1
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
2
|
Huang Y, Boyen F, Antonissen G, Vereecke N, Van Immerseel F. The Genetic Landscape of Antimicrobial Resistance Genes in Enterococcus cecorum Broiler Isolates. Antibiotics (Basel) 2024; 13:409. [PMID: 38786138 PMCID: PMC11117384 DOI: 10.3390/antibiotics13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Enterococcus cecorum is associated with bacterial chondronecrosis with osteomyelitis (BCO) in broilers. Prophylactic treatment with antimicrobials is common in the poultry industry, and, in the case of outbreaks, antimicrobial treatment is needed. In this study, the minimum inhibitory concentrations (MICs) and epidemiological cutoff (ECOFF) values (COWT) for ten antimicrobials were determined in a collection of E. cecorum strains. Whole-genome sequencing data were analyzed for a selection of these E. cecorum strains to identify resistance determinants involved in the observed phenotypes. Wild-type and non-wild-type isolates were observed for the investigated antimicrobial agents. Several antimicrobial resistance genes (ARGs) were detected in the isolates, linking phenotypes with genotypes for the resistance to vancomycin, tetracycline, lincomycin, spectinomycin, and tylosin. These detected resistance genes were located on mobile genetic elements (MGEs). Point mutations were found in isolates with a non-wild-type phenotype for enrofloxacin and ampicillin/ceftiofur. Isolates showing non-wild-type phenotypes for enrofloxacin had point mutations within the GyrA, GyrB, and ParC proteins, while five amino acid changes in penicillin-binding proteins (PBP2x superfamily) were observed in non-wild-type phenotypes for the tested β-lactam antimicrobials. This study is one of the first that describes the genetic landscape of ARGs within MGEs in E. cecorum, in association with phenotypical resistance determination.
Collapse
Affiliation(s)
- Yue Huang
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (Y.H.); (G.A.)
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (Y.H.); (G.A.)
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (Y.H.); (G.A.)
| | - Nick Vereecke
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
- PathoSense BV, 2500 Lier, Belgium
| | - Filip Van Immerseel
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (Y.H.); (G.A.)
| |
Collapse
|
3
|
Carresi C, Marabelli R, Roncada P, Britti D. Is the Use of Monensin Another Trojan Horse for the Spread of Antimicrobial Resistance? Antibiotics (Basel) 2024; 13:129. [PMID: 38391515 PMCID: PMC10886233 DOI: 10.3390/antibiotics13020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a complex and somewhat unpredictable phenomenon. Historically, the utilization of avoparcin in intensive farming during the latter part of the previous century led to the development of resistance to vancomycin, a crucial antibiotic in human medicine with life-saving properties. Currently, in the European Union, there is a growing reliance on the ionophore antibiotic monensin (MON), which acts both as a coccidiostat in poultry farming and as a preventative measure against ketosis in lactating cows. Although many researchers claim that MON does not induce cross-resistance to antibiotics of clinical relevance in human medicine, some conflicting reports exist. The numerous applications of MON in livestock farming and the consequent dissemination of the compound and its metabolites in the environment require further investigation to definitively ascertain whether MON represents a potential vector for the propagation of AMR. It is imperative to emphasize that antibiotics cannot substitute sound animal husbandry practices or tailored dietary regimens in line with the different production cycles of livestock. Consequently, a rigorous evaluation is indispensable to assess whether the economic benefits associated with MON usage justify its employment, also considering its local and global environmental ramifications and the potential risk of instigating AMR with increased costs for its control.
Collapse
Affiliation(s)
- Cristina Carresi
- Veterinary Pharmacology Laboratory, Department of Health Sciences, Interregional Research Center for Food Safety and Health IRC-FSH, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | | | - Paola Roncada
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, University "Magna Graecia" of Catanzaro, CISVetSUA, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Amuasi GR, Dsani E, Owusu-Nyantakyi C, Owusu FA, Mohktar Q, Nilsson P, Adu B, Hendriksen RS, Egyir B. Enterococcus species: insights into antimicrobial resistance and whole-genome features of isolates recovered from livestock and raw meat in Ghana. Front Microbiol 2023; 14:1254896. [PMID: 38192291 PMCID: PMC10773571 DOI: 10.3389/fmicb.2023.1254896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/25/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction Enterococcus spp. have gradually evolved from commensals to causing life-threatening hospital-acquired infections globally due to their inherent antimicrobial resistance ability and virulence potential. Enterococcus spp. recovered from livestock and raw meat samples were characterized using antimicrobial susceptibility testing and whole-genome sequencing. Materials and methods Isolates were confirmed using the MALDI-ToF mass spectrometer, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Whole genome sequencing was performed on isolates resistant to two or more antibiotics. Bioinformatics analysis was performed to determine sequence types, resistance and virulence gene content and evolutionary relationships between isolates from meat and livestock samples, and other enterococci genomes curated by PATRIC. eBURST analysis was used to assign genomes to clonal complexes. Results Enterococcus spp. were predominantly E. faecalis (96/236; 41%) and E. faecium (89/236; 38%). Overall, isolates showed resistance to erythromycin (78/236; 33%), tetracycline (71/236; 30%), ciprofloxacin (20/236; 8%), chloramphenicol (12/236; 5%), linezolid (7/236; 3%), ampicillin (4/236; 2%) and vancomycin (1/236, 0.4%). Resistance to two or more antimicrobial agents was detected among 17% (n = 40) Enterococcus spp. Resistance genes for streptogramins [lsa(A), lsa(E), msr(C)], aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia, aac(6')-aph(2″), str], amphenicol [cat], macrolides [erm(B), erm(T), msr(C)], tetracyclines [tet(M), tet(L), tet(S)] and lincosamides [lsa(A), lsa(E), lnu(B)] were detected among the isolates. Genes for biofilm formation, adhesins, sex pheromones, cytolysins, hyaluronidase, oxidative stress resistance, quorum-sensing and anti-phagocytic activity were also identified. Potential plasmids with replicon sequences (rep1, rep2, repUS43, repUS47, rep9a, rep9b) and other mobile genetic elements (Tn917, cn_5536_ISEnfa1, Tn6009, ISEnfa1, ISEfa10) were detected. Clinically relevant E. faecium ST32 and ST416 clones were identified in meat samples. Conclusion The occurrence of antimicrobial-resistant Enterococcus spp. in livestock and raw meat samples, carrying multiple resistance and virulence genes, including known clones associated with hospital-acquired infections, underscores the critical need for employing robust tools like whole genome sequencing. Such tools provide detailed data essential for ongoing surveillance efforts aimed at addressing the challenge of antimicrobial resistance with a focus on one health.
Collapse
Affiliation(s)
- Grebstad Rabbi Amuasi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Esther Dsani
- Veterinary Services Department, Ministry of Food and Agriculture, Accra, Ghana
| | - Christian Owusu-Nyantakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Felicia A. Owusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Quaneeta Mohktar
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Pernille Nilsson
- National Food Institute, Research Group for Global Capacity Building, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Rene S. Hendriksen
- National Food Institute, Research Group for Global Capacity Building, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
5
|
Fu C, Qin Y, Xiang Q, Qiao M, Zhu Y. pH drives the spatial variation of antibiotic resistance gene profiles in riparian soils at a watershed scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121486. [PMID: 36963452 DOI: 10.1016/j.envpol.2023.121486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Owing to convenient water access, riparian areas are often sites for intensive livestock breeding industries and agriculture, which can increase the spread of antibiotic resistance genes (ARGs). However, studies on ARG profiles in riparian soils are limited and there is little information regarding the factors influencing ARGs at a watershed scale. Here, we analyzed ARG profiles, bacterial communities, and soil properties in riparian soils under different land-use types. A total of 124 ARGs and 25 mobile genetic elements (MGEs) were detected in the riparian soils, which covered almost all major classes of antibiotics. Non-metric multidimensional scaling analysis showed that both the distance to the water reservoir and land-use types played important roles in shaping ARG profiles in riparian soils at a watershed scale. Downstream soils harbored three times the abundance of ARGs compared with upstream and midstream soils. Distance-decay analysis indicated that the similarity of ARG profiles and bacterial community composition decreased significantly with the increase of geographical distance (p < 0.001). When taking the land-use type into consideration, the relative abundance and diversity of ARGs and MGEs in orchard and farmland soils were significantly higher than those in wasteland soils. This indicated that anthropogenic activities can also affect ARG patterns in riparian soils. MGE abundance was identified as major driving factors of ARG profiles. In addition, among all the examined soil properties, soil pH was found to be more important than nutrients and organic carbon in shaping ARG profiles. Our findings provide valuable data on ARG distribution in riparian soils in a reservoir catchment and highlight downstream soils is crucial for ensuring water source security.
Collapse
Affiliation(s)
- Chenxi Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yuan Qin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
6
|
Toresson L, Spillmann T, Pilla R, Ludvigsson U, Hellgren J, Olmedal G, Suchodolski JS. Clinical Effects of Faecal Microbiota Transplantation as Adjunctive Therapy in Dogs with Chronic Enteropathies—A Retrospective Case Series of 41 Dogs. Vet Sci 2023; 10:vetsci10040271. [PMID: 37104426 PMCID: PMC10145442 DOI: 10.3390/vetsci10040271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Chronic enteropathies (CE) are common in dogs, but not all affected dogs respond to standard therapy. Successful responses to faecal microbial transplantation (FMT) in dogs with non-responsive CE have been reported in two case series. The objective of this retrospective study was to describe the clinical effects of FMT as an adjunctive therapy in a larger population of dogs with CE. Forty-one dogs aged 0.6–13.0 years (median 5.8) under treatment for CE at one referral animal hospital were included. Dogs were treated with 1–5 (median 3) FMTs as a rectal enema at a dose of 5–7 g/kg body weight. The canine inflammatory bowel disease activity index (CIBDAI) was compared at baseline versus after the last FMT. Stored faecal samples (n = 16) were analysed with the dysbiosis index. CIBDAI at baseline was 2–17 (median 6), which decreased to 1–9 (median 2; p < 0.0001) after FMT. Subsequently, 31/41 dogs responded to treatment, resulting in improved faecal quality and/or activity level in 24/41 and 24/41 dogs, respectively. The dysbiosis index at baseline was significantly lower for good responders versus poor responders (p = 0.043). Results suggest that FMT can be useful as an adjunctive therapy in dogs with poorly responsive CE.
