, as they can withstand high temperatures and maintain the enzyme stability for longer periods. Not all chitinases are thermostable; hence, tailor-made thermophilic chitinases are designed to enhance their thermostability by direct evolution, genetic engineering involving mutagenesis, and proteomics approach. Although research has been done extensively on cloning and expression of thermophilic chitinase genes, there are only few papers discussing on the mechanism of chitin degradation using thermophiles. The current review discusses the sources of thermophilic chitinases, improvement of protein stability by gene manipulation, metagenomics approaches, chitin degradation mechanism in thermophiles, and their prospective applications for industrial, agricultural, and pharmaceutical purposes.
Collapse
Affiliation(s)
- Gincy M Mathew
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, India
| | - K B Arun
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram, 695 014, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | | | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, India
| | - Ashok Pandey
- Center for Innovation and Translational Research, CSIR - Indian Institute of Toxicology Research, Lucknow, 226 001, India.
- Frontier Research Lab, Yonsei University, Seoul, South Korea.
| |
Collapse
|
8
|
Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering. Extremophiles 2020; 24:511-518. [PMID: 32415359 DOI: 10.1007/s00792-020-01172-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
The key difference in the modified Embden-Meyerhof glycolytic pathway in hyperthermophilic Archaea, such as Pyrococcus furiosus, occurs at the conversion from glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) where the typical intermediate 1,3-bisphosphoglycerate (1,3-BPG) is not present. The absence of the ATP-yielding step catalyzed by phosphoglycerate kinase (PGK) alters energy yield, redox energetics, and kinetics of carbohydrate metabolism. Either of the two enzymes, ferredoxin-dependent glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) or NADP+-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), responsible for this "bypass" reaction, could be deleted individually without impacting viability, albeit with differences in native fermentation product profiles. Furthermore, P. furiosus was viable in the gluconeogenic direction (growth on pyruvate or peptides plus elemental sulfur) in a ΔgapnΔgapor strain. Ethanol was utilized as a proxy for potential heterologous products (e.g., isopropanol, butanol, fatty acids) that require reducing equivalents (e.g., NAD(P)H, reduced ferredoxin) generated from glycolysis. Insertion of a single gene encoding the thermostable NADPH-dependent primary alcohol dehydrogenase (adhA) (Tte_0696) from Caldanaerobacter subterraneus, resulted in a strain producing ethanol via the previously established aldehyde oxidoreductase (AOR) pathway. This strain demonstrated a high ratio of ethanol over acetate (> 8:1) at 80 °C and enabled ethanol production up to 85 °C, the highest temperature for bio-ethanol production reported to date.
Collapse
|
9
|
Metabolic Adaptation to Sulfur of Hyperthermophilic Palaeococcus pacificus DY20341 T from Deep-Sea Hydrothermal Sediments. Int J Mol Sci 2020; 21:ijms21010368. [PMID: 31935923 PMCID: PMC6981617 DOI: 10.3390/ijms21010368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 11/30/2022] Open
Abstract
The hyperthermo-piezophilic archaeon Palaeococcus pacificus DY20341T, isolated from East Pacific hydrothermal sediments, can utilize elemental sulfur as a terminal acceptor to simulate growth. To gain insight into sulfur metabolism, we performed a genomic and transcriptional analysis of Pa. pacificus DY20341T with/without elemental sulfur as an electron acceptor. In the 2001 protein-coding sequences of the genome, transcriptomic analysis showed that 108 genes increased (by up to 75.1 fold) and 336 genes decreased (by up to 13.9 fold) in the presence of elemental sulfur. Palaeococcus pacificus cultured with elemental sulfur promoted the following: the induction of membrane-bound hydrogenase (MBX), NADH:polysulfide oxidoreductase (NPSOR), NAD(P)H sulfur oxidoreductase (Nsr), sulfide dehydrogenase (SuDH), connected to the sulfur-reducing process, the upregulation of iron and nickel/cobalt transfer, iron–sulfur cluster-carrying proteins (NBP35), and some iron–sulfur cluster-containing proteins (SipA, SAM, CobQ, etc.). The accumulation of metal ions might further impact on regulators, e.g., SurR and TrmB. For growth in proteinous media without elemental sulfur, cells promoted flagelin, peptide/amino acids transporters, and maltose/sugar transporters to upregulate protein and starch/sugar utilization processes and riboflavin and thiamin biosynthesis. This indicates how strain DY20341T can adapt to different living conditions with/without elemental sulfur in the hydrothermal fields.
Collapse
|
10
|
Microbial Succession of Anaerobic Chitin Degradation in Freshwater Sediments. Appl Environ Microbiol 2019; 85:AEM.00963-19. [PMID: 31285190 PMCID: PMC6715849 DOI: 10.1128/aem.00963-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Chitin is the most abundant biopolymer in aquatic environments, with a direct impact on the carbon and nitrogen cycles. Despite its massive production as a structural element of crustaceans, insects, or algae, it does not accumulate in sediments. Little is known about its turnover in predominantly anoxic freshwater sediments and the responsible microorganisms. We proved that chitin is readily degraded under anoxic conditions and linked this to a succession of the members of the responsible microbial community over a 43-day period. While Fibrobacteres and Firmicutes members were driving the early and late phases of chitin degradation, respectively, a more diverse community was involved in chitin degradation in the intermediate phase. Entirely different microorganisms responded toward the chitin monomer N-acetylglucosamine, which underscores that soluble monomers are poor and misleading substrates to study polymer-utilizing microorganisms. Our study provides quantitative insights into the microbial ecology driving anaerobic chitin degradation in freshwater sediments. Chitin is massively produced by freshwater plankton species as a structural element of their exoskeleton or cell wall. At the same time, chitin does not accumulate in the predominantly anoxic sediments, underlining its importance as carbon and nitrogen sources for sedimentary microorganisms. We studied chitin degradation in littoral sediment of Lake Constance, Central Europe’s third largest lake. Turnover of the chitin analog methyl-umbelliferyl-N,N-diacetylchitobioside (MUF-DC) was highest in the upper oxic sediment layer, with 5.4 nmol MUF-DC h−1 (g sediment [dry weight])−1. In the underlying anoxic sediment layers, chitin hydrolysis decreased with depth from 1.1 to 0.08 nmol MUF-DC h−1 (g sediment [dry weight])−1. Bacteria involved in chitin degradation were identified by 16S rRNA (gene) amplicon sequencing of anoxic microcosms incubated in the presence of chitin compared to microcosms amended either with N-acetylglucosamine as the monomer of chitin or no substrate. Chitin degradation was driven by a succession of bacteria responding specifically to chitin only. The early phase (0 to 9 days) was dominated by Chitinivibrio spp. (Fibrobacteres). The intermediate phase (9 to 21 days) was characterized by a higher diversity of chitin responders, including, besides Chitinivibrio spp., also members of the phyla Bacteroidetes, Proteobacteria, Spirochaetes, and Chloroflexi. In the late phase (21 to 43 days), the Chitinivibrio populations broke down with a parallel strong increase of Ruminiclostridium spp. (formerly Clostridium cluster III, Firmicutes), which became the dominating chitin responders. Our study provides quantitative insights into anaerobic chitin degradation in lake sediments and linked this to a model of microbial succession associated with this activity. IMPORTANCE Chitin is the most abundant biopolymer in aquatic environments, with a direct impact on the carbon and nitrogen cycles. Despite its massive production as a structural element of crustaceans, insects, or algae, it does not accumulate in sediments. Little is known about its turnover in predominantly anoxic freshwater sediments and the responsible microorganisms. We proved that chitin is readily degraded under anoxic conditions and linked this to a succession of the members of the responsible microbial community over a 43-day period. While Fibrobacteres and Firmicutes members were driving the early and late phases of chitin degradation, respectively, a more diverse community was involved in chitin degradation in the intermediate phase. Entirely different microorganisms responded toward the chitin monomer N-acetylglucosamine, which underscores that soluble monomers are poor and misleading substrates to study polymer-utilizing microorganisms. Our study provides quantitative insights into the microbial ecology driving anaerobic chitin degradation in freshwater sediments.
