1
|
Iasakov T. Evolution End Classification of tfd Gene Clusters Mediating Bacterial Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D). Int J Mol Sci 2023; 24:14370. [PMID: 37762674 PMCID: PMC10531765 DOI: 10.3390/ijms241814370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The tfd (tfdI and tfdII) are gene clusters originally discovered in plasmid pJP4 which are involved in the bacterial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) via the ortho-cleavage pathway of chlorinated catechols. They share this activity, with respect to substituted catechols, with clusters tcb and clc. Although great effort has been devoted over nearly forty years to exploring the structural diversity of these clusters, their evolution has been poorly resolved to date, and their classification is clearly obsolete. Employing comparative genomic and phylogenetic approaches has revealed that all tfd clusters can be classified as one of four different types. The following four-type classification and new nomenclature are proposed: tfdI, tfdII, tfdIII and tfdIV(A,B,C). Horizontal gene transfer between Burkholderiales and Sphingomonadales provides phenomenal linkage between tfdI, tfdII, tfdIII and tfdIV type clusters and their mosaic nature. It is hypothesized that the evolution of tfd gene clusters proceeded within first (tcb, clc and tfdI), second (tfdII and tfdIII) and third (tfdIV(A,B,C)) evolutionary lineages, in each of which, the genes were clustered in specific combinations. Their clustering is discussed through the prism of hot spots and driving forces of various models, theories, and hypotheses of cluster and operon formation. Two hypotheses about series of gene deletions and displacements are also proposed to explain the structural variations across members of clusters tfdII and tfdIII, respectively. Taking everything into account, these findings reconstruct the phylogeny of tfd clusters, have delineated their evolutionary trajectories, and allow the contribution of various evolutionary processes to be assessed.
Collapse
Affiliation(s)
- Timur Iasakov
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
2
|
Cheng M, Chen D, Parales RE, Jiang J. Oxygenases as Powerful Weapons in the Microbial Degradation of Pesticides. Annu Rev Microbiol 2022; 76:325-348. [PMID: 35650666 DOI: 10.1146/annurev-micro-041320-091758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oxygenases, which catalyze the reductive activation of O2 and incorporation of oxygen atoms into substrates, are widely distributed in aerobes. They function by switching the redox states of essential cofactors that include flavin, heme iron, Rieske non-heme iron, and Fe(II)/α-ketoglutarate. This review summarizes the catalytic features of flavin-dependent monooxygenases, heme iron-dependent cytochrome P450 monooxygenases, Rieske non-heme iron-dependent oxygenases, Fe(II)/α-ketoglutarate-dependent dioxygenases, and ring-cleavage dioxygenases, which are commonly involved in pesticide degradation. Heteroatom release (hydroxylation-coupled hetero group release), aromatic/heterocyclic ring hydroxylation to form ring-cleavage substrates, and ring cleavage are the main chemical fates of pesticides catalyzed by these oxygenases. The diversity of oxygenases, specificities for electron transport components, and potential applications of oxygenases are also discussed. This article summarizes our current understanding of the catalytic mechanisms of oxygenases and a framework for distinguishing the roles of oxygenases in pesticide degradation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Minggen Cheng
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Dian Chen
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rebecca E Parales
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs and Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
3
|
A Synergistic Consortium Involved in rac-Dichlorprop Degradation as Revealed by DNA Stable Isotope Probing and Metagenomic Analysis. Appl Environ Microbiol 2021; 87:e0156221. [PMID: 34524896 DOI: 10.1128/aem.01562-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
rac-Dichlorprop, a commonly used phenoxyalkanoic acid herbicide, is frequently detected in environments and poses threats to environmental safety and human health. Microbial consortia are thought to play key roles in rac-dichlorprop degradation. However, the compositions of the microbial consortia involved in rac-dichlorprop degradation remain largely unknown. In this study, DNA stable isotope probing (SIP) and metagenomic analysis were integrated to reveal the key microbial consortium responsible for rac-dichlorprop degradation in a rac-dichlorprop-degrading enrichment. OTU340 (Sphingobium sp.) and OTU348 (Sphingopyxis sp.) were significantly enriched in the rac-[13C]dichlorprop-labeled heavy DNA fractions. A rac-dichlorprop degrader, Sphingobium sp. strain L3, was isolated from the enrichment by a traditional enrichment method but with additional supplementation of the antibiotic ciprofloxacin, which was instructed by metagenomic analysis of the associations between rac-dichlorprop degraders and antibiotic resistance genes. As revealed by functional profiling of the metagenomes of the heavy DNA, the genes rdpA and sdpA, involved in the initial degradation of the (R)- and (S)-enantiomers of dichlorprop, respectively, were mostly taxonomically assigned to Sphingobium species, indicating that Sphingopyxis species might harbor novel dichlorprop-degrading genes. In addition, taxonomically diverse bacterial genera such as Dyella, Sphingomonas, Pseudomonas, and Achromobacter were presumed to synergistically cooperate with the key degraders Sphingobium/Sphingopyxis for enhanced degradation of rac-dichlorprop. IMPORTANCE Understanding of the key microbial consortium involved in the degradation of the phenoxyalkanoic acid herbicide rac-dichlorprop is pivotal for design of synergistic consortia used for enhanced bioremediation of herbicide-contaminated sites. However, the composition of the microbial consortium and the interactions between community members during the biodegradation of rac-dichlorprop are unclear. In this study, DNA-SIP and metagenomic analysis were integrated to reveal that the metabolite 2,4-dichlorophenol degraders Dyella, Sphingomonas, Pseudomonas, and Achromobacter synergistically cooperated with the key degraders Sphingobium/Sphingopyxis for enhanced degradation of rac-dichlorprop. Our study provides new insights into the synergistic degradation of rac-dichlorprop at the community level and implies the existence of novel degrading genes for rac-dichlorprop in nature.
Collapse
|
4
|
Hayashi S, Tanaka S, Takao S, Kobayashi S, Suyama K, Itoh K. Multiple Gene Clusters and Their Role in the Degradation of Chlorophenoxyacetic Acids in Bradyrhizobium sp. RD5-C2 Isolated from Non-Contaminated Soil. Microbes Environ 2021; 36:ME21016. [PMID: 34511574 PMCID: PMC8446748 DOI: 10.1264/jsme2.me21016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/10/2021] [Indexed: 11/12/2022] Open
Abstract
Bradyrhizobium sp. RD5-C2, isolated from soil that is not contaminated with 2,4-dichlorophenoxyacetic acid (2,4-D), degrades the herbicides 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). It possesses tfdAα and cadA (designated as cadA1), which encode 2,4-D dioxygenase and the oxygenase large subunit, respectively. In the present study, the genome of Bradyrhizobium sp. RD5-C2 was sequenced and a second cadA gene (designated as cadA2) was identified. The two cadA genes belonged to distinct clusters comprising the cadR1A1B1K1C1 and cadR2A2B2C2K2S genes. The proteins encoded by the cad1 cluster exhibited high amino acid sequence similarities to those of other 2,4-D degraders, while Cad2 proteins were more similar to those of non-2,4-D degraders. Both cad clusters were capable of degrading 2,4-D and 2,4,5-T when expressed in non-2,4-D-degrading Bradyrhizobium elkanii USDA94. To examine the contribution of each degradation gene cluster to the degradation activity of Bradyrhizobium sp. RD5-C2, cadA1, cadA2, and tfdAα deletion mutants were constructed. The cadA1 deletion resulted in a more significant decrease in the ability to degrade chlorophenoxy compounds than the cadA2 and tfdAα deletions, indicating that degradation activity was primarily governed by the cad1 cluster. The results of a quantitative reverse transcription-PCR analysis suggested that exposure to 2,4-D and 2,4,5-T markedly up-regulated cadA1 expression. Collectively, these results indicate that the cad1 cluster plays an important role in the degradation of Bradyrhizobium sp. RD5-C2 due to its high expression.