Collapse
Affiliation(s)
- Linda Toresson
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, Agnes Sjöberginkatu 2, Helsinki University, 00014 Helsinki, Finland
- Evidensia Specialist Animal Hospital, Bergavagen 3, 25466 Helsingborg, Sweden
| | - Thomas Spillmann
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, Agnes Sjöberginkatu 2, Helsinki University, 00014 Helsinki, Finland
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843, USA
| | - Ulrika Ludvigsson
- Evidensia Specialist Animal Hospital, Bergavagen 3, 25466 Helsingborg, Sweden
| | - Josefin Hellgren
- Evidensia Specialist Animal Hospital, Bergavagen 3, 25466 Helsingborg, Sweden
| | - Gunilla Olmedal
- Evidensia Specialist Animal Hospital, Bergavagen 3, 25466 Helsingborg, Sweden
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843, USA
| |
Collapse
|
7
|
Lee YJ, Kim K, Lee YJ. Dissemination and characteristics of high-level erythromycin-resistant Enterococcus faecalis from bulk tank milk of dairy companies in Korea. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:51-58. [PMID: 36606037 PMCID: PMC9808847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Enterococci are environmental pathogens that can cause bovine mastitis, which is treated with macrolides, one of which is erythromycin (ERY). The aim of this study was to compare the characteristics of high-level erythromycin-resistant (HLER) Enterococcus faecalis (E. faecalis) isolates from bulk tank milk of 4 dairy companies, identified as A to D, in order to assess the threat to public health. Although isolates from company D showed the highest prevalence of E. faecalis, the prevalence of HLER E. faecalis in isolates from company A showed a significant difference. A total of 149 of the 301 HLER E. faecalis isolates showed the highest rate of resistance to tetracycline. In the distribution of antimicrobial resistance genes, 147 isolates carried the ermB gene alone and 2 isolates carried both ermA and ermB genes. Also, 72 and 60 isolates carried both tetM and tetL genes and the tetM gene alone, respectively, and 38 isolates carried the optrA gene. The prevalence of both aac(6')Ie-aph(2″)-la and ant(6')-Ia genes was the highest and 104 isolates harbored the Int-Tn gene carrying the Tn916/1545-like transposon. Although the distribution of the e rmB gene showed no significant difference among dairy companies, the prevalence of other resistance genes and transposons showed significant differences among dairy companies. Virulence genes were highly conserved in the HLER E. faecalis isolates. Our results indicated that there were significant differences in phenotypic and genotypic characteristics of HLER E. faecalis isolates in milk from 4 different dairy companies. A structured management protocol by companies and constant monitoring are therefore necessary to minimize public health hazards.
Collapse
|
8
|
Samanta P, Horn H, Saravia F. Removal of Diverse and Abundant ARGs by MF-NF Process from Pig Manure and Digestate. MEMBRANES 2022; 12:membranes12070661. [PMID: 35877864 PMCID: PMC9317629 DOI: 10.3390/membranes12070661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Antimicrobial resistances are emerging as one main threat to worldwide human health and are expected to kill 10 million people by 2050. Intensive livestock husbandry, along with biogas digestate, are considered as one of the biggest ARG reservoirs. Despite major concerns, little information is available on the diversity and abundance of various ARGs in small to large scale pig farms and biogas digestate slurry in Germany, followed by their consequent removal using microfiltration (MF)-nanofiltration (NF) process. Here, we report the identification and quantification of 189 ARGs in raw manure and digestate samples, out of which 66 ARGs were shared among manures and 53 ARGs were shared among both manure and digestate samples. The highest reported total ARG copy numbers in a single manure sampling site was 1.15 × 108 copies/100 µL. In addition, we found the absolute concentrations of 37 ARGs were above 105 copies/100 μL. Filtration results showed that the highly concentrated ARGs (except aminoglycoside resistance ARGs) in feed presented high log retention value (LRV) from 3 to as high as 5 after the MF-NF process. Additionally, LRV below 2 was noticed where the initial absolute ARG concentrations were ≤103 copies/100 μL. Therefore, ARG removal was found to be directly proportional to its initial concentration in the raw manure and in digestate samples. Consequently, some ARGs (tetH, strB) can still be found within the permeate of NF with up to 104 copies/100 μL.
Collapse
Affiliation(s)
- Prantik Samanta
- DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
- Correspondence:
| | - Harald Horn
- DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Florencia Saravia
- DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
| |
Collapse
|
9
|
Murray SA, Holbert AC, Norman KN, Lawhon SD, Sawyer JE, Scott HM. Effects of Tylosin, a Direct-Fed Microbial and Feedlot Pen Environment on Phenotypic Resistance among Enterococci Isolated from Beef Cattle Feces. Antibiotics (Basel) 2022; 11:106. [PMID: 35052983 PMCID: PMC8772914 DOI: 10.3390/antibiotics11010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
In two sequential replicates (n = 90 and n = 96 feedlot finisher cattle, respectively) we measured the impact of an Enterococcus faecium-based probiotic (DFM) and an altered feedlot pen environment on antimicrobial resistance among fecal enterococci in cattle fed (or, not fed) the macrolide tylosin. Diluted fecal samples were spiral-plated on plain and antibiotic-supplemented m-Enterococcus agar. In the first replicate, tylosin significantly (p < 0.05) increased the relative quantity of erythromycin-resistant enterococci. This effect was diminished in cattle fed the DFM in conjunction with tylosin, indicating a macrolide susceptible probiotic may help mitigate resistance. A similar observed effect was not statistically significant (p > 0.05) in the second replicate. Isolates were speciated and resistance phenotypes were obtained for E. faecium and E. hirae. Susceptible strains of bacteria fed as DFM may prove useful for mitigating the selective effects of antibiotic use; however, the longer-term sustainability of such an approach remains unclear.
Collapse
Affiliation(s)
- Sarah A. Murray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (S.A.M.); (S.D.L.)
| | - Ashlyn C. Holbert
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (A.C.H.); (K.N.N.)
| | - Keri N. Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (A.C.H.); (K.N.N.)
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (S.A.M.); (S.D.L.)
| | - Jason E. Sawyer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
| | - Harvey M. Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; (S.A.M.); (S.D.L.)
| |
Collapse
|
10
|
Wen X, Xu J, Xiang G, Cao Z, Yan Q, Mi J, Ma B, Zou Y, Zhang N, Liao X, Wang Y, Wu Y. Multiple driving factors contribute to the variations of typical antibiotic resistance genes in different parts of soil-lettuce system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112815. [PMID: 34562788 DOI: 10.1016/j.ecoenv.2021.112815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The application of manure compost may cause the transmission of antibiotic resistance genes (ARGs) in agroecological environment, which poses a global threat to public health. However, the driving factors for the transmission of ARGs from animal manure to agroecological systems remains poorly understood. Here, we explored the spatiotemporal variation in ARG abundance and bacterial community composition as well as relative driving factors in a soil-lettuce system amended with swine manure compost. The results showed that ARGs abundance had different variation trends in soil, lettuce phylloplane and endophyere after the application of swine manure compost. The temporal variations of total ARGs abundance had no significant different in soil and lettuce phylloplane, while lettuce endosphere enriched half of ARGs to the highest level at harvest. There was a significant linear correlation between ARGs and integrase genes (IGs). In contrast to the ARGs variation trend, the alpha diversity of soil and phylloplane bacteria showed increasing trends over planting time, and endosphere bacteria remained stable. Correlation analysis showed no identical ARG-related genera in the three parts, but the shared Proteobacteria, Pseudomonas, Halomonas and Chelativorans, from manure compost dominated ARG profile in the soil-lettuce system. Moreover, redundancy analysis and structural equation modelling showed the variations of ARGs may have resulted from the combination of multiple driving factors in soil-lettuce system. ARGs in soil were more affected by the IGs, antibiotic and heavy metals, and bacterial community structure and IGs were the major influencing factors of ARG profiles in the lettuce. The study provided insight into the multiple driving factors contribute to the variations of typical ARGs in different parts of soil-lettuce system, which was conducive to the risk assessment of ARGs in agroecosystem and the development of effective prevention and control measures for ARGs spread in the environment.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guangfeng Xiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Cao
- WENS Foodstuff Group Co., Ltd., Yunfu, Xinxing 527400, China
| | - Qiufan Yan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiandui Mi
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Na Zhang
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Guangdong Engineering Technology Research Center of Harmless Treatment and Resource Utilization of Livestock Waste, Yunfu, Xinxing 527400, China.
| |
Collapse
|
11
|
Abstract
Several studies have outlined that a balanced gut microbiota offers metabolic and protective functions supporting honeybee health and performance. The present work contributes to increasing knowledge on the impact on the honeybee gut microbiota of the three most common veterinary drugs (oxytetracycline, sulfonamides, and tylosin). The study was designed with a semi-field approach in micro-hives containing about 500 honeybees. Micro-hives were located in an incubator during the day and moved outdoors in the late afternoon, considering the restrictions on the use of antibiotics in the open field but allowing a certain freedom to honeybees; 6 replicates were considered for each treatment. The absolute abundance of the major gut microbial taxa in newly eclosed individuals was studied with qPCR and next-generation sequencing. Antimicrobial resistance genes for the target antibiotics were also monitored using a qPCR approach. The results showed that the total amount of gut bacteria was not altered by antibiotic treatment, but qualitative variations were observed. Tylosin treatment determined a significant decrease of α- and β-diversity indices and a strong depletion of the rectum population (lactobacilli and bifidobacteria) while favoring the ileum microorganisms (Gilliamella, Snodgrassella, and Frischella spp.). Major changes were also observed in honeybees treated with sulfonamides, with a decrease in Bartonella and Frischella core taxa and an increase of Bombilactobacillus spp. and Snodgrassella spp. The present study also shows an important effect of tetracycline that is focused on specific taxa with minor impact on alfa and beta diversity. Monitoring of antibiotic resistance genes confirmed that honeybees represent a great reservoir of tetracycline resistance genes. Tetracycline and sulfonamides resistance genes tended to increase in the gut microbiota population upon antibiotic administration. IMPORTANCE This study investigates the impact of the three most widely used antibiotics in the beekeeping sector (oxytetracycline, tylosin, and sulfonamides) on the honeybee gut microbiota and on the spread of antibiotic resistance genes. The research represents an advance to the present literature, considering that the tylosin and sulfonamides effects on the gut microbiota have never been studied. Another original aspect lies in the experimental approach used, as the study looks at the impact of veterinary drugs and feed supplements 24 days after the beginning of the administration, in order to explore perturbations in newly eclosed honeybees, instead of the same treated honeybee generation. Moreover, the study was not performed with cage tests but in micro-hives, thus achieving conditions closer to real hives. The study reaches the conclusion that the most common veterinary drugs determine changes in some core microbiota members and that incidence of resistance genes for tetracycline and sulfonamides increases following antibiotic treatment.
Collapse
|
12
|
Antimicrobial Resistance in Porcine Enterococci in Australia and the Ramifications for Human Health. Appl Environ Microbiol 2021; 87:AEM.03037-20. [PMID: 33712430 DOI: 10.1128/aem.03037-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 02/03/2023] Open
Abstract
Enterococci are ubiquitous opportunistic pathogens that have become a major public health issue globally. The increasing prevalence of antimicrobial resistance in hospital-adapted enterococci had been thought to originate from livestock. However, this association between livestock and hospital-adapted enterococci is currently unclear. This study investigates the antimicrobial susceptibilities of enterococci isolated from pig cecal samples and compares the genomic characteristics of Enterococcus faecium from pigs to those of isolates from meat chickens and from human sepsis cases. From 200 cecal samples, antimicrobial susceptibility testing was performed for E. faecium (n = 84), E. hirae (n = 36), and E. faecalis (n = 17). Whole-genome sequencing was performed for all E. faecium isolates, and the sequences were compared to those of previously studied isolates from meat chickens and human sepsis cases through bioinformatics analysis. Resistance (non-wild type) to erythromycin, gentamicin, tetracycline, ampicillin, daptomycin, virginiamycin, and quinupristin-dalfopristin was identified. More importantly, except for a single isolate harboring the vanC operon, no resistance was observed in the three species to vancomycin, teicoplanin, and linezolid, which are critically important antimicrobials used to treat enterococcal infections in humans. The E. faecium isolates from chickens were genetically distinct from human and pig isolates, which were more closely related. Human strains that were closely related to pig strains were not typical "hospital-adapted strains" as previously identified. The results of this study show that enterococci from Australian finisher pigs are not a source of resistance to critically important antimicrobials and that E. faecium from pigs is not part of the current human hospital-adapted population.IMPORTANCE Resistance to the critically important antimicrobials vancomycin, teicoplanin, and linezolid is not found in enterococci collected from Australian finisher pigs. However, some antimicrobial resistance was observed. In particular, resistance to quinupristin-dalfopristin, a combination of two streptogramin class antimicrobials, was identified despite the absence of streptogramin use Australia-wide since 2005. Other observed resistance among enterococci from pigs include chloramphenicol, erythromycin, and tetracycline resistance. Genomic comparison of E. faecium from Australian pigs to isolates collected from previous studies on chickens and humans indicate that E. faecium from pigs are genetically more similar to those of humans than those from chickens. Despite the increased genetic similarities, E. faecium strains from pigs are phylogenetically distinct and did not belong to the dominant sequence types found in hospital-adapted strains causing sepsis in humans. Therefore, the results indicate that Australian finisher pigs are not a source of hospital-adapted E. faecium in Australia.