Collapse
|
11
|
Chen L, Wei Y, Shi M, Li Z, Zhang SH. An Archaeal Chitinase With a Secondary Capacity for Catalyzing Cellulose and Its Biotechnological Applications in Shell and Straw Degradation. Front Microbiol 2019; 10:1253. [PMID: 31244795 PMCID: PMC6579819 DOI: 10.3389/fmicb.2019.01253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Numerous thermostable enzymes have been reported from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which made it an attractive resource for gene cloning. This research reported a glycosyl hydrolase (Tk-ChiA) form T. Kodakarensis with dual hydrolytic activity due to the presence of three binding domains with affinity toward chitin and cellulose. The Tk-ChiA gene was cloned and expressed on Pichia pastoris GS115. The molecular weight of the purified Tk-ChiA is about 130.0 kDa. By using chitosan, CMC-Na and other polysaccharides as substrates, we confirmed that Tk-ChiA with dual hydrolysis activity preferably hydrolyzes both chitosan and CMC-Na. Purified Tk-ChiA showed maximal activity for hydrolyzing CMC-Na at temperature 65°C and pH 7.0. It showed thermal stability on incubation for 4 h at temperatures ranging from 70 to 80°C and remained more than 40% of its maximum activity after pre-incubation at 100°C for 4 h. Particularly, Tk-ChiA is capable of degrading shrimp shell and rice straw through scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) analysis. The main factors affecting shell and straw degradation were determined to be reaction time and temperature; and both factors were optimized by central composite design (CCD) of response surface methodology (RSM) to enhance the efficiency of degradation. Our findings suggest that Tk-ChiA with dual thermostable hydrolytic activities maybe a promising hydrolase for shell and straw waste treatment, conversion, and utilization.
Collapse
Affiliation(s)
- Lina Chen
- College of Plant Sciences, Jilin University, Changchun, China.,College of Food Science and Engineering, Changchun University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Mao Shi
- Jilin Provincial Center for Disease Control and Prevention, Changchun, China
| | - Zhengqun Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
12
|
Sousa AJS, Silva CFB, Sousa JS, Monteiro JE, Freire JEC, Sousa BL, Lobo MDP, Monteiro-Moreira ACO, Grangeiro TB. A thermostable chitinase from the antagonistic Chromobacterium violaceum that inhibits the development of phytopathogenic fungi. Enzyme Microb Technol 2019; 126:50-61. [PMID: 31000164 DOI: 10.1016/j.enzmictec.2019.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/30/2019] [Accepted: 03/30/2019] [Indexed: 01/19/2023]
Abstract
The biocontrol activity of some soil strains of Chromobacterium sp. against pathogenic fungi has been attributed to secreted chitinases. The aim of this work was to characterize biochemically a recombinant chitinase (CvChi47) from C. violaceum ATCC 12472 and to investigate its effects on phytopathogenic fungi. CvChi47 is a modular enzyme with 450 amino acid residues, containing a type I signal peptide at the N-terminal region, followed by one catalytic domain belonging to family 18 of the glycoside hydrolases, and two type-3 chitin-binding domains at the C-terminal end. The recombinant enzyme was expressed in Escherichia coli as a His-tagged protein and purified to homogeneity. The native signal peptide of CvChi47 was used to direct its secretion into the culture medium, from where the recombinant product was purified by affinity chromatography on chitin and immobilized metal. The purified protein showed an apparent molecular mass of 46 kDa, as estimated by denaturing polyacrylamide gel electrophoresis, indicating the removal of the signal peptide. CvChi47 was a thermostable protein, retaining approximately 53.7% of its activity when heated at 100 °C for 1 h. The optimum hydrolytic activity was observed at 60 °C and pH 5. The recombinant chitinase inhibited the conidia germination of the phytopathogenic fungi Fusarium oxysporum and F. guttiforme, hence preventing mycelial growth. Furthermore, atomic force microscopy experiments revealed a pronounced morphological alteration of the cell surface of conidia incubated with CvChi47 in comparison to untreated cells. Taken together, these results show the potential of CvChi47 as a molecular tool to control plant diseases caused by these Fusarium species.
Collapse
Affiliation(s)
- Antônio J S Sousa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Christiana F B Silva
- Embrapa Agroindústria Tropical, Laboratório de Patologia Pós-colheita, Fortaleza, CE, Brazil
| | - Jeanlex S Sousa
- Departamento de Física, Centro de Ciências, UFC, Fortaleza, CE, Brazil
| | - José E Monteiro
- Laboratório de Genética Molecular, Departamento de Biologia, Centro de Ciências, UFC, Fortaleza, CE, Brazil
| | - José E C Freire
- Laboratório de Genética Molecular, Departamento de Biologia, Centro de Ciências, UFC, Fortaleza, CE, Brazil
| | - Bruno L Sousa
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Av. Dom Aureliano Matos, 2060, Limoeiro do Norte, CE, 62930-000, Brazil
| | - Marina D P Lobo
- Núcleo de Biologia Experimental (Nubex), Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Ana C O Monteiro-Moreira
- Núcleo de Biologia Experimental (Nubex), Universidade de Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Thalles B Grangeiro
- Laboratório de Genética Molecular, Departamento de Biologia, Centro de Ciências, UFC, Fortaleza, CE, Brazil.
| |
Collapse
|
13
|
Kumar A, Zhang KYJ. Human Chitinases: Structure, Function, and Inhibitor Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:221-251. [PMID: 31102249 DOI: 10.1007/978-981-13-7318-3_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitinases are glycosyl hydrolases that hydrolyze the β-(1-4)-linkage of N-acetyl-D-glucosamine units present in chitin polymers. Chitinases are widely distributed enzymes and are present in a wide range of organisms including insects, plants, bacteria, fungi, and mammals. These enzymes play key roles in immunity, nutrition, pathogenicity, and arthropod molting. Humans express two chitinases, chitotriosidase 1 (CHIT1) and acid mammalian chitinase (AMCase) along with several chitinase-like proteins (CLPs). Human chitinases are reported to play a protective role against chitin-containing pathogens through their capability to degrade chitin present in the cell wall of pathogens. Now, human chitinases are gaining attention as the key players in innate immune response. Although the exact mechanism of their role in immune response is not known, studies in recent years begin to relate chitin recognition and degradation with the activation of signaling pathways involved in inflammation. The roles of both CHIT1 and AMCase in the development of various diseases have been revealed and several classes of inhibitors have been developed. However, a clear understanding could not be established due to complexities in the design of the right experiment for studying the role of human chitinase in various diseases. In this chapter, we will first outline the structural features of CHIT1 and AMcase. We will then review the progress in understanding the role of human chitinases in the development of various diseases. Finally, we will summarize the inhibitor discovery efforts targeting both CHIT1 and AMCase.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
14
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
15
|
Bao J, Liu N, Zhu L, Xu Q, Huang H, Jiang L. Programming a Biofilm-Mediated Multienzyme-Assembly-Cascade System for the Biocatalytic Production of Glucosamine from Chitin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8061-8068. [PMID: 29989414 DOI: 10.1021/acs.jafc.8b02142] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chitin is used as an essential raw material for the production of glucosamine (GlcN). In this study, we adopted three key enzymes, isolated from Thermococcus kodakaraensis KOD1, that catalyze the sequential conversion of α-chitin into GlcN and developed a multienzyme-assembly-cascade (MAC) system immobilized in a bacterial biofilm, which enabled a multistep one-pot reaction. Specifically, the SpyTag-SpyCatcher and SnoopTag-SnoopCatcher pairs provided covalent and specific binding force to fix enzymes to the biofilm one by one and assemble close enzyme cascades. The MAC system showed great catalytic activity, converting 79.02 ± 3.61% of α-chitin into GlcN with little byproducts, which was 2.09 times that of GlcN catalyzed by a mixture of pure enzymes. The system also exhibited good temperature and pH stability. Notably, 90% of enzyme activity was retained after 6 rounds of reuse, and appreciable activity remained after 17 rounds.