Collapse
Affiliation(s)
- Shohei Hayashi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Sho Tanaka
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Soichiro Takao
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Shinnosuke Kobayashi
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Kousuke Suyama
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| | - Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690–8504, Japan
| |
Collapse
|
5
|
Mishra S, Zhang W, Lin Z, Pang S, Huang Y, Bhatt P, Chen S. Carbofuran toxicity and its microbial degradation in contaminated environments. CHEMOSPHERE 2020; 259:127419. [PMID: 32593003 DOI: 10.1016/j.chemosphere.2020.127419] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/26/2020] [Accepted: 06/13/2020] [Indexed: 05/12/2023]
Abstract
Carbofuran is one of the most toxic broad-spectrum and systemic N-methyl carbamate pesticide, which is extensively applied as insecticide, nematicide and acaricide for agricultural, domestic and industrial purposes. It is extremely lethal to mammals, birds, fish and wildlife due to its anticholinesterase activity, which inhibits acetyl-cholinesterase and butyrylcholinesterse activity. In humans, carbofuran is associated with endocrine disrupting activity, reproductive disorders, cytotoxic and genotoxic abnormalities. Therefore, cleanup of carbofuran-contaminated environments is of utmost concern and urgently needs an adequate, advanced and effective remedial technology. Microbial technology (bacterial, fugal and algal species) is a very potent, pragmatic and ecofriendly approach for the removal of carbofuran. Microbial enzymes and their catabolic genes exhibit an exceptional potential for bioremediation strategies. To understand the specific mechanism of carbofuran degradation and involvement of carbofuran hydrolase enzymes and genes, highly efficient genomic approaches are required to provide reliable information and unfold metabolic pathways. This review briefly discusses the carbofuran toxicity and its toxicological impact into the environment, in-depth understanding of carbofuran degradation mechanism with microbial strains, metabolic pathways, molecular mechanisms and genetic basis involved in degradation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Zhang L, Hang P, Zhou XY, Qiao WJ, Jiang JD. Enantioselective Catabolism of the Two Enantiomers of the Phenoxyalkanoic Acid Herbicide Dichlorprop by Sphingopyxis sp. DBS4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6967-6976. [PMID: 32530641 DOI: 10.1021/acs.jafc.0c01066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid; DCPP], an important phenoxyalkanoic acid herbicide (PAAH), is extensively used in the form of racemic mixtures (Rac-DCPP), and the environmental fates of both DCPP enantiomers [(R)-DCPP and (S)-DCPP] mediated by microorganisms are of great concern. In this study, a bacterial strain Sphingopyxis sp. DBS4 was isolated from contaminated soil and was capable of utilizing both (R)-DCPP and (S)-DCPP as the sole carbon source for growth. Strain DBS4 preferentially catabolized (S)-DCPP as compared to (R)-DCPP. The optimal conditions for Rac-DCPP degradation by strain DBS4 were 30 °C and pH 7.0. In addition to Rac-DCPP, other PAAHs such as (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid, 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid, and 2,4-dichlorophenoxyacetic acid butyl ester could also be catabolized by strain DBS4. Bioremediation of Rac-DCPP-contaminated soil by inoculation of strain DBS4 exhibited an effective removal of both (R)-DCPP and (S)-DCPP from the soil. Due to its broad substrate spectrum, strain DBS4 showed great potential in the bioremediation of PAAH-contaminated sites.
Collapse
Affiliation(s)
- Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Ping Hang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Xi-Yi Zhou
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Wen-Jing Qiao
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
7
|
Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P. Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microb Biotechnol 2020; 13:67-86. [PMID: 31565852 PMCID: PMC6922536 DOI: 10.1111/1751-7915.13488] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Halogenated aromatics are used widely in various industrial, agricultural and household applications. However, due to their stability, most of these compounds persist for a long time, leading to accumulation in the environment. Biological degradation of halogenated aromatics provides sustainable, low-cost and environmentally friendly technologies for removing these toxicants from the environment. This minireview discusses the molecular mechanisms of the enzymatic reactions for degrading halogenated aromatics which naturally occur in various microorganisms. In general, the biodegradation process (especially for aerobic degradation) can be divided into three main steps: upper, middle and lower metabolic pathways which successively convert the toxic halogenated aromatics to common metabolites in cells. The most difficult step in the degradation of halogenated aromatics is the dehalogenation step in the middle pathway. Although a variety of enzymes are involved in the degradation of halogenated aromatics, these various pathways all share the common feature of eventually generating metabolites for utilizing in the energy-producing metabolic pathways in cells. An in-depth understanding of how microbes employ various enzymes in biodegradation can lead to the development of new biotechnologies via enzyme/cell/metabolic engineering or synthetic biology for sustainable biodegradation processes.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of BiotechnologyFaculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon Pathom73000Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme TechnologyFaculty of ScienceMahidol UniversityBangkok10400Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| |
Collapse
|
8
|
Lu Q, Qiu L, Yu L, Zhang S, de Toledo RA, Shim H, Wang S. Microbial transformation of chiral organohalides: Distribution, microorganisms and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:849-861. [PMID: 30772625 DOI: 10.1016/j.jhazmat.2019.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 05/27/2023]
Abstract
Chiral organohalides including dichlorodiphenyltrichloroethane (DDT), Hexabromocyclododecane (HBCD) and polychlorinated biphenyls (PCBs) raise a significant concern in the environmental occurrence, fate and ecotoxicology due to their enantioselective biological effects. This review provides a state-of-the-art overview on enantioselective microbial transformation of the chiral organohalides. We firstly summarized worldwide field assessments of chiral organohalides in a variety of environmental matrices, which suggested the pivotal role of microorganisms in enantioselective transformation of chiral organohalides. Then, laboratory studies provided experimental evidences to further link enantioselective attenuation of chiral organohalides to specific functional microorganisms and enzymes, revealing mechanistic insights into the enantioselective microbial transformation processes. Particularly, a few amino acid residues in the functional enzymes could play a key role in mediating the enantioselectivity at the molecular level. Finally, major challenges and further developments toward an in-depth understanding of the enantioselective microbial transformation of chiral organohalides are identified and discussed.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Lan Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Ling Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Shangwei Zhang
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Renata Alves de Toledo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078 Macau SAR, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078 Macau SAR, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, 510275 Guangzhou, China.
| |
Collapse
|
9
|
Enantioselective Dechlorination of Polychlorinated Biphenyls in Dehalococcoides mccartyi CG1. Appl Environ Microbiol 2018; 84:AEM.01300-18. [PMID: 30171004 DOI: 10.1128/aem.01300-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/26/2018] [Indexed: 01/07/2023] Open
Abstract
Reductive dehalogenation mediated by organohalide-respiring bacteria plays a critical role in the global cycling of organohalides. Nonetheless, information on the dehalogenation enantioselectivity of organohalide-respiring bacteria remains limited. In this study, we report the enantioselective dechlorination of chiral polychlorinated biphenyls (PCBs) by Dehalococcoides mccartyi CG1. CG1 preferentially removed halogens from the (-)-enantiomers of the three major environmentally relevant chiral PCBs (PCB174, PCB149, and PCB132), and the enantiomer compositions of the dechlorination products depended on their parent organohalides. The in vitro assays with crude cell extracts or concentrated whole cells and the in vivo experiments with living cells showed similar enantioselectivities, in contrast with the distinct enantiomeric enrichment factors (εER) of the substrate chiral PCBs. Additionally, these results suggest that concentrated whole cells might be an alternative to crude cell extracts in in vitro tests of reductive dehalogenation activities. The enantioselective dechlorination of other chiral PCBs that we resolved via gas chromatography further confirmed the preference of CG1 for the (-)-enantiomers.IMPORTANCE A variety of agrochemicals and pharmaceuticals are chiral. Due to the enantioselectivity in biological processes, enantiomers of chiral compounds may have different environmental occurrences, fates, and ecotoxicologies. Many chiral organohalides exist in anaerobic or anoxic soils and sediments, and organohalide-respiring bacteria play a major role in the environmental attenuation and global cycling of these chiral organohalides. Therefore, it is important to investigate the dehalogenation enantioselectivity of organohalide-respiring bacteria. This study reports the discovery of enantioselective dechlorination of chiral PCBs by Dehalococcoides mccartyi CG1, which provides insights into the dehalogenation enantioselectivity of Dehalococcoides and may shed light on future PCB bioremediation efforts to prevent enantioselective biological side effects.