Collapse
|
13
|
Lazăr V, Gheorghe I, Curutiu C, Savin I, Marinescu F, Cristea VC, Dobre D, Popa GL, Chifiriuc MC, Popa MI. Antibiotic resistance profiles in cultivable microbiota isolated from some romanian natural fishery lakes included in Natura 2000 network. BMC Vet Res 2021; 17:52. [PMID: 33499841 PMCID: PMC7836572 DOI: 10.1186/s12917-021-02770-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 01/18/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The present study aims the characterization of antibiotic resistance phenotypes and encoding genes in bacterial strains isolated from some Romanian aquatic fishery lowland salted lakes. MATERIAL/METHODS This study was conducted on 44 bacterial strains, mainly belonging to species used as microbiological indicators of fecal pollution isolated from four natural fishery lakes. All strains were tested for their antibiotic susceptibility by disk diffusion method. Simplex and multiplex PCR were performed to identify the β-lactams antibiotic resistance genes (blaNMD, blaOXA-48, blaVIM, blaIMP, blaCTX-M, blaTEM), sulfonamides (Sul1, Sul2), tetracyclines (TetA, TetB, TetC, TetD, TetM), aminoglycosides (aac3Ia), vancomycin (VanA, VanB, VanC), macrolides (ermA, ermB, ermC) as well as the plasmid-mediated quinolone resistance (PMQR) markers (QnrA, QnrB, QnrS), and class 1 integrons (Int1, drfA1-aadA1). RESULTS The Enterococcus spp. isolates exhibited phenotypic resistance to vancomycin (35 %) and macrolides (erythromycin) (75 %); from the vancomycin - resistant strains, 5 % harboured VanA (E. faecalis), while the erythromycin resistant isolates were positive for the ermA gene (E. faecalis - 10 %, E. faecium - 5 %). The Gram- negative rods (GNR) exhibited a high level of resistance to β-lactams: cefuroxime (63 %), cefazolin (42 %), ceftriaxone (8 %), ceftazidime and aztreonam (4 % each). The genetic determinants for beta-lactam resistance were represented by blaCTX-M-like (33 %), blaNDM-like and blaIMP-like (8.33 %) genes. The resistance to non-β-lactam antibiotics was ascertained to the following genes: quinolones (QnrS - 4.16 %); sulfonamides (Sul1-75 %, Sul2-4.16 %); aminoglycosides (aac3Ia - 4.16 %); tetracyclines (tetA - 25 %, tetC - 15 %). The integrase gene was found in more than 50 % of the studied strains (58.33 %). CONCLUSIONS The cultivable aquatic microbiota from fishery lakes is dominated by enterococci and Enterobacterales strains. The GNR strains exhibited high levels of β-lactam resistance mediated by extended spectrum beta-lactamases and metallo-β-lactamases. The Enterococcus sp. isolates were highly resistant to macrolides and vancomycin. The high level and diversity of resistance markers, correlated with a high frequency of integrons is suggesting that this environment could act as an important reservoir of antibiotic resistance genes with a great probability to be horizontally transmitted to other associated species from the aquatic sediments microbiota, raising the potential zoonotic risk for fish consumers.
Collapse
Affiliation(s)
- Veronica Lazăr
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Maximilian Association, Buzău, Romania
| | - Irina Gheorghe
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Carmen Curutiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
| | - Ioana Savin
- National Institute for Research and Development in Environmental Protection , Bucharest, Romania
| | - Florica Marinescu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- National Institute for Research and Development in Environmental Protection , Bucharest, Romania
| | - Violeta Corina Cristea
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Gabriela Loredana Popa
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Mircea Ioan Popa
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| |
Collapse
|
14
|
Yang F, Han B, Gu Y, Zhang K. Swine liquid manure: a hotspot of mobile genetic elements and antibiotic resistance genes. Sci Rep 2020; 10:15037. [PMID: 32929149 PMCID: PMC7490410 DOI: 10.1038/s41598-020-72149-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/25/2020] [Indexed: 11/25/2022] Open
Abstract
The overuse or abuse of antibiotics as veterinary medicine and growth promoters accelerates antibiotic resistance, creating a serious threat to public health in the world. Swine liquid manure as an important reservoir of antibiotic resistance genes (ARGs) has received much attention, but little information is known regarding the occurrence, persistence and fate of ARGs-associated mobile genetic elements (MGEs) in swine farms, especially their change patterns and removal in full-scale piggery wastewater treatment systems (PWWTSs). In this study, we searched the presence and distribution of MGEs and associated ARGs in swine farms, and addressed their fate and seasonal variation in full-scale PWWTSs by real-time quantitative PCR (qPCR). Our results revealed class 1 integrons, class 2 integrons and conjugative plasmids were prevalent in pig feces and piggery wastewater. A clear pattern of these MGE levels in swine liquid manure was also observed, i.e., intI1 > intI2 > traA (p < 0.01), and their absolute abundances in winter were all higher than that in summer with 0.07-2.23 logs. Notably, MGEs and ARGs prevailed through various treatment units of PWWTSs, and considerable levels of them were present in the treated effluent discharged from swine farms (up to 101-107 copies/mL for MGEs and 103-108 copies/mL for ARGs). There were significant correlations between most ARG abundance and MGE levels (p < 0.05), such as tetQ and traA (r = 0.775), sul1 and intI1 (r = 0.847), qnrS and inI2 (r = 0.859), suggesting the potential of ARGs-horizontal transfer. Thus the high prevalence and enrichment of MGEs and ARGs occurred in pig feces and piggery wastewater, also implicating that swine liquid manure could be a hotspot for horizontal transfer of ARGs.
Collapse
Affiliation(s)
- Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yanru Gu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150036, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
15
|
Antimicrobial Resistance Gene Detection and Plasmid Typing Among Multidrug Resistant Enterococci Isolated from Freshwater Environment. Microorganisms 2020; 8:microorganisms8091338. [PMID: 32887339 PMCID: PMC7563215 DOI: 10.3390/microorganisms8091338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, mechanisms of antimicrobial resistance (AR) as well as the abundance and diversity of plasmids were determined among multidrug resistant (MDR) enterococci from surface water in GA, USA. A total of 51 enterococci isolates were screened for the presence of 27 AR genes conferring resistance to ciprofloxacin, erythromycin, tylosin, kanamycin, streptomycin, lincomycin, Quinupristin/Dalfopristin (Q/D), and tetracycline. A plasmid classification system based on replication genes was used to detect 19 defined Gram-positive plasmid replicon families. Twelve genes were identified as conferring resistance to erythromycin and tylosin (erm(B) and erm(C)), kanamycin (aph(3′)-IIIa), streptomycin (ant(6)-Ia), lincomycin (lnu(B)), Q/D (vat(E)), ciprofloxacin (qnrE. faecalis), and tetracycline (tet(K), tet(L), tet(M), tet(O) and tet(S)). Twelve different rep-families were identified in two-thirds of the isolates. While AR genes commonly found in human and animals were detected in this study among environmental enterococci, resistance genes could not be determined for many of the isolates, which indicates that diverse AR mechanisms exist among enterococci, and the understanding of AR mechanisms for environmental enterococci is limited. Diverse rep-families were identified among the enterococci recovered from the aquatic environment, and these rep-families appear to be quite different from those recovered from other sources. This work expands knowledge of AR gene reservoirs and enterococcal plasmids across a wider range of environments.
Collapse
|
16
|
Van Gompel L, Luiken REC, Sarrazin S, Munk P, Knudsen BE, Hansen RB, Bossers A, Aarestrup FM, Dewulf J, Wagenaar JA, Mevius DJ, Schmitt H, Heederik DJJ, Dorado-García A, Smit LAM. The antimicrobial resistome in relation to antimicrobial use and biosecurity in pig farming, a metagenome-wide association study in nine European countries. J Antimicrob Chemother 2020; 74:865-876. [PMID: 30649386 DOI: 10.1093/jac/dky518] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Previous studies in food-producing animals have shown associations between antimicrobial use (AMU) and resistance (AMR) in specifically isolated bacterial species. Multi-country data are scarce and only describe between-country differences. Here we investigate associations between the pig faecal mobile resistome and characteristics at the farm-level across Europe. METHODS A cross-sectional study was conducted among 176 conventional pig farms from nine European countries. Twenty-five faecal samples from fattening pigs were pooled per farm and acquired resistomes were determined using shotgun metagenomics and the Resfinder reference database, i.e. the full collection of horizontally acquired AMR genes (ARGs). Normalized fragments resistance genes per kilobase reference per million bacterial fragments (FPKM) were calculated. Specific farm-level data (AMU, biosecurity) were collected. Random-effects meta-analyses were performed by country, relating farm-level data to relative ARG abundances (FPKM). RESULTS Total AMU during fattening was positively associated with total ARG (total FPKM). Positive associations were particularly observed between widely used macrolides and tetracyclines, and ARGs corresponding to the respective antimicrobial classes. Significant AMU-ARG associations were not found for β-lactams and only few colistin ARGs were found, despite high use of these antimicrobial classes in younger pigs. Increased internal biosecurity was directly related to higher abundances of ARGs mainly encoding macrolide resistance. These effects of biosecurity were independent of AMU in mutually adjusted models. CONCLUSIONS Using resistome data in association studies is unprecedented and adds accuracy and new insights to previously observed AMU-AMR associations. Major components of the pig resistome are positively and independently associated with on-farm AMU and biosecurity conditions.