Collapse
Affiliation(s)
- Jingjing Bao
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Nian Liu
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Liying Zhu
- College of Chemical and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Qing Xu
- College of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - He Huang
- College of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 210009 , People's Republic of China
| |
Collapse
|
16
|
Aslam M, Takahashi N, Matsubara K, Imanaka T, Kanai T, Atomi H. Identification of the glucosamine kinase in the chitinolytic pathway of Thermococcus kodakarensis. J Biosci Bioeng 2018; 125:320-326. [DOI: 10.1016/j.jbiosc.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 01/13/2023]
|
17
|
Engineering of the Hyperthermophilic Archaeon Thermococcus kodakarensis for Chitin-Dependent Hydrogen Production. Appl Environ Microbiol 2017; 83:AEM.00280-17. [PMID: 28550062 DOI: 10.1128/aem.00280-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/16/2017] [Indexed: 11/20/2022] Open
Abstract
Thermococcus kodakarensis is a hyperthermophilic archaeon that harbors a complete set of genes for chitin degradation to fructose 6-phosphate. However, wild-type T. kodakarensis KOD1 does not display growth on chitin. In this study, we developed a T. kodakarensis strain that can grow on chitin via genetic and adaptive engineering. First, a chitinase overproduction strain (KC01) was constructed by replacing the chitinase gene promoter with a strong promoter from the cell surface glycoprotein gene, resulting in increased degradation of swollen chitin and accumulation of N-,N'-diacetylchitobiose in the medium. To enhance N-,N'-diacetylchitobiose assimilation in KC01, genes encoding diacetylchitobiose deacetylase, exo-β-d-glucosaminidase, and glucosamine-6-phosphate deaminase were also overexpressed to obtain strain KC04. To strengthen the glycolytic flux of KC04, the gene encoding Tgr (transcriptional repressor of glycolytic genes) was disrupted to obtain strain KC04Δt. In both KC04 and KC04Δt strains, degradation of swollen chitin was further enhanced. In the culture broth of these strains, the accumulation of glucosamine was observed. KC04Δt was repeatedly inoculated in a swollen-chitin-containing medium for 13 cultures. This adaptive engineering strategy resulted in the isolation of a strain (KC04ΔtM1) that showed almost complete degradation of 0.4% (wt/vol) swollen chitin after 90 h. The strain produced high levels of acetate and ammonium in the culture medium, and, moreover, molecular hydrogen was generated. This strongly suggests that strain KC04ΔtM1 has acquired the ability to convert chitin to fructose 6-phosphate via deacetylation and deamination and further convert fructose 6-phosphate to acetate via glycolysis coupled to hydrogen generation.IMPORTANCE Chitin is a linear homopolymer of β-1,4-linked N-acetylglucosamine and is the second most abundant biomass next to cellulose. Compared to the wealth of research focused on the microbial degradation and conversion of cellulose, studies addressing microbial chitin utilization are still limited. In this study, using the hyperthermophilic archaeon Thermococcus kodakarensis as a host, we have constructed a strain that displays chitin-dependent hydrogen generation. The apparent hydrogen yield per unit of sugar consumed was slightly higher with swollen chitin than with starch. As gene manipulation in T. kodakarensis is relatively simple, the strain constructed in this study can also be used as a parent strain for the development and expansion of chitin-dependent biorefinery, in addition to its capacity to produce hydrogen.
Collapse
|
18
|
Counts JA, Zeldes BM, Lee LL, Straub CT, Adams MWW, Kelly RM. Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28206708 DOI: 10.1002/wsbm.1377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
The current upper thermal limit for life as we know it is approximately 120°C. Microorganisms that grow optimally at temperatures of 75°C and above are usually referred to as 'extreme thermophiles' and include both bacteria and archaea. For over a century, there has been great scientific curiosity in the basic tenets that support life in thermal biotopes on earth and potentially on other solar bodies. Extreme thermophiles can be aerobes, anaerobes, autotrophs, heterotrophs, or chemolithotrophs, and are found in diverse environments including shallow marine fissures, deep sea hydrothermal vents, terrestrial hot springs-basically, anywhere there is hot water. Initial efforts to study extreme thermophiles faced challenges with their isolation from difficult to access locales, problems with their cultivation in laboratories, and lack of molecular tools. Fortunately, because of their relatively small genomes, many extreme thermophiles were among the first organisms to be sequenced, thereby opening up the application of systems biology-based methods to probe their unique physiological, metabolic and biotechnological features. The bacterial genera Caldicellulosiruptor, Thermotoga and Thermus, and the archaea belonging to the orders Thermococcales and Sulfolobales, are among the most studied extreme thermophiles to date. The recent emergence of genetic tools for many of these organisms provides the opportunity to move beyond basic discovery and manipulation to biotechnologically relevant applications of metabolic engineering. WIREs Syst Biol Med 2017, 9:e1377. doi: 10.1002/wsbm.1377 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Laura L Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
19
|
A Structurally Novel Chitinase from the Chitin-Degrading Hyperthermophilic Archaeon Thermococcus chitonophagus. Appl Environ Microbiol 2016; 82:3554-3562. [PMID: 27060120 DOI: 10.1128/aem.00319-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A structurally novel chitinase, Tc-ChiD, was identified from the hyperthermophilic archaeon Thermococcus chitonophagus, which can grow on chitin as the sole organic carbon source. The gene encoding Tc-ChiD contains regions corresponding to a signal sequence, two chitin-binding domains, and a putative catalytic domain. This catalytic domain shows no similarity with previously characterized chitinases but resembles an uncharacterized protein found in the mesophilic anaerobic bacterium Clostridium botulinum Two recombinant Tc-ChiD proteins were produced in Escherichia coli, one without the signal sequence [Tc-ChiD(ΔS)] and the other corresponding only to the putative catalytic domain [Tc-ChiD(ΔBD)]. Enzyme assays using N-acetylglucosamine (GlcNAc) oligomers indicated that both proteins hydrolyze GlcNAc oligomers longer than (GlcNAc)4 Chitinase assays using colloidal chitin suggested that Tc-ChiD is an exo-type chitinase that releases (GlcNAc)2 or (GlcNAc)3 Analysis with GlcNAc oligomers modified with p-nitrophenol suggested that Tc-ChiD recognizes the reducing end of chitin chains. While Tc-ChiD(ΔBD) displayed a higher initial velocity than that of Tc-ChiD(ΔS), we found that the presence of the two chitin-binding domains significantly enhanced the thermostability of the catalytic domain. In T. chitonophagus, another chitinase ortholog that is similar to the Thermococcus kodakarensis chitinase ChiA is present and can degrade chitin from the nonreducing ends. Therefore, the presence of multiple chitinases in T. chitonophagus with different modes of cleavage may contribute to its unique ability to efficiently degrade chitin. IMPORTANCE A structurally novel chitinase, Tc-ChiD, was identified from Thermococcus chitonophagus, a hyperthermophilic archaeon. The protein contains a signal peptide for secretion, two chitin-binding domains, and a catalytic domain that shows no similarity with previously characterized chitinases. Tc-ChiD thus represents a new family of chitinases. Tc-ChiD is an exo-type chitinase that recognizes the reducing end of chitin chains and releases (GlcNAc)2 or (GlcNAc)3 As a thermostable chitinase that recognizes the reducing end of chitin chains was not previously known, Tc-ChiD may be useful in a wide range of enzyme-based technologies to degrade and utilize chitin.
Collapse
|
20
|
Analysis of the complete genome sequence of the archaeon Pyrococcus chitonophagus DSM 10152 (formerly Thermococcus chitonophagus). Extremophiles 2016; 20:351-61. [DOI: 10.1007/s00792-016-0826-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
21
|
Gut immunity in a protochordate involves a secreted immunoglobulin-type mediator binding host chitin and bacteria. Nat Commun 2016; 7:10617. [PMID: 26875669 PMCID: PMC4757023 DOI: 10.1038/ncomms10617] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
Protochordate variable region-containing chitin-binding proteins (VCBPs) consist of immunoglobulin-type V domains and a chitin-binding domain (CBD). VCBP V domains facilitate phagocytosis of bacteria by granulocytic amoebocytes; the function of the CBD is not understood. Here we show that the gut mucosa of Ciona intestinalis contains an extensive matrix of chitin fibrils to which VCBPs bind early in gut development, before feeding. Later in development, VCBPs and bacteria colocalize to chitin-rich mucus along the intestinal wall. VCBP-C influences biofilm formation in vitro and, collectively, the findings of this study suggest that VCBP-C may influence the overall settlement and colonization of bacteria in the Ciona gut. Basic relationships between soluble immunoglobulin-type molecules, endogenous chitin and bacteria arose early in chordate evolution and are integral to the overall function of the gut barrier.
