1
|
Zehnle H, Otersen C, Benito Merino D, Wegener G. Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Front Microbiol 2023; 14:1279865. [PMID: 37840718 PMCID: PMC10570749 DOI: 10.3389/fmicb.2023.1279865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Unsubstituted aromatic hydrocarbons (UAHs) are recalcitrant molecules abundant in crude oil, which is accumulated in subsurface reservoirs and occasionally enters the marine environment through natural seepage or human-caused spillage. The challenging anaerobic degradation of UAHs by microorganisms, in particular under thermophilic conditions, is poorly understood. Here, we established benzene- and naphthalene-degrading cultures under sulfate-reducing conditions at 50°C and 70°C from Guaymas Basin sediments. We investigated the microorganisms in the enrichment cultures and their potential for UAH oxidation through short-read metagenome sequencing and analysis. Dependent on the combination of UAH and temperature, different microorganisms became enriched. A Thermoplasmatota archaeon was abundant in the benzene-degrading culture at 50°C, but catabolic pathways remained elusive, because the archaeon lacked most known genes for benzene degradation. Two novel species of Desulfatiglandales bacteria were strongly enriched in the benzene-degrading culture at 70°C and in the naphthalene-degrading culture at 50°C. Both bacteria encode almost complete pathways for UAH degradation and for downstream degradation. They likely activate benzene via methylation, and naphthalene via direct carboxylation, respectively. The two species constitute the first thermophilic UAH degraders of the Desulfatiglandales. In the naphthalene-degrading culture incubated at 70°C, a Dehalococcoidia bacterium became enriched, which encoded a partial pathway for UAH degradation. Comparison of enriched bacteria with related genomes from environmental samples indicated that pathways for benzene degradation are widely distributed, while thermophily and capacity for naphthalene activation are rare. Our study highlights the capacities of uncultured thermophilic microbes for UAH degradation in petroleum reservoirs and in contaminated environments.
Collapse
Affiliation(s)
- Hanna Zehnle
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Carolin Otersen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - David Benito Merino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
2
|
Phylogenomic Analysis of Metagenome-Assembled Genomes Deciphered Novel Acetogenic Nitrogen-Fixing Bathyarchaeota from Hot Spring Sediments. Microbiol Spectr 2022; 10:e0035222. [PMID: 35647693 PMCID: PMC9241837 DOI: 10.1128/spectrum.00352-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes the phylogenomic analysis and metabolic insights of metagenome-assembled genomes (MAGs) retrieved from hot spring sediment samples. The metagenome-assembled sequences recovered three near-complete genomes belonging to the archaeal phylum. Analysis of genome-wide core genes and 16S rRNA-based phylogeny placed the ILS200 and ILS300 genomes within the uncultivated and largely understudied bathyarchaeal phylum, whereas ILS100 represented the phylum Thaumarchaeota. The average nucleotide identity (ANI) of the bin ILS100 was 76% with Nitrososphaeria_archaeon_isolate_SpSt-1069. However, the bins ILS200 and ILS300 showed ANI values of 75% and 70% with Candidatus_Bathyarchaeota_archaeon_isolate_DRTY-6_2_bin_115 and Candidatus_Bathyarchaeota_archaeon_BA1_ba1_01, respectively. The genomic potential of Bathyarchaeota bins ILS200 and ILS300 showed genes necessary for the Wood-Ljungdahl pathway, and the gene encoding the methyl coenzyme M reductase (mcr) complex essential for methanogenesis was absent. The metabolic potential of the assembled genomes included genes involved in nitrogen assimilation, including nitrogenase and the genes necessary for the urea cycle. The presence of these genes suggested the metabolic potential of Bathyarchaeota to fix nitrogen under extreme environments. In addition, the ILS200 and ILS300 genomes carried genes involved in the tricarboxylic acid (TCA) cycle, glycolysis, and degradation of organic carbons. Finally, we conclude that the reconstructed Bathyarchaeota bins are autotrophic acetogens and organo-heterotrophs. IMPORTANCE We describe the Bathyarchaeota bins that are likely to be acetogens with a wide range of metabolic potential. These bins did not exhibit methanogenic machinery, suggesting methane production may not occur by all subgroup lineages of Bathyarchaeota. Phylogenetic analysis support that both ILS200 and ILS300 belonged to the Bathyarchaeota. The discovery of new bathyarchaeotal MAGs provides additional knowledge for understanding global carbon and nitrogen metabolism under extreme conditions.