Collapse
Affiliation(s)
- Liese Van Gompel
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | - Roosmarijn E C Luiken
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | - Steven Sarrazin
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Patrick Munk
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet 204, Kongens Lyngby, Denmark
| | - Berith E Knudsen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet 204, Kongens Lyngby, Denmark
| | | | - Alex Bossers
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Houtribweg 39, RA, Lelystad, The Netherlands
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet 204, Kongens Lyngby, Denmark
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Jaap A Wagenaar
- Wageningen Bioveterinary Research, Houtribweg 39, RA, Lelystad, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, CL, Utrecht, The Netherlands
| | - Dik J Mevius
- Wageningen Bioveterinary Research, Houtribweg 39, RA, Lelystad, The Netherlands.,Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, CL, Utrecht, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands.,Centre of Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, MA, Bilthoven, The Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | - Alejandro Dorado-García
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, CM Utrecht, The Netherlands
| | | |
Collapse
|
17
|
Amoako DG, Somboro AM, Abia ALK, Molechan C, Perrett K, Bester LA, Essack SY. Antibiotic Resistance in Staphylococcus aureus from Poultry and Poultry Products in uMgungundlovu District, South Africa, Using the "Farm to Fork" Approach. Microb Drug Resist 2019; 26:402-411. [PMID: 31647362 DOI: 10.1089/mdr.2019.0201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: This study determined the prevalence and antibiotic susceptibility profiles of Staphylococcus aureus isolated from selected critical control points (farm, transport, abattoir, and retail product) in an intensive poultry production system in the uMgungundlovu District, South Africa, using the "farm to fork" approach. Materials and Methods: Three hundred eighty-four samples from poultry and poultry products were examined across the "farm to fork" continuum for S. aureus using selective media, biochemical tests, and API Staph kit and confirmed by polymerase chain reaction identification of the nuc gene. Antibiotic susceptibility testing of the isolates was determined by the Kirby-Bauer disc diffusion method to 19 antimicrobials and to vancomycin by the broth microdilution technique. Results: The overall prevalence rate of S. aureus was 31.25% (n = 120/384), distributed across the continuum: farm site (40), transport (15), abattoir (30), and retail point (35). The isolates were resistant to tetracycline (61.67%), penicillin G (55.83%), erythromycin (54.17%), clindamycin (43.33%), doxycycline (36.67%), ampicillin (34.17%), moxifloxacin (30.83%), amikacin (30.83%), trimethoprim-sulfamethoxazole (30.00%), and levofloxacin (23.33%). A 100% susceptibility to tigecycline, teicoplanin, vancomycin, nitrofurantoin, chloramphenicol, and linezolid was observed in all isolates. The rate of multidrug resistance and the multiple antibiotic resistance index of the strains were 39.17% and 0.23%, respectively. The isolates showed similar patterns of resistance to commonly used growth promoters and antibiotics in veterinary and human medicine belonging to the same class. Conclusion: It is evident that the different antibiotics and growth promoters used in poultry production are exerting selection pressure for the emergence and co-selection of antibiotic-resistant bacteria in the production system, necessitating efficient antibiotic stewardship guidelines to streamline their use.
Collapse
Affiliation(s)
- Daniel Gyamfi Amoako
- Antimicrobial Research Unit and College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anou M Somboro
- Antimicrobial Research Unit and College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Akebe L K Abia
- Antimicrobial Research Unit and College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chantal Molechan
- Antimicrobial Research Unit and College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Keith Perrett
- Epidemiology Section, KwaZulu-Natal, Agriculture & Rural Development-Veterinary Service, Pietermaritzburg, South Africa
| | - Linda A Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sabiha Y Essack
- Antimicrobial Research Unit and College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Vikram A, Miller E, Arthur TM, Bosilevac JM, Wheeler TL, Schmidt JW. Food Service Pork Chops from Three U.S. Regions Harbor Similar Levels of Antimicrobial Resistance Regardless of Antibiotic Use Claims. J Food Prot 2019; 82:1667-1676. [PMID: 31532250 DOI: 10.4315/0362-028x.jfp-19-139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pork products from animals "raised without antibiotics" (RWA) are assumed to harbor lower levels of antimicrobial resistance (AMR) than conventional (CONV) pork products with no claims regarding use of antimicrobial agents during production. A total of 372 pork chop samples from CONV (n = 190) and RWA (n = 182) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GCr) E. coli, Salmonella enterica, TETr Salmonella, 3GCr Salmonella, nalidixic acid-resistant Salmonella, Enterococcus spp., TETr Enterococcus, erythromycin-resistant Enterococcus, Staphylococcus aureus, and methicillin-resistant S. aureus. Production system did not significantly impact the detection of cultured bacteria (P > 0.05). Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). Quantitative PCR was used to assess the abundances of the following 10 AMR genes: aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). For all 10 AMR genes, abundances did not differ significantly (P > 0.05) between production systems. These results suggest that use of antimicrobial agents during swine production minimally impacts the AMR of bacteria in pork chops.
Collapse
Affiliation(s)
- Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Eric Miller
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Joseph M Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| |
Collapse
|
19
|
Asakura H, Sakata J, Nakamura H, Yamamoto S, Murakami S. Phylogenetic Diversity and Antimicrobial Resistance of Campylobacter coli from Humans and Animals in Japan. Microbes Environ 2019; 34:146-154. [PMID: 30905895 PMCID: PMC6594732 DOI: 10.1264/jsme2.me18115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The phylogenetic diversity and antimicrobial resistance (AMR) of Campylobacter coli from humans and animals in Japan between 2008 and 2014 were investigated. A total of 338 foodborne campylobacterioses were reported in Osaka, and C. coli was isolated from 38 cases (11.2%). In the present study, 119 C. coli strains (42 from humans, 25 each from poultry, cattle, and swine, and 2 from wild mallard) were examined by multilocus sequence typing (MLST). MLST assigned 36 sequence types (STs), including 14 novel STs; all human strains and 91% of animal strains (70/77) were assigned to the ST-828 clonal complex. The predominant human ST was ST-860 (18/42, 43%), followed by ST-1068 (8/42, 19%); these STs were also predominant in poultry (ST-860, 9/25, 36%) and cattle (ST-1068, 18/25, 72%). ST-1562 was only predominant in swine (11/25, 44.0%). Swine strains showed the greatest resistance to erythromycin (EM; 92.0%), while EM resistance was only found in 2 out of the 42 human strains examined (4.8%). All EM-resistant swine strains (n=15) exhibited a common point mutation in the 23S rRNA sequence (A2085G), and the tetO gene was detected in 22 out of the 23 TET-resistant swine strains. A whole genome sequencing analysis of four representative swine ST-1562 strains revealed abundant AMR-associated gene clusters in their genomes, suggesting horizontal gene transfer events during host adaptation. This is the first study to demonstrate the phylogenetic diversity and AMR profiles of C. coli in Japan. The present results suggest that poultry and cattle are major reservoirs, improving our knowledge on the epidemiological and ecological traits of this pathogen.
Collapse
Affiliation(s)
- Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences
| | - Junko Sakata
- Laboratory of Bacteriology, Department of Microbiology, Osaka Institute of Public Health
| | - Hiromi Nakamura
- Laboratory of Microbiology, Department of Microbiology, Osaka Institute of Public Health
| | - Shiori Yamamoto
- Division of Biomedical Food Research, National Institute of Health Sciences
| | | |
Collapse
|
20
|
Choi J, Rieke EL, Moorman TB, Soupir ML, Allen HK, Smith SD, Howe A. Practical implications of erythromycin resistance gene diversity on surveillance and monitoring of resistance. FEMS Microbiol Ecol 2019; 94:4810543. [PMID: 29346541 PMCID: PMC5939627 DOI: 10.1093/femsec/fiy006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
Use of antibiotics in human and animal medicine has applied selective pressure for the global dissemination of antibiotic-resistant bacteria. Therefore, it is of interest to develop strategies to mitigate the continued amplification and transmission of resistance genes in environmental reservoirs such as farms, hospitals and watersheds. However, the efficacy of mitigation strategies is difficult to evaluate because it is unclear which resistance genes are important to monitor, and which primers to use to detect those genes. Here, we evaluated the diversity of one type of macrolide antibiotic resistance gene (erm) in one type of environment (manure) to determine which primers would be most informative to use in a mitigation study of that environment. We analyzed all known erm genes and assessed the ability of previously published erm primers to detect the diversity. The results showed that all known erm resistance genes group into 66 clusters, and 25 of these clusters (40%) can be targeted with primers found in the literature. These primers can target 74%–85% of the erm gene diversity in the manures analyzed.
Collapse
Affiliation(s)
- Jinlyung Choi
- Department of Agricultural and Biosystems Engineering, Iowa State University, 1201 Sukup Hall, Ames, IA 50011, USA
| | - Elizabeth L Rieke
- Department of Agricultural and Biosystems Engineering, Iowa State University, 1201 Sukup Hall, Ames, IA 50011, USA
| | - Thomas B Moorman
- National Laboratory for Agriculture and the Environment, USDA-ARS, 2110 University Blvd, Ames, IA 50011, USA
| | - Michelle L Soupir
- Department of Agricultural and Biosystems Engineering, Iowa State University, 1201 Sukup Hall, Ames, IA 50011, USA
| | - Heather K Allen
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA, 50010, USA
| | - Schuyler D Smith
- Department of Bioinformatics and Computational Biology, Iowa State University, 2014 Molecular Biology Building, Ames, IA 50011, USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, 1201 Sukup Hall, Ames, IA 50011, USA
| |
Collapse
|
21
|
Wu F, Tokach MD, DeRouchey JM, Dritz SS, Woodworth JC, Goodband RD, Chitakasempornkul K, Bello NM, Capps K, Remfry S, Scott HM, Nagaraja TG, Apley MD, Amachawadi RG. Effects of Tylosin Administration Routes on the Prevalence of Antimicrobial Resistance Among Fecal Enterococci of Finishing Swine. Foodborne Pathog Dis 2019; 16:309-316. [PMID: 30676777 DOI: 10.1089/fpd.2018.2551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibiotics can be administered orally or parenterally in swine production, which may influence antimicrobial resistance (AMR) development in gut bacteria. A total of 40 barrows and 40 gilts were used to determine the effects of tylosin administration route on growth performance and fecal enterococcal AMR. The antibiotic treatments followed Food and Drug Administration label directions and were as follows: (1) no antibiotic (CON), (2) 110 mg tylosin per kg feed for 21 d (IN-FEED), (3) 8.82 mg tylosin per kg body weight through intramuscular injection twice daily for the first 3 d of each week for 3 weeks (IM), and (4) 66 mg tylosin per liter of drinking water (IN-WATER). Antibiotics were administered during d 0 to 21 and all pigs were then fed the CON diet from d 21 to 35. Fecal samples were collected on d 0, 21, and 35. Antimicrobial susceptibility was determined by microbroth dilution method. No evidence of route × sex interaction (p > 0.55) was observed for growth performance. From d 0 to 21, pigs receiving CON and IN-FEED had greater (p < 0.05) average daily gain (ADG) than those receiving IM, with the IN-WATER group showing intermediate ADG. Pigs receiving CON had greater (p < 0.05) gain-to-feed ratio (G:F) than IM and IN-WATER, but were not different from pigs receiving IN-FEED. Overall, enterococcal isolates collected from pigs receiving IN-FEED or IM were more resistant (p < 0.05) to erythromycin and tylosin than CON and IN-WATER groups. Regardless of administration route, the estimated probability of AMR to these two antibiotics was greater on d 21 and 35 than on d 0. In summary, IM tylosin decreased ADG and G:F in finishing pigs, which may be because of a response to the handling during injection administration. Tylosin administration through injection and feed resulted in greater probability of enterococcal AMR to erythromycin and tylosin compared with in-water treatment.