Collapse
|
22
|
Bacterial chitin utilization at halophilic conditions. Extremophiles 2013; 18:243-8. [PMID: 24306781 DOI: 10.1007/s00792-013-0611-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
Abstract
Chitin is a dominant structural polymer produced in large amounts by brine shrimp Artemia in hypersaline lakes. Microbiological analysis of chitin utilization as a growth substrate in hypersaline chloride-sulfate lakes in the south Kulunda Steppe (Altai, Russia) revealed two groups of bacteria able to grow on chitin at moderate salinity. Under aerobic conditions, an enrichment culture was obtained at 2 M NaCl. Further purification resulted in the isolation of strains HCh1 and strain HCh2, identified as representatives of the genera Saccharospirillum and Arhodomonas (both in the Gammaproteobacteria). The chitin-utilizing potential has not been previously recognized in these genera. The Saccharospirillum sp. strain HCh1 grew on chitin within the salinity range from 0.5 to 3.25 M NaCl (optimum at 1 M), while Arhodomonas sp. strain HCh2 grew up to 2.5 M NaCl but had a higher salt optimum at 1.5 M. Anaerobic enrichments grew with chitin at 2 and 4 M NaCl, but growth in the latter was extremely slow and the culture eventually lost viability. The enrichment at 2 M NaCl resulted in the isolation of strain HCh-An1, identified as a distant new species of the genus Orenia in the clostridial order Halanaerobiales. It was able to grow on chitin within a salinity range from 1.0 to 2.5 M NaCl (optimum at 1.5 M). The strain is proposed as a new species of the genus Orenia-O. chitinitropha.
Collapse
|
23
|
Sorokin DY, Gumerov VM, Rakitin AL, Beletsky AV, Damsté JSS, Muyzer G, Mardanov AV, Ravin NV. Genome analysis of Chitinivibrio alkaliphilus gen. nov., sp. nov., a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum Termite Group 3. Environ Microbiol 2013; 16:1549-65. [PMID: 24112708 DOI: 10.1111/1462-2920.12284] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/29/2013] [Accepted: 09/09/2013] [Indexed: 11/30/2022]
Abstract
Anaerobic enrichments from hypersaline soda lakes with chitin as substrate yielded five closely related anaerobic haloalkaliphilic isolates growing on insoluble chitin by fermentation at pH 10 and salinities up to 3.5 M. The chitinolytic activity was exclusively cell associated. To better understand the biology and evolutionary history of this novel bacterial lineage, the genome of the type strain ACht1 was sequenced. Analysis of the 2.6 Mb draft genome revealed enzymes of chitin-degradation pathways, including secreted cell-bound chitinases. The reconstructed central metabolism revealed pathways enabling the fermentation of polysaccharides, while it lacks the genes needed for aerobic or anaerobic respiration. The Rnf-type complex, oxaloacetate decarboxylase and sodium-transporting V-type adenosine triphosphatase were identified among putative membrane-bound ion pumps. According to 16S ribosomal RNA analysis, the isolates belong to the candidate phylum Termite Group 3, representing its first culturable members. Phylogenetic analysis using ribosomal proteins and taxonomic distribution analysis of the whole proteome supported a class-level classification of ACht1 most probably affiliated to the phylum Fibribacteres. Based on phylogenetic, phenotypic and genomic analyses, the novel bacteria are proposed to be classified as Chitinivibrio alkaliphilus gen. nov., sp. nov., within a novel class Chitinivibrione.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Oktyabrya, bld. 7-2, 117312, Moscow, Russia; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ferrara MC, Cobucci-Ponzano B, Carpentieri A, Henrissat B, Rossi M, Amoresano A, Moracci M. The identification and molecular characterization of the first archaeal bifunctional exo-β-glucosidase/N-acetyl-β-glucosaminidase demonstrate that family GH116 is made of three functionally distinct subfamilies. Biochim Biophys Acta Gen Subj 2013; 1840:367-77. [PMID: 24060745 DOI: 10.1016/j.bbagen.2013.09.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND β-N-acetylhexosaminidases, which are involved in a variety of biological processes including energy metabolism, cell proliferation, signal transduction and in pathogen-related inflammation and autoimmune diseases, are widely distributed in Bacteria and Eukaryotes, but only few examples have been found in Archaea so far. However, N-acetylgluco- and galactosamine are commonly found in the extracellular storage polymers and in the glycans decorating abundantly expressed glycoproteins from different Crenarchaeota Sulfolobus sp., suggesting that β-N-acetylglucosaminidase activities could be involved in the modification/recycling of these cellular components. METHODS A thermophilic β-N-acetylglucosaminidase was purified from cellular extracts of S. solfataricus, strain P2, identified by mass spectrometry, and cloned and expressed in E. coli. Glycosidase assays on different strains of S. solfataricus, steady state kinetic constants, substrate specificity analysis, and the sensitivity to two inhibitors of the recombinant enzyme were also reported. RESULTS A new β-N-acetylglucosaminidase from S. solfataricus was unequivocally identified as the product of gene sso3039. The detailed enzymatic characterization demonstrates that this enzyme is a bifunctional β-glucosidase/β-N-acetylglucosaminidase belonging to family GH116 of the carbohydrate active enzyme (CAZy) classification. CONCLUSIONS This study allowed us to propose that family GH116 is composed of three subfamilies, which show distinct substrate specificities and inhibitor sensitivities. GENERAL SIGNIFICANCE The characterization of SSO3039 allows, for the first time in Archaea, the identification of an enzyme involved in the metabolism β-N-acetylhexosaminide, an essential component of glycoproteins in this domain of life, and substantially increases our knowledge on the functional role and phylogenetic relationships amongst the GH116 CAZy family members.
Collapse
Affiliation(s)
- Maria Carmina Ferrara
- Institute of Protein Biochemistry, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Functional expression and characterization of a chitinase from the marine archaeon Halobacterium salinarum CECT 395 in Escherichia coli. Appl Microbiol Biotechnol 2013; 98:2133-43. [PMID: 23893326 DOI: 10.1007/s00253-013-5124-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
The HschiA1 gene of the archaeon Halobacterium salinarum CECT 395 was cloned and overexpressed as an active protein of 66.5 kDa in Escherichia coli. The protein called HsChiA1p has a modular structure consisting of a glycosyl hydrolase family 18 catalytic region, as well as a N-terminal family 5 carbohydrate-binding module and a polycystic kidney domain. The purified recombinant chitinase displayed optimum catalytic activity at pH 7.3 and 40 °C and showed high stability over broad pH (6-8.5) and temperature (25-45 °C) ranges. Protein activity was stimulated by the metal ions Mg(+2), K(+), and Ca(+2) and strongly inhibited by Mn(+2). HsChiA1p is salt-dependent with its highest activity in the presence of 1.5 M of NaCl, but retains 20% of its activity in the absence of salt. The recombinant enzyme hydrolysed p-NP-(GlcNAc)3, p-NP-(GlcNAc), crystalline chitin, and colloidal chitin. From its sequence features and biochemical properties, it can be identified as an exo-acting enzyme with potential interest regarding the biodegradation of chitin waste or its bioconversion into biologically active products.
Collapse
|
26
|
Beier S, Bertilsson S. Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol 2013; 4:149. [PMID: 23785358 PMCID: PMC3682446 DOI: 10.3389/fmicb.2013.00149] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/28/2013] [Indexed: 11/13/2022] Open
Abstract
Chitin is one the most abundant polymers in nature and interacts with both carbon and nitrogen cycles. Processes controlling chitin degradation are summarized in reviews published some 20 years ago, but the recent use of culture-independent molecular methods has led to a revised understanding of the ecology and biochemistry of this process and the organisms involved. This review summarizes different mechanisms and the principal steps involved in chitin degradation at a molecular level while also discussing the coupling of community composition to measured chitin hydrolysis activities and substrate uptake. Ecological consequences are then highlighted and discussed with a focus on the cross feeding associated with the different habitats that arise because of the need for extracellular hydrolysis of the chitin polymer prior to metabolic use. Principal environmental drivers of chitin degradation are identified which are likely to influence both community composition of chitin degrading bacteria and measured chitin hydrolysis activities.