Collapse
|
10
|
Nielsen TK, Rasmussen M, Demanèche S, Cecillon S, Vogel TM, Hansen LH. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH. Genome Biol Evol 2018; 9:2477-2490. [PMID: 28961970 PMCID: PMC5737581 DOI: 10.1093/gbe/evx185] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/03/2022] Open
Abstract
Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology.
Collapse
Affiliation(s)
| | | | - Sandrine Demanèche
- Environmental Microbial Genomics, Laboratoire Ampère (CNRS UMR5005), École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Sébastien Cecillon
- Environmental Microbial Genomics, Laboratoire Ampère (CNRS UMR5005), École Centrale de Lyon, Université de Lyon, Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampère (CNRS UMR5005), École Centrale de Lyon, Université de Lyon, Ecully, France
| | | |
Collapse
|
11
|
Escolà Casas M, Nielsen TK, Kot W, Hansen LH, Johansen A, Bester K. Degradation of mecoprop in polluted landfill leachate and waste water in a moving bed biofilm reactor. WATER RESEARCH 2017; 121:213-220. [PMID: 28544990 DOI: 10.1016/j.watres.2017.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 05/14/2017] [Indexed: 05/12/2023]
Abstract
Mecoprop is a common pollutant in effluent-, storm- and groundwater as well as in leachates from derelict dumpsites. Thus, bioremediation approaches may be considered. We conducted batch experiments with moving bed biofilm (MBBR)-carriers to understand the degradation of mecoprop. As a model, the carriers were incubated in effluent from a conventional wastewater treatment plant which was spiked to 10, 50 and 100 μg L-1 mecoprop. Co-metabolic processes as well as mineralization were studied. Initial mecoprop concentration and mecoprop degradation impacted the microbial communities. The removal of (S)-mecoprop prevailed over the (R)-mecoprop. This was associated with microbial compositions, in which several operational taxonomic units (OTUs) co-varied positively with (S)-mecoprop removal. The removal-rate constant of (S)-mecoprop was 0.5 d-1 in the 10 μg L-1 set-up but it decreased in the 50 and 100 μg L-1 set-ups. The addition of methanol prolonged the removal of (R)-mecoprop. During mecoprop degradation, 4-chloro-2-methylphenol was formed and degraded. A new metabolite (4-chloro-2-methylphenol sulfate) was identified and quantified.
Collapse
Affiliation(s)
- Mònica Escolà Casas
- Department of Environmental Science, Århus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Environmental Science, Århus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Witold Kot
- Department of Environmental Science, Århus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Århus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Anders Johansen
- Department of Environmental Science, Århus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Kai Bester
- Department of Environmental Science, Århus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
12
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
13
|
Wu H, He X, Dong H, Zhou Q, Zhang Y. Impact of microorganisms, humidity, and temperature on the enantioselective degradation of imazethapyr in two soils. Chirality 2017; 29:348-357. [DOI: 10.1002/chir.22695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/17/2016] [Accepted: 12/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences; Zhejiang University; Hangzhou P. R. China
| | - Xiaolin He
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences; Zhejiang University; Hangzhou P. R. China
| | - Huifen Dong
- Zhejiang Provincial Key Laboratory of Sub-Tropical Soil and Plant Nutrition, College of Environmental and Resource Sciences; Zhejiang University; Hangzhou P. R. China
| | - Qingyan Zhou
- Zhejiang Provincial Key Laboratory of Sub-Tropical Soil and Plant Nutrition, College of Environmental and Resource Sciences; Zhejiang University; Hangzhou P. R. China
| | - Yongsong Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences; Zhejiang University; Hangzhou P. R. China
| |
Collapse
|
14
|
Frková Z, Johansen A, de Jonge LW, Olsen P, Gosewinkel U, Bester K. Degradation and enantiomeric fractionation of mecoprop in soil previously exposed to phenoxy acid herbicides - New insights for bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1457-1465. [PMID: 27432728 DOI: 10.1016/j.scitotenv.2016.06.236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Phenoxy acid-contaminated subsoils are common as a result of irregular disposal of residues and production wastes in the past. For enhancing in situ biodegradation at reducing conditions, biostimulation may be an effective option. Some phenoxy acids were marketed in racemic mixtures, and biodegradation rates may differ between enantiomers. Therefore, enantio-preferred degradation of mecoprop (MCPP) in soil was measured to get in-depth information on whether amendment with glucose (BOD equivalents as substrate for microbial growth) and nitrate (redox equivalents for oxidation) can stimulate bioremediation. The degradation processes were studied in soil sampled at different depths (3, 4.5 and 6m) at a Danish urban site with a history of phenoxy acid contamination. We observed preferential degradation of the R-enantiomer only under aerobic conditions in the soil samples from 3- and 6-m depth at environmentally relevant (nM) MCPP concentrations: enantiomer fraction (EF)<0.5. On the other hand, we observed preferential degradation of the S-enantiomer in all samples and treatments at elevated (μM) MCPP concentrations: EF>0.5. Three different microbial communities were discriminated by enantioselective degradation of MCPP: 1) aerobic microorganisms with little enantioselectivity, 2) aerobic microorganisms with R-selectivity and 3) anaerobic denitrifying organisms with S-selectivity. Glucose-amendment did not enhance MCPP degradation, while nitrate amendment enhanced the degradation of high concentrations of the herbicide.
Collapse
Affiliation(s)
- Zuzana Frková
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | | | - Preben Olsen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
| | - Ulrich Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
15
|
Feld L, Nielsen TK, Hansen LH, Aamand J, Albers CN. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater. Appl Environ Microbiol 2016; 82:878-887. [PMID: 26590282 DOI: 10.1128/aem.02600-15.editor] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 05/24/2023] Open
Abstract
In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 10(5) degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales.
Collapse
Affiliation(s)
- Louise Feld
- Department of Geochemistry, Geological Survey of Denmark & Greenland, Copenhagen, Denmark
| | | | | | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark & Greenland, Copenhagen, Denmark
| | - Christian Nyrop Albers
- Department of Geochemistry, Geological Survey of Denmark & Greenland, Copenhagen, Denmark
| |
Collapse
|
16
|
Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater. Appl Environ Microbiol 2015; 82:878-87. [PMID: 26590282 DOI: 10.1128/aem.02600-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 02/01/2023] Open
Abstract
In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 10(5) degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales.
Collapse
|
17
|
Draft Genome Sequence of the Carbofuran-Mineralizing Novosphingobium sp. Strain KN65.2. GENOME ANNOUNCEMENTS 2015; 3:3/4/e00764-15. [PMID: 26159535 PMCID: PMC4498121 DOI: 10.1128/genomea.00764-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Complete mineralization of the N-methylcarbamate insecticide carbofuran, including mineralization of the aromatic moiety, appears to be confined to sphingomonad isolates. Here, we report the first draft genome sequence of such a sphingomonad strain, i.e., Novosphingobium sp. KN65.2, isolated from carbofuran-exposed agricultural soil in Vietnam.