Collapse
Affiliation(s)
- Fangzhou Wu
- 1 Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas
| | - Mike D Tokach
- 1 Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas
| | - Joel M DeRouchey
- 1 Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas
| | - Steve S Dritz
- 2 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jason C Woodworth
- 1 Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas
| | - Robert D Goodband
- 1 Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas
| | | | - Nora M Bello
- 3 Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, Kansas
| | - Kaylen Capps
- 2 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Sarah Remfry
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Harvey M Scott
- 5 Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Tiruvoor G Nagaraja
- 2 Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Michael D Apley
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Raghavendra G Amachawadi
- 4 Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
22
|
Alterations of Salmonella enterica Serovar Typhimurium Antibiotic Resistance under Environmental Pressure. Appl Environ Microbiol 2018; 84:AEM.01173-18. [PMID: 30054356 DOI: 10.1128/aem.01173-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/16/2018] [Indexed: 12/22/2022] Open
Abstract
Microbial horizontal gene transfer is a continuous process that shapes bacterial genomic adaptation to the environment and the composition of concurrent microbial ecology. This includes the potential impact of synthetic antibiotic utilization in farm animal production on overall antibiotic resistance issues; however, the mechanisms behind the evolution of microbial communities are not fully understood. We explored potential mechanisms by experimentally examining the relatedness of phylogenetic inference between multidrug-resistant Salmonella enterica serovar Typhimurium isolates and pathogenic Salmonella Typhimurium strains based on genome-wide single-nucleotide polymorphism (SNP) comparisons. Antibiotic-resistant S Typhimurium isolates in a simulated farm environment barely lost their resistance, whereas sensitive S Typhimurium isolates in soils gradually acquired higher tetracycline resistance under antibiotic pressure and manipulated differential expression of antibiotic-resistant genes. The expeditious development of antibiotic resistance and the ensuing genetic alterations in antimicrobial resistance genes in S Typhimurium warrant effective actions to control the dissemination of Salmonella antibiotic resistance.IMPORTANCE Antibiotic resistance is attributed to the misuse or overuse of antibiotics in agriculture, and antibiotic resistance genes can also be transferred to bacteria under environmental stress. In this study, we report a unidirectional alteration in antibiotic resistance from susceptibility to increased resistance. Highly sensitive Salmonella enterica serovar Typhimurium isolates from organic farm systems quickly acquired tetracycline resistance under antibiotic pressure in simulated farm soil environments within 2 weeks, with expression of antibiotic resistance-related genes that was significantly upregulated. Conversely, originally resistant S Typhimurium isolates from conventional farm systems lost little of their resistance when transferred to environments without antibiotic pressure. Additionally, multidrug-resistant S Typhimurium isolates genetically shared relevancy with pathogenic S Typhimurium isolates, whereas susceptible isolates clustered with nonpathogenic strains. These results provide detailed discussion and explanation about the genetic alterations and simultaneous acquisition of antibiotic resistance in S Typhimurium in agricultural environments.
Collapse
|
23
|
Xiang Q, Chen QL, Zhu D, An XL, Yang XR, Su JQ, Qiao M, Zhu YG. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:525-533. [PMID: 29324382 DOI: 10.1016/j.envpol.2017.12.119] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 05/11/2023]
Abstract
With the rapid development of urbanization and industrialization, the peri-urban areas are often the sites for waste dumps, which may exacerbate the occurrence and spread of antibiotic resistance from waste to soil bacteria. However, the profiles of antibiotic resistomes and the associated factors influencing their dissemination in peri-urban areas have not been fully explored. Here, we characterized the antibiotic resistance genes (ARGs) in peri-urban arable and pristine soils in four seasons at the watershed scale, by using high-throughput qPCR. ARGs in peri-urban soils were diverse and abundant, with a total of 222 genes were detected in the peri-urban soil samples. The arable soil harbored more diverse ARGs compared to the pristine soils, and nearly all the ARGs detected in the pristine soils were also detected in the farmlands. A random forest prediction showed that the overall patterns of ARGs clustered closely with the landuse type. Mantel test and partial redundancy analysis indicated that bacterial community variation is a major contributor to antibiotic resistome alteration. Significant positive correlation was found between the abundance of ARGs and mobile genetic elements (MGEs), suggesting potential mobility of ARGs in peri-urban areas. Our results extend knowledge of the resistomes compositions in peri-urban areas, and suggest that anthropogenic activities driving its spatial and temporal distribution.
Collapse
Affiliation(s)
- Qian Xiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qing-Lin Chen
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Xin-Li An
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
24
|
Zhang YJ, Hu HW, Gou M, Wang JT, Chen D, He JZ. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1621-1632. [PMID: 28964602 DOI: 10.1016/j.envpol.2017.09.074] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Land application of animal manure is a common agricultural practice potentially leading to dispersal and propagation of antibiotic resistance genes (ARGs) in environmental settings. However, the fate of resistome in agro-ecosystems over time following application of different manure sources has never been compared systematically. Here, soil microcosm incubation was conducted to compare effects of poultry, cattle and swine manures spiked with or without the antibiotic tylosin on the temporal changes of soil ARGs. The high-throughput quantitative PCR detected a total of 185 unique ARGs, with Macrolide-Lincosamide-Streptogramin B resistance as the most frequently encountered ARG type. The diversity and abundance of ARGs significantly increased following application of manure and manure spiked with tylosin, with more pronounced effects observed in the swine and poultry manure treatments than in the cattle manure treatment. The level of antibiotic resistance gradually decreased over time in all manured soils but was still significantly higher in the soils treated with swine and poultry manures than in the untreated soils after 130 days' incubation. Tylosin-amended soils consistently showed higher abundances of ARGs than soils treated with manure only, suggesting a strong selection pressure of antibiotic-spiked manure on soil ARGs. The relative abundance of ARGs had significantly positive correlations with integrase and transposase genes, indicative of horizontal transfer potential of ARGs in manure and tylosin treated soils. Our findings provide evidence that application of swine and poultry manures might enrich more soil ARGs than cattle manure, which necessitates the appropriate treatment of raw animal manures prior to land application to minimise the spread of environmental ARGs.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Hang-Wei Hu
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Min Gou
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Deli Chen
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia; State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
25
|
Birkegård AC, Halasa T, Græsbøll K, Clasen J, Folkesson A, Toft N. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms. Sci Rep 2017; 7:9683. [PMID: 28852034 PMCID: PMC5575052 DOI: 10.1038/s41598-017-10092-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/03/2017] [Indexed: 11/08/2022] Open
Abstract
Bacterial antimicrobial resistance (AMR) in pigs is an important public health concern due to its possible transfer to humans. We aimed at quantifying the relationship between the lifetime exposure of antimicrobials and seven antimicrobial resistance genes in Danish slaughter pig farms. AMR gene levels were quantified by qPCR of total-community DNA in faecal samples obtained from 681 batches of slaughter pigs. The lifetime exposure to antimicrobials was estimated at batch level for the piglet, weaner, and finisher periods individually for the sampled batches. We showed that the effect of antimicrobial exposure on the levels of AMR genes was complex and unique for each individual gene. Several antimicrobial classes had both negative and positive correlations with the AMR genes. From 10-42% of the variation in AMR gene levels could be explained in the final regression models, indicating that antimicrobial exposure is not the only important determinant of the AMR gene levels.
Collapse
Affiliation(s)
- Anna Camilla Birkegård
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark.
| | - Tariq Halasa
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| | - Kaare Græsbøll
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| | - Julie Clasen
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| | - Anders Folkesson
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| | - Nils Toft
- Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Kemitorvet Building 204, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
26
|
Hao H, Zhou S, Cheng G, Dai M, Wang X, Liu Z, Wang Y, Yuan Z. Effect of Tulathromycin on Colonization Resistance, Antimicrobial Resistance, and Virulence of Human Gut Microbiota in Chemostats. Front Microbiol 2016; 7:477. [PMID: 27092131 PMCID: PMC4824762 DOI: 10.3389/fmicb.2016.00477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/22/2016] [Indexed: 11/13/2022] Open
Abstract
To evaluate microbiological safety of tulathromycin on human intestinal bacteria, tulathromycin (0, 0.1, 1, 10, and 100 μg/mL) was added into Chemostats. Before and after drug exposure, we monitored (1) population, SCFA products, antimicrobial resistance, and colonization resistance of gut microbiota, and (2) the antimicrobial resistance genes, transferability, virulent genes, pathogenicity of Enterococus faecalis. Results showed that low level of tulathromycin did not exhibit microbiological hazard on resistance selection and colonization resistance. However, high level of tulathromycin (10 and 100 μg/mL) may disturb colonization resistance of human gut microbiota and select antimicrobial resistant E. faecalis. Most of the selected resistant E. faecalis carried resistant gene of ermB, transferable element of Tn1545 and three virulence genes (esp, cylA, and ace). One of them (E. faecalis 143) was confirmed to have higher horizontal transfer risk and higher pathogenicity. The calculated no observable adverse effect concentration (NOAEC) and microbiological acceptable daily intake (mADI) in our study was 1 μg/mL and 14.66 μg/kg.bw/day, respectively.
Collapse
Affiliation(s)
- Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Shengxi Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University Wuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University Wuhan, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural UniversityWuhan, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
27
|
Ngamwongsatit B, Tanomsridachchai W, Suthienkul O, Urairong S, Navasakuljinda W, Janvilisri T. Multidrug resistance in Clostridium perfringens isolated from diarrheal neonatal piglets in Thailand. Anaerobe 2016; 38:88-93. [DOI: 10.1016/j.anaerobe.2015.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 12/16/2022]
|
28
|
Ayeni FA, Odumosu BT, Oluseyi AE, Ruppitsch W. Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria. J Pharm Bioallied Sci 2016; 8:69-73. [PMID: 26957873 PMCID: PMC4766783 DOI: 10.4103/0975-7406.171729] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Tetracycline is one of the most frequently used antibiotics in Nigeria both for human and animal infections because of its cheapness and ready availability. The use of tetracycline in animal husbandry could lead to horizontal transfer of tet genes from poultry to human through the gut microbiota, especially enterococci. Therefore, this study is designed to identify different enterococcal species from poultry feces in selected farms in Ilishan, Ogun State, Nigeria, determine the prevalence of tetracycline resistance/genes and presence of IS256 in enterococcal strains. Materials and Methods: Enterococci strains were isolated from 100 fresh chicken fecal samples collected from seven local poultry farms in Ilishan, Ogun State, Nigeria. The strains were identified by partial sequencing of 16S rRNA genes. Antibiotic susceptibility of the isolates to vancomycin, erythromycin, tetracycline, gentamicin, amoxycillin/claulanate, and of loxacin were performed by disc diffusion method. Detection of tet, erm, and van genes and IS256 insertion element were done by polymerase chain reaction amplification. Results: Sixty enterococci spp. were identified comprising of Enterococcus faecalis 33 (55%), Enterococcus casseliflavus 21 (35%), and Enterococcus gallinarium 6 (10%). All the isolates were resistant to erythromycin (100%), followed by tetracycline (81.67%), amoxicillin/clavulanic acid (73.33%), ofloxacin (68.33%), vancomycin (65%), and gentamicin (20%). None of the enterococcal spp. harbored the van and erm genes while tet(M) was detected among 23% isolates and is distributed mostly among E. casseliflavus. IS256 elements were detected only in 33% of E. casseliflavus that were also positive for tet(M) gene. Conclusion: This study provides evidence that tetracycline resistance gene is present in the studied poultry farms in Ilishan, Ogun State, Nigeria and underscores the need for strict regulation on tetracycline usage in poultry farming in the studied location and consequently Nigeria.