Collapse
Affiliation(s)
- Sara Beier
- Department of Ecology and Genetics, Limnology, Uppsala University Uppsala, Sweden ; Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, UPMC Paris 06, UMR 7621 Banyuls sur mer, France ; Laboratoire d'Océanographie Microbienne, Observatoire Océanologique Centre National de la Recherche Scientifique, UMR 7621 Banyuls sur mer, France
| | | |
Collapse
|
27
|
Characterization of genes for chitin catabolism in Haloferax mediterranei. Appl Microbiol Biotechnol 2013; 98:1185-94. [PMID: 23674154 DOI: 10.1007/s00253-013-4969-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/27/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Chitin is the second most abundant natural polysaccharide after cellulose. But degradation of chitin has never been reported in haloarchaea. In this study, we revealed that Haloferax mediterranei, a metabolically versatile haloarchaeon, could utilize colloidal or powdered chitin for growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) accumulation, and the gene cluster (HFX_5025-5039) for the chitin catabolism pathway was experimentally identified. First, reverse transcription polymerase chain reaction results showed that the expression of the genes encoding the four putative chitinases (ChiAHme, ChiBHme, ChiCHme, and ChiDHme, HFX_5036-5039), the LmbE-like deacetylase (DacHme, HFX_5027), and the glycosidase (GlyAHme, HFX_5029) was induced by colloidal or powdered chitin, and chiA Hme, chiB Hme, and chiC Hme were cotranscribed. Knockout of chiABC Hme or chiD Hme had a significant effect on cell growth and PHBV production when chitin was used as the sole carbon source, and the chiABCD Hme knockout mutant lost the capability to utilize chitin. Knockout of dac Hme or glyA Hme also decreased PHBV accumulation on chitin. These results suggested that ChiABCDHme, DacHme, and GlyAHme were indeed involved in chitin degradation in H. mediterranei. Additionally, the chitinase assay showed that each chitinase possessed hydrolytic activity toward colloidal or powdered chitin, and the major product of colloidal chitin hydrolysis by ChiABCDHme was diacetylchitobiose, which was likely further degraded to monosaccharides by DacHme, GlyAHme, and other related enzymes for both cell growth and PHBV biosynthesis. Taken together, this study revealed the genes and enzymes involved in chitin catabolism in haloarchaea for the first time and indicated the potential of H. mediterranei as a whole-cell biocatalyst in chitin bioconversion.
Collapse
|
28
|
Kreuzer M, Schmutzler K, Waege I, Thomm M, Hausner W. Genetic engineering of Pyrococcus furiosus to use chitin as a carbon source. BMC Biotechnol 2013; 13:9. [PMID: 23391022 PMCID: PMC3575233 DOI: 10.1186/1472-6750-13-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/04/2013] [Indexed: 01/14/2023] Open
Abstract
Background Bioinformatic analysis of the genes coding for the chitinase in Pyrococcus furiosus and Thermococcus kodakarensis revealed that most likely a one nucleotide insertion in Pyrococcus caused a frame shift in the chitinase gene. This splits the enzyme into two separate genes, PF1233 and PF1234, in comparison to Thermococcus kodakarensis. Furthermore, our attempts to grow the wild type strain of Pyrococcus furiosus on chitin were negative. From these data we assume that Pyrococcus furiosus is most likely unable to use chitin as a carbon source. The aim of this study was to analyze in vivo if the one nucleotide insertion is responsible for the inability to grow on chitin, using a recently described genetic system for Pyrococcus furiosus. Results A marker-less genetic system for Pyrococcus furiosus was developed using simvastatin for positive selection and 6-methylpurine for negative selection. Resistance against simvastatin was achieved by overexpression of the hydroxymethylglutaryl coenzyme A reductase gene. For the resistance to 6-methylpurine the hypoxanthine-guanine phosphoribosyltransferase gene was deleted. This system was used to delete the additional nucleotide at position 1006 in PF1234. The resulting chitinase in the mutant strain was a single subunit enzyme and aligns perfectly to the enzyme from Thermococcus kodakarensis. A detailed analysis of the wild type and the mutant using counted cell numbers as well as ATP and acetate production as growth indicators revealed that only the mutant is able to use chitin as a carbon source. An additional mutant strain containing a reduced chitinase version containing just one catalytic and one chitin-binding domain showed diminished growth on chitin in comparison to the mutant containing the single large enzyme. Conclusions Wild type Pyrococcus furiosus is most likely unable to grow on chitin in the natural biotope due to a nucleotide insertion which separates the chitinase gene into two ORFs, whereas a genetically engineered strain with the deleted nucleotide is able to grow on chitin. The overall high sequence identity of the two chitinases between P. furiosus and T. kodakarensis indicates that this mutation occurred very recently or there is still some kind of selection pressure for a functional enzyme using programmed +/−1 frameshifting.
Collapse
Affiliation(s)
- Martina Kreuzer
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, University of Regensburg, Regensburg, 93053, Germany.
| | | | | | | | | |
Collapse
|
29
|
Arnosti C, Fuchs BM, Amann R, Passow U. Contrasting extracellular enzyme activities of particle-associated bacteria from distinct provinces of the North Atlantic Ocean. Front Microbiol 2012; 3:425. [PMID: 23248623 PMCID: PMC3521168 DOI: 10.3389/fmicb.2012.00425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 11/27/2012] [Indexed: 12/31/2022] Open
Abstract
Microbial communities play a key role in the marine carbon cycle, processing much of phytoplankton-derived organic matter. The composition of these communities varies by depth, season, and location in the ocean; the functional consequences of these compositional variations for the carbon cycle are only beginning to be explored. We measured the abilities of microbial communities in the large-particle fraction (retained by a 10-μm pore-size cartridge filter) to enzymatically hydrolyze high molecular weight substrates, and therefore initiate carbon remineralization in four distinct oceanic provinces: the boreal polar (BPLR), the Arctic oceanic (ARCT), the North Atlantic drift (NADR), and the North Atlantic subtropical (NAST) provinces. Since we expected the large-particle fraction to include phytoplankton cells, we measured the hydrolysis of polysaccharide substrates (laminarin, fucoidan, xylan, and chondroitin sulfate) expected to be associated with phytoplankton. Hydrolysis rates and patterns clustered into two groups, the BPLR/ARCT and the NADR/NAST. All four substrates were hydrolyzed by the BPLR/ARCT communities; hydrolysis rates of individual substrate varied by factors of ca. 1–4. In contrast, chondroitin was not hydrolyzed in the NADR/NAST, and hydrolytic activity was dominated by laminarinase. Fluorescence in situ hybridization of the large-particle fraction post-incubation showed a substantial contribution (15–26%) of CF319a-positive cells (Bacteroidetes) to total DAPI-stainable cells. Concurrent studies of microbial community composition and of fosmids from these same stations also demonstrated similarities between BPLR and ARCT stations, which were distinct from the NADR/NAST stations. Together, these data support a picture of compositionally as well as functionally distinct communities across these oceanic provinces.
Collapse
Affiliation(s)
- Carol Arnosti
- Department of Marine Sciences, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
30
|
Low rates of lateral gene transfer among metabolic genes define the evolving biogeochemical niches of archaea through deep time. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:843539. [PMID: 23226971 PMCID: PMC3512248 DOI: 10.1155/2012/843539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/02/2012] [Accepted: 10/02/2012] [Indexed: 01/26/2023]
Abstract
Phylogenomic analyses of archaeal genome sequences are providing windows into the group's evolutionary past, even though most archaeal taxa lack a conventional fossil record. Here, phylogenetic analyses were performed using key metabolic genes that define the metabolic niche of microorganisms. Such genes are generally considered to have undergone high rates of lateral gene transfer. Many gene sequences formed clades that were identical, or similar, to the tree constructed using large numbers of genes from the stable core of the genome. Surprisingly, such lateral transfer events were readily identified and quantifiable, occurring only a relatively small number of times in the archaeal domain of life. By placing gene acquisition events into a temporal framework, the rates by which new metabolic genes were acquired can be quantified. The highest lateral transfer rates were among cytochrome oxidase genes that use oxygen as a terminal electron acceptor (with a total of 12–14 lateral transfer events, or 3.4–4.0 events per billion years, across the entire archaeal domain). Genes involved in sulfur or nitrogen metabolism had much lower rates, on the order of one lateral transfer event per billion years. This suggests that lateral transfer rates of key metabolic proteins are rare and not rampant.
