1
|
Zheng M, Wen L, He C, Chen X, Si L, Li H, Liang Y, Zheng W, Guo F. Sequencing-guided re-estimation and promotion of cultivability for environmental bacteria. Nat Commun 2024; 15:9051. [PMID: 39426960 PMCID: PMC11490580 DOI: 10.1038/s41467-024-53446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
The low cultivability of environmental bacteria has been widely acknowledged, but most previous estimates focused on the proportion of cultivable cells rather than cultivable taxa. Here, we estimate the proportions of cultivable cells and cultivable taxa for two sample types (soil and activated sludge) using cell counting, 16S rRNA gene amplicon sequencing, metagenomics, and cultivation on agar plates under various conditions. We find that the proportion of cultivable taxa exceeds that of cultivable cells at the sample level. A large proportion of cultivable taxa are taxonomically novel but tend to be present at very low abundance on agar plates, forming microcolonies, and some of them cease to grow during subculture. Compared with uncultivable taxa (under the conditions used in our study), cultivatable taxa tend to display higher metabolic activity as inferred by measuring rRNA copies per cell. Finally, we use the generated taxonomic and genomic information as a guide to isolate a strain representing a yet-uncultured class within the Bacteroidota and to enhance the cultivable diversity of Burkholderiales from activated sludge.
Collapse
Affiliation(s)
- Minjia Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Linran Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Cailing He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xinlan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Laiting Si
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yiting Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Feng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- The University Key Laboratory of Resource Microbiology in Fujian Province, Xiamen University, Xiamen, China.
- The Key Laboratory of Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen, China.
| |
Collapse
|
2
|
Li M, Bae S. Exploring the effects of polyethylene and polyester microplastics on biofilm formation, membrane Fouling, and microbial communities in Modified Ludzack-Ettinger-Reciprocation membrane bioreactors. BIORESOURCE TECHNOLOGY 2024; 414:131636. [PMID: 39414168 DOI: 10.1016/j.biortech.2024.131636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Microplastics (MPs) inevitably enter wastewater treatment plants (WWTPs), yet their impacts remain poorly understood. This study investigates the effects of MPs on system performance and membrane fouling in a Modified Ludzack-Ettinger (MLE)-Reciprocation Membrane Bioreactor (rMBR), an energy-efficient alternative to conventional membrane bioreactors. Additionally, the study examines changes in microbial community induced by different types and shapes of MPs-polyethylene (PE) pellets and polyester (PES) fibers- as well as biofilm formation on MPs, using next-generation sequencing. Results revealed that transmembrane pressure (TMP) increased 2-3 times faster in the presence of PE pellets, while TMP remained stable during the PES stage, implying that MP type and shape could influence biofouling behaviors. Furthermore, enhanced nitrate removal was observed in the aerobic tank due to denitrifying biofilm formation on MPs. However, PES MPs reduced nitrate removal efficiency from 99.6 ± 0.3 % to 90.9 ± 7.9 % and decreased the relative abundance of denitrifying bacteria. Numerous taxa showed affinity to PE pellets, including some pathogens, e.g., Norcadia and Mycobacterium. Notably, an uncultured phylum Candidatus Saccharibacteria dominated in membrane biofilm and MPs, reaching up to 37 % relative abundance. This study is the first to explore how different types and shapes of MPs affect membrane bioreactor systems, particularly with respect to microbial community structure and biofilm formation. The findings offer new insights into the influence of MPs on wastewater treatment processes and highlight the significance of the uncultured phylumCandidatus Saccharibacteriain membrane fouling.
Collapse
Affiliation(s)
- Mingcan Li
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Sungwoo Bae
- Department of Environmental System Engineering, Korea University, South Korea.
| |
Collapse
|
3
|
Demin K, Prazdnova E, Kulikov M, Mazanko M, Gorovtsov A. Alternative agar substitutes for culturing unculturable microorganisms. Arch Microbiol 2024; 206:405. [PMID: 39287688 DOI: 10.1007/s00203-024-04139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Gelling agents are necessary for the preparation of solid or semisolid media. For more than a hundred years, agar has been the primary gelling agent. However, a substantial body of evidence has accumulated suggesting that agar-based media inhibit the growth of many microbial species through the generation of reactive oxygen species (ROS), toxic organic contaminants, or competitive exclusion effects. In this review we have compiled the largest amount of data to date on the use of various gelling agents in microbial isolation and cultivation, with the particular emphasis on rare microbe isolation cases. Our analysis suggested that microbial-derived compounds (especially gellan gum), as gelling agents, are superior to agar in their ability to isolate and maintain either new or known microbial species. We analyzed the reasons behind this success and concluded that there are phylum-level differences in microbial responses to the changes in conditions from natural to the laboratory conditions (with respect to gelling agent usage). Consequently, we hypothesize that at least partial success of microbial-derived gelling agents lies in the recreation of the natural microenvironment conditions (which we address as the "familiarity of conditions" hypothesis). Finally, we present a list of recommendations and suggestions for further microbial ecology studies.
Collapse
Affiliation(s)
- K Demin
- Southern Federal University, 344090, Rostov-On-Don, Russia.
| | - E Prazdnova
- Southern Federal University, 344090, Rostov-On-Don, Russia
| | - M Kulikov
- Southern Federal University, 344090, Rostov-On-Don, Russia
| | - M Mazanko
- Southern Federal University, 344090, Rostov-On-Don, Russia
| | - A Gorovtsov
- Southern Federal University, 344090, Rostov-On-Don, Russia
| |
Collapse
|
4
|
Rincón-Tomás B, Lanzén A, Sánchez P, Estupiñán M, Sanz-Sáez I, Bilbao ME, Rojo D, Mendibil I, Pérez-Cruz C, Ferri M, Capo E, Abad-Recio IL, Amouroux D, Bertilsson S, Sánchez O, Acinas SG, Alonso-Sáez L. Revisiting the mercury cycle in marine sediments: A potential multifaceted role for Desulfobacterota. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133120. [PMID: 38101011 DOI: 10.1016/j.jhazmat.2023.133120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Marine sediments impacted by urban and industrial pollutants are typically exposed to reducing conditions and represent major reservoirs of toxic mercury species. Mercury methylation mediated by anaerobic microorganisms is favored under such conditions, yet little is known about potential microbial mechanisms for mercury detoxification. We used culture-independent (metagenomics, metabarcoding) and culture-dependent approaches in anoxic marine sediments to identify microbial indicators of mercury pollution and analyze the distribution of genes involved in mercury reduction (merA) and demethylation (merB). While none of the isolates featured merB genes, 52 isolates, predominantly affiliated with Gammaproteobacteria, were merA positive. In contrast, merA genes detected in metagenomes were assigned to different phyla, including Desulfobacterota, Actinomycetota, Gemmatimonadota, Nitrospirota, and Pseudomonadota. This indicates a widespread capacity for mercury reduction in anoxic sediment microbiomes. Notably, merA genes were predominately identified in Desulfobacterota, a phylum previously associated only with mercury methylation. Marker genes involved in the latter process (hgcAB) were also mainly assigned to Desulfobacterota, implying a potential central and multifaceted role of this phylum in the mercury cycle. Network analysis revealed that Desulfobacterota were associated with anaerobic fermenters, methanogens and sulfur-oxidizers, indicating potential interactions between key players of the carbon, sulfur and mercury cycling in anoxic marine sediments.
Collapse
Affiliation(s)
- Blanca Rincón-Tomás
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; Grupo Inv. Geología Aplicada a Recursos Marinos y Ambientes Extremos, Instituto Geológico y Minero de España (IGME-CSIC), 28003 Madrid, Spain.
| | - Anders Lanzén
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Pablo Sánchez
- Dep. Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Mónica Estupiñán
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Isabel Sanz-Sáez
- Dep. Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - M Elisabete Bilbao
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Diana Rojo
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Iñaki Mendibil
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Carla Pérez-Cruz
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Marta Ferri
- Dep. Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Eric Capo
- Dep. Ecology and Environmental Science, Umeå University, 907 36 Umeå, Sweden
| | - Ion L Abad-Recio
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux (IPREM), Pau, France
| | - Stefan Bertilsson
- Dep. Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Olga Sánchez
- Dep. Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona (UAB), 08192 Bellaterra, Spain
| | - Silvia G Acinas
- Dep. Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain.
| |
Collapse
|
5
|
Jansson JK, McClure R, Egbert RG. Soil microbiome engineering for sustainability in a changing environment. Nat Biotechnol 2023; 41:1716-1728. [PMID: 37903921 DOI: 10.1038/s41587-023-01932-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/01/2023] [Indexed: 11/01/2023]
Abstract
Recent advances in microbial ecology and synthetic biology have the potential to mitigate damage caused by anthropogenic activities that are deleteriously impacting Earth's soil ecosystems. Here, we discuss challenges and opportunities for harnessing natural and synthetic soil microbial communities, focusing on plant growth promotion under different scenarios. We explore current needs for microbial solutions in soil ecosystems, how these solutions are being developed and applied, and the potential for new biotechnology breakthroughs to tailor and target microbial products for specific applications. We highlight several scientific and technological advances in soil microbiome engineering, including characterization of microbes that impact soil ecosystems, directing how microbes assemble to interact in soil environments, and the developing suite of gene-engineering approaches. This Review underscores the need for an interdisciplinary approach to understand the composition, dynamics and deployment of beneficial soil microbiomes to drive efforts to mitigate or reverse environmental damage by restoring and protecting healthy soil ecosystems.
Collapse
Affiliation(s)
- Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert G Egbert
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
6
|
Lodhi AF, Zhang Y, Adil M, Deng Y. Design and application of a novel culturing chip (cChip) for culturing the uncultured aquatic microorganisms. Arch Microbiol 2023; 205:285. [PMID: 37442830 DOI: 10.1007/s00203-023-03613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Culturing uncultured microorganisms is an important aspect of microbiology. Once cultured, these microorganisms can be a source of useful antibiotics, enzymes etc. In this study, we have designed a novel culturing chip (cChip) to facilitate the growth of uncultured aquatic bacterial community by concentrating the samples. cChip was optimized for microbial growth using known bacteria in the laboratory as a pre-experiment. Then microorganisms from a freshwater lake were concentrated and inoculated, before putting the inoculated cChip in a simulated lake environment and further sub-culturing on laboratory media. High-throughput sequencing and traditional culturing were also performed for comparison. These three methods were able to detect 265 genera of microorganisms in the sample, of which 78.87% were detected by high-throughput sequencing, 30.94% by cChip, while only 6.42% were obtained by traditional culture. Moreover, all microorganisms obtained by traditional culture were also cultured using the cChip. A total of 45 new strains were isolated from the cChip, and their 16S rRNA gene sequences were 91.35% to 98.7% similar to their closest relatives according to NCBI GenBank database. We conclude that the design and simple operation of cChip can improve the culture efficiency of traditional culture by almost 5 times. To the best of our knowledge, this is the first report comparing a novel culturing method with high-throughput sequencing data and traditional culturing of the same samples.