Collapse
Affiliation(s)
- Funmilola A Ayeni
- Department of Pharmaceutical Microbiology, University of Ibadan, Nigeria, Vienna, Austria; Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Bamidele Tolulope Odumosu
- Department of Microbiology, University of Lagos, Akoka Yaba Lagos, Nigeria; Department of Bioscience and Biotechnology, Babcock University, Ilishan_Remo, Nigeria
| | - Adekola E Oluseyi
- Department of Bioscience and Biotechnology, Babcock University, Ilishan_Remo, Nigeria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| |
Collapse
|
29
|
Amachawadi RG, Scott HM, Aperce C, Vinasco J, Drouillard JS, Nagaraja TG. Effects of in-feed copper and tylosin supplementations on copper and antimicrobial resistance in faecal enterococci of feedlot cattle. J Appl Microbiol 2015; 118:1287-97. [PMID: 25739516 DOI: 10.1111/jam.12790] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 01/26/2023]
Abstract
AIMS The objective was to investigate whether in-feed supplementation of copper, at elevated level, co-selects for macrolide resistance in faecal enterococci. METHODS AND RESULTS The study was conducted in cattle (n = 80) with a 2 × 2 factorial design of copper (10 or 100 mg kg(-1) of feed) and tylosin (0 or 10 mg kg(-1) of feed). Thirty-seven isolates (4·6%; 37/800) of faecal enterococci were positive for the tcrB and all were Enterococcus faecium. The prevalence was higher among cattle fed diets with copper and tylosin (8·5%) compared to control (2·0%), copper (4·5%) and tylosin (3·5%) alone. All tcrB-positive isolates were positive for erm(B) and tet(M) genes. Median copper minimum inhibitory concentrations (MICs) for tcrB-positive and tcrB-negative enterococci were 20 and 4 mmol l(-1) , respectively. CONCLUSIONS Feeding of elevated dietary copper and tylosin alone or in combination resulted in an increased prevalence of tcrB and erm(B)-mediated copper and tylosin-resistant faecal enterococci in feedlot cattle. SIGNIFICANCE AND IMPACT OF THE STUDY In-feed supplementation of elevated dietary copper has the potential to co-select for macrolide resistance. Further studies are warranted to investigate the factors involved in maintenance and dissemination of the resistance determinants and their co-selection mechanism in relation to feed-grade antimicrobials' usage in feedlot cattle.
Collapse
Affiliation(s)
- R G Amachawadi
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| | - H M Scott
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - C Aperce
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - J Vinasco
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - J S Drouillard
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | - T G Nagaraja
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
30
|
Oral tylosin administration is associated with an increase of faecal enterococci and lactic acid bacteria in dogs with tylosin-responsive diarrhoea. Vet J 2015; 205:369-74. [PMID: 26049259 DOI: 10.1016/j.tvjl.2015.04.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 11/20/2022]
Abstract
The term tylosin-responsive diarrhoea (TRD) is used for canine recurrent diarrhoea cases for which no underlying cause can be found after extensive diagnostic investigations, but which show a response to the antibiotic tylosin in a few days. The objective of this prospective, one-arm longitudinal trial was to assess the effects of oral tylosin administration on the faecal levels of potentially probiotic bacteria, such as Enterococcus spp. and lactic acid bacteria (LAB), in dogs with TRD. This trial included 14 client-owned suspected TRD dogs that were on tylosin treatment and had firm faeces. Treatment was then terminated and dogs were followed up for up to 2 months to determine the recurrence of diarrhoea. Once diarrhoea started, dogs received tylosin (orally, 25 mg/kg, once daily for 7 days). At the end of the treatment period, stools were firm again in 11 dogs (TRD dogs); three dogs continued having diarrhoea and were excluded from the study. Faecal samples were collected at all three time-points for culture of LAB and enterococci. In TRD dogs, the colony counts of Enterococcus spp. (P = 0.003), LAB (P = 0.037), tylosin-resistant Enterococcus spp. (P <0.001) and LAB (P <0.001) were significantly higher when the dogs were on tylosin treatment and had normal faecal consistency compared to when they had diarrhoea following discontinuation of tylosin. In conclusion, cessation of diarrhoea in TRD dogs with tylosin treatment could be mediated by selection of a specific lactic acid population, the Enterococcus spp., due to their potential probiotic properties.
Collapse
|
31
|
Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G, Sadowy E, van Schaik W, Jensen LB, Sundsfjord A, Hegstad K. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics 2015; 16:282. [PMID: 25885771 PMCID: PMC4438569 DOI: 10.1186/s12864-015-1407-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses. RESULTS The hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep 17/pRUM , rep 2/pRE25 , rep 14/EFNP1 and rep 20/pLG1 dominating in E. faecium and rep 9/pCF10 , rep 2/pRE25 and rep 7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented. CONCLUSIONS The targeted MGEs were highly prevalent among the selected STs, underlining their potential importance in the evolution of hospital-adapted lineages of enterococci. Although the propensity of inter-species horizontal gene transfer (HGT) must be emphasized, the considerable species-specificity of these MGEs indicates a separate vertical evolution of MGEs within each species, and for E. faecalis within each ST.
Collapse
Affiliation(s)
- Theresa Mikalsen
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Rob Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany.
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lars Bogø Jensen
- Division of Food Microbiologyt, National Food Institute, Danish Technical University, Copenhagen V, Denmark.
| | - Arnfinn Sundsfjord
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Kristin Hegstad
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
32
|
Characterization of Antibiotics and Antibiotic Resistance Genes on an Ecological Farm System. J CHEM-NY 2015. [DOI: 10.1155/2015/526143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is a growing concern worldwide about the prevalence of antibiotics and antibiotic resistance genes (ARGs) on the farm. In this study, we investigated the distribution of seven antibiotics and ten ARGs in fresh and dried pig feces, in biogas slurry, and in grape-planting soil from an ecological farm. Antibiotics including sulfamethazine, norfloxacin, ofloxacin, tetracycline, oxytetracycline, and chlortetracycline were detected in these samples (except for sulfamethoxazole) in dried feces. In general, antibiotics levels in samples were in the sequence: biogas slurry > fresh feces > soil or dried feces. Results of ecological risk assessments revealed that among the seven antibiotics chlortetracycline showed the highest ecological risk. Among the ten ARGs,sulI andtetO were the most prevalent on this ecological farm. There were positive correlations between certain ARGs and the corresponding antibiotics on this ecological farm. Therefore, continuous monitoring of antibiotics and their corresponding ARGs should be conducted in the agroecosystem near the concentrated animal farming operation systems.
Collapse
|
33
|
Garder JL, Moorman TB, Soupir ML. Transport and persistence of tylosin-resistant enterococci, genes, and tylosin in soil and drainage water from fields receiving Swine manure. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1484-1493. [PMID: 25603096 DOI: 10.2134/jeq2013.09.0379] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Land application of manure from tylosin-treated swine introduces tylosin, tylosin-resistant enterococci, and erythromycin resistant rRNA methylase () genes, which confer resistance to tylosin. This study documents the persistence and transport of tylosin-resistant enterococci, genes, and tylosin in tile-drained chisel plow and no-till agricultural fields treated with liquid swine manure in alternating years. Between 70 and 100% of the enterococci in manure were resistant to tylosin and B concentrations exceeded 10 copies g manure, while the mean F concentrations exceeded 10 copies g manure (T was not detected). The mean concentration of tylosin was 73 ng g manure. Soil collected from the manure injection band closely following application contained >10 copies g soil of both B and F in 2010 and >10 copies g soil after the 2011 application compared to 3 × 10 to 3 × 10 copies g soil in the no-manure control plots. Gene abundances declined over the subsequent 2-yr period to levels similar to those in the no-manure controls. Concentrations of enterococci in tile water were low, while tylosin-resistant enterococci were rarely detected. In approximately 75% of tile water samples, B was detected, and F was detected in 30% of tile water samples, but levels of these genes were not elevated due to manure application, and no difference was found between tillage practices. These results show that tylosin usage increased the short-term occurrence of tylosin-resistant enterococci, genes, and tylosin in soils but had minimal effect on tile drainage water quality in years of average to below average precipitation.
Collapse
|
34
|
Eberhart LJ, Ochoa JN, Besser TE, Call DR. Microcin MccPDI reduces the prevalence of susceptible Escherichia coli in neonatal calves. J Appl Microbiol 2014; 117:340-6. [PMID: 24797067 DOI: 10.1111/jam.12535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 11/28/2022]
Abstract
AIMS Microcin MccPDI-producing Escherichia coli have a fitness advantage in dairy calves. For this project, we determined whether MccPDI is responsible for the in vivo fitness advantage, which is a necessary condition before MccPDI strains can be considered viable candidates for inhibiting pathogenic serovars of E. coli. METHODS AND RESULTS Neonatal calves were coinoculated with either MccPDI-producing E. coli or MccPDI-knockout mutants in conjunction with a susceptible strain. After 6 days, the MccPDI-producing E. coli-25 strain clearly dominated the E. coli-186 susceptible strain in the inoculated calves (P = 0·003). MccPDI-producing E. coli composed a higher log percentage of the total population of lactose-fermenting bacteria in the faeces (5·51 log CFU per 8·03 log CFU) compared with the knockout strain (2·6 log CFU per 8·23 log CFU) (P = 0·01), and it was more consistently recovered from the lower gastrointestinal tract at the time of necropsy (P = 0·01). CONCLUSION Our findings support the hypothesis that MccPDI is functional in vivo and it is most likely responsible for a fitness advantage in vivo. SIGNIFICANCE AND IMPACT OF THE STUDY MccPDI-producing E. coli strongly inhibit pathogenic E. coli strains in vitro. We show herein that MccPDI functions in vivo, and thus, these strains may be candidate probiotics against pathogenic strains of E. coli.
Collapse
Affiliation(s)
- L J Eberhart
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | | | | | | |
Collapse
|
35
|
Effects of Chlorophyll-Derived Efflux Pump Inhibitor Pheophorbide a and Pyropheophorbide a on Growth and Macrolide Antibiotic Resistance of Indicator and Anaerobic Swine Manure Bacteria. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/185068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural plant compounds, such as the chlorophyll a catabolites pheophorbide a (php) and pyropheophorbide a (pyp), are potentially active in the gastrointestinal tracts and manure of livestock as antimicrobial resistance-modifying agents through inhibition of bacterial efflux pumps. To investigate whether php, a known efflux pump inhibitor, and pyp influence bacterial resistance, we determined their long-term effects on the MICs of erythromycin for reference strains of clinically relevant indicator bacteria with macrolide or multidrug resistance efflux pumps. Pyp reduced the final MIC endpoint for Staphylococcus (S.) aureus and Escherichia (E.) coli by up to 1536 and 1024 μg erythromycin mL−1 or 1.4- and 1.2-fold, respectively. Estimation of growth parameters of S. aureus revealed that pyp exerted an intrinsic inhibitory effect under anaerobic conditions and was synergistically active, thereby potentiating the effect of erythromycin and partially reversing high-level erythromycin resistance. Anaerobe colony counts of total and erythromycin-resistant bacteria from stored swine manure samples tended to be lower in the presence of pyp. Tylosin, php, and pyp were not detectable by HPLC in the manure or medium. This is the first study showing that pyp affects growth and the level of sensitivity to erythromycin of S. aureus, E. coli, and anaerobic manure bacteria.