Collapse
|
31
|
Bacterial chitin utilisation at extremely haloalkaline conditions. Extremophiles 2012; 16:883-94. [PMID: 23007247 DOI: 10.1007/s00792-012-0484-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/09/2012] [Indexed: 10/27/2022]
Abstract
Chitin is produced in large amounts in hypersaline habitats with neutral pH due to the high biomass production of brine shrimp Artemia. Recently, a high abundance of Artemia was also noticed in hypersaline soda lakes in the Kulunda Steppe (Altai, Russia), which prompted us to survey the possibility of microbial chitin utilization at extremely haloalkaline conditions in soda brines. Most active chitin utilisation-supporting microbial growth was found at anaerobic conditions at pH 10 and up to 3.5 M total Na(+). At aerobic conditions, the degradation of chitin was slower, mostly incomplete and active at <2 M total Na(+), although very slow partial degradation was possible up to 4 M Na(+). Anaerobic enrichments at pH 10 yielded two different groups of obligately haloalkaliphilic fermentative anaerobes, exclusively specialized to utilise insoluble chitin as the only growth substrate. One group was represented by a single strain growing at moderate salinity, and another comprised multiple isolates growing up to 3.5 M Na(+). These groups represent two novel bacterial phyla not closely related to any other cultured bacteria. Aerobic enrichments from the lake sediments were dominated by several obligately haloalkaliphilic members of the genus Marinimicrobium in the Gammaproteobacteria. They were less specialised than the anaerobes and grew with chitin and its monomer and oligomers at a pH of 10 up to 2.5 M Na(+). Furthermore, several strains of haloalkaliphilic Gram-positive chitinolytics belonging to bacilli and actinobacteria were isolated from soda lake sediments and surrounding soda soils. In general, the results indicate the presence of an active and diverse haloalkaliphilic chitinolytic microbial community in hypersaline soda habitats.
Collapse
|
32
|
Staufenberger T, Imhoff JF, Labes A. First crenarchaeal chitinase found in Sulfolobus tokodaii. Microbiol Res 2012; 167:262-9. [DOI: 10.1016/j.micres.2011.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022]
|
33
|
Cretoiu MS, Kielak AM, Abu Al-Soud W, Sørensen SJ, van Elsas JD. Mining of unexplored habitats for novel chitinases--chiA as a helper gene proxy in metagenomics. Appl Microbiol Biotechnol 2012; 94:1347-58. [PMID: 22526805 PMCID: PMC3353111 DOI: 10.1007/s00253-012-4057-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
Abstract
The main objective of this study was to assess the abundance and diversity of chitin-degrading microbial communities in ten terrestrial and aquatic habitats in order to provide guidance to the subsequent exploration of such environments for novel chitinolytic enzymes. A combined protocol which encompassed (1) classical overall enzymatic assays, (2) chiA gene abundance measurement by qPCR, (3) chiA gene pyrosequencing, and (4) chiA gene-based PCR-DGGE was used. The chiA gene pyrosequencing is unprecedented, as it is the first massive parallel sequencing of this gene. The data obtained showed the existence across habitats of core bacterial communities responsible for chitin assimilation irrespective of ecosystem origin. Conversely, there were habitat-specific differences. In addition, a suite of sequences were obtained that are as yet unregistered in the chitinase database. In terms of chiA gene abundance and diversity, typical low-abundance/diversity versus high-abundance/diversity habitats was distinguished. From the combined data, we selected chitin-amended agricultural soil, the rhizosphere of the Arctic plant Oxyria digyna and the freshwater sponge Ephydatia fluviatilis as the most promising habitats for subsequent bioexploration. Thus, the screening strategy used is proposed as a guide for further metagenomics-based exploration of the selected habitats.
Collapse
|
34
|
Tran HT, Barnich N, Mizoguchi E. Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation. Histol Histopathol 2012; 26:1453-64. [PMID: 21938682 DOI: 10.14670/hh-26.1453] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The small and large intestines contain an abundance of luminal antigens derived from food products and enteric microorganisms. The function of intestinal epithelial cells is tightly regulated by several factors produced by enteric bacteria and the epithelial cells themselves. Epithelial cells actively participate in regulating the homeostasis of intestine, and failure of this function leads to abnormal and host-microbial interactions resulting in the development of intestinal inflammation. Major determinants of host susceptibility against luminal commensal bacteria include genes regulating mucosal immune responses, intestinal barrier function and microbial defense. Of note, it has been postulated that commensal bacterial adhesion and invasion on/into host cells may be strongly involved in the pathogenesis of inflammatory bowel disease (IBD). During the intestinal inflammation, the composition of the commensal flora is altered, with increased population of aggressive and detrimental bacteria and decreased populations of protective bacteria. In fact, some pathogenic bacteria, including Adherent-Invasive Escherichia coli, Listeria monocytogenes and Vibrio cholerae are likely to initiate their adhesion to the host cells by expressing accessory molecules such as chitinases and/or chitin-binding proteins on themselves. In addition, several inducible molecules (e.g., chitinase 3-like 1, CEACAM6) are also induced on the host cells (e.g. epithelial cells, lamina proprial macrophages) under inflammatory conditions, and are actively participated in the host-microbial interactions. In this review, we will summarize and discuss the potential roles of these important molecules during the development of acute and chronic inflammatory conditions.
Collapse
Affiliation(s)
- H T Tran
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | | |
Collapse
|
35
|
Hyperthermophilic Thermotoga species differ with respect to specific carbohydrate transporters and glycoside hydrolases. Appl Environ Microbiol 2012; 78:1978-86. [PMID: 22247137 DOI: 10.1128/aem.07069-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Four hyperthermophilic members of the bacterial genus Thermotoga (T. maritima, T. neapolitana, T. petrophila, and Thermotoga sp. strain RQ2) share a core genome of 1,470 open reading frames (ORFs), or about 75% of their genomes. Nonetheless, each species exhibited certain distinguishing features during growth on simple and complex carbohydrates that correlated with genomic inventories of specific ABC sugar transporters and glycoside hydrolases. These differences were consistent with transcriptomic analysis based on a multispecies cDNA microarray. Growth on a mixture of six pentoses and hexoses showed no significant utilization of galactose or mannose by any of the four species. T. maritima and T. neapolitana exhibited similar monosaccharide utilization profiles, with a strong preference for glucose and xylose over fructose and arabinose. Thermotoga sp. strain RQ2 also used glucose and xylose, but was the only species to utilize fructose to any extent, consistent with a phosphotransferase system (PTS) specific for this sugar encoded in its genome. T. petrophila used glucose to a significantly lesser extent than the other species. In fact, the XylR regulon was triggered by growth on glucose for T. petrophila, which was attributed to the absence of a glucose transporter (XylE2F2K2), otherwise present in the other Thermotoga species. This suggested that T. petrophila acquires glucose through the XylE1F1K1 transporter, which primarily serves to transport xylose in the other three Thermotoga species. The results here show that subtle differences exist among the hyperthermophilic Thermotogales with respect to carbohydrate utilization, which supports their designation as separate species.
Collapse
|
36
|
Blank CE. An expansion of age constraints for microbial clades that lack a conventional fossil record using phylogenomic dating. J Mol Evol 2011; 73:188-208. [PMID: 22105429 DOI: 10.1007/s00239-011-9467-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 10/24/2011] [Indexed: 01/22/2023]
Abstract
Most microbial taxa lack a conventional microfossil or biomarker record, and so we currently have little information regarding how old most microbial clades and their associated traits are. Building on the previously published oxygen age constraint, two new age constraints are proposed based on the ability of microbial clades to metabolize chitin and aromatic compounds derived from lignin. Using the archaeal domain of life as a test case, phylogenetic analyses, along with published metabolic and genetic data, showed that members of the Halobacteriales and Thermococcales are able to metabolize chitin. Ancestral state reconstruction combined with phylogenetic analysis of the genes underlying chitin degradation predicted that the ancestors of these two groups were also likely able to metabolize chitin or chitin-related compounds. These two clades were therefore assigned a maximum age of 1.0 Ga (when chitin likely first appeared). Similar analyses also predicted that the ancestor to the Sulfolobus solfataricus-Sulfolobus islandicus clade was able to metabolize phenol using catechol dioxygenase, so this clade was assigned a maximum age of 475 Ma. Inferred ages of archaeal clades using relaxed molecular clocks with the new age constraints were consistent with those inferred with the oxygen age constraints. This work expands our current toolkit to include Paleoproterozoic, Neoproterozoic, and Paleozoic age constraints, and should aid in our ability to phylogenetically reconstruct the antiquity of a wide array of microbial clades and their associated morphological and biogeochemical traits, spanning deep geologic time. Such hypotheses-although built upon evolutionary inferences-are fundamentally testable.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, 32 Campus Drive #1296, Missoula, MT 59812-1296, USA.