Collapse
|
18
|
Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka MA. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Front Cell Infect Microbiol 2015; 4:188. [PMID: 25621282 PMCID: PMC4288048 DOI: 10.3389/fcimb.2014.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Here we report the draft genomes and annotation of four N-acyl homoserine lactone (AHL)-producing members from the family Sphingomonadaceae. Comparative genomic analyses of 62 Sphingomonadaceae genomes were performed to gain insights into the distribution of the canonical luxI/R-type quorum sensing (QS) network within this family. Forty genomes contained at least one luxR homolog while the genome of Sphingobium yanoikuyae B1 contained seven Open Reading Frames (ORFs) that have significant homology to that of luxR. Thirty-three genomes contained at least one luxI homolog while the genomes of Sphingobium sp. SYK6, Sphingobium japonicum, and Sphingobium lactosutens contained four luxI. Using phylogenetic analysis, the sphingomonad LuxR homologs formed five distinct clades with two minor clades located near the plant associated bacteria (PAB) LuxR solo clade. This work for the first time shows that 13 Sphingobium and one Sphingomonas genome(s) contain three convergently oriented genes composed of two tandem luxR genes proximal to one luxI (luxR-luxR-luxI). Interestingly, luxI solos were identified in two Sphingobium species and may represent species that contribute to AHL-based QS system by contributing AHL molecules but are unable to perceive AHLs as signals. This work provides the most comprehensive description of the luxI/R circuitry and genome-based taxonomical description of the available sphingomonad genomes to date indicating that the presence of luxR solos and luxI solos are not an uncommon feature in members of the Sphingomonadaceae family.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Huan You Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Nurul H Ahmad
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Nazrin A Aziz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| |
Collapse
|
19
|
Qiu S, Gözdereliler E, Weyrauch P, Lopez ECM, Kohler HPE, Sørensen SR, Meckenstock RU, Elsner M. Small 13C/ 12C Fractionation Contrasts with Large Enantiomer Fractionation in Aerobic Biodegradation of Phenoxy Acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5501-11. [PMID: 24708181 DOI: 10.1021/es405103g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Shiran Qiu
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764 Neuherberg, Germany
| | - Erkin Gözdereliler
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764 Neuherberg, Germany
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Philip Weyrauch
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764 Neuherberg, Germany
| | - Eva C. Magana Lopez
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764 Neuherberg, Germany
| | - Hans-Peter E. Kohler
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Sebastian R. Sørensen
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Rainer U. Meckenstock
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764 Neuherberg, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstadter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
20
|
Khara P, Roy M, Chakraborty J, Ghosal D, Dutta TK. Functional characterization of diverse ring-hydroxylating oxygenases and induction of complex aromatic catabolic gene clusters in Sphingobium sp. PNB. FEBS Open Bio 2014; 4:290-300. [PMID: 24918041 PMCID: PMC4048848 DOI: 10.1016/j.fob.2014.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 11/27/2022] Open
Abstract
Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO) genes. Three different fosmid clones have been sequenced to identify the putative genes responsible for the degradation of various aromatics in this bacterial strain. Comparison of the map of the catabolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters that harbors seven sets of RHO terminal components and a sole set of electron transport (ET) proteins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular docking analyses of ferredoxin with the well characterized terminal oxygenase components indicated the structural uniqueness of the ET component in sphingomonads. The predicted substrate specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based on transformation of putative substrates and their structural homologs by the recombinant strains expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was functionally characterized for the first time and was found to be capable of transforming ethylbenzene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes in sphingomonads.
Collapse
Affiliation(s)
| | | | | | | | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T. Scheme VII M, Kolkata 700054, India
| |
Collapse
|
21
|
Nielsen TK, Xu Z, Gözdereliler E, Aamand J, Hansen LH, Sørensen SR. Novel insight into the genetic context of the cadAB genes from a 4-chloro-2-methylphenoxyacetic acid-degrading Sphingomonas. PLoS One 2013; 8:e83346. [PMID: 24391756 PMCID: PMC3877037 DOI: 10.1371/journal.pone.0083346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/01/2013] [Indexed: 11/19/2022] Open
Abstract
The 2-methyl-4-chlorophenoxyacetic (MCPA) acid-degrader Sphingomonas sp. ERG5 has recently been isolated from MCPA-degrading bacterial communities. Using Illumina-sequencing, the 5.7 Mb genome of this isolate was sequenced in this study, revealing the 138 kbp plasmid pCADAB1 harboring the 32.5 kbp composite transposon Tn6228 which contains genes encoding proteins for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and MCPA, as well as the regulation of this pathway. Transposon Tn6228 was confirmed by PCR to be situated on the plasmid and also exist in a circular intermediate state - typical of IS3 elements. The canonical tfdAα-gene of group III 2,4-D degraders, encoding the first step in degradation of 2,4-D and related compounds, was not present in the chromosomal contigs. However, the alternative cadAB genes, also providing the initial degradation step, were found in Tn6228, along with the 2,4-D-degradation-associated genes tfdBCDEFKR and cadR. Putative reductase and ferredoxin genes cadCD of Rieske non-heme iron oxygenases were also present in close proximity to cadAB, suggesting that these might have an unknown role in the initial degradation reaction. Parts of the composite transposon contain sequence displaying high similarity to previously analyzed 2,4-D degradation genes, suggesting rapid dissemination and high conservation of the chlorinated-phenoxyacetic acid (PAA)-degradation genotype among the sphingomonads.
Collapse
Affiliation(s)
- Tue Kjærgaard Nielsen
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
- Section for Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Zhuofei Xu
- Section for Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Erkin Gözdereliler
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | | | - Sebastian R. Sørensen
- Department of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| |
Collapse
|
22
|
Benner J, Helbling DE, Kohler HPE, Wittebol J, Kaiser E, Prasse C, Ternes TA, Albers CN, Aamand J, Horemans B, Springael D, Walravens E, Boon N. Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? WATER RESEARCH 2013; 47:5955-76. [PMID: 24053940 DOI: 10.1016/j.watres.2013.07.015] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/10/2013] [Accepted: 07/11/2013] [Indexed: 05/19/2023]
Abstract
In western societies, clean and safe drinking water is often taken for granted, but there are threats to drinking water resources that should not be underestimated. Contamination of drinking water sources by anthropogenic chemicals is one threat that is particularly widespread in industrialized nations. Recently, a significant amount of attention has been given to the occurrence of micropollutants in the urban water cycle. Micropollutants are bioactive and/or persistent chemicals originating from diverse sources that are frequently detected in water resources in the pg/L to μg/L range. The aim of this review is to critically evaluate the viability of biological treatment processes as a means to remove micropollutants from drinking water resources. We first place the micropollutant problem in context by providing a comprehensive summary of the reported occurrence of micropollutants in raw water used directly for drinking water production and in finished drinking water. We then present a critical discussion on conventional and advanced drinking water treatment processes and their contribution to micropollutant removal. Finally, we propose biological treatment and bioaugmentation as a potential targeted, cost-effective, and sustainable alternative to existing processes while critically examining the technical limitations and scientific challenges that need to be addressed prior to implementation. This review will serve as a valuable source of data and literature for water utilities, water researchers, policy makers, and environmental consultants. Meanwhile this review will open the door to meaningful discussion on the feasibility and application of biological treatment and bioaugmentation in drinking water treatment processes to protect the public from exposure to micropollutants.