Collapse
Affiliation(s)
- Adil Farooq Lodhi
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Ying Zhang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Maria Adil
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
7
|
Seo EY, Jung D, Epstein SS, Zhang W, Owen JS, Baba H, Yamamoto A, Harada M, Nakashimada Y, Kato S, Aoi Y, He S. A targeted liquid cultivation method for previously uncultured non-colony forming microbes. Front Microbiol 2023; 14:1194466. [PMID: 37362942 PMCID: PMC10288195 DOI: 10.3389/fmicb.2023.1194466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
A large number of microbes are not able to form colonies using agar-plating methods, which is one of the reasons that cultivation based on solid media leaves the majority of microbial diversity in the environment inaccessible. We developed a new Non-Colony-Forming Liquid Cultivation method (NCFLC) that can selectively isolate non-colony-forming microbes that exclusively grow in liquid culture. The NCFLC method involves physically separating cells using dilution-to-extinction (DTE) cultivation and then selecting those that could not grow on a solid medium. The NCFLC was applied to marine samples from a coastal intertidal zone and soil samples from a forest area, and the results were compared with those from the standard direct plating method (SDP). The NCFLC yielded fastidious bacteria from marine samples such as Acidobacteriota, Epsilonproteobacteria, Oligoflexia, and Verrucomicrobiota. Furthermore, 62% of the isolated strains were potential new species, whereas only 10% were novel species from SDP. From soil samples, isolates belonging to Acidobacteriota and Armatimonadota (which are known as rare species among identified isolates) were exclusively isolated by NCFLC. Colony formation capabilities of isolates cultivated by NCFLC were tested using solid agar plates, among which approximately one-third of the isolates were non-colony-forming, approximately half-formed micro-colonies, and only a minority could form ordinary size colonies. This indicates that the majority of the strains cultivated by NCFLC were previously uncultured microbial species unavailable using the SDP method. The NCFCL method described here can serve as a new approach to accessing the hidden microbial dark matter.
Collapse
Affiliation(s)
- Eun-Young Seo
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
| | - Dawoon Jung
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
| | - Slava S. Epstein
- Department of Biology, Northeastern University, Boston, MA, United States
| | - Weiyan Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jeffrey S. Owen
- Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, Republic of Korea
| | - Hiroaki Baba
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Akina Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Mifuyu Harada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Setsu Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Yoshiteru Aoi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashihiroshima, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
| |
Collapse
|
8
|
Kapinusova G, Lopez Marin MA, Uhlik O. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Front Microbiol 2023; 14:1089630. [PMID: 36960281 PMCID: PMC10027941 DOI: 10.3389/fmicb.2023.1089630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
In terms of the number and diversity of living units, the prokaryotic empire is the most represented form of life on Earth, and yet it is still to a significant degree shrouded in darkness. This microbial "dark matter" hides a great deal of potential in terms of phylogenetically or metabolically diverse microorganisms, and thus it is important to acquire them in pure culture. However, do we know what microorganisms really need for their growth, and what the obstacles are to the cultivation of previously unidentified taxa? Here we review common and sometimes unexpected requirements of environmental microorganisms, especially soil-harbored bacteria, needed for their replication and cultivation. These requirements include resuscitation stimuli, physical and chemical factors aiding cultivation, growth factors, and co-cultivation in a laboratory and natural microbial neighborhood.
Collapse
Affiliation(s)
| | | | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
9
|
Cross Cultivation on Homologous/Heterologous Plant-Based Culture Media Empowers Host-Specific and Real Time In Vitro Signature of Plant Microbiota. DIVERSITY 2022. [DOI: 10.3390/d15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alliances of microbiota with plants are masked by the inability of in vitro cultivation of their bulk. Pure cultures piled in international centers originated from dissimilar environments/hosts. Reporting that plant root/leaf-based culture media support the organ-specific growth of microbiota, it was of interest to further investigate if a plant-based medium prepared from homologous (maize) supports specific/adapted microbiota compared to another prepared from heterologous plants (sunflower). The culture-independent community of maize phyllosphere was compared to communities cross-cultivated on plant broth-based media: CFU counts and taxa prevalence (PCR-DGGE; Illumina MiSeq amplicon sequencing). Similar to total maize phyllospheric microbiota, culture-dependent communities were overwhelmed by Proteobacteria (>94.3–98.3%); followed by Firmicutes (>1.3–3.7%), Bacteroidetes (>0.01–1.58%) and Actinobacteria (>0.06–0.34%). Differential in vitro growth on homologous versus heterologous plant-media enriched/restricted various taxa. In contrast, homologous cultivation over represented members of Proteobacteria (ca. > 98.0%), mainly Pseudomonadaceae and Moraxellaceae; heterologous cultivation and R2A enriched Firmicutes (ca. > 3.0%). The present strategy simulates/fingerprints the chemical composition of host plants to expand the culturomics of plant microbiota, advance real-time in vitro cultivation and lab-keeping of compatible plant microbiota, and identify preferential pairing of plant-microbe partners toward future synthetic community (SynComs) research and use in agriculture.
Collapse
|
10
|
Perrone MR, Romano S, De Maria G, Tundo P, Bruno AR, Tagliaferro L, Maffia M, Fragola M. Compositional Data Analysis of 16S rRNA Gene Sequencing Results from Hospital Airborne Microbiome Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10107. [PMID: 36011742 PMCID: PMC9408509 DOI: 10.3390/ijerph191610107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The compositional analysis of 16S rRNA gene sequencing datasets is applied to characterize the bacterial structure of airborne samples collected in different locations of a hospital infection disease department hosting COVID-19 patients, as well as to investigate the relationships among bacterial taxa at the genus and species level. The exploration of the centered log-ratio transformed data by the principal component analysis via the singular value decomposition has shown that the collected samples segregated with an observable separation depending on the monitoring location. More specifically, two main sample clusters were identified with regards to bacterial genera (species), consisting of samples mostly collected in rooms with and without COVID-19 patients, respectively. Human pathogenic genera (species) associated with nosocomial infections were mostly found in samples from areas hosting patients, while non-pathogenic genera (species) mainly isolated from soil were detected in the other samples. Propionibacterium acnes, Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and jeikeium were the main pathogenic species detected in COVID-19 patients' rooms. Samples from these locations were on average characterized by smaller richness/evenness and diversity than the other ones, both at the genus and species level. Finally, the ρ metrics revealed that pairwise positive associations occurred either between pathogenic or non-pathogenic taxa.
Collapse
Affiliation(s)
- Maria Rita Perrone
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Salvatore Romano
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Giuseppe De Maria
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Paolo Tundo
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Anna Rita Bruno
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Luigi Tagliaferro
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Mattia Fragola
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
11
|
Nguyen TLA, Dang HTC, Dat TTH, Brandt BW, Röling WFM, Brouwer A, van Spanning RJM. Correlating biodegradation kinetics of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the dynamics of microbial communities originating from soil in Vietnam contaminated with herbicides and dioxins. Front Microbiol 2022; 13:923432. [PMID: 36033897 PMCID: PMC9404497 DOI: 10.3389/fmicb.2022.923432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
We studied the succession of bacterial communities during the biodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). The communities originated from a mesocosm with soil from Bien Hoa airbase in Vietnam heavily contaminated with herbicides and dioxins. They were grown in defined media with different carbon and Gibbs energy sources and 2,3,7,8-TCDD. Cultures with dimethyl sulfoxide (DMSO) as the sole carbon and energy source degraded about 95% of 2,3,7,8-TCDD within 60 days of cultivation. Those with an additional 1 mM of vanillin did that in roughly 90 days. Further 16S rRNA gene amplicon sequencing showed that the increase in relative abundance of members belonging to the genera Bordetella, Sphingomonas, Proteiniphilum, and Rhizobium correlated to increased biodegradation of 2,3,7,8-TCDD in these cultures. A higher concentration of vanillin slowed down the biodegradation rate. Addition of alternative carbon and Gibbs energy sources, such as amino acids, sodium lactate and sodium acetate, even stopped the degradation of 2,3,7,8-TCDD completely. Bacteria from the genera Bordetella, Achromobacter, Sphingomonas and Pseudomonas dominated most of the cultures, but the microbial profiles also significantly differed between cultures as judged by non-metric multidimensional scaling (NMDS) analyses. Our study indicates that 2,3,7,8-TCDD degradation may be stimulated by bacterial communities preadapted to a certain degree of starvation with respect to the carbon and energy source. It also reveals the succession and abundance of defined bacterial genera in the degradation process.
Collapse
Affiliation(s)
- Thi Lan Anh Nguyen
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- *Correspondence: Thi Lan Anh Nguyen,
| | - Ha Thi Cam Dang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Thua Thien Hue, Vietnam
| | - Bernd W. Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wilfred F. M. Röling
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Amsterdam, Netherlands
- Department of Ecological Science, Vrije Universiteit, Amsterdam, Netherlands
| | | |
Collapse
|
12
|
Nimonkar YS, Godambe T, Kulkarni A, Patel T, Paul D, Paul D, Rale V, Prakash O. Oligotrophy vs. copiotrophy in an alkaline and saline habitat of Lonar Lake. Front Microbiol 2022; 13:939984. [PMID: 35992701 PMCID: PMC9386271 DOI: 10.3389/fmicb.2022.939984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
We reported our comparative observations on oligotrophs vs. copiotrophs from a hyper-alkaline and hypersaline habitat, Lonar Lake, situated in the Buldhana district of Maharashtra, India. Cell numbers of oligotrophic and copiotrophic microbes from the sediment were enumerated by the three-tube most probable number (MPN) method using an array of nutrient-rich and oligotrophic (≈10–20 mg carbon L−1) media offering simulated natural conditions of pH and salinity. A total of 50 strains from 15 different genera and 30 different species were isolated from the highest positive dilutions of MPN to identify the taxa of oligotrophs and copiotrophic microorganisms dominating in Lonar Lake. We did not get any true oligotrophs due to their adaptation to higher carbon levels during the isolation procedure. On the contrary, several true copiotrophs, which could not adapt and survive on a low-carbon medium, were isolated. It is also observed that changes in medium composition and nutrient level altered the selection of organisms from the same sample. Our data indicate that copiotrophic microorganisms dominate the eutrophic Lonar Lake, which is also supported by the past metagenomics studies from the same site. We also reported that quick depletion of carbon from oligotrophic medium worked as a limiting factor, inducing cell death after 2–3 generations and preventing the development of visible colonies on plates and sufficient optical density in liquid medium. Therefore, a long-term supply of low levels of carbon, followed by isolation on enriched media, can serve as a good strategy in isolation of novel taxa of microorganism, with industrial or environmental importance.