Collapse
|
36
|
Zaheer R, Cook SR, Klima CL, Stanford K, Alexander T, Topp E, Read RR, McAllister TA. Effect of subtherapeutic vs. therapeutic administration of macrolides on antimicrobial resistance in Mannheimia haemolytica and enterococci isolated from beef cattle. Front Microbiol 2013; 4:133. [PMID: 23750157 PMCID: PMC3664329 DOI: 10.3389/fmicb.2013.00133] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/06/2013] [Indexed: 11/13/2022] Open
Abstract
Macrolides are the first-line treatment against bovine respiratory disease (BRD), and are also used to treat infections in humans. The macrolide, tylosin phosphate, is often included in the diet of cattle as a preventative for liver abscesses in many regions of the world outside of Europe. This study investigated the effects of administering macrolides to beef cattle either systemically through a single subcutaneous injection (therapeutic) or continuously in-feed (subtherapeutic), on the prevalence and antimicrobial resistance of Mannheimia haemolytica and Enterococcus spp. isolated from the nasopharynx and faeces, respectively. Nasopharyngeal and faecal samples were collected weekly over 28 days from untreated beef steers and from steers injected once with tilmicosin or tulathromycin or continuously fed tylosin phosphate at dosages recommended by manufacturers. Tilmicosin and tulathromycin were effective in lowering (P < 0.05) the prevalence of M. haemolytica, whereas subtherapeutic tylosin had no effect. M. haemolytica isolated from control- and macrolide-treated animals were susceptible to macrolides as well as to other antibiotics. Major bacteria co-isolated with M. haemolytica from the nasopharynx included Pasteurella multocida, Staphylococcus spp., Acinetobacter spp., Escherichia coli and Bacillus spp. With the exception of M. haemolytica and P. multocida, erythromycin resistance was frequently found in other isolated species. Both methods of macrolide administration increased (P < 0.05) the proportion of erythromycin resistant enterococci within the population, which was comprised almost exclusively of Enterococcus hirae. Injectable macrolides impacted both respiratory and enteric microbes, whereas orally administered macrolides only influenced enteric bacteria.
Collapse
Affiliation(s)
- Rahat Zaheer
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Shaun R. Cook
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Cassidy L. Klima
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Kim Stanford
- Alberta Agriculture and Rural DevelopmentLethbridge, AB, Canada
| | - Trevor Alexander
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Edward Topp
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Ron R. Read
- Faculty of Medicine, University of CalgaryCalgary, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| |
Collapse
|
37
|
Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol 2013; 4:135. [PMID: 23734150 PMCID: PMC3661942 DOI: 10.3389/fmicb.2013.00135] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/07/2013] [Indexed: 01/26/2023] Open
Abstract
The prevalence of antimicrobial resistance (AR) in bacteria isolated from U.S. food animals has increased over the last several decades as have concerns of AR foodborne zoonotic human infections. Resistance mechanisms identified in U.S. animal isolates of Salmonella enterica included resistance to aminoglycosides (e.g., alleles of aacC, aadA, aadB, ant, aphA, and StrAB), β-lactams (e.g., blaCMY−2, TEM−1, PSE−1), chloramphenicol (e.g., floR, cmlA, cat1, cat2), folate pathway inhibitors (e.g., alleles of sul and dfr), and tetracycline [e.g., alleles of tet(A), (B), (C), (D), (G), and tetR]. In the U.S., multi-drug resistance (MDR) mechanisms in Salmonella animal isolates were associated with integrons, or mobile genetic elements (MGEs) such as IncA/C plasmids which can be transferred among bacteria. It is thought that AR Salmonella originates in food animals and is transmitted through food to humans. However, some AR Salmonella isolated from humans in the U.S. have different AR elements than those isolated from food animals, suggesting a different etiology for some AR human infections. The AR mechanisms identified in isolates from outside the U.S. are also predominantly different. For example the extended spectrum β-lactamases (ESBLs) are found in human and animal isolates globally; however, in the U.S., ESBLs thus far have only been found in human and not food animal isolates. Commensal bacteria in animals including Escherichia coli and Enterococcus spp. may be reservoirs for AR mechanisms. Many of the AR genes and MGEs found in E. coli isolated from U.S. animals are similar to those found in Salmonella. Enterococcus spp. isolated from animals frequently carry MGEs with AR genes, including resistances to aminoglycosides (e.g., alleles of aac, ant, and aph), macrolides [e.g., erm(A), erm(B), and msrC], and tetracyclines [e.g., tet(K), (L), (M), (O), (S)]. Continuing investigations are required to help understand and mitigate the impact of AR bacteria on human and animal health.
Collapse
Affiliation(s)
- Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture Athens, GA, USA
| | | |
Collapse
|
38
|
Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of U.S. feedlot cattle fed copper-supplemented diets. Appl Environ Microbiol 2013; 79:4369-75. [PMID: 23666328 DOI: 10.1128/aem.00503-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Copper, an essential micronutrient, is supplemented in the diet at elevated levels to reduce morbidity and mortality and to promote growth in feedlot cattle. Gut bacteria exposed to copper can acquire resistance, which among enterococci is conferred by a transferable copper resistance gene (tcrB) borne on a plasmid. The present study was undertaken to investigate whether the feeding of copper at levels sufficient to promote growth increases the prevalence of the tcrB gene among the fecal enterococci of feedlot cattle. The study was performed with 261 crossbred yearling heifers housed in 24 pens, with pens assigned randomly to a 2×2 factorial arrangement of treatments consisting of dietary copper and a commercial linseed meal-based energy protein supplement. A total of 22 isolates, each identified as Enterococcus faecium, were positive for tcrB with an overall prevalence of 3.8% (22/576). The prevalence was higher among the cattle fed diets supplemented with copper (6.9%) compared to normal copper levels (0.7%). The tcrB-positive isolates always contained both erm(B) and tet(M) genes. Median copper MICs for tcrB-positive and tcrB-negative enterococci were 22 and 4 mM, respectively. The transferability of the tcrB gene was demonstrated via a filter-mating assay. Multilocus variable number tandem repeat analysis revealed a genetically diverse population of enterococci. The finding of a strong association between the copper resistance gene and other antibiotic (tetracycline and tylosin) resistance determinants is significant because enterococci remain potential pathogens and have the propensity to transfer resistance genes to other bacteria in the gut.
Collapse
|
39
|
Holman DB, Chénier MR. Impact of subtherapeutic administration of tylosin and chlortetracycline on antimicrobial resistance in farrow-to-finish swine. FEMS Microbiol Ecol 2013; 85:1-13. [PMID: 23397987 DOI: 10.1111/1574-6941.12093] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 02/02/2023] Open
Abstract
The use of antimicrobial agents in swine production at subtherapeutic concentrations for the purpose of growth promotion remains controversial due to the potential impact on public health. Beginning at weaning (3 weeks), pigs received either nonmedicated feed or feed supplemented with subtherapeutic levels of either tylosin (11-44 ppm) or chlortetracycline (5.5 ppm). After only 3 weeks, pigs given feed supplemented with tylosin had significantly higher levels of tylosin-resistant anaerobes (P < 0.0001) compared with the control group, increasing from 11.8% to 89.6%, a level which was stable for the duration of the study, even after a 2-week withdrawal prior to slaughter. Tylosin-fed pigs had a higher incidence of detection for erm(A), erm(F), and erm(G), as well as significantly (P < 0.001) higher concentrations of erm(B) in their feces. The continuous administration of chlortetracycline-supplemented feed, however, had no significant effect on the population of chlortetracycline-resistant anaerobes in comparison with nontreated pigs (P > 0.05). The resistance genes tet(O), tet(Q), and erm(B) were detected in all pigs at each sampling time, while tet(G), tet(L), and tet(M) were also frequently detected. Neither chlortetracycline nor tylosin increased the growth rate of pigs.
Collapse
Affiliation(s)
- Devin B Holman
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | |
Collapse
|
40
|
Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 2013; 110:3435-40. [PMID: 23401528 DOI: 10.1073/pnas.1222743110] [Citation(s) in RCA: 1539] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants posing a potential worldwide human health risk. Intensive animal husbandry is believed to be a major contributor to the increased environmental burden of ARGs. Despite the volume of antibiotics used in China, little information is available regarding the corresponding ARGs associated with animal farms. We assessed type and concentrations of ARGs at three stages of manure processing to land disposal at three large-scale (10,000 animals per year) commercial swine farms in China. In-feed or therapeutic antibiotics used on these farms include all major classes of antibiotics except vancomycins. High-capacity quantitative PCR arrays detected 149 unique resistance genes among all of the farm samples, the top 63 ARGs being enriched 192-fold (median) up to 28,000-fold (maximum) compared with their respective antibiotic-free manure or soil controls. Antibiotics and heavy metals used as feed supplements were elevated in the manures, suggesting the potential for coselection of resistance traits. The potential for horizontal transfer of ARGs because of transposon-specific ARGs is implicated by the enrichment of transposases--the top six alleles being enriched 189-fold (median) up to 90,000-fold in manure--as well as the high correlation (r(2) = 0.96) between ARG and transposase abundance. In addition, abundance of ARGs correlated directly with antibiotic and metal concentrations, indicating their importance in selection of resistance genes. Diverse, abundant, and potentially mobile ARGs in farm samples suggest that unmonitored use of antibiotics and metals is causing the emergence and release of ARGs to the environment.
Collapse
|
41
|
Pakpour S, Jabaji S, Chénier MR. Frequency of antibiotic resistance in a swine facility 2.5 years after a ban on antibiotics. MICROBIAL ECOLOGY 2012; 63:41-50. [PMID: 21997543 DOI: 10.1007/s00248-011-9954-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
The addition of antibiotics to livestock feed has contributed to the selection of antibiotic-resistant bacteria in concentrated animal feeding operations and agricultural ecosystems. The objective of this study was to assess the occurrence of resistance to chlortetracycline and tylosin among bacterial populations at the Swine Complex of McGill University (Province of Quebec, Canada) in the absence of antibiotic administration to pigs for 2.5 years prior to the beginning of this study. Feces from ten pigs born from the same sow and provided feed without antibiotic were sampled during suckling (n = 6 for enumerations, n = 10 for PCR), weanling (n = 10 both for PCR and enumerations), growing (n = 10 both for PCR and enumerations), and finishing (n = 10 both for PCR and enumerations). The percentage of chlortetracycline-resistant anaerobic bacterial populations (Tet(R)) was higher than that of tylosin-resistant anaerobic bacterial populations (Tyl(R)) at weanling, growing, and finishing. Prior to the transportation of animals to the slaughterhouse, resistant populations varied between 6.5 and 9.4 Log colony-forming units g humid feces(-1). In all pigs, tet(L), tet(O), and erm(B) were detected at suckling and weanling, whereas only tet(O) was detected at growing and finishing. The abundance of tet(O) was similar between males and females at weanling and growing and reached 5.1 × 10(5) and 5.6 × 10(5) copies of tet(O)/ng of total DNA in males and females, respectively, at finishing. Results showed high abundances and proportions of Tet(R) and Tyl(R) anaerobic bacterial populations, as well as the occurrence of tet and erm resistance genes within these populations despite the absence of antibiotic administration to pigs at this swine production facility since January 2007, i.e., 2.5 years prior to the beginning of this study. This work showed that the occurrence of bacterial resistance to chlortetracycline and tylosin is high at the Swine Complex of McGill University.