Collapse
Affiliation(s)
- Jessica Benner
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dallinger A, Horn MA. Agricultural soil and drilosphere as reservoirs of new and unusual assimilators of 2,4-dichlorophenol carbon. Environ Microbiol 2013; 16:84-100. [DOI: 10.1111/1462-2920.12209] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 07/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Anja Dallinger
- Department of Ecological Microbiology; University of Bayreuth; Dr.-Hans-Frisch-Straße 1-3 Bayreuth 95440 Germany
| | - Marcus A. Horn
- Department of Ecological Microbiology; University of Bayreuth; Dr.-Hans-Frisch-Straße 1-3 Bayreuth 95440 Germany
| |
Collapse
|
24
|
Liu YJ, Liu SJ, Drake HL, Horn MA. Consumers of 4-chloro-2-methylphenoxyacetic acid from agricultural soil and drilosphere harborcadA,r/sdpA, andtfdA-like gene encoding oxygenases. FEMS Microbiol Ecol 2013; 86:114-29. [DOI: 10.1111/1574-6941.12144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/15/2013] [Accepted: 05/01/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources; Institute of Microbiology; Chinese Academy of Sciences; Beijing; China
| | - Harold L. Drake
- Department of Ecological Microbiology; University of Bayreuth; Bayreuth; Germany
| | - Marcus A. Horn
- Department of Ecological Microbiology; University of Bayreuth; Bayreuth; Germany
| |
Collapse
|
25
|
A novel hydrolase identified by genomic-proteomic analysis of phenylurea herbicide mineralization by Variovorax sp. strain SRS16. Appl Environ Microbiol 2011; 77:8754-64. [PMID: 22003008 DOI: 10.1128/aem.06162-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterial isolate Variovorax sp. strain SRS16 mineralizes the phenylurea herbicide linuron. The proposed pathway initiates with hydrolysis of linuron to 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine, followed by conversion of DCA to Krebs cycle intermediates. Differential proteomic analysis showed a linuron-dependent upregulation of several enzymes that fit into this pathway, including an amidase (LibA), a multicomponent chloroaniline dioxygenase, and enzymes associated with a modified chlorocatechol ortho-cleavage pathway. Purified LibA is a monomeric linuron hydrolase of ∼55 kDa with a K(m) and a V(max) for linuron of 5.8 μM and 0.16 nmol min⁻¹, respectively. This novel member of the amidase signature family is unrelated to phenylurea-hydrolyzing enzymes from Gram-positive bacteria and lacks activity toward other tested phenylurea herbicides. Orthologues of libA are present in all other tested linuron-degrading Variovorax strains with the exception of Variovorax strains WDL1 and PBS-H4, suggesting divergent evolution of the linuron catabolic pathway in different Variovorax strains. The organization of the linuron degradation genes identified in the draft SRS16 genome sequence indicates that gene patchwork assembly is at the origin of the pathway. Transcription analysis suggests that a catabolic intermediate, rather than linuron itself, acts as effector in activation of the pathway. Our study provides the first report on the genetic organization of a bacterial pathway for complete mineralization of a phenylurea herbicide and the first report on a linuron hydrolase in Gram-negative bacteria.
Collapse
|
26
|
Liu Y, Han P, Li XY, Shih K, Gu JD. Enantioselective degradation and unidirectional chiral inversion of 2-phenylbutyric acid, an intermediate from linear alkylbenzene, by Xanthobacter flavus PA1. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:1633-1640. [PMID: 21794984 DOI: 10.1016/j.jhazmat.2011.06.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/10/2011] [Accepted: 06/29/2011] [Indexed: 05/31/2023]
Abstract
Microbial degradation of the chiral 2-phenylbutyric acid (2-PBA), a metabolite of surfactant linear alkylbenzene sulfonates (LAS), was investigated using both racemic and enantiomer-pure compounds together with quantitative stereoselective analyses. A pure culture of bacteria, identified as Xanthobacter flavus strain PA1 isolated from the mangrove sediment of Hong Kong Mai Po Nature Reserve, was able to utilize the racemic 2-PBA as well as the single enantiomers as the sole source of carbon and energy. In the presence of the racemic compounds, X. flavus PA1 degraded both (R) and (S) forms of enantiomers to completion in a sequential manner in which the (S) enantiomer disappeared much faster than the (R) enantiomer. When the single pure enantiomer was supplied as the sole substrate, a unidirectional chiral inversion involving (S) enantiomer to (R) enantiomer was evident. No major difference was observed in the degradation intermediates with either of the individual enantiomers when used as the growth substrate. Two major degradation intermediates were detected and identified as 3-hydroxy-2-phenylbutanoic acid and 4-methyl-3-phenyloxetan-2-one, using a combination of liquid chromatography-mass spectrometry (LC-MS), and (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy. The biochemical degradation pathway follows an initial oxidation of the alkyl side chain before aromatic ring cleavage. This study reveals new evidence for enantiomeric inversion catalyzed by pure culture of environmental bacteria and emphasizes the significant differences between the two enantiomers in their environmental fates.
Collapse
Affiliation(s)
- Yishan Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | |
Collapse
|
27
|
Paulin MM, Nicolaisen MH, Sørensen J. (R,S)-dichlorprop herbicide in agricultural soil induces proliferation and expression of multiple dioxygenase-encoding genes in the indigenous microbial community. Environ Microbiol 2011; 13:1513-23. [DOI: 10.1111/j.1462-2920.2011.02456.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Wright TR, Shan G, Walsh TA, Lira JM, Cui C, Song P, Zhuang M, Arnold NL, Lin G, Yau K, Russell SM, Cicchillo RM, Peterson MA, Simpson DM, Zhou N, Ponsamuel J, Zhang Z. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc Natl Acad Sci U S A 2010; 107:20240-5. [PMID: 21059954 PMCID: PMC2996712 DOI: 10.1073/pnas.1013154107] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops.
Collapse
Affiliation(s)
- Terry R. Wright
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Guomin Shan
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Terence A. Walsh
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Justin M. Lira
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Cory Cui
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Ping Song
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Meibao Zhuang
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Nicole L. Arnold
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Gaofeng Lin
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Kerrm Yau
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Sean M. Russell
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | | | - Mark A. Peterson
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - David M. Simpson
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | - Ning Zhou
- Research and Development, Dow AgroSciences LLC, Indianapolis, IN 46268; and
| | | | - Zhanyuan Zhang
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO 65211-7140
| |
Collapse
|
29
|
Evangelista S, Cooper DG, Yargeau V. The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids. CHEMOSPHERE 2010; 79:1084-1088. [PMID: 20392474 DOI: 10.1016/j.chemosphere.2010.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 05/29/2023]
Abstract
Pseudomonas putida, Aspergillus niger, Bacillus subtilis, Pseudomonas fluorescens, Sphingomonas herbicidovorans and Rhodococcus rhodochrous growing on glucose in a medium containing one of three chlorophenoxy acids at a concentration of 0.1 g L(-1) (clofibric acid, (R)-2-(4-chloro-2-methylphenoxy)propionic acid (mecoprop or MCPP) and 4-chloro-2-methylphenoxyacetic acid (MCPA)) degraded these compounds to varying degrees; from nonmeasurable to almost complete removal. These results with the addition of glucose (2.5 g L(-1)) as an easy to use carbon source indicated the formation of metabolites different from results reported in the literature for growth studies in which the chlorophenoxy acid was the sole carbon source. The metabolite, 4-chloro-2-methylphenol, which had been reported previously, was only observed in trace amounts for MCPP and MCPA in the presence of S. herbicidovorans and glucose. In addition, three other compounds (M1, M3 and M4) were observed. It is suggested that these unidentified metabolites resulted from ring opening of the metabolite 4-chloro-2-methylphenol (M2). The rate of biodegradation of the chlorophenoxy acids was influenced by the degree of steric hindrance adjacent to the internal oxygen bond common to all three compounds. The most hindered compound, clofibric acid, was converted to ethyl clofibrate by R. rhodochrous but was not degraded by any microorganisms studied. The more accessible internal oxygen bonds of the other two chlorophenoxy acids, MCPP and MCPA, were readily broken by S. herbicidovorans.