Collapse
Affiliation(s)
- Yogesh S. Nimonkar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Tejashree Godambe
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Apurva Kulkarni
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Tarachand Patel
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Dhreej Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Debarati Paul
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, India
| | - Vinay Rale
- Symbiosis School of Biological Sciences (SSBS) Symbiosis International (Deemed University) & Symbiosis Centre for Research & Innovation (SCRI), Symbiosis International (Deemed University), Pune, India
| | - Om Prakash
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
- *Correspondence: Om Prakash ;
| |
Collapse
|
13
|
Soil substrate culturing approaches recover diverse members of Actinomycetota from desert soils of Herring Island, East Antarctica. Extremophiles 2022; 26:24. [PMID: 35829965 PMCID: PMC9279279 DOI: 10.1007/s00792-022-01271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/06/2022] [Indexed: 11/12/2022]
Abstract
Antimicrobial resistance is an escalating health crisis requiring urgent action. Most antimicrobials are natural products (NPs) sourced from Actinomycetota, particularly the Streptomyces. Underexplored and extreme environments are predicted to harbour novel microorganisms with the capacity to synthesise unique metabolites. Herring Island is a barren and rocky cold desert in East Antarctica, remote from anthropogenic impact. We aimed to recover rare and cold-adapted NP-producing bacteria, by employing two culturing methods which mimic the natural environment: direct soil culturing and the soil substrate membrane system. First, we analysed 16S rRNA gene amplicon sequencing data from 18 Herring Island soils and selected the soil sample with the highest Actinomycetota relative abundance (78%) for culturing experiments. We isolated 166 strains across three phyla, including novel and rare strains, with 94% of strains belonging to the Actinomycetota. These strains encompassed thirty-five ‘species’ groups, 18 of which were composed of Streptomyces strains. We screened representative strains for genes which encode polyketide synthases and non-ribosomal peptide synthetases, indicating that 69% have the capacity to synthesise polyketide and non-ribosomal peptide NPs. Fourteen Streptomyces strains displayed antimicrobial activity against selected bacterial and yeast pathogens using an in situ assay. Our results confirm that the cold-adapted bacteria of the harsh East Antarctic deserts are worthy targets in the search for bioactive compounds.
Collapse
|
14
|
Candidate Phyla Radiation, an Underappreciated Division of the Human Microbiome, and Its Impact on Health and Disease. Clin Microbiol Rev 2022; 35:e0014021. [PMID: 35658516 DOI: 10.1128/cmr.00140-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Candidate phyla radiation (CPR) is an emerging division of the bacterial domain within the human microbiota. Still poorly known, these microorganisms were first described in the environment in 1981 as "ultramicrobacteria" with a cell volume under 0.1 μm3 and were first associated with the human oral microbiota in 2007. The evolution of technology has been paramount for the study of CPR within the human microbiota. In fact, since these ultramicrobacteria have yet to be axenically cultured despite ongoing efforts, progress in imaging technology has allowed their observation and morphological description. Although their genomic abilities and taxonomy are still being studied, great strides have been made regarding their taxonomic classification, as well as their lifestyle. In addition, advancements in next-generation sequencing and the continued development of bioinformatics tools have allowed their detection as commensals in different human habitats, including the oral cavity and gastrointestinal and genital tracts, thus highlighting CPR as a nonnegligible part of the human microbiota with an impact on physiological settings. Conversely, several pathologies present dysbiosis affecting CPR levels, including inflammatory, mucosal, and infectious diseases. In this exhaustive review of the literature, we provide a historical perspective on the study of CPR, an overview of the methods available to study these organisms and a description of their taxonomy and lifestyle. In addition, their distribution in the human microbiome is presented in both homeostatic and dysbiotic settings. Future efforts should focus on developing cocultures and, if possible, axenic cultures to obtain isolates and therefore genomes that would provide a better understanding of these ultramicrobacteria, the importance of which in the human microbiome is undeniable.
Collapse
|
15
|
Nemr RA, Patz S, Abdelwakeel SM, Khalil M, Ben Djadid A, Abdelfadeel MR, Morsi AT, Goda HA, Youssef HH, Hamza M, Abbas M, Fayez M, El-Sahhar KF, Becker M, Ruppel S, Hegazi NA. Culture Media Based on Leaf Strips/Root Segments Create Compatible Host/Organ Setup for in vitro Cultivation of Plant Microbiota. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.660790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Plant microbiota have co-evolved with their associated plants in the entire holobiont, and their assemblages support diversity and productivity on our planet. Of importance is in vitro cultivation and identification of their hub taxa for possible core microbiome modification. Recently, we introduced the in situ-similis culturing strategy, based on the use of plant leaves as a platform for in vitro growth of plant microbiota. Here, the strategy is further extended by exploring plant organ compatible cultivation of plant microbiota when grown on corresponding leaf/root-based culture media. Pooling the advantages of MPN enrichment methodology together with natural plant-only-based culture media, the introduced method efficiently constructed a nutritional milieu governed by vegan nutrients of plant origin, i.e., leaf strips/root segments, immersed in plain semi-solid water agar. MPN estimates exceeded log 7.0 and 4.0 g−1 of endo-rhizosphere and endo-phyllosphere, respectively, of maize and sunflower; being proportionate to those obtained for standard culture media. With sunflower, PCR-DGGE analyses indicated divergence in community composition of cultivable endophytes primarily attributed to culture media, signaling a certain degree of plant organ affinity/compatibility. Based on 16S rRNA gene sequencing of bacterial isolates, 20 genera comprising 32 potential species were enriched; belonged to Bacteroidetes, Firmicutes, and Alpha-/Gammaproteobacteria. The described cultivation strategy furnished diversified nutritive platform in terms of homologous/heterologous plant organ-based medium and ambient/limited oxygenic cultivation procedure. Duly, cultivability extended to > 8 genera: Bosea, Brevundimonas, Chitinophaga, Pseudoxanthomonas, Sphingobacterium Caulobacter, Scandinavium, and Starkeya; the latter three genera were not yet reported for Sunflower, and possible unknown species or even one new putative genus. Thus, both potential members of the major microbiome and rare isolates of satellite microbiomes can be isolated using the presented method. It is a feasible addition to traditional cultivation methods to explore new potential resources of PGPB for future biotechnological applications.
Collapse
|
16
|
Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol 2021; 19:225-240. [PMID: 33093661 DOI: 10.1038/s41579-020-00458-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
Despite the surge of microbial genome data, experimental testing is important to confirm inferences about the cell biology, ecological roles and evolution of microorganisms. As the majority of archaeal and bacterial diversity remains uncultured and poorly characterized, culturing is a priority. The growing interest in and need for efficient cultivation strategies has led to many rapid methodological and technological advances. In this Review, we discuss common barriers that can hamper the isolation and culturing of novel microorganisms and review emerging, innovative methods for targeted or high-throughput cultivation. We also highlight recent examples of successful cultivation of novel archaea and bacteria, and suggest key microorganisms for future cultivation attempts.
Collapse
Affiliation(s)
- William H Lewis
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Guillaume Tahon
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Patricia Geesink
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Alkayyali T, Pope E, Wheatley SK, Cartmell C, Haltli B, Kerr RG, Ahmadi A. Development of a microbe domestication pod (MD Pod) for in situ cultivation of micro-encapsulated marine bacteria. Biotechnol Bioeng 2020; 118:1166-1176. [PMID: 33241862 DOI: 10.1002/bit.27633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/01/2020] [Accepted: 11/20/2020] [Indexed: 11/10/2022]
Abstract
Microbial marine natural products hold significant potential for the discovery of new bioactive therapeutics such as antibiotics. Unfortunately, this discovery is hindered by the inability to culture the majority of microbes using traditional laboratory approaches. While many new methods have been developed to increase cultivability, a high-throughput in situ incubation chamber capable of simultaneously isolating individual microbes while allowing cellular communication has not previously been reported. Development of such a device would expedite the discovery of new microbial taxa and, thus, facilitate access to their associated natural products. In this study, this concept is achieved by the development of a new device termed by the authors as the microbe domestication (MD) Pod. The MD Pod enables single-cell cultivation by isolating marine bacterial cells in agarose microbeads produced using microfluidics, while allowing potential transmission of chemical signals between cells during in situ incubation in a chamber, or "Pod," that is deployed in the environment. The design of the MD Pod was optimized to ensure the use of biocompatible materials, allow for simple assembly in a field setting, and maintain sterility throughout incubation. The encapsulation process was designed to ensure that the viability of marine sediment bacteria was not adversely impacted by the encapsulation process. The process was validated using representative bacteria isolated from temperate marine sediment samples: Marinomonas polaris, Psychrobacter aquimaris, and Bacillus licheniformis. The overall process appeared to promote metabolic activity of most representative species. Thus, microfluidic encapsulation of marine bacteria and subsequent in situ incubation in the MD Pod is expected to accelerate marine natural products discovery by increasing the cultivability of marine bacteria.
Collapse
Affiliation(s)
- Tartela Alkayyali
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Prince Edward Island, Canada
| | - Emily Pope
- Departments of Biomedical Sciences, University of Prince Edward Island, Prince Edward Island, Canada
| | - Sydney K Wheatley
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Prince Edward Island, Canada
| | - Christopher Cartmell
- Departments of Chemistry, University of Prince Edward Island, Prince Edward Island, Canada
| | - Bradley Haltli
- Departments of Biomedical Sciences, University of Prince Edward Island, Prince Edward Island, Canada.,Nautilus Biosciences Croda, Prince Edward Island, Canada
| | - Russell G Kerr
- Departments of Biomedical Sciences, University of Prince Edward Island, Prince Edward Island, Canada.,Departments of Chemistry, University of Prince Edward Island, Prince Edward Island, Canada.,Nautilus Biosciences Croda, Prince Edward Island, Canada
| | - Ali Ahmadi
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Prince Edward Island, Canada
| |
Collapse
|
18
|
Plant Broth- (Not Bovine-) Based Culture Media Provide the Most Compatible Vegan Nutrition for In Vitro Culturing and In Situ Probing of Plant Microbiota. DIVERSITY 2020. [DOI: 10.3390/d12110418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant microbiota support the diversity and productivity of plants. Thus, cultivation-dependent approaches are indispensable for in vitro manipulation of hub taxa. Despite recent advances in high-throughput methods, cultivability is lagging behind other environmental microbiomes, notably the human microbiome. As a plant-based culturing strategy, we developed culture media based on a broth of cooked aqueous mixtures of host plants. This improved the in vitro growth of representative isolates of plant microbiota and extended the in situ recovery of plant microbiota. With clover, 16S rRNA gene sequencing of representative isolates confirmed the predominance of Firmicutes, Alphaproteobacteria and Gammaproteobacteria, and less frequently Bacteroidetes and Actinobacteria. Whereas bovine-based culture media (modified R2A) confined the diversity to Firmicutes, the plant broth-based culture media revealed a wider scope of endophytes beyond rhizobia, i.e., multiple genera such as Chryseobacterium, Cronobacter, Kosakonia, Tsukamurella, and a potentially/presumptive novel species. Matrix-assisted laser desorption/ionization time-of-flight (MADI-TOF) analysis clustered isolates according to their plant niches, the endo-phyllosphere/endo-rhizosphere. We recommend the plant broth for simplicity, reproducibility and perdurable storage, supporting future culturomics applications, good laboratory practice (GLP) and good manufacturing practice (GMP). The strategy creates an “in-situ-similis” vegan nutritional matrix to analyze microbial diversity and reveal novel microbial resources pertinent to biotechnological and environmental applications.