| |
Collapse
|
37
|
Bhuiyan FA, Nagata S, Ohnishi K. Novel chitinase genes from metagenomic DNA prepared from marine sediments in southwest Japan. Pak J Biol Sci 2011; 14:204-11. [PMID: 21870643 DOI: 10.3923/pjbs.2011.204.211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chitinase degrades chitin which comprises an important source of carbon and nitrogen in the marine environment. The aim of this study was to evaluate the population of chitinases in the marine sediments in southwest Japan. We collected marine sediments from eutrophic inner bay and offshore. Chitin-degrading bacteria were enriched from both sediments. Metagenomic DNA was isolated from the enriched chitin-degrading bacterial cell culture. At the same time, 25 chitin-degrading bacteria were isolated from the enriched culture. Partial fragments of chitinase genes were successfully amplified with degenerate primers designed for the glycoside hydrolase 18 family. We analyzed chitinase gene sequences of about 500 clones from metagenomic DNA prepared from chitin-degrading bacteria. Based on translated amino acid sequences, chitinases were grouped into five groups. Chitinases in groups II and III was most abundant and close to chitinase genes of several species of proteobacteria. On the other hand, chitinases in groups I, IV and V were unique and distinct from the known chitinases. These results indicate that the marine sediments used in this study contain diversity of chitinase genes.
Collapse
Affiliation(s)
- F A Bhuiyan
- Department of Applied Bioresource Science, The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | | | | |
Collapse
|
38
|
Ghasemi A, Salmanian AH, Sadeghifard N, Salarian AA, Gholi MK. Cloning, expression and purification of Pwo polymerase from Pyrococcus woesei. IRANIAN JOURNAL OF MICROBIOLOGY 2011; 3:118-22. [PMID: 22347593 PMCID: PMC3279813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND AND OBJECTIVES Pyrococcus woesei is a hyperthermophilic archaea and produces a heat stable polymerase (Pwo polymerase) that has proofreading activity. MATERIALS AND METHODS In this study, this microorganism was cultured, its DNA was extracted and the pwo gene polymerase was cloned, expressed and purified. The DNA sequence of the cloned gene was verified by sequencing. The pwo polymerase gene consists of 2,328 bps (775 amino acids with about 90 kD molecular weight). Cloning was done by GATEWAY™ Cloning System and for purification of recombinant protein; His6x-Tag was added to the C-terminus of the recombinant protein. RESULTS AND CONCLUSION We could purify Pwo polymerase enzyme by Ni-NTA resin. PCR assay showed that Pwo polymerase activity is comparable to a commercial Pfu polymerase activity.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Pathobiology, Institute of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Army University of Medical Sciences, Tehran, Iran. ,Corresponding author: Amir Ghasemi MSc Address: Department of Pathobiology, Institute of Public Health, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98-9123595610. E-mail:
| | - Ali Hatef Salmanian
- National Institute of Genetic Engineering and Biotechnology (NIGEB). Shahrak-e-Pajoohesh, 15th Km, Tehran, Karaj Highway, Tehran, Iran.
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | | | - Mohammad Khalifeh Gholi
- Department of Pathobiology, Institute of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Kumar L, Awasthi G, Singh B. Extremophiles: A Novel Source of Industrially Important Enzymes. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/biotech.2011.121.135] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Abstract
Extracellular enzymes initiate microbial remineralization of organic matter by hydrolyzing substrates to sizes sufficiently small to be transported across cell membranes. As much of marine primary productivity is processed by heterotrophic microbes, the substrate specificities of extracellular enzymes, the rates at which they function in seawater and sediments, and factors controlling their production, distribution, and active lifetimes, are central to carbon cycling in marine systems. In this review, these topics are considered from biochemical, microbial/molecular biological, and geochemical perspectives. Our understanding of the capabilities and limitations of heterotrophic microbial communities has been greatly advanced in recent years, in part through genetic and genomic approaches. New methods to measure enzyme activities in the field are needed to keep pace with these advances and to pursue intriguing evidence that patterns of enzyme activities in different environments are linked to differences in microbial community composition that may profoundly affect the marine carbon cycle.
Collapse
Affiliation(s)
- Carol Arnosti
- Department of Marine Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599-3300, USA.
| |
Collapse
|
41
|
Harris JM, Epting KL, Kelly RM. N-terminal fusion of a hyperthermophilic chitin-binding domain to xylose isomerase from Thermotoga neapolitana enhances kinetics and thermostability of both free and immobilized enzymes. Biotechnol Prog 2010; 26:993-1000. [PMID: 20730758 DOI: 10.1002/btpr.416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Immobilization of a thermostable D-xylose isomerase (EC 5.3.1.5) from Thermotoga neapolitana 5068 (TNXI) on chitin beads was accomplished via a N-terminal fusion with a chitin-binding domain (CBD) from a hyperthermophilic chitinase produced by Pyrococcus furiosus (PF1233) to create a fusion protein (CBD-TNXI). The turnover numbers for glucose to fructose conversion for both unbound and immobilized CBD-TNXI were greater than the wild-type enzyme: k(cat) (min(-1)) was approximately 1,000, 3,800, and 5,800 at 80 degrees C compared to 1,140, 10,350, and 7,000 at 90 degrees C, for the wild-type, unbound, and immobilized enzymes, respectively. These k(cat) values for the glucose to fructose isomerization measured are the highest reported to date for any XI at any temperature. Enzyme kinetic inactivation at 100 degrees C, as determined from a bi-phasic inactivation model, showed that the CBD-TNXI bound to chitin had a half-life approximately three times longer than the soluble wild-type TNXI (19.9 hours vs. 6.8 hours, respectively). Surprisingly, the unbound soluble CBD-TNXI had a significantly longer half-life (56.5 hours) than the immobilized enzyme. Molecular modeling results suggest that the N-terminal fusion impacted subunit interactions, thereby contributing to the enhanced thermostability of both the unbound and immobilized CBD-TNXI. These interactions likely also played a role in modifying active site structure, thereby diminishing substrate-binding affinities and generating higher turnover rates in the unbound fusion protein.
Collapse
Affiliation(s)
- James M Harris
- Dept. of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | |
Collapse
|
42
|
Andrews G, Lewis D, Notey J, Kelly R, Muddiman D. Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting. Anal Bioanal Chem 2010; 398:391-404. [PMID: 20582400 DOI: 10.1007/s00216-010-3929-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/13/2010] [Accepted: 06/14/2010] [Indexed: 11/27/2022]
Abstract
Probing the intracellular proteome of Thermotoga maritima and Caldicellulosiruptor saccharolyticus in pure and co-culture affords a global investigation into the machinery and mechanisms enduring inside the bacterial thermophilic cell at the time of harvest. The second of a two part study, employing GeLC-MS(2) a variety of proteins were confidently identified with <1% false discovery rate, and spectral counts for label-free relative quantification afforded indication of the dynamic proteome as a function of environmental stimuli. Almost 25% of the T. maritima proteome and 10% of the C. saccharolyticus proteome were identified. Through comparison of growth temperatures for T. maritima, a protein associated with chemotaxis was uniquely present in the sample cultivated at the non-optimal growth temperature. It is suspected that movement was induced due to the non-optimal condition as the organism may need to migrate in the culture to locate more nutrients. The inventory of C. saccharolyticus proteins identified in these studies and attributed to spectral counting, demonstrated that two CRISPR-associated proteins had increased expression in the pure culture versus the co-culture. Further focusing on this relationship, a C. saccharolyticus phage-shock protein was identified in the co-culture expanding a scenario that the co-culture had decreased antiviral resistance and accordingly an infection-related protein was present. Alterations in growth conditions of these bacterial thermophilic microorganisms offer a glimpse into the intricacy of microbial behavior and interaction.