Collapse
Affiliation(s)
- S Evangelista
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
30
|
Abundance and expression of enantioselective rdpA and sdpA dioxygenase genes during degradation of the racemic herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate in soil. Appl Environ Microbiol 2010; 76:2873-83. [PMID: 20305027 DOI: 10.1128/aem.02270-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rdpA and sdpA genes encode two enantioselective alpha-ketoglutarate-dependent dioxygenases catalyzing the initial step of microbial degradation of the chiral herbicide (R,S)-2-(2,4-dichlorophenoxy)propionate (R,S-dichlorprop). Primers were designed to assess abundance and transcription dynamics of rdpA and sdpA genes in a natural agricultural soil. No indigenous rdpA genes were detected, but sdpA genes were present at levels of approximately 10(3) copies g of soil(-1). Cloning and sequencing of partial sdpA genes revealed a high diversity within the natural sdpA gene pool that could be divided into four clusters by phylogenetic analysis. BLASTp analysis of deduced amino acids revealed that members of cluster I shared 68 to 69% identity, cluster II shared 78 to 85% identity, cluster III shared 58 to 64% identity, and cluster IV shared 55% identity to their closest SdpA relative in GenBank. Expression of rdpA and sdpA in Delftia acidovorans MC1 inoculated in soil was monitored by reverse transcription quantitative real-time PCR (qPCR) during in situ degradation of 2 and 50 mg kg(-1) of (R,S)-dichlorprop. (R,S)-Dichlorprop amendment created a clear upregulation of both rdpA and sdpA gene expression during the active phase of (14)C-labeled (R,S)-dichlorprop mineralization, particularly following the second dose of 50 mg kg(-1) herbicide. Expression of both genes was maintained at a low constitutive level in nonamended soil microcosms. This study is the first to report the presence of indigenous sdpA genes recovered directly from natural soil and also comprises the first investigation into the transcription dynamics of two enantioselective dioxygenase genes during the in situ degradation of the herbicide (R,S)-dichlorprop in soil.
Collapse
|
31
|
Chen J, Hu LB, Zhou W, Yan SH, Yang JD, Xue YF, Shi ZQ. Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China. Int J Mol Sci 2010; 11:896-911. [PMID: 20479990 PMCID: PMC2869242 DOI: 10.3390/ijms11030896] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 01/20/2010] [Accepted: 02/02/2010] [Indexed: 11/16/2022] Open
Abstract
A bacterial strain EMS with the capability of degrading microcystins (MCs) was isolated from Lake Taihu, China. The bacterium was tentatively identified as a Stenotrophomonas sp. The bacterium could completely consume MC-LR and MC-RR within 24 hours at a concentration of 0.7 μg/mL and 1.7 μg/mL, respectively. The degradation of MC-LR and MC-RR by EMS occurred preferentially in an alkaline environment. In addition, mlrA gene involved in the degradation of MC-LR and MC-RR was detected in EMS. Due to the limited literature this gene has rare homologues. Sequencing analysis of the translated protein from mlrA suggested that MlrA might be a transmembrane protein, which suggests a possible new protease family having unique function.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; E-Mails:
(J.C.);
(W.Z.);
(J.D.Y.);
(Y.F.X.)
- Key Laboratory of Food Safety Monitoring and Management, Ministry of Agriculture, 50 Zhongling Street, Nanjing 210014, China; E-Mail:
(S.H.Y.)
| | - Liang Bin Hu
- School of Food, Henan Institute of Science and Technology, Xinxiang 453003, China; E-Mail:
(L.B.H.)
| | - Wei Zhou
- Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; E-Mails:
(J.C.);
(W.Z.);
(J.D.Y.);
(Y.F.X.)
- Key Laboratory of Food Safety Monitoring and Management, Ministry of Agriculture, 50 Zhongling Street, Nanjing 210014, China; E-Mail:
(S.H.Y.)
| | - Shao Hua Yan
- Key Laboratory of Food Safety Monitoring and Management, Ministry of Agriculture, 50 Zhongling Street, Nanjing 210014, China; E-Mail:
(S.H.Y.)
- Institute of Resources and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jing Dong Yang
- Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; E-Mails:
(J.C.);
(W.Z.);
(J.D.Y.);
(Y.F.X.)
- Key Laboratory of Food Safety Monitoring and Management, Ministry of Agriculture, 50 Zhongling Street, Nanjing 210014, China; E-Mail:
(S.H.Y.)
| | - Yan Feng Xue
- Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; E-Mails:
(J.C.);
(W.Z.);
(J.D.Y.);
(Y.F.X.)
- Key Laboratory of Food Safety Monitoring and Management, Ministry of Agriculture, 50 Zhongling Street, Nanjing 210014, China; E-Mail:
(S.H.Y.)
| | - Zhi Qi Shi
- Institute of Food Safety and Quality, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; E-Mails:
(J.C.);
(W.Z.);
(J.D.Y.);
(Y.F.X.)
- Key Laboratory of Food Safety Monitoring and Management, Ministry of Agriculture, 50 Zhongling Street, Nanjing 210014, China; E-Mail:
(S.H.Y.)
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +86-25-8439-1863; Fax: +86-25-8439-0422
| |
Collapse
|
32
|
Shimojo M, Kawakami M, Amada K. Analysis of genes encoding the 2,4-dichlorophenoxyacetic acid-degrading enzyme from Sphingomonas agrestis 58-1. J Biosci Bioeng 2009; 108:56-9. [PMID: 19577193 DOI: 10.1016/j.jbiosc.2009.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/24/2009] [Accepted: 02/24/2009] [Indexed: 11/26/2022]
Abstract
A 2,4-dichlorophenoxy acetic acid (2,4-D)-degrading bacterium, strain 58-1, was newly isolated from soil samples collected in the Fukuoka Prefecture, Japan, and grown on an enrichment culture medium containing 2,4-D as the sole carbon source. Phylogenic analysis identified strain 58-1 as Sphingomonas agrestis. In 2,4-D degraders, classes I, II, and III inherit the tfdA, cadA, and tfdAalpha genes, respectively, and the results from degenerate-PCR indicated that this strain belongs to the class II degraders. A clone that includes the cadA gene homolog of S. agrestis 58-1 was screened from a library by using the PCR amplified fragment as a DNA probe. The cloned fragment was sequenced and found to consist of 5043 nucleotides and include 3 open reading frames (orfs). The orf1, orf2, and orf3 genes encode polypeptides consisting of 412, 448, and 177 amino acids, respectively. The Orf2 product shares a high degree of sequence similarity (92%) with the large subunit of 2,4-D oxygenase from the Bradyrhizobium sp. strain HW13, which belongs to the class III 2,4-D degraders, while the orf3 product shared 63% sequence similarity with the small subunit of 2,4-D oxygenase from the strain HW13. The results of the functional expression analysis using various deletion mutants in Escherichia coli revealed that the expression of both orf2 and orf3 genes, but not orf1, is essential for the conversion of 2,4-D to 2,4-DCP. From these results, we conclude the first isolation of 2,4-D oxygenase genes from a class II 2,4-D degrader.
Collapse
Affiliation(s)
- Mitsuhiro Shimojo
- Materials Science and Production Engineering, Graduate School of Engineering, Fukuoka Institute of Technology, Higashi, Fukuoka 811-0295, Japan
| | | | | |
Collapse
|
33
|
Molecular characteristics of xenobiotic-degrading sphingomonads. Appl Microbiol Biotechnol 2008; 81:793-811. [PMID: 19002456 DOI: 10.1007/s00253-008-1752-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
The genus Sphingomonas (sensu latu) belongs to the alpha-Proteobacteria and comprises strictly aerobic chemoheterotrophic bacteria that are widespread in various aquatic and terrestrial environments. The members of this genus are often isolated and studied because of their ability to degrade recalcitrant natural and anthropogenic compounds, such as (substituted) biphenyl(s) and naphthalene(s), fluorene, (substituted) phenanthrene(s), pyrene, (chlorinated) diphenylether(s), (chlorinated) furan(s), (chlorinated) dibenzo-p-dioxin(s), carbazole, estradiol, polyethylene glycols, chlorinated phenols, nonylphenols, and different herbicides and pesticides. The metabolic versatility of these organisms suggests that they have evolved mechanisms to adapt quicker and/or more efficiently to the degradation of novel compounds in the environment than members of other bacterial genera. Comparative analyses demonstrate that sphingomonads generally use similar degradative pathways as other groups of microorganisms but deviate from competing microorganisms by the existence of multiple hydroxylating oxygenases and the conservation of specific gene clusters. Furthermore, there is increasing evidence for the existence of plasmids that only can be disseminated among sphingomonads and which undergo after conjugative transfer pronounced rearrangements.