Collapse
Affiliation(s)
- Sepideh Pakpour
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | | | | |
Collapse
|
42
|
Kumar Oli A, Sungar R, Shivshetty N, Hosamani R, Chandrakanth Revansiddappa K. A Study of Scanning Electron Microscope of Vancomycin Resistant <i>Enterococcus faecalis</i> from Clinical Isolates. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.22012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Abstract
Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the "precautionary principle." Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans-directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes.
Collapse
Affiliation(s)
- Bonnie M. Marshall
- Alliance for the Prudent Use of Antibiotics, Boston, Massachusetts
- Department of Molecular Biology and Microbiology
| | - Stuart B. Levy
- Alliance for the Prudent Use of Antibiotics, Boston, Massachusetts
- Department of Molecular Biology and Microbiology
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
44
|
Abstract
Antimicrobials are valuable therapeutics whose efficacy is seriously compromised by the emergence and spread of antimicrobial resistance. The provision of antibiotics to food animals encompasses a wide variety of nontherapeutic purposes that include growth promotion. The concern over resistance emergence and spread to people by nontherapeutic use of antimicrobials has led to conflicted practices and opinions. Considerable evidence supported the removal of nontherapeutic antimicrobials (NTAs) in Europe, based on the "precautionary principle." Still, concrete scientific evidence of the favorable versus unfavorable consequences of NTAs is not clear to all stakeholders. Substantial data show elevated antibiotic resistance in bacteria associated with animals fed NTAs and their food products. This resistance spreads to other animals and humans-directly by contact and indirectly via the food chain, water, air, and manured and sludge-fertilized soils. Modern genetic techniques are making advances in deciphering the ecological impact of NTAs, but modeling efforts are thwarted by deficits in key knowledge of microbial and antibiotic loads at each stage of the transmission chain. Still, the substantial and expanding volume of evidence reporting animal-to-human spread of resistant bacteria, including that arising from use of NTAs, supports eliminating NTA use in order to reduce the growing environmental load of resistance genes.
Collapse
|
45
|
Selection of fecal enterococci exhibiting tcrB-mediated copper resistance in pigs fed diets supplemented with copper. Appl Environ Microbiol 2011; 77:5597-603. [PMID: 21705534 DOI: 10.1128/aem.00364-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper, as copper sulfate, is increasingly used as an alternative to in-feed antibiotics for growth promotion in weaned piglets. Acquired copper resistance, conferred by a plasmid-borne, transferable copper resistance (tcrB) gene, has been reported in Enterococcus faecium and E. faecalis. A longitudinal field study was undertaken to determine the relationship between copper supplementation and the prevalence of tcrB-positive enterococci in piglets. The study was done with weaned piglets, housed in 10 pens with 6 piglets per pen, fed diets supplemented with a normal (16.5 ppm; control) or an elevated (125 ppm) level of copper. Fecal samples were randomly collected from three piglets per pen on days 0, 14, 28, and 42 and plated on M-Enterococcus agar, and three enterococcal isolates were obtained from each sample. The overall prevalence of tcrB-positive enterococci was 21.1% (38/180) in piglets fed elevated copper and 2.8% (5/180) in the control. Among the 43 tcrB-positive isolates, 35 were E. faecium and 8 were E. faecalis. The mean MICs of copper for tcrB-negative and tcrB-positive enterococci were 6.2 and 22.2 mM, respectively. The restriction digestion of the genomic DNA of E. faecium or E. faecalis with S1 nuclease yielded a band of ∼194-kbp size to which both tcrB and the erm(B) gene probes hybridized. A conjugation assay demonstrated cotransfer of tcrB and erm(B) genes between E. faecium and E. faecalis strains. The higher prevalence of tcrB-positive enterococci in piglets fed elevated copper compared to that in piglets fed normal copper suggests that supplementation of copper in swine diets selected for resistance.
Collapse
|
46
|
Cassenego APV, d'Azevedo PA, Ribeiro AML, Frazzon J, Van Der Sand ST, Frazzon APG. Species distribution and antimicrobial susceptibility of enterococci isolated from broilers infected experimentally with Eimeria spp and fed with diets containing different supplements. Braz J Microbiol 2011; 42:480-8. [PMID: 24031659 PMCID: PMC3769821 DOI: 10.1590/s1517-838220110002000012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/30/2010] [Accepted: 01/13/2011] [Indexed: 01/07/2023] Open
Abstract
Resistant bacteria in animal can be spread to environment and to humans. Poultry feed and infections caused by Eimeria spp. are important factors in determining the intestinal microbial communities. The aim of this study was to verify the prevalence of species and antimicrobial susceptibility of Enterococcus isolated from broilers fed with different supplements and infected experimentally with Eimeria spp. Broilers were divided in eight groups, fed with diets supplemented with a combination of antimicrobial, ionophore-coccidiostatics, probiotic, essential oil. At 14 days old all birds, except the control, received a solution containing oocysts of Eimeria spp. Samples of cloacal swabs from broilers were collected. A total of 240 Enterococcus sp. strains were isolated, confirmed genus by PCR, classified as species, tested for antimicrobial susceptibility and screened by PCR for the presence of tet(L), tet(M) and erm(B) genes. The overall distribution of species isolated from fecal samples was E. faecalis (40%), followed by E. casseliflavus/E. gallinarum (10.8%), E. mundtii (10.8%), E. faecium (10.8%), E. columbae (5.8%) and E. gallinarum (4.2%). Changes in the composition or frequency of Enterococcus species were observed in all dietary supplementation. Antimicrobial susceptibility tests showed resistance phenotypes a range of antibiotics, especially used in humans such as, streptomycin, penicillin, rifampicin and vancomycin. There was no correlation between different supplementation for broilers and antimicrobial resistance and the presence of tet(M), tet(L) and erm(B) genes. Dietary supplementation had effect on the Enterococcus sp. colonization, but did not have significant effect on the phenotype and genotype of antimicrobial resistance in enterococci.
Collapse
Affiliation(s)
- A P V Cassenego
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul , Porto Alegre, RS , Brasil
| | | | | | | | | | | |
Collapse
|
47
|
Holt J, van Heugten E, Graves A, See M, Morrow W. Growth performance and antibiotic tolerance patterns of nursery and finishing pigs fed growth-promoting levels of antibiotics. Livest Sci 2011. [DOI: 10.1016/j.livsci.2010.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Kalmokoff M, Waddington LM, Thomas M, Liang KL, Ma C, Topp E, Dandurand UD, Letellier A, Matias F, Brooks SPJ. Continuous feeding of antimicrobial growth promoters to commercial swine during the growing/finishing phase does not modify faecal community erythromycin resistance or community structure. J Appl Microbiol 2011; 110:1414-25. [PMID: 21395944 DOI: 10.1111/j.1365-2672.2011.04992.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the effect of continuous feeding of antimicrobial growth promoters (tylosin or virginiamycin) on the swine faecal community. METHODS AND RESULTS The study consisted of two separate on-farm feeding trials. Swine were fed rations containing tylosin (44 or 88 mg kg(-1) of feed) or virginiamycin (11 or 22 mg kg(-1) of feed) continuously over the growing/finishing phases. The temporal impact of continuous antimicrobial feeding on the faecal community was assessed and compared to nondosed control animals through anaerobic cultivation, the analysis of community 16S rRNA gene libraries and faecal volatile fatty acid content. Feeding either antimicrobial had no detectable effect on the faecal community. CONCLUSIONS Erythromycin methylase genes encoding resistance to the macrolide-lincosamide-streptogramin B (MLS(B) ) antimicrobials are present at a high level within the faecal community of intensively raised swine. Continuous antimicrobial feeding over the entire growing/finishing phase had no effect on community erm-methylase gene copy numbers or faecal community structure. SIGNIFICANCE AND IMPACT OF THE STUDY Antimicrobial growth promoters are believed to function by altering gut bacterial communities. However, widespread MLS(B) resistance within the faecal community of intensively raised swine likely negates any potential effects that these antimicrobials might have on altering the faecal community. These findings suggest that if AGP-mediated alterations to gut communities are an important mechanism for growth promotion, it is unlikely that these would be associated with the colonic community.
Collapse
Affiliation(s)
- M Kalmokoff
- Atlantic Food and Horticulture Research Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Frye JG, Lindsey RL, Meinersmann RJ, Berrang ME, Jackson CR, Englen MD, Turpin JB, Fedorka-Cray PJ. Related antimicrobial resistance genes detected in different bacterial species co-isolated from swine fecal samples. Foodborne Pathog Dis 2011; 8:663-79. [PMID: 21385089 DOI: 10.1089/fpd.2010.0695] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
A potential factor leading to the spread of antimicrobial resistance (AR) in bacteria is the horizontal transfer of resistance genes between bacteria in animals or their environment. To investigate this, swine fecal samples were collected on-farm and cultured for Escherichia coli, Salmonella enterica, Campylobacter spp., and Enterococcus spp. which are all commonly found in swine. Forty-nine of the samples from which all four bacteria were recovered were selected yielding a total of 196 isolates for analysis. Isolates were tested for antimicrobial susceptibility followed by hybridization to a DNA microarray designed to detect 775 AR-related genes. E. coli and Salmonella isolated from the same fecal sample had the most AR genes in common among the four bacteria. Genes detected encoded resistance to aminoglycosides (aac(3), aadA1, aadB, and strAB), β-lactams (ampC, ampR, and bla(TEM)), chloramphenicols (cat and floR), sulfanillic acid (sul1/sulI), tetracyclines (tet(A), tet(D), tet(C), tet(G), and tet(R)), and trimethoprim (dfrA1 and dfh). Campylobacter coli and Enterococcus isolated from the same sample frequently had tet(O) and aphA-3 genes detected in common. Almost half (47%) of E. coli and Salmonella isolated from the same fecal sample shared resistance genes at a significant level (χ², p < 0.0000001). These data suggest that there may have been horizontal exchange of AR genes between these bacteria or there may be a common source of AR genes in the swine environment for E. coli and Salmonella.
Collapse
Affiliation(s)
- Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Richard B. Russell Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Amachawadi RG, Shelton NW, Jacob ME, Shi X, Narayanan SK, Zurek L, Dritz SS, Nelssen JL, Tokach MD, Nagaraja T. Occurrence oftcrB, a Transferable Copper Resistance Gene, in Fecal Enterococci of Swine. Foodborne Pathog Dis 2010; 7:1089-97. [DOI: 10.1089/fpd.2010.0540] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Nick W. Shelton
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas
| | - Megan E. Jacob
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas
| | - Sanjeev K. Narayanan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas
| | - Ludek Zurek
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas
| | - Steve S. Dritz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas
| | - Jim L. Nelssen
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas
| | - Mike D. Tokach
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, Kansas
| | - T.G. Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|