Collapse
|
19
|
Pathak A, Jaswal R, Xu X, White JR, Edwards B, Hunt J, Brooks S, Rathore RS, Agarwal M, Chauhan A. Characterization of Bacterial and Fungal Assemblages From Historically Contaminated Metalliferous Soils Using Metagenomics Coupled With Diffusion Chambers and Microbial Traps. Front Microbiol 2020; 11:1024. [PMID: 32655505 PMCID: PMC7325934 DOI: 10.3389/fmicb.2020.01024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
The majority of environmental microbiomes are not amenable to cultivation under standard laboratory growth conditions and hence remain uncharacterized. For environmental applications, such as bioremediation, it is necessary to isolate microbes performing the desired function, which may not necessarily be the fast growing or the copiotroph microbiota. Toward this end, cultivation and isolation of microbial strains using diffusion chambers (DC) and/or microbial traps (MT) have both been recently demonstrated to be effective strategies because microbial enrichment is facilitated by soil nutrients and not by synthetically defined media, thus simulating their native habitat. In this study, DC/MT chambers were established using soils collected from two US Department of Energy (DOE) sites with long-term history of heavy metal contamination, including mercury (Hg). To characterize the contamination levels and nutrient status, soils were first analyzed for total mercury (THg), methylmercury (MeHg), total carbon (TC), total nitrogen (TN), and total phosphorus (TP). Multivariate statistical analysis on these measurements facilitated binning of soils under high, medium and low levels of contamination. Bacterial and fungal microbiomes that developed within the DC and MT chambers were evaluated using comparative metagenomics, revealing Chthoniobacter, Burkholderia and Bradyrhizobium spp., as the predominant bacteria while Penicillium, Thielavia, and Trichoderma predominated among fungi. Many of these core microbiomes were also retrieved as axenic isolates. Furthermore, canonical correspondence analysis (CCA) of biogeochemical measurements, metal concentrations and bacterial communities revealed a positive correlation of Chthoniobacter/Bradyrhizobium spp., to THg whereas Burkholderia spp., correlated with MeHg. Penicillium spp., correlated with THg whereas Trichoderma spp., and Aspergillus spp., correlated with MeHg, from the MT approach. This is the first metagenomics-based assessment, isolation and characterization of soil-borne bacterial and fungal communities colonizing the diffusion chambers (DC) and microbial traps (MT) established with long-term metal contaminated soils. Overall, this study provides proof-of-concept for the successful application of DC/MT based assessment of mercury resistant (HgR) microbiomes in legacy metal-contaminated soils, having complex contamination issues. Overall, this study brings out the significance of microbial communities and their relevance in context to heavy metal cycling for better stewardship and restoration of such historically contaminated systems.
Collapse
Affiliation(s)
- Ashish Pathak
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Rajneesh Jaswal
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Xiaoyu Xu
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - John R White
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Bobby Edwards
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Jaden Hunt
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Scott Brooks
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Rajesh Singh Rathore
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Meenakshi Agarwal
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| | - Ashvini Chauhan
- School of the Environment, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
20
|
Sanz-Sáez I, Salazar G, Sánchez P, Lara E, Royo-Llonch M, Sà EL, Lucena T, Pujalte MJ, Vaqué D, Duarte CM, Gasol JM, Pedrós-Alió C, Sánchez O, Acinas SG. Diversity and distribution of marine heterotrophic bacteria from a large culture collection. BMC Microbiol 2020; 20:207. [PMID: 32660423 PMCID: PMC7359222 DOI: 10.1186/s12866-020-01884-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023] Open
Abstract
Background Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a standard marine medium comprising a total of 1561 bacterial strains, and covering a variety of oceanographic regions from different seasons and years, from 2009 to 2015. Specifically, our marine collection contains isolates from both photic (817) and aphotic layers (744), including the mesopelagic (362) and the bathypelagic (382), from the North Western Mediterranean Sea, the North and South Atlantic Ocean, the Indian, the Pacific, and the Arctic Oceans. We described the taxonomy, the phylogenetic diversity and the biogeography of a fraction of the marine culturable microorganisms to enhance our knowledge about which heterotrophic marine isolates are recurrently retrieved across oceans and along different depths. Results The partial sequencing of the 16S rRNA gene of all isolates revealed that they mainly affiliate with the classes Alphaproteobacteria (35.9%), Gammaproteobacteria (38.6%), and phylum Bacteroidetes (16.5%). In addition, Alteromonas and Erythrobacter genera were found the most common heterotrophic bacteria in the ocean growing in solid agar medium. When comparing all photic, mesopelagic, and bathypelagic isolates sequences retrieved from different stations, 37% of them were 100% identical. This percentage increased up to 59% when mesopelagic and bathypelagic strains were grouped as the aphotic dataset and compared to the photic dataset of isolates, indicating the ubiquity of some bacterial isolates along different ocean depths. Finally, we isolated three strains that represent a new species, and the genome comparison and phenotypic characterization of two of these strains (ISS653 and ISS1889) concluded that they belong to a new species within the genus Mesonia. Conclusions Overall, this study highlights the relevance of culture-dependent studies, with focus on marine isolated bacteria from different oceanographic regions and depths, to provide a more comprehensive view of the culturable marine bacteria as part of the total marine microbial diversity.
Collapse
Affiliation(s)
- Isabel Sanz-Sáez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Elena Lara
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain.,Institute of Marine Sciences (CNR-ISMAR), National Research Council, Castello 2737/F Arsenale-Tesa 104, 30122, Venezia, Italy
| | - Marta Royo-Llonch
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Elisabet L Sà
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Teresa Lucena
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - María J Pujalte
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - Dolors Vaqué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003, Barcelona, Spain.
| |
Collapse
|
21
|
Nemr RA, Khalil M, Sarhan MS, Abbas M, Elsawey H, Youssef HH, Hamza MA, Morsi AT, El-Tahan M, Fayez M, Patz S, Witzel K, Ruppel S, El-Sahhar KF, Hegazi NA. " In situ similis" Culturing of Plant Microbiota: A Novel Simulated Environmental Method Based on Plant Leaf Blades as Nutritional Pads. Front Microbiol 2020; 11:454. [PMID: 32318031 PMCID: PMC7154060 DOI: 10.3389/fmicb.2020.00454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/03/2020] [Indexed: 01/22/2023] Open
Abstract
High-throughput cultivation methods have recently been developed to accelerate the recovery of microorganisms reluctant to cultivation. They simulate in situ environmental conditions for the isolation of environmental microbiota through the exchange of growth substrates during cultivation. Here, we introduce leaf-based culture media adopting the concept of the plant being the master architect of the composition of its microbial community. Pre-physical treatments of sunflower plant leaves, namely punching, freezing, and/or autoclavation, allowed the diffusion of electrolytes and other nutrients to configure the leaf surface as a natural pad, i.e., creating an “in situ similis” environment suitable for the growth of rarely isolated microbiota. We used surface inoculation and membrane-filtration methods to assess the culturability of endophytic bacteria from the sunflower phyllosphere and rhizosphere. Both methods supported excellent colony-forming unit (CFU) development when compared to standard R2A medium, with a special affinity to support better growth of epiphytic and endophytic populations of the phyllosphere compared with the rhizosphere. A 16S rRNA gene analysis of >122 representative isolates indicated the cultivation of a diverse set of microorganisms by application of the new methods. It indicated the predominance of 13 genera of >30 potential species, belonging to Firmicutes, Proteobacteria, and Actinobacteria, and especially genera not commonly reported for sunflower, e.g., Rhizobium, Aureimonas, Sphingomonas, Paracoccus, Stenotrophomonas, Pantoea, Kosakonia, and Erwinia. The strategy successfully extended diversity and richness in the endophyllosphere compared to the endorhizosphere, while CFUs grown on the standard R2A medium mainly pertain to Firmicutes, especially Bacillus spp. MALDI-TOF MS analysis clustered the isolates according to their niche and potential functions, where the majority of isolates of the endorhizosphere were clustered away from those of the endophyllosphere. Isolates identified as Gammaproteobacteria and Alphaproteobacteria were distinguishably sub-clustered, which was in contrast to the heterogeneous isolates of Firmicutes (Bacillus spp.). In conclusion, leaf in situ similis cultivation is an effective strategy to support the future application of culturomics of plant microbiota. This is an effort to access novel isolates that are more adapted and competitive in their natural environments, especially those subjected to abiotic stresses like those prevailing in arid/semi-arid zones, and, consequently, to support the application of agro-biotechnologies, among other technologies, to improving agriculture in such zones.
Collapse
Affiliation(s)
- Rahma A Nemr
- Environmental Studies and Research Unit, Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohab Khalil
- Environmental Studies and Research Unit, Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed S Sarhan
- Environmental Studies and Research Unit, Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed Abbas
- Department of Microbiology, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, Egypt
| | - Hend Elsawey
- Environmental Studies and Research Unit, Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hanan H Youssef
- Environmental Studies and Research Unit, Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mervat A Hamza
- Environmental Studies and Research Unit, Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed T Morsi
- Environmental Studies and Research Unit, Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mahmoud El-Tahan
- Regional Center for Food and Feed, Agricultural Research Center, Giza, Egypt
| | - Mohamed Fayez
- Environmental Studies and Research Unit, Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sascha Patz
- Algorithms in Bioinformatics, Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Katja Witzel
- Department of Plant Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Silke Ruppel
- Department of Plant Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Kassem F El-Sahhar
- Department of Botany, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Nabil A Hegazi
- Environmental Studies and Research Unit, Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
22
|
Hu B, Xu B, Yun J, Wang J, Xie B, Li C, Yu Y, Lan Y, Zhu Y, Dai X, Huang Y, Huang L, Pan J, Du W. High-throughput single-cell cultivation reveals the underexplored rare biosphere in deep-sea sediments along the Southwest Indian Ridge. LAB ON A CHIP 2020; 20:363-372. [PMID: 31848560 DOI: 10.1039/c9lc00761j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microorganisms in the deep sea play vital roles in marine ecosystems. However, despite great advances brought by high throughput sequencing and metagenomics, only a small portion of microorganisms living in the environment can be cultivated in the laboratory and systematically studied. In this study, an improved high-throughput microfluidic streak plate (MSP) platform was developed to speed up the isolation of microorganisms from deep-sea sediments and evaluated with deep-sea sediments collected from the Southwest Indian Ridge (SWIR). Based on our previously reported MSP method, we improved its isolation efficiency with a semi-automated droplet picker and improved humidity control to enable long-term cultivation with a low-nutrient medium for up to five months according to the slow-growing nature of most deep-sea species. The improved MSP method allows the isolation of microbes by selection and investigation of microbial diversity by high throughput sequencing of the pooled sample cultures. By picking individual droplets and scale-up cultivation, a total of 772 strains that were taxonomically assigned to 70 species were isolated from the deep-sea sediments in the SWIR, including 15 potential novel species. On the other hand, based on 16S rRNA gene amplicon sequencing analysis, the microbial diversity of the SWIR was studied and documented with culture-dependent and independent methods in this study. The superiority of the MSP platform in revealing the rare biosphere was also evaluated based on amplicon sequencing. The results show that droplet-based single-cell cultivation of the MSP has a much higher ability than traditional agar plate cultivation in obtaining microbial species and more than 90% of operational taxonomic units (OTUs) detected in the MSP pool belong to the rare biosphere. Our results indicate the high robustness and efficiency of the improved MSP platform in revealing the environmentally rare biosphere, especially for slow-growing species. Overall, the MSP platform has a superior ability to recover microbial diversity than conventional agar plates and it was found to hold great potential for recovering rare microbial resources from various environments.