Collapse
|
34
|
Zakaria D, Lappin-Scott H, Burton S, Whitby C. Bacterial diversity in soil enrichment cultures amended with 2 (2-methyl-4-chlorophenoxy) propionic acid (mecoprop). Environ Microbiol 2008; 9:2575-87. [PMID: 17803781 DOI: 10.1111/j.1462-2920.2007.01375.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary The tfdA gene encodes for an alpha-ketoglutarate-dependent dioxygenase enzyme which catalyses the first step of the degradation of phenoxyalkanoic acid herbicides such as 2 (2-methyl-4-chlorophenoxy) propionic acid (mecoprop). The bacterial diversity of soil enrichment cultures containing mecoprop was examined by Denaturing Gradient Gel Electrophoresis (DGGE) and clone libraries of both 16S rRNA genes and tfdA genes. The 16S rRNA gene sequences were diverse and clustered with either the Beta- or Gammaproteobacteria. The 16S rRNA gene sequence from a bacterial strain isolated from an enrichment culture, grown on R-mecoprop, which represented a dominant band in the DGGE profiles, had a high 16S rRNA sequence identity (100%) to Burkholderia glathei. This is the first report that B. glathei is implicated in mecoprop degradation. PCR amplification of the tfdA genes detected class III tfdA genes only, and no class I or class II tfdA sequences were detected. To understand the genes involved the degradation of specific mecoprop (R-) and (S-) enantiomers, oligonucleotide probes targeting the tfdA, rdpA, sdpA and cadA genes were hybridized to DNA extracted from enrichment cultures grown on either R-mecoprop or (R/S) racemic mecoprop. Strong hybridization signals were obtained with sdpA and tfdA probes using DNA extracted from cultures grown on racemic mecoprop. A strong hybridization signal was also obtained with the rdpA probe with DNA extracted from the cultures grown on R-mecoprop. This suggests the rdpA gene is involved in R-mecoprop degradation while tfdA, sdpA and cadA genes are involved in the degradation of both R- and S-mecoprop.
Collapse
Affiliation(s)
- Dalia Zakaria
- School of BioSciences, Prince of Wales Road, University of Exeter, Exeter EX4 4PS, UK
| | | | | | | |
Collapse
|
35
|
Müller R. Activity and Reaction Mechanism of the Initial Enzymatic Step Specifying the Microbial Degradation of 2,4-Dichlorophenoxyacetate. Eng Life Sci 2007. [DOI: 10.1002/elsc.200720198] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Huong NL, Itoh K, Suyama K. Diversity of 2,4-Dichlorophenoxyacetic Acid (2,4-D) and 2,4,5-Trichlorophenoxyacetic Acid (2,4,5-T)-Degrading Bacteria in Vietnamese Soils. Microbes Environ 2007. [DOI: 10.1264/jsme2.22.243] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nguyen L. Huong
- Faculty of Life and Environmental Science, Shimane University
| | - Kazuhito Itoh
- Faculty of Life and Environmental Science, Shimane University
| | - Kousuke Suyama
- Faculty of Life and Environmental Science, Shimane University
| |
Collapse
|
37
|
Müller TA, Zavodszky MI, Feig M, Kuhn LA, Hausinger RP. Structural basis for the enantiospecificities of R- and S-specific phenoxypropionate/alpha-ketoglutarate dioxygenases. Protein Sci 2006; 15:1356-68. [PMID: 16731970 PMCID: PMC2242530 DOI: 10.1110/ps.052059406] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
(R)- and (S)-dichlorprop/alpha-ketoglutarate dioxygenases (RdpA and SdpA) catalyze the oxidative cleavage of 2-(2,4-dichlorophenoxy)propanoic acid (dichlorprop) and 2-(4-chloro-2-methyl-phenoxy)propanoic acid (mecoprop) to form pyruvate plus the corresponding phenol concurrent with the conversion of alpha-ketoglutarate (alphaKG) to succinate plus CO2. RdpA and SdpA are strictly enantiospecific, converting only the (R) or the (S) enantiomer, respectively. Homology models were generated for both enzymes on the basis of the structure of the related enzyme TauD (PDB code 1OS7). Docking was used to predict the orientation of the appropriate mecoprop enantiomer in each protein, and the predictions were tested by characterizing the activities of site-directed variants of the enzymes. Mutant proteins that changed at residues predicted to interact with (R)- or (S)-mecoprop exhibited significantly reduced activity, often accompanied by increased Km values, consistent with roles for these residues in substrate binding. Four of the designed SdpA variants were (slightly) active with (R)-mecoprop. The results of the kinetic investigations are consistent with the identification of key interactions in the structural models and demonstrate that enantiospecificity is coordinated by the interactions of a number of residues in RdpA and SdpA. Most significantly, residues Phe171 in RdpA and Glu69 in SdpA apparently act by hindering the binding of the wrong enantiomer more than the correct one, as judged by the observed decreases in Km when these side chains are replaced by Ala.
Collapse
Affiliation(s)
- Tina A Müller
- Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | | | | | | | |
Collapse
|
38
|
Müller TA, Fleischmann T, van der Meer JR, Kohler HPE. Purification and characterization of two enantioselective alpha-ketoglutarate-dependent dioxygenases, RdpA and SdpA, from Sphingomonas herbicidovorans MH. Appl Environ Microbiol 2006; 72:4853-61. [PMID: 16820480 PMCID: PMC1489315 DOI: 10.1128/aem.02758-05] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 05/02/2006] [Indexed: 02/04/2023] Open
Abstract
Alpha-ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and alpha-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the alpha-ketoglutarate-dependent dioxygenases and share the specific motif HXDX(24)TX(131)HX(10)R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 microM for (R)-mecoprop, 164 microM for (R)-dichlorprop, and 3 microM for alpha-ketoglutarate for RdpA and 132 microM for (S)-mecoprop, 495 microM for (S)-dichlorprop, and 20 microM for alpha-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 microM for SdpA and >230 microM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace alpha-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAalpha-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.
Collapse
Affiliation(s)
- Tina A Müller
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | | | |
Collapse
|
39
|
Lal R, Dogra C, Malhotra S, Sharma P, Pal R. Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol 2006; 24:121-30. [PMID: 16473421 DOI: 10.1016/j.tibtech.2006.01.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 10/24/2005] [Accepted: 01/13/2006] [Indexed: 10/25/2022]
Abstract
Two forms of hexachlorocyclohexane (HCH), gamma-HCH (lindane) and technical HCH (incorporating alpha-, beta-, gamma- and delta- isomers), have been used against agricultural pests and in health programs since the 1940s. Although all the isomers are present in the milieu, delta- and beta-HCH isomers are the most problematic and present a serious environmental problem. Bacteria that degrade HCH isomers have been isolated from HCH contaminated soils from different geographical locations around the world (from the family Sphingomonadaceae). Interestingly, all these bacteria contain nearly identical lin genes (responsible for HCH degradation), which are diverging to perform several catabolic functions. The organization and diversity of lin genes have been studied among several sphingomonads, and they have been found to be associated with plasmids and IS6100, both of which appear to have a significant role in their horizontal transfer. The knowledge of the molecular genetics, diversity and distribution of lin genes, and the potential of sphingomonads to degrade HCH isomers, can now be used for developing bioremediation techniques for the decontamination of HCH contaminated sites.