Collapse
|
3
|
Louie TS, Pavlik EJ, Häggblom MM. Genome analysis of Thauera chlorobenzoica strain 3CB-1 T, a halobenzoate-degrading bacterium isolated from aquatic sediment. Arch Microbiol 2021; 203:5095-5104. [PMID: 34302506 DOI: 10.1007/s00203-021-02497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/11/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022]
Abstract
The genus Thauera is characterized by several species and strains with the ability to degrade a variety of aromatic compounds under denitrifying conditions. Thauera chlorobenzoica strain 3CB-1T, isolated from river sediment, has the unique ability to degrade a variety of halobenzoates, such as 3-chlorobenzoate, 3-bromobenzoate, 3-iodobenzoate, and 2-fluorobenzoate, coupled to nitrate reduction. The genome of T. chlorobenzoica strain 3CB-1T has been sequenced, allowing us to gain insights into the molecular basis for the anaerobic degradation of (halo)aromatic compounds. The 3.77-Mb genome contains 3584 genes; 3514 are protein-coding genes of which 198 are likely associated with degradation of aromatic compounds. It has a G + C content of 67.25%. The genome contains two sets of CoA reductase gene clusters, both belonging to class I benzoate-CoA reductases (BCRs). The genes in one of the two clusters differ from the typical BCRs, with low sequence identities, suggesting they might have different substrate specificities. The genome also contains four benzoate-CoA ligase genes. One likely encodes a 3-hydroxybenzoate-CoA ligase, and two others group together with benzoate-CoA ligases from Thauera aromatica. The fourth has a 77% identity to the mbdA gene from Azoarcus sp. CIB, is absent in the T. aromatica genome, and potentially encodes a halobenzoate-CoA ligase. 3-Chlorobenzoate is reductively dechlorinated in T. chlorobenzoica by a benzoyl-CoA reductase.
Collapse
Affiliation(s)
- Tiffany S Louie
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Elizabeth Jane Pavlik
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
4
|
Weyrauch P, Heker I, Zaytsev AV, von Hagen CA, Arnold ME, Golding BT, Meckenstock RU. The 5,6,7,8-Tetrahydro-2-Naphthoyl-Coenzyme A Reductase Reaction in the Anaerobic Degradation of Naphthalene and Identification of Downstream Metabolites. Appl Environ Microbiol 2020; 86:e00996-20. [PMID: 32444470 PMCID: PMC7376553 DOI: 10.1128/aem.00996-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
Anaerobic degradation of polycyclic aromatic hydrocarbons has been investigated mostly with naphthalene as a model compound. Naphthalene degradation by sulfate-reducing bacteria proceeds via carboxylation to 2-naphthoic acid, formation of a coenzyme A thioester, and subsequent reduction to 5,6,7,8-tetrahydro-2-naphthoyl-coenzyme A (THNCoA), which is further reduced to hexahydro-2-naphthoyl-CoA (HHNCoA) by tetrahydronaphthoyl-CoA reductase (THNCoA reductase), an enzyme similar to class I benzoyl-CoA reductases. When analyzing THNCoA reductase assays with crude cell extracts and NADH as electron donor via liquid chromatography-mass spectrometry (LC-MS), scanning for putative metabolites, we found that small amounts of the product of an HHNCoA hydratase were formed in the assays, but the downstream conversion by an NAD+-dependent β-hydroxyacyl-CoA dehydrogenase was prevented by the excess of NADH in those assays. Experiments with alternative electron donors indicated that 2-oxoglutarate can serve as an indirect electron donor for the THNCoA-reducing system via a 2-oxoglutarate:ferredoxin oxidoreductase. With 2-oxoglutarate as electron donor, THNCoA was completely converted and further metabolites resulting from subsequent β-oxidation-like reactions and hydrolytic ring cleavage were detected. These metabolites indicate a downstream pathway with water addition to HHNCoA and ring fission via a hydrolase acting on a β'-hydroxy-β-oxo-decahydro-2-naphthoyl-CoA intermediate. Formation of the downstream intermediate cis-2-carboxycyclohexylacetyl-CoA, which is the substrate for the previously described lower degradation pathway leading to the central metabolism, completes the anaerobic degradation pathway of naphthalene.IMPORTANCE Anaerobic degradation of polycyclic aromatic hydrocarbons is poorly investigated despite its significance in anoxic sediments. Using alternative electron donors for the 5,6,7,8-tetrahydro-2-naphthoyl-CoA reductase reaction, we observed intermediary metabolites of anaerobic naphthalene degradation via in vitro enzyme assays with cell extracts of anaerobic naphthalene degraders. The identified metabolites provide evidence that ring reduction terminates at the stage of hexahydro-2-naphthoyl-CoA and a sequence of β-oxidation-like degradation reactions starts with a hydratase acting on this intermediate. The final product of this reaction sequence was identified as cis-2-carboxycyclohexylacetyl-CoA, a compound for which a further downstream degradation pathway has recently been published (P. Weyrauch, A. V. Zaytsev, S. Stephan, L. Kocks, et al., Environ Microbiol 19:2819-2830, 2017, https://doi.org/10.1111/1462-2920.13806). Our study reveals the first ring-cleaving reaction in the anaerobic naphthalene degradation pathway. It closes the gap between the reduction of the first ring of 2-naphthoyl-CoA by 2-napthoyl-CoA reductase and the lower degradation pathway starting from cis-2-carboxycyclohexylacetyl-CoA, where the second ring cleavage takes place.