Collapse
Affiliation(s)
- Beiyu Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bingxue Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bingliang Xie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanghuan Yu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Lan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhang Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. and College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China and Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Perini L, Gostinčar C, Gunde-Cimerman N. Fungal and bacterial diversity of Svalbard subglacial ice. Sci Rep 2019; 9:20230. [PMID: 31882659 PMCID: PMC6934841 DOI: 10.1038/s41598-019-56290-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/04/2019] [Indexed: 11/09/2022] Open
Abstract
The composition of fungal and bacterial communities in three polythermal glaciers and associated aquatic environments in Kongsfjorden, Svalbard was analysed using a combination of cultivation and amplicon sequencing. 109 fungal strains belonging to 30 mostly basidiomycetous species were isolated from glacial samples with counts up to 103 CFU/100 ml. Glaciozyma-related taxon and Phenoliferia psychrophenolica were the dominant species. Unexpectedly, amplicon sequencing uncovered sequences of Chytridiomycota in all samples and Rozellomycota in sea water, lake water, and tap water. Sequences of Malassezia restricta and of the extremely halotolerant Hortaea werneckii were also found in subglacial habitats for the first time. Overall, the fungal communities within a glacier and among glaciers were diverse and spatially heterogenous. Contrary to this, there was a large overlap between the bacterial communities of different glaciers, with Flavobacterium sp. being the most frequently isolated. In amplicon sequencing Actinobacteria and Proteobacteria sequences were the most abundant.
Collapse
Affiliation(s)
- L Perini
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - C Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.,Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, Qingdao, 266555, China
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Bonnet M, Lagier JC, Raoult D, Khelaifia S. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes New Infect 2019; 34:100622. [PMID: 31956419 PMCID: PMC6961714 DOI: 10.1016/j.nmni.2019.100622] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022] Open
Abstract
Microbiology has been largely developed thanks to the discovery and optimization of culture media. The first liquid artificial culture medium was created by Louis Pasteur in 1860. Previously, bacterial growth on daily materials such as some foods had been observed. These observations highlighted the importance of the bacteria's natural environment and their nutritional needs in the development of culture media for their isolation. A culture medium is essentially composed of basic elements (water, nutrients), to which must be added different growth factors that will be specific to each bacterium and necessary for their growth. The evolution of bacterial culture through the media used for their culture began with the development of the first solid culture medium by Koch, allowing not only the production of bacterial colonies, but also the possibility of purifying a bacterial clone. The main gelling agent used in solid culture media is agar. However, some limits have been observed in the use of agar because of some extremely oxygen-sensitive bacteria that do not grow on agar media, and other alternatives were proposed and tested. Then, the discovery of antimicrobial agents and their specific targets prompted the emergence of selective media. These inhibiting agents make it possible to eliminate undesirable bacteria from the microbiota and select the bacteria desired. Thanks to a better knowledge of the bacterial environment, it will be possible to develop new culture media and new culture conditions, better adapted to certain fastidious bacteria that are difficult to isolate.
Collapse
Affiliation(s)
- M Bonnet
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
| | - J C Lagier
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| | - D Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| | - S Khelaifia
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, Marseillle, France
| |
Collapse
|
25
|
Chaudhary DK, Kim J. Experimental Setup for a Diffusion Bioreactor to Isolate Unculturable Soil Bacteria. Bio Protoc 2019; 9:e3388. [PMID: 33654882 DOI: 10.21769/bioprotoc.3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/02/2022] Open
Abstract
Unculturable bacteria are those bacteria which proliferate in their native habitat but unable to grow or thrive in the normal laboratory media and conditions. The molecular techniques have revealed the significance of these uncultured bacteria in terms of their functional diversity and potential to produce secondary metabolites. To achieve these benefits, scientists have attempted to isolate and cultivate unculturable bacteria in the laboratory using transwell plates, optical tweezers, laser microdissection, microbioreactors, and diffusions bioreactors. However, these techniques are still inadequate to resolve the difficulties of cultivating unculturable bacteria. Therefore, it is essential to develop new cultivation method that enables growth of diverse range of bacteria in the laboratory conditions. Diffusion bioreactor is a membrane bound chamber which allows microbes to proliferate in their native environment by providing the excess to naturally occurring nutrients and signaling compounds. This paper presents efficient and reliable protocol to construct a diffusion bioreactor and its utilization to isolate and cultivate unculturable soil bacteria in laboratory.
Collapse
Affiliation(s)
| | - Jaisoo Kim
- Ecology Laboratory, Department of Life Science, Kyonggi University, Suwon, South Korea
| |
Collapse
|
26
|
Cross KL, Campbell JH, Balachandran M, Campbell AG, Cooper SJ, Griffen A, Heaton M, Joshi S, Klingeman D, Leys E, Yang Z, Parks JM, Podar M. Targeted isolation and cultivation of uncultivated bacteria by reverse genomics. Nat Biotechnol 2019; 37:1314-1321. [PMID: 31570900 PMCID: PMC6858544 DOI: 10.1038/s41587-019-0260-6] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 08/15/2019] [Indexed: 12/16/2022]
Abstract
Most microorganisms from all taxonomic levels are uncultured. Single-cell
genomes and metagenomes continue to increase the known diversity of
Bacteria and Archaea, but while
‘omics can be used to infer physiological or ecological roles for species
in a community, most of those hypothetical roles remain unvalidated. Here we
report an approach to capture specific microorganisms from complex communities
into pure cultures using genome-informed antibody engineering. We apply our
reverse genomics approach to isolate and sequence single cells and to cultivate
three different species-level lineages of human oral Saccharibacteria/TM7. Using
our pure cultures we show that all three saccharibacteria species are epibionts
of diverse Actinobacteria. We also isolate and cultivate human
oral SR1 bacteria, which are members of a lineage of previously uncultured
bacteria. Reverse-genomics-enabled cultivation of microorganisms can be applied
to any species from any environment and has the potential to unlock the
isolation, cultivation and characterization of species from as-yet-uncultured
branches of the microbial tree of life.
Collapse
Affiliation(s)
- Karissa L Cross
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - James H Campbell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Natural Sciences, Northwest Missouri State University, Maryville, MO, USA
| | | | - Alisha G Campbell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA.,Department of Natural Sciences, Northwest Missouri State University, Maryville, MO, USA
| | - Sarah J Cooper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA
| | - Ann Griffen
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | | | - Snehal Joshi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dawn Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Eugene Leys
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Zamin Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. .,Department of Microbiology, University of Tennessee, Knoxville, TN, USA. .,Genome Science and Technology Program, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
27
|
Kaboré OD, Godreuil S, Drancourt M. Improved culture of fastidious Gemmata spp. bacteria using marine sponge skeletons. Sci Rep 2019; 9:11707. [PMID: 31406238 PMCID: PMC6690866 DOI: 10.1038/s41598-019-48293-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/02/2019] [Indexed: 02/02/2023] Open
Abstract
Gemmata are Planctomycetes bacteria recalcitrant to traditional cultivation in the clinical microbiology laboratory and they have been seldom documented in patients. Based on previously known relationships of Planctomycetes with marine sponges, we designed a new culture medium A incorporating marine sponge skeleton of Spongia sp. to the standard culture medium; and culture medium B incorporating Spongia sp. skeleton heat aqueous filtrate into medium A; and inoculating the three culture media (standard, A and B) with Gemmata obscuriglobus DSM 5831T and Gemmata massiliana DSM 26013T in the presence of negative controls. Cultures were observed by naked eyes for 7 days and bacterial growth was quantified by microscopic observations and culture-based enumerations. Macroscopic observations at day-3 revealed a pink bacterial pellet in medium B tubes while standard medium tubes remained limpid until day-8. Growing Gemmata spp. bacteria in medium A yielded air bubbles released by bacterial respiration, whereas control tubes remained bubble-free. The number of colonies in standard medium (1.363 ± 115 for G. obscuriglobus, 1.288 ± 83 for G. massiliana) was significantly lower than those counted from medium B (2.552 ± 128 for G. obscuriglobus, 1.870 ± 112 for G. massiliana) and from medium A (2.851 ± 137 for G. obscuriglobus, 2.035 ± 163 for G. massiliana) (p < 0.10-4) at day-2 incubation. At day-3 incubation, the number of colonies counted from supplemented media A and B increased up to one log than those counted from the control medium (p < 0.10-4). Along the following day-4-7 incubation, the number of colonies counted from media A and B remained significantly higher compared to standard medium (p < 0.10-4). These data indicate that incorporation of spongin-based marine sponge skeleton and heat aqueous filtrate of sponge skeleton significantly improved growth of Gemmata spp. bacteria. These observations pave the way towards improved isolation and culture of Gemmata spp. from environmental and clinical specimens.
Collapse
Affiliation(s)
- Odilon D Kaboré
- IHU Méditerranée Infection, Marseille, France.,Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm 1058, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
28
|
Chaudhary DK, Khulan A, Kim J. Development of a novel cultivation technique for uncultured soil bacteria. Sci Rep 2019; 9:6666. [PMID: 31040339 PMCID: PMC6491550 DOI: 10.1038/s41598-019-43182-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/16/2019] [Indexed: 01/18/2023] Open
Abstract
In this study, a new diffusion bioreactor was developed to cultivate hidden bacterial communities in their natural environment. The newly developed method was investigated to cultivate microbial communities from the forest soil, and the results were evaluated against traditional culture methods and compared to the results of a pyrosequencing-based molecular survey. The molecular analysis revealed that a diverse bacterial population was present in the soil sample. However, both the newly developed method and the traditional method recovered more than 400 isolates, which belonged to only four phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Although these isolates were distributed over only four major phyla, the use of the newly developed technique resulted in the successful cultivation of 35 previously uncultured strains, whereas no such strains were successfully cultivated by the traditional method. Furthermore, the study also found that the recovery of uncultured bacteria and novel isolates was related to sampling season, incubation period, and cultivation media. The use of soil collected in summer, a prolonged incubation period, and low-substrate modified media increased the recovery of uncultured and novel isolates. Overall, the results indicate that the newly designed diffusion bioreactor can mimic the natural environment, which permits the cultivation of previously uncultured bacteria.
Collapse
Affiliation(s)
| | - Altankhuu Khulan
- Ecology Laboratory, Department of Life Science, Kyonggi University, Suwon, South Korea
| | - Jaisoo Kim
- Ecology Laboratory, Department of Life Science, Kyonggi University, Suwon, South Korea.
| |
Collapse
|
29
|
Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media - A review. J Adv Res 2019; 19:15-27. [PMID: 31341666 PMCID: PMC6630032 DOI: 10.1016/j.jare.2019.04.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The plant microbiome culturomics is substantially lagging behind the human microbiome. Conventional chemically-synthetic culture media recover < 10% of plant-associated microbiota. Plant-based culture media (PCM) are introduced as a novel tool for plant microbiome culturomics. PCM extended the microbiota culturability to recover unculturable bacterial taxa. Streamlined- and large-genomes conspicuously contribute to the dilemma of unculturability.
Improving cultivability of a wider range of bacterial and archaeal community members, living natively in natural environments and within plants, is a prerequisite to better understanding plant-microbiota interactions and their functions in such very complex systems. Sequencing, assembling, and annotation of pure microbial strain genomes provide higher quality data compared to environmental metagenome analyses, and can substantially improve gene and protein database information. Despite the comprehensive knowledge which already was gained using metagenomic and metatranscriptomic methods, there still exists a big gap in understanding in vivo microbial gene functioning in planta, since many differentially expressed genes or gene families are not yet annotated. Here, the progress in culturing procedures for plant microbiota depending on plant-based culture media, and their proficiency in obtaining single prokaryotic isolates of novel and rapidly increasing candidate phyla are reviewed. As well, the great success of culturomics of the human microbiota is considered with the main objective of encouraging microbiologists to continue minimizing the gap between the microbial richness in nature and the number of species in culture, for the benefit of both basic and applied microbiology. The clear message to fellow plant microbiologists is to apply plant-tailored culturomic techniques that might open up novel procedures to obtain not-yet-cultured organisms and extend the known plant microbiota repertoire to unprecedented levels.