Collapse
Affiliation(s)
- Genna Andrews
- Chemistry, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
43
|
Characteristics of cold-adaptive endochitinase from Antarctic bacterium Sanguibacter antarcticus KOPRI 21702. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Kikkawa Y, Tokuhisa H, Shingai H, Hiraishi T, Houjou H, Kanesato M, Imanaka T, Tanaka T. Interaction force of chitin-binding domains onto chitin surface. Biomacromolecules 2008; 9:2126-31. [PMID: 18656977 DOI: 10.1021/bm800162x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interaction force of chitin-binding domains (ChBD1 and ChBD2) from a thermostable chitinase onto chitin surface was directly measured by atomic force microscopy (AFM) in a buffer solution. In the force curve measurement, multiple pull-off events were observed for the AFM tips functionalized with either ChBD1 or ChBD2, whereas the AFM tips terminated with nitrilotriacetic acid groups without ChBD showed no interaction peak, suggesting that the detected forces are derived from the binding functions of ChBDs onto the chitin surface. The force curve analyses indicate that the binding force of ChBD2 is stronger than that of ChBD1. This result suggests that ChBD1 and ChBD2 play different roles in adsorption onto chitin surface.
Collapse
Affiliation(s)
- Yoshihiro Kikkawa
- Nanoarchitectonics Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
VanFossen AL, Lewis DL, Nichols JD, Kelly RM. Polysaccharide Degradation and Synthesis by Extremely Thermophilic Anaerobes. Ann N Y Acad Sci 2008; 1125:322-37. [DOI: 10.1196/annals.1419.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Chou CJ, Shockley KR, Conners SB, Lewis DL, Comfort DA, Adams MWW, Kelly RM. Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 2007; 73:6842-53. [PMID: 17827328 PMCID: PMC2074980 DOI: 10.1128/aem.00597-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoside linkage (cellobiose versus maltose) dramatically influenced bioenergetics to different extents and by different mechanisms in the hyperthermophilic archaeon Pyrococcus furiosus when it was grown in continuous culture at a dilution rate of 0.45 h(-1) at 90 degrees C. In the absence of S(0), cellobiose-grown cells generated twice as much protein and had 50%-higher specific H(2) generation rates than maltose-grown cultures. Addition of S(0) to maltose-grown cultures boosted cell protein production fourfold and shifted gas production completely from H(2) to H(2)S. In contrast, the presence of S(0) in cellobiose-grown cells caused only a 1.3-fold increase in protein production and an incomplete shift from H(2) to H(2)S production, with 2.5 times more H(2) than H(2)S formed. Transcriptional response analysis revealed that many genes and operons known to be involved in alpha- or beta-glucan uptake and processing were up-regulated in an S(0)-independent manner. Most differentially transcribed open reading frames (ORFs) responding to S(0) in cellobiose-grown cells also responded to S(0) in maltose-grown cells; these ORFs included ORFs encoding a membrane-bound oxidoreductase complex (MBX) and two hypothetical proteins (PF2025 and PF2026). However, additional genes (242 genes; 108 genes were up-regulated and 134 genes were down-regulated) were differentially transcribed when S(0) was present in the medium of maltose-grown cells, indicating that there were different cellular responses to the two sugars. These results indicate that carbohydrate characteristics (e.g., glycoside linkage) have a major impact on S(0) metabolism and hydrogen production in P. furiosus. Furthermore, such issues need to be considered in designing and implementing metabolic strategies for production of biofuel by fermentative anaerobes.
Collapse
Affiliation(s)
- Chung-Jung Chou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Montero CI, Johnson MR, Chou CJ, Conners SB, Geouge SG, Tachdjian S, Nichols JD, Kelly RM. Responses of wild-type and resistant strains of the hyperthermophilic bacterium Thermotoga maritima to chloramphenicol challenge. Appl Environ Microbiol 2007; 73:5058-65. [PMID: 17557852 PMCID: PMC1951032 DOI: 10.1128/aem.00453-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptomes and growth physiologies of the hyperthermophile Thermotoga maritima and an antibiotic-resistant spontaneous mutant were compared prior to and following exposure to chloramphenicol. While the wild-type response was similar to that of mesophilic bacteria, reduced susceptibility of the mutant was attributed to five mutations in 23S rRNA and phenotypic preconditioning to chloramphenicol.
Collapse
Affiliation(s)
- Clemente I Montero
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. FEMS Microbiol Rev 2006; 30:872-905. [PMID: 17064285 DOI: 10.1111/j.1574-6976.2006.00039.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing of microbial genomes has allowed the application of functional genomics methods to species lacking well-developed genetic systems. For the model hyperthermophile Thermotoga maritima, microarrays have been used in comparative genomic hybridization studies to investigate diversity among Thermotoga species. Transcriptional data have assisted in prediction of pathways for carbohydrate utilization, iron-sulfur cluster synthesis and repair, expolysaccharide formation, and quorum sensing. Structural genomics efforts aimed at the T. maritima proteome have yielded hundreds of high-resolution datasets and predicted functions for uncharacterized proteins. The information gained from genomics studies will be particularly useful for developing new biotechnology applications for T. maritima enzymes.
Collapse
Affiliation(s)
- Shannon B Conners
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | |
Collapse
|
49
|
Montero CI, Lewis DL, Johnson MR, Conners SB, Nance EA, Nichols JD, Kelly RM. Colocation of genes encoding a tRNA-mRNA hybrid and a putative signaling peptide on complementary strands in the genome of the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 2006; 188:6802-7. [PMID: 16980482 PMCID: PMC1595527 DOI: 10.1128/jb.00470-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the genome of the hyperthermophilic bacterium Thermotoga maritima, TM0504 encodes a putative signaling peptide implicated in population density-dependent exopolysaccharide formation. Although not noted in the original genome annotation, TM0504 was found to colocate, on the opposite strand, with the gene encoding ssrA, a hybrid of tRNA and mRNA (tmRNA), which is involved in a trans-translation process related to ribosome rescue and is ubiquitous in bacteria. Specific DNA probes were designed and used in real-time PCR assays to follow the separate transcriptional responses of the colocated open reading frames (ORFs) during transition from exponential to stationary phase, chloramphenicol challenge, and syntrophic coculture with Methanococcus jannaschii. TM0504 transcription did not vary under normal growth conditions. Transcription of the tmRNA gene, however, was significantly up-regulated during chloramphenicol challenge and in T. maritima bound in exopolysaccharide aggregates during methanogenic coculture. The significance of the colocation of ORFs encoding a putative signaling peptide and tmRNA in T. maritima is intriguing, since this overlapping arrangement (tmRNA associated with putative small ORFs) was found to be conserved in at least 181 bacterial genomes sequenced to date. Whether peptides related to TM0504 in other bacteria play a role in quorum sensing is not yet known, but their ubiquitous colocalization with respect to tmRNA merits further examination.
Collapse
Affiliation(s)
- Clemente I Montero
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Lee HS, Shockley KR, Schut GJ, Conners SB, Montero CI, Johnson MR, Chou CJ, Bridger SL, Wigner N, Brehm SD, Jenney FE, Comfort DA, Kelly RM, Adams MWW. Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 2006; 188:2115-25. [PMID: 16513741 PMCID: PMC1428126 DOI: 10.1128/jb.188.6.2115-2125.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrococcus furiosus utilizes starch and its degradation products, such as maltose, as primary carbon sources, but the pathways by which these alpha-glucans are processed have yet to be defined. For example, its genome contains genes proposed to encode five amylolytic enzymes (including a cyclodextrin glucanotransferase [CGTase] and amylopullulanase), as well as two transporters for maltose and maltodextrins (Mal-I and Mal-II), and a range of intracellular enzymes have been purified that reportedly metabolize maltodextrins and maltose. However, precisely which of these enzymes are involved in starch processing is not clear. In this study, starch metabolism in P. furiosus was examined by biochemical analyses in conjunction with global transcriptional response data for cells grown on a variety of glucans. In addition, DNA sequencing led to the correction of two key errors in the genome sequence, and these change the predicted properties of amylopullulanase (now designated PF1935*) and CGTase (PF0478*). Based on all of these data, a pathway is proposed that is specific for starch utilization that involves one transporter (Mal-II [PF1933 to PF1939]) and only three enzymes, amylopullulanase (PF1935*), 4-alpha-glucanotransferase (PF0272), and maltodextrin phosphorylase (PF1535). Their expression is upregulated on starch, and together they generate glucose and glucose-1-phosphate, which then feed into the novel glycolytic pathway of this organism. In addition, the results indicate that several hypothetical proteins encoded by three gene clusters are also involved in the transport and processing of alpha-glucan substrates by P. furiosus.
Collapse
Affiliation(s)
- Han-Seung Lee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|