Collapse
Affiliation(s)
- Philip Weyrauch
- Biofilm Centre, University of Duisburg-Essen, Essen, Germany
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Isabelle Heker
- Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Andrey V Zaytsev
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Meike E Arnold
- Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Bernard T Golding
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
5
|
Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. ISME JOURNAL 2020; 14:1345-1358. [PMID: 32066876 DOI: 10.1038/s41396-020-0615-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Numerous archaeal lineages are known to inhabit marine subsurface sediments, although their distributions, metabolic capacities, and interspecies interactions are still not well understood. Abundant and diverse archaea were recently reported in Costa Rica (CR) margin subseafloor sediments recovered during IODP Expedition 334. Here, we recover metagenome-assembled genomes (MAGs) of archaea from the CR margin and compare them to their relatives from shallower settings. We describe 31 MAGs of six different archaeal lineages (Lokiarchaeota, Thorarchaeota, Heimdallarchaeota, Bathyarcheota, Thermoplasmatales, and Hadesarchaea) and thoroughly analyze representative MAGs from the phyla Lokiarchaeota and Bathyarchaeota. Our analysis suggests the potential capability of Lokiarchaeota members to anaerobically degrade aliphatic and aromatic hydrocarbons. We show it is genetically possible and energetically feasible for Lokiarchaeota to degrade benzoate if they associate with organisms using nitrate, nitrite, and sulfite as electron acceptors, which suggests a possibility of syntrophic relationships between Lokiarchaeota and nitrite and sulfite reducing bacteria. The novel Bathyarchaeota lineage possesses an incomplete methanogenesis pathway lacking the methyl coenzyme M reductase complex and encodes a noncanonical acetogenic pathway potentially coupling methylotrophy to acetogenesis via the methyl branch of Wood-Ljungdahl pathway. These metabolic characteristics suggest the potential of this Bathyarchaeota lineage to be a transition between methanogenic and acetogenic Bathyarchaeota lineages. This work expands our knowledge about the metabolic functional repertoire of marine benthic archaea.
Collapse
|
6
|
Sousa STPD, Cabral L, Lacerda-Júnior GV, Noronha MF, Ottoni JR, Sartoratto A, Oliveira VMD. Exploring the genetic potential of a fosmid metagenomic library from an oil-impacted mangrove sediment for metabolism of aromatic compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109974. [PMID: 31761556 DOI: 10.1016/j.ecoenv.2019.109974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/10/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Aromatic hydrocarbons (AH) are widely distributed in nature, and many of them have been reported as relevant environmental pollutants and valuable carbon sources for different microorganisms. In this work, high-throughput sequencing of a metagenomic fosmid library was carried out to evaluate the functional and taxonomic diversity of genes involved in aromatic compounds degradation in oil-impacted mangrove sediments. In addition, activity-based approach and gas chromatography were used to assess the degradation potential of fosmid clones. Results indicated that AH degradation genes, such as monooxygenases and dioxygenases, were grouped into the following categories: anaerobic degradation of aromatic compounds (20.34%), metabolism of central aromatic intermediates (35.40%) and peripheral pathways for catabolism of aromatic compounds (22.56%). Taxonomic affiliation of genes related to aromatic compounds metabolism revealed the prevalence of the classes Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria. Aromatic hydrocarbons (phenol, naphthalene, phenanthrene, pyrene and benzopyrene) were used as the only carbon source to screen clones with degradation potential. Of the 2500 clones tested, 48 showed some respiratory activity in at least one of the five carbon sources used. The hydrocarbon degradation ability of the top ten fosmid clones was confirmed by GC-MS. Further, annotation of assembled metagenomic fragments