Collapse
|
30
|
Bor B, Bedree JK, Shi W, McLean JS, He X. Saccharibacteria (TM7) in the Human Oral Microbiome. J Dent Res 2019; 98:500-509. [PMID: 30894042 DOI: 10.1177/0022034519831671] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacteria from the Saccharibacteria phylum (formerly known as TM7) are ubiquitous members of the human oral microbiome and are part of the Candidate Phyla Radiation. Recent studies have revealed remarkable 16S rRNA diversity in environmental and mammalian host-associated members across this phylum, and their association with oral mucosal infectious diseases has been reported. However, due to their recalcitrance to conventional cultivation, TM7's physiology, lifestyle, and role in health and diseases remain elusive. The recent cultivation and characterization of Nanosynbacter lyticus type strain TM7x (HMT_952)-the first Saccharibacteria strain coisolated as an ultrasmall obligate parasite with its bacterial host from the human oral cavity-provide a rare glimpse into the novel symbiotic lifestyle of these enigmatic human-associated bacteria. TM7x is unique among all bacteria: it has an ultrasmall size and lives on the surface of its host bacterium. With a highly reduced genome, it lacks the ability to synthesize any of its own amino acids, vitamins, or cell wall precursors and must parasitize other oral bacteria. TM7x displays a highly dynamic interaction with its bacterial hosts, as reflected by the reciprocal morphologic and physiologic changes in both partners. Furthermore, depending on environmental conditions, TM7x can exhibit virulent killing of its host bacterium. Thus, Saccharibacteria potentially affect oral microbial ecology by modulating the oral microbiome structure hierarchy and functionality through affecting the bacterial host's physiology, inhibiting the host's growth dynamics, or affecting the relative abundance of the host via direct killing. At this time, several other uncharacterized members of this phylum have been detected in various human body sites at high prevalence. In the oral cavity alone, at least 6 distinct groups vary widely in relative abundance across anatomic sites. Here, we review the current knowledge on the diversity and unique biology of this recently uncovered group of ultrasmall bacteria.
Collapse
Affiliation(s)
- B Bor
- 1 The Forsyth Institute, Cambridge, MA, USA.,2 Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - J K Bedree
- 1 The Forsyth Institute, Cambridge, MA, USA.,3 Section of Oral Biology, Division of Oral Biology and Medicine, School of Dentistry, University of California-Los Angeles, Los Angeles, CA, USA
| | - W Shi
- 1 The Forsyth Institute, Cambridge, MA, USA
| | - J S McLean
- 4 Department of Periodontics, University of Washington, Seattle, WA, USA
| | - X He
- 1 The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
31
|
Cui X, Ren L, Shan Y, Wang X, Yang Z, Li C, Xu J, Ma B. Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging. Analyst 2019; 143:3309-3316. [PMID: 29774899 DOI: 10.1039/c8an00456k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Standard plate count (SPC) has been recognized as the golden standard for the quantification of viable bacteria. However, SPC usually takes one to several days to grow individual cells into a visible colony, which greatly hampers its application in rapid bacteria enumeration. Here we present a microdroplet turbidity imaging based digital standard plate count (dSPC) method to overcome this hurdle. Instead of cultivating on agar plates, bacteria are encapsulated in monodisperse microdroplets for single-cell cultivation. Proliferation of the encapsulated bacterial cell produced a detectable change in microdroplet turbidity, which allowed, after just a few bacterial doubling cycles (i.e., a few hours), enumeration of viable bacteria by visible-light imaging. Furthermore, a dSPC platform integrating a power-free droplet generator with smartphone-based turbidity imaging was established. As proof-of-concept demonstrations, a series of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis) samples were quantified via the smartphone dSPC accurately within 6 hours, representing a detection sensitivity of 100 CFU ml-1 and at least 3 times faster. In addition, Enterobacter sakazakii (E. sakazakii) in infant milk powder as a real sample was enumerated within 6 hours, in contrast to the 24 hours needed in traditional SPC. Results with high accuracy and reproducibility were achieved, with no difference in counts found between dSPC and SPC. By enabling label-free, rapid, portable and low-cost enumeration and cultivation of viable bacteria onsite, smartphone dSPC forms the basis for a temporally and geographically trackable network for surveying live microbes globally where every citizen with a cellphone can contribute anytime and anywhere.
Collapse
Affiliation(s)
- Xiaonan Cui
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lambrechts S, Willems A, Tahon G. Uncovering the Uncultivated Majority in Antarctic Soils: Toward a Synergistic Approach. Front Microbiol 2019; 10:242. [PMID: 30828325 PMCID: PMC6385771 DOI: 10.3389/fmicb.2019.00242] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/29/2019] [Indexed: 01/22/2023] Open
Abstract
Although Antarctica was once believed to be a sterile environment, it is now clear that the microbial communities inhabiting the Antarctic continent are surprisingly diverse. Until the beginning of the new millennium, little was known about the most abundant inhabitants of the continent: prokaryotes. From then on, however, the rising use of deep sequencing techniques has led to a better understanding of the Antarctic prokaryote diversity and provided insights in the composition of prokaryotic communities in different Antarctic environments. Although these cultivation-independent approaches can produce millions of sequences, linking these data to organisms is hindered by several problems. The largest difficulty is the lack of biological information on large parts of the microbial tree of life, arising from the fact that most microbial diversity on Earth has never been characterized in laboratory cultures. These unknown prokaryotes, also known as microbial dark matter, have been dominantly detected in all major environments on our planet. Laboratory cultures provide access to the complete genome and the means to experimentally verify genomic predictions and metabolic functions and to provide evidence of horizontal gene transfer. Without such well-documented reference data, microbial dark matter will remain a major blind spot in deep sequencing studies. Here, we review our current understanding of prokaryotic communities in Antarctic ice-free soils based on cultivation-dependent and cultivation-independent approaches. We discuss advantages and disadvantages of both approaches and how these strategies may be combined synergistically to strengthen each other and allow a more profound understanding of prokaryotic life on the frozen continent.
Collapse
Affiliation(s)
- Sam Lambrechts
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Guillaume Tahon
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Versluis D, de J. Bello González T, Zoetendal EG, van Passel MWJ, Smidt H. High throughput cultivation-based screening on porous aluminum oxide chips allows targeted isolation of antibiotic resistant human gut bacteria. PLoS One 2019; 14:e0210970. [PMID: 30653573 PMCID: PMC6336267 DOI: 10.1371/journal.pone.0210970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
The emergence of bacterial pathogens that are resistant to clinical antibiotics poses an increasing risk to human health. An important reservoir from which bacterial pathogens can acquire resistance is the human gut microbiota. However, thus far, a substantial fraction of the gut microbiota remains uncultivated and has been little-studied with respect to its resistance reservoir-function. Here, we aimed to isolate yet uncultivated resistant gut bacteria by a targeted approach. Therefore, faecal samples from 20 intensive care patients who had received the prophylactic antibiotic treatment selective digestive decontamination (SDD), i.e. tobramycin, polymyxin E, amphotericin B and cefotaxime, were inoculated anaerobically on porous aluminium oxide chips placed on top of poor and rich agar media, including media supplemented with the SDD antibiotics. Biomass growing on the chips was analysed by 16S rRNA gene amplicon sequencing, showing large inter-individual differences in bacterial cultivability, and enrichment of a range of taxonomically diverse operational taxonomic units (OTUs). Furthermore, growth of Ruminococcaceae (2 OTUs), Enterobacteriaceae (6 OTUs) and Lachnospiraceae (4 OTUs) was significantly inhibited by the SDD antibiotics. Strains belonging to 16 OTUs were candidates for cultivation to pure culture as they shared ≤95% sequence identity with the closest type strain and had a relative abundance of ≥2%. Six of these OTUs were detected on media containing SDD antibiotics, and as such were prime candidates to be studied regarding antibiotic resistance. One of these six OTUs was obtained in pure culture using targeted isolation. This novel strain was resistant to the antibiotics metrodinazole and imipenem. It was initially classified as member of the Ruminococcaceae, though later it was found to share 99% nucleotide identity with the recently published Sellimonas intestinalis BR72T. In conclusion, we show that high-throughput cultivation-based screening of microbial communities can guide targeted isolation of bacteria that serve as reservoirs of antibiotic resistance.
Collapse
Affiliation(s)
- Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Mark W. J. van Passel
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
34
|
Secondary Metabolites of Endophytic Actinomycetes: Isolation, Synthesis, Biosynthesis, and Biological Activities. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 108 2019; 108:207-296. [DOI: 10.1007/978-3-030-01099-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Hahn MW, Koll U, Schmidt J. Isolation and Cultivation of Bacteria. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2019. [DOI: 10.1007/978-3-030-16775-2_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Effective Soil Extraction Method for Cultivating Previously Uncultured Soil Bacteria. Appl Environ Microbiol 2018; 84:AEM.01145-18. [PMID: 30291118 DOI: 10.1128/aem.01145-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/07/2018] [Indexed: 11/20/2022] Open
Abstract
Here, a new medium, named intensive soil extract medium (ISEM), based on new soil extract (NSE) using 80% methanol, was used to efficiently isolate previously uncultured bacteria and new taxonomic candidates, which accounted for 49% and 55% of the total isolates examined (n = 258), respectively. The new isolates were affiliated with seven phyla (Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, and Bacteroidetes). The result of chemical analysis showed that NSE included more diverse components of low-molecular-weight organic substances than two conventional soil extracts made using distilled water. Cultivation of previously uncultured bacteria is expected to extend knowledge through the discovery of new phenotypic, physiological, and functional properties and even roles of unknown genes.IMPORTANCE Both metagenomics and single-cell sequencing can detect unknown genes from uncultured microbial strains in environments, and either method may find the significant potential metabolites and roles of these strains. However, such gene/genome-based techniques do not allow detailed investigations that are possible with cultures. To solve this problem, various approaches for cultivation of uncultured bacteria have been developed, but there are still difficulties in maintaining pure cultures by subculture.
Collapse
|
37
|
Kwon M, Ho A, Yoon S. Novel approaches and reasons to isolate methanotrophic bacteria with biotechnological potentials: recent achievements and perspectives. Appl Microbiol Biotechnol 2018; 103:1-8. [PMID: 30315351 DOI: 10.1007/s00253-018-9435-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The recent drop in the price of natural gas has rekindled the interests in methanotrophs, the organisms capable of utilizing methane as the sole electron donor and carbon source, as biocatalysts for various industrial applications. As heterologous expression of the methane monooxygenases in more amenable hosts has been proven to be nearly impossible, future success in methanotroph biotechnology largely depends on securing phylogenetically and phenotypically diverse methanotrophs with relatively high growth rates. For long, isolation of methanotrophs have relied on repeated single colony picking after initial batch enrichment with methane, which is a very rigorous and time-consuming process. In this review, three unconventional isolation methods devised for facilitation of the isolation process, diversification of targeted methanotrophs, and/or screening of rapid growers are summarized. The soil substrate membrane method allowed for isolation of previously elusive methanotrophs and application of high-throughput extinction plating technique facilitated the isolation procedure. Use of a chemostat with gradually increased dilution rates proved effective in screening for the fastest-growing methanotrophs from environmental samples. Development of new isolation technologies incorporating microfluidics and single-cell techniques may lead to discovery of previously unculturable methanotrophs with unexpected metabolic potentials and thus, certainly warrant future investigation.