Collapse
Affiliation(s)
- Rup Lal
- Department of Zoology, University of Delhi, Delhi-110 007, India.
| | | | | | | | | |
Collapse
|
40
|
Nesbø CL, Boucher Y, Dlutek M, Doolittle WF. Lateral gene transfer and phylogenetic assignment of environmental fosmid clones. Environ Microbiol 2005; 7:2011-26. [PMID: 16309397 DOI: 10.1111/j.1462-2920.2005.00918.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metagenomic data, especially sequence data from large insert clones, are most useful when reasonable inferences about phylogenetic origins of inserts can be made. Often, clones that bear phylotypic markers (usually ribosomal RNA genes) are sought, but sometimes phylogenetic assignments have been based on the preponderance of blast hits obtained with predicted protein coding sequences (CDSs). Here we use a cloning method which greatly enriches for ribosomal RNA-bearing fosmid clones to ask two questions: (i) how reliably can we judge the phylogenetic origin of a clone (that is, its RNA phylotype) from the sequences of its CDSs? and (ii) how much lateral gene transfer (LGT) do we see, as assessed by CDSs of different phylogenetic origins on the same fosmid? We sequenced 12 rRNA containing fosmid clones, obtained from libraries constructed using DNA isolated from Baltimore harbour sediments. Three of the clones are from bacterial candidate divisions for which no cultured representatives are available, and thus represent the first protein coding sequences from these major bacterial lineages. The amount of LGT was assessed by making phylogenetic trees of all the CDSs in the fosmid clones and comparing the phylogenetic position of the CDS to the rRNA phylotype. We find that the majority of CDSs in each fosmid, 57-96%, agree with their respective rRNA genes. However, we also find that a significant fraction of the CDSs in each fosmid, 7-44%, has been acquired by LGT. In several cases, we can infer co-transfer of functionally related genes, and generate hypotheses about mechanism and ecological significance of transfer.
Collapse
Affiliation(s)
- Camilla L Nesbø
- Department of Biochemistry and Molecular Biology, Dalhousie University and Genome Atlantic, 5850 College Street, Halifax, Nova Scotia, Canada, B3H1X5.
| | | | | | | |
Collapse
|
41
|
Liu S, Ogawa N, Senda T, Hasebe A, Miyashita K. Amino acids in positions 48, 52, and 73 differentiate the substrate specificities of the highly homologous chlorocatechol 1,2-dioxygenases CbnA and TcbC. J Bacteriol 2005; 187:5427-36. [PMID: 16030237 PMCID: PMC1196051 DOI: 10.1128/jb.187.15.5427-5436.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlorocatechol 1,2-dioxygenase (CCD) is the first-step enzyme of the chlorocatechol ortho-cleavage pathway, which plays a central role in the degradation of various chloroaromatic compounds. Two CCDs, CbnA from the 3-chlorobenzoate-degrader Ralstonia eutropha NH9 and TcbC from the 1,2,4-trichlorobenzene-degrader Pseudomonas sp. strain P51, are highly homologous, having only 12 different amino acid residues out of identical lengths of 251 amino acids. But CbnA and TcbC are different in substrate specificities against dichlorocatechols, favoring 3,5-dichlorocatechol (3,5-DC) and 3,4-dichlorocatechol (3,4-DC), respectively. A study of chimeric mutants constructed from the two CCDs indicated that the N-terminal parts of the enzymes were responsible for the difference in the substrate specificities. Site-directed mutagenesis studies further identified the amino acid in position 48 (Leu in CbnA and Val in TcbC) as critical in differentiating the substrate specificities of the enzymes, which agreed well with molecular modeling of the two enzymes. Mutagenesis studies also demonstrated that Ile-73 of CbnA and Ala-52 of TcbC were important for their high levels of activity towards 3,5-DC and 3,4-DC, respectively. The importance of Ile-73 for 3,5-DC specificity determination was also shown with other CCDs such as TfdC from Burkholderia sp. NK8 and TfdC from Alcaligenes sp. CSV90 (identical to TfdC from R. eutropha JMP134), which convert 3,5-DC preferentially. Together with amino acid sequence comparisons indicating high conservation of Leu-48 and Ile-73 among CCDs, these results suggested that TcbC of strain P51 had diverged from other CCDs to be adapted to conversion of 3,4-DC.
Collapse
Affiliation(s)
- Shenghao Liu
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | | | | | | | | |
Collapse
|
42
|
Lang GH, Ogawa N, Tanaka Y, Fujii T, Fulthorpe RR, Fukuda M, Miyashita K. Two kinds of chlorocatechol 1,2-dioxygenase from 2,4-dichlorophenoxyacetate-degrading Sphingomonas sp. strain TFD44. Biochem Biophys Res Commun 2005; 332:941-8. [PMID: 15916749 DOI: 10.1016/j.bbrc.2005.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 11/23/2022]
Abstract
Two kinds of chlorocatechol 1,2-dioxygenase (CCD), TfdC and TfdC2 were detected in Sphingomonas sp. strain TFD44. These two CCDs could be simultaneously synthesized in TFD44 during its growth with 2,4-D as the sole carbon and energy sources. The apparent subunit molecular masses of TfdC and TfdC2 estimated by SDS-PAGE analysis were 33.8 and 33.1 kDa, respectively. The genes encoding the two CCDs were cloned and expressed in Escherichia coli. The two purified CCDs showed broad substrate specificities but had different specificity patterns. TfdC showed the highest specificity constant for 3-chlorocatechol and TfdC2 showed the highest specificity constant for 3,5-dichlorocatechol. The substrate specificity difference seemed to correlate with the alternation of amino acid supposed to be involved in the interaction with substrates. Whereas phylogenetic analysis indicated that the CCDs of Sphingomonas constitute a distinctive group among Gram-negative bacteria, TfdC and TfdC2 of TFD44 have divergently evolved in terms of their substrate specificity.
Collapse
Affiliation(s)
- Gang-hua Lang
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Thiel M, Kaschabek SR, Gröning J, Mau M, Schlömann M. Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch Microbiol 2004; 183:80-94. [PMID: 15688254 DOI: 10.1007/s00203-004-0748-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/26/2004] [Accepted: 11/03/2004] [Indexed: 11/29/2022]
Abstract
The genes responsible for the degradation of 2,4-dichlorophenoxyacetate (2,4-D) by alpha-Proteobacteria have previously been difficult to detect by using gene probes or polymerase chain reaction (PCR) primers. PCR products of the chlorocatechol 1,2-dioxygenase gene, tfdC, now allowed cloning of two chlorocatechol gene clusters from the Sphingomonas sp. strain TFD44. Sequence characterization showed that the first cluster, tfdD,RFCE, comprises all the genes necessary for the conversion of 3,5-dichlorocatechol to 3-oxoadipate, including a presumed regulatory gene, tfdR, of the LysR-type family. The second gene cluster, tfdC2E2F2, is incomplete and appears to lack a chloromuconate cycloisomerase gene and a regulatory gene. Purification and N-terminal sequencing of selected enzymes suggests that at least representatives of both gene clusters (TfdD of cluster 1 and TfdC2 of cluster 2) are induced during the growth of strain TFD44 with 2,4-D. A mutant constructed to contain an insertion in the chloromuconate cycloisomerase gene tfdD still was able to grow with 2,4-D, but more slowly and with a longer lag phase. This, and the detection of additional activity peaks during protein purification suggest that strain TFD44 harbors at least another chloromuconate cycloisomerase gene. The sequence of the tfdCE region was almost identical to that of a partially characterized chlorocatechol catabolic gene cluster of Sphingomonas herbicidovorans MH, whereas the sequence of the tfdC2E2F2 cluster was different. The similarity of the predicted proteins of the tfdD,RFCE and tfdC2E2F2 clusters to known sequences of other Proteobacteria in the database ranged from 42 to 61% identical positions for the first cluster and from 45.5 to 58% identical positions for the second cluster. Between both clusters, the similarities of their predicted proteins ranged from 44.5 to 64% identical positions. Thus, both clusters (together with those of S. herbicidovorans MH) represent deep-branching lines in the respective dendrograms, and the sequence information will help future primer design for the detection of corresponding genes in the environment.
Collapse
Affiliation(s)
- Monika Thiel
- Interdisciplinary Ecological Center, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany
| | | | | | | | | |
Collapse
|