Collapse
Affiliation(s)
- Miye Kwon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Adrian Ho
- Institute for Microbiology, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
38
|
Oueriaghli N, Castro DJ, Llamas I, Béjar V, Martínez-Checa F. Study of Bacterial Community Composition and Correlation of Environmental Variables in Rambla Salada, a Hypersaline Environment in South-Eastern Spain. Front Microbiol 2018; 9:1377. [PMID: 29977233 PMCID: PMC6021518 DOI: 10.3389/fmicb.2018.01377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 06/06/2018] [Indexed: 12/03/2022] Open
Abstract
We studied the bacterial community in Rambla Salada in three different sampling sites and in three different seasons and the effect of salinity, oxygen, and pH. All sites samples had high diversity and richness (Rr > 30). The diversity indexes and the analysis of dendrograms obtained by DGGE fingerprint after applying Pearson's and Dice's coefficient showed a strong influence of sampling season. The Pareto-Lorenz (PL) curves and Fo analysis indicated that the microbial communities were balanced and despite the changing environmental conditions, they can preserve their functionality. The main phyla detected by DGGE were Bacteroidetes (39.73%), Proteobacteria (28.43%), Firmicutes (8.23%), and Cyanobacteria (5.14%). The majority of the sequences corresponding to uncultured bacteria belonged to Bacteroidetes phylum. Within Proteobacteria, the main genera detected were Halothiobacillus and Roseovarius. The environmental factors which influenced the community in a higher degree were the salinity and oxygen. The bacteria belonging to Bacteroidetes and Proteobacteria were positively influenced by salinity. Nevertheless, bacteria related to Alpha- and Betaproteobacteria classes and phylum Firmicutes showed a positive correlation with oxygen and pH but negative with salinity. The phylum Cyanobacteria were less influenced by the environmental variables. The bacterial community composition of Rambla Salada was also studied by dilution-to-extinction technique. Using this method, 354 microorganisms were isolated. The 16S sequences of 61 isolates showed that the diversity was very different to those obtained by DGGE and with those obtained previously by using classic culture techniques. The taxa identified by dilution-to-extinction were Proteobacteria (81.92%), Firmicutes (11.30%), Actinobacteria (4.52%), and Bacteroidetes (2.26%) phyla with Gammaproteobacteria as predominant class (65.7%). The main genera were: Marinobacter (38.85%), Halomonas (20.2%), and Bacillus (11.2%). Nine of the 61 identified bacteria showed less than 97% sequence identity with validly described species and may well represent new taxa. The number of bacteria in different samples, locations, and seasons were calculated by CARD-FISH, ranging from 54.3 to 78.9% of the total prokaryotic population. In conclusion, the dilution-to-extinction technique could be a complementary method to classical culture based method, but neither gets to cultivate the major taxa detected by DGGE. The bacterial community was influenced significantly by the physico-chemical parameters (specially the salinity and oxygen), the location and the season of sampling.
Collapse
Affiliation(s)
- Nahid Oueriaghli
- Microbial Exopolysacharide Research Group, Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - David J. Castro
- Microbial Exopolysacharide Research Group, Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Inmaculada Llamas
- Microbial Exopolysacharide Research Group, Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Victoria Béjar
- Microbial Exopolysacharide Research Group, Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| | - Fernando Martínez-Checa
- Microbial Exopolysacharide Research Group, Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
39
|
Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1351-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
40
|
Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics (Basel) 2018; 7:E44. [PMID: 29789481 PMCID: PMC6022970 DOI: 10.3390/antibiotics7020044] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Actinomycetes have been proven to be an excellent source of secondary metabolites for more than half a century. Exhibiting various bioactivities, they provide valuable approved drugs in clinical use. Most microorganisms are still untapped in terms of their capacity to produce secondary metabolites, since only a small fraction can be cultured in the laboratory. Thus, improving cultivation techniques to extend the range of secondary metabolite producers accessible under laboratory conditions is an important first step in prospecting underexplored sources for the isolation of novel antibiotics. Currently uncultured actinobacteria can be made available by bioprospecting extreme or simply habitats other than soil. Furthermore, bioinformatic analysis of genomes reveals most producers to harbour many more biosynthetic gene clusters than compounds identified from any single strain, which translates into a silent biosynthetic potential of the microbial world for the production of yet unknown natural products. This review covers discovery strategies and innovative methods recently employed to access the untapped reservoir of natural products. The focus is the order of actinomycetes although most approaches are similarly applicable to other microbes. Advanced cultivation methods, genomics- and metagenomics-based approaches, as well as modern metabolomics-inspired methods are highlighted to emphasise the interplay of different disciplines to improve access to novel natural products.
Collapse
Affiliation(s)
- Joachim J Hug
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Chantal D Bader
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Maja Remškar
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Katarina Cirnski
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
41
|
Takahashi M, Aoyagi H. Effect of intermittent opening of breathable culture plugs and aeration of headspace on the structure of microbial communities in shake-flask culture. J Biosci Bioeng 2018; 126:96-101. [PMID: 29501524 DOI: 10.1016/j.jbiosc.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 11/27/2022]
Abstract
In this study, we found that opening breathable culture plugs for 30 s during periodic and aseptic sampling affects the community structure of cultured soil microbes. Similar effects were observed using an automatic aeration flask system that mimics aseptic opening of the breathable culture plug during sampling, but without interruption in shaking. Thus, the observed changes in the microbial consortia appear to be due exclusively to the intermittent ventilation of the flask headspace. To elucidate the mechanism driving this phenomenon, we monitored CO2 and O2 concentrations in both headspace and culture broth using the new system termed as circulation direct monitoring and sampling system. The data show that the CO2 concentration in the culture broth temporarily decreased with the CO2 concentration in the headspace, strongly suggesting that the effect of intermittent ventilation of the headspace on the microbial consortia depends on CO2. Importantly, the data also imply that environmental variables during shake flask culture, especially CO2 concentration, is important for screening aerobic microorganisms.
Collapse
Affiliation(s)
- Masato Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hideki Aoyagi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
42
|
Meng S, Wang D, Liu X, Zhang Y, Guo L, Lin Z, Jia F, Pavlovic M. Rapid Detection of Lactobacillus Brevis in Beer Production by the Combination of Microcolony and Fluorescence in Situ Hybridization (FISH). JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2012-0410-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Si Meng
- College of Food Science and Technology of Huazhong Agricultural University, Wuhan 430070, China
| | - Deliang Wang
- China National Institute of Food and Fermentation Industries, Beijing 100027
| | - Xiaoyu Liu
- College of Food Science and Technology of Huazhong Agricultural University, Wuhan
| | - Yanqing Zhang
- China National Institute of Food and Fermentation Industries, Beijing
| | - Liyun Guo
- Technical Research Center of Beijing Yanjing Brewery Group Co. Ltd, Beijing 101300
| | - Zhiping Lin
- Technical Research Center of Beijing Yanjing Brewery Group Co. Ltd, Beijing 101300
| | - Fengchao Jia
- Technical Research Center of Beijing Yanjing Brewery Group Co. Ltd, Beijing 101300
| | - Martin Pavlovic
- Slovenian Institute of Hop Research and Brewing, Zalskega tabora 2, Zalec 3310, Slovenia
| |
Collapse
|
43
|
Affiliation(s)
- Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Birte Abt
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| |
Collapse
|
44
|
Pulschen AA, Bendia AG, Fricker AD, Pellizari VH, Galante D, Rodrigues F. Isolation of Uncultured Bacteria from Antarctica Using Long Incubation Periods and Low Nutritional Media. Front Microbiol 2017; 8:1346. [PMID: 28769908 PMCID: PMC5509766 DOI: 10.3389/fmicb.2017.01346] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
Uncultured microorganisms comprise most of the microbial diversity existing on our planet. Despite advances in environmental sequencing and single-cell genomics, in-depth studies about bacterial metabolism and screening of novel bioproducts can only be assessed by culturing microbes in the laboratory. Here we report uncultured, or recalcitrant, microorganisms from an Antarctic soil sample, using relatively simple methods: oligotrophic media, extended incubation periods, observation under stereo microscopy, and selection of slow-growing bacteria. We managed to isolate several rare microorganisms belonging to infrequently isolated or recently described genera, for example Lapillicoccus, Flavitalea, Quadrisphaera, Motilibacter, and Polymorphobacter. Additionally, we obtained isolates presenting 16S rRNA sequence similarity ranging from 92.08 to 94.46% with any other known cultured species, including two distinct isolates from the class Thermoleophilia, that although common in Antarctic soils (as identified by metagenomics), was never reported to be isolated from such samples. Our data indicates that simple methods are still useful for cultivating recalcitrant microorganisms, even when dealing with samples from extreme environments.
Collapse
Affiliation(s)
| | - Amanda G Bendia
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São PauloButantã, Brazil
| | | | - Vivian H Pellizari
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São PauloButantã, Brazil
| | - Douglas Galante
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e MateriaisCampinas, Brazil
| | - Fabio Rodrigues
- Departamento de Química Fundamental, Instituto de Química, Universidade de São PauloButantã, Brazil
| |
Collapse
|
45
|
Ben Said S, Or D. Synthetic Microbial Ecology: Engineering Habitats for Modular Consortia. Front Microbiol 2017; 8:1125. [PMID: 28670307 PMCID: PMC5472676 DOI: 10.3389/fmicb.2017.01125] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/01/2017] [Indexed: 11/25/2022] Open
Abstract
The metabolic diversity present in microbial communities enables cooperation toward accomplishing more complex tasks than possible by a single organism. Members of a consortium communicate by exchanging metabolites or signals that allow them to coordinate their activity through division of labor. In contrast with monocultures, evidence suggests that microbial consortia self-organize to form spatial patterns, such as observed in biofilms or in soil aggregates, that enable them to respond to gradient, to improve resource interception and to exchange metabolites more effectively. Current biotechnological applications of microorganisms remain rudimentary, often relying on genetically engineered monocultures (e.g., pharmaceuticals) or mixed-cultures of partially known composition (e.g., wastewater treatment), yet the vast potential of “microbial ecological power” observed in most natural environments, remains largely underused. In line with the Unified Microbiome Initiative (UMI) which aims to “discover and advance tools to understand and harness the capabilities of Earth's microbial ecosystems,” we propose in this concept paper to capitalize on ecological insights into the spatial and modular design of interlinked microbial consortia that would overcome limitations of natural systems and attempt to optimize the functionality of the members and the performance of the engineered consortium. The topology of the spatial connections linking the various members and the regulated fluxes of media between those modules, while representing a major engineering challenge, would allow the microbial species to interact. The modularity of such spatially linked microbial consortia (SLMC) could facilitate the design of scalable bioprocesses that can be incorporated as parts of a larger biochemical network. By reducing the need for a compatible growth environment for all species simultaneously, SLMC will dramatically expand the range of possible combinations of microorganisms and their potential applications. We briefly review existing tools to engineer such assemblies and optimize potential benefits resulting from the collective activity of their members. Prospective microbial consortia and proposed spatial configurations will be illustrated and preliminary calculations highlighting the advantages of SLMC over co-cultures will be presented, followed by a discussion of challenges and opportunities for moving forward with some designs.
Collapse
Affiliation(s)
- Sami Ben Said
- Department of Environmental Systems Science, Soil and Terrestrial Environmental Physics, ETH ZürichZürich, Switzerland
| | - Dani Or
- Department of Environmental Systems Science, Soil and Terrestrial Environmental Physics, ETH ZürichZürich, Switzerland
| |
Collapse
|
46
|
Pudasaini S, Wilson J, Ji M, van Dorst J, Snape I, Palmer AS, Burns BP, Ferrari BC. Microbial Diversity of Browning Peninsula, Eastern Antarctica Revealed Using Molecular and Cultivation Methods. Front Microbiol 2017; 8:591. [PMID: 28439263 PMCID: PMC5383709 DOI: 10.3389/fmicb.2017.00591] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/22/2017] [Indexed: 01/07/2023] Open
Abstract
Browning Peninsula is an ice-free polar desert situated in the Windmill Islands, Eastern Antarctica. The entire site is described as a barren landscape, comprised of frost boils with soils dominated by microbial life. In this study, we explored the microbial diversity and edaphic drivers of community structure across this site using traditional cultivation methods, a novel approach the soil substrate membrane system (SSMS), and culture-independent 454-tag pyrosequencing. The measured soil environmental and microphysical factors of chlorine, phosphate, aspect and elevation were found to be significant drivers of the bacterial community, while none of the soil parameters analyzed were significantly correlated to the fungal community. Overall, Browning Peninsula soil harbored a distinctive microbial community in comparison to other Antarctic soils comprised of a unique bacterial diversity and extremely limited fungal diversity. Tag pyrosequencing data revealed the bacterial community to be dominated by Actinobacteria (36%), followed by Chloroflexi (18%), Cyanobacteria (14%), and Proteobacteria (10%). For fungi, Ascomycota (97%) dominated the soil microbiome, followed by Basidiomycota. As expected the diversity recovered from culture-based techniques was lower than that detected using tag sequencing. However, in the SSMS enrichments, that mimic the natural conditions for cultivating oligophilic “k-selected” bacteria, a larger proportion of rare bacterial taxa (15%), such as Blastococcus, Devosia, Herbaspirillum, Propionibacterium and Methylocella and fungal (11%) taxa, such as Nigrospora, Exophiala, Hortaea, and Penidiella were recovered at the genus level. At phylum level, a comparison of OTU's showed that the SSMS shared 21% of Acidobacteria, 11% of Actinobacteria and 10% of Proteobacteria OTU's with soil. For fungi, the shared OTUs was 4% (Basidiomycota) and <0.5% (Ascomycota). This was the first known attempt to culture microfungi using the SSMS which resulted in an increase in diversity from 14 to 57 microfungi OTUs compared to standard cultivation. Furthermore, the SSMS offers the opportunity to retrieve a greater diversity of bacterial and fungal taxa for future exploitation.
Collapse
Affiliation(s)
- Sarita Pudasaini
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - John Wilson
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Mukan Ji
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Josie van Dorst
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Ian Snape
- Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and CommunitiesKingston, TAS, Australia
| | - Anne S Palmer
- Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and CommunitiesKingston, TAS, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South WalesKensington, NSW, Australia
| |
Collapse
|
47
|
Califano G, Castanho S, Soares F, Ribeiro L, Cox CJ, Mata L, Costa R. Molecular Taxonomic Profiling of Bacterial Communities in a Gilthead Seabream ( Sparus aurata) Hatchery. Front Microbiol 2017; 8:204. [PMID: 28261166 PMCID: PMC5306143 DOI: 10.3389/fmicb.2017.00204] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/27/2017] [Indexed: 12/20/2022] Open
Abstract
As wild fish stocks decline worldwide, land-based fish rearing is likely to be of increasing relevance to feeding future human generations. Little is known about the structure and role of microbial communities in fish aquaculture, particularly at larval developmental stages where the fish microbiome develops and host animals are most susceptible to disease. We employed next-generation sequencing (NGS) of 16S rRNA gene reads amplified from total community DNA to reveal the structure of bacterial communities in a gilthead seabream (Sparus aurata) larviculture system. Early- (2 days after hatching) and late-stage (34 days after hatching) fish larvae presented remarkably divergent bacterial consortia, with the genera Pseudoalteromonas, Marinomonas, Acinetobacter, and Acidocella (besides several unclassified Alphaproteobacteria) dominating the former, and Actinobacillus, Streptococcus, Massilia, Paracoccus, and Pseudomonas being prevalent in the latter. A significant reduction in rearing-water bacterial diversity was observed during the larviculture trial, characterized by higher abundance of the Cryomorphaceae family (Bacteroidetes), known to populate microniches with high organic load, in late-stage rearing water in comparison with early-stage rearing-water. Furthermore, we observed the recruitment, into host tissues, of several bacterial phylotypes-including putative pathogens as well as mutualists-that were detected at negligible densities in rearing-water or in the live feed (i.e., rotifers and artemia). These results suggest that, besides host-driven selective forces, both the live feed and the surrounding rearing environment contribute to shaping the microbiome of farmed gilthead sea-bream larvae, and that a differential establishment of host-associated bacteria takes place during larval development.
Collapse
Affiliation(s)
- Gianmaria Califano
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of AlgarveFaro, Portugal; Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-Universität JenaJena, Germany
| | - Sara Castanho
- Portuguese Institute for the Ocean and Atmosphere, Aquaculture Research Station Olhão, Portugal
| | - Florbela Soares
- Portuguese Institute for the Ocean and Atmosphere, Aquaculture Research Station Olhão, Portugal
| | - Laura Ribeiro
- Portuguese Institute for the Ocean and Atmosphere, Aquaculture Research Station Olhão, Portugal
| | - Cymon J Cox
- Plant Systematics and Bioinformatics, Centre of Marine Sciences, University of Algarve Faro, Portugal
| | - Leonardo Mata
- MACRO-the Centre for Macroalgal Resources and Biotechnology, James Cook University Townsville, QLD, Australia
| | - Rodrigo Costa
- Microbial Ecology and Evolution Research Group, Centre of Marine Sciences, University of AlgarveFaro, Portugal; Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de LisboaLisbon, Portugal
| |
Collapse
|
48
|
Novel Culturing Techniques Select for Heterotrophs and Hydrocarbon Degraders in a Subantarctic Soil. Sci Rep 2016; 6:36724. [PMID: 27827405 PMCID: PMC5101477 DOI: 10.1038/srep36724] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/19/2016] [Indexed: 11/08/2022] Open
Abstract
The soil substrate membrane system (SSMS) is a novel micro-culturing technique targeted at terrestrial soil systems. We applied the SSMS to pristine and diesel fuel spiked polar soils, along with traditional solid media culturing and culture independent 454 tag pyrosequencing to elucidate the effects of diesel fuel on the soil community. The SSMS enriched for up to 76% of the total soil diversity within high diesel fuel concentration soils, in contrast to only 26% of the total diversity for the control soils. The majority of organisms originally recovered with the SSMS were lost in the transfer to solid media, with all 300 isolates belonging to Proteobacteria, Firmicutes, Actinobacteria or Bacteroidetes, the four phyla most frequently associated with soil culturing efforts. The soils spiked with high diesel fuel concentrations exhibited reduced species richness, diversity and a selection towards heterotrophs and hydrocarbon degraders in comparison to the control soils. Based on these observations and the unusually high level of overlap in microbial taxa observed between methods, we suggest the SSMS holds potential to exploit hydrocarbon degraders and other targets within simplified bacterial systems, yet is inadequate for soil ecology and ecotoxicology studies where identifying rare oligotrophic species is paramount.
Collapse
|
49
|
He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MSM, Hu B. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep 2016; 6:32241. [PMID: 27582299 PMCID: PMC5007514 DOI: 10.1038/srep32241] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/02/2016] [Indexed: 12/03/2022] Open
Abstract
The NC10 phylum is a candidate phylum of prokaryotes and is considered important in biogeochemical cycles and evolutionary history. NC10 members are as-yet-uncultured and are difficult to enrich, and our knowledge regarding this phylum is largely limited to the first species ‘Candidatus Methylomirabilis oxyfera’ (M. oxyfera). Here, we enriched NC10 members from paddy soil and obtained a novel species of the NC10 phylum that mediates the anaerobic oxidation of methane (AOM) coupled to nitrite reduction. By comparing the new 16S rRNA gene sequences with those already in the database, this new species was found to be widely distributed in various habitats in China. Therefore, we tentatively named it ‘Candidatus Methylomirabilis sinica’ (M. sinica). Cells of M. sinica are roughly coccus-shaped (0.7–1.2 μm), distinct from M. oxyfera (rod-shaped; 0.25–0.5 × 0.8–1.1 μm). Notably, microscopic inspections revealed that M. sinica grew in honeycomb-shaped microcolonies, which was the first discovery of microcolony of the NC10 phylum. This finding opens the possibility to isolate NC10 members using microcolony-dependent isolation strategies.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chaoyang Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Sarhan MS, Mourad EF, Hamza MA, Youssef HH, Scherwinski AC, El-Tahan M, Fayez M, Ruppel S, Hegazi NA. Plant powder teabags: a novel and practical approach to resolve culturability and diversity of rhizobacteria. PHYSIOLOGIA PLANTARUM 2016; 157:403-413. [PMID: 27178359 DOI: 10.1111/ppl.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
We have developed teabags packed with dehydrated plant powders, without any supplements, for preparation of plant infusions necessary to develop media for culturing rhizobacteria. These bacteria are efficiently cultivated on such plant teabag culture media, with better progressive in situ recoverability compared to standard chemically synthetic culture media. Combining various plant-based culture media and incubation conditions enabled us to resolve unique denaturing gradient gel electrophoresis (DGGE) bands that were not resolved by tested standard culture media. Based on polymerase chain reaction PCR-DGGE of 16S rDNA fingerprints and sequencing, the plant teabag culture media supported higher diversity and significant increases in the richness of endo-rhizobacteria, namely Gammaproteobacteria (Enterobacteriaceae) and predominantly Alphaproteobacteria (Rhizobiaceae). This culminated in greater retrieval of the rhizobacteria taxa associated with the plant roots. We conclude that the plant teabag culture medium by itself, without any nutritional supplements, is sufficient and efficient for recovering and mirroring the complex and diverse communities of rhizobacteria. Our message to fellow microbial ecologists is: simply dehydrate your plant canopy, teabag it and soak it to prepare your culture media, with no need for any additional supplementary nutrients.
Collapse
Affiliation(s)
- Mohamed S Sarhan
- Environmental Studies and Research Unit (ESRU), Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Elhussein F Mourad
- Environmental Studies and Research Unit (ESRU), Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mervat A Hamza
- Environmental Studies and Research Unit (ESRU), Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hanan H Youssef
- Environmental Studies and Research Unit (ESRU), Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ann-Christin Scherwinski
- Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V. (IGZ), Grossbeeren, Germany
| | - Mahmoud El-Tahan
- Regional Center for Food and Feed (RCFF), Agricultural Research Center (ARC), Giza, Egypt
| | - Mohamed Fayez
- Environmental Studies and Research Unit (ESRU), Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Silke Ruppel
- Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V. (IGZ), Grossbeeren, Germany
| | - Nabil A Hegazi
- Environmental Studies and Research Unit (ESRU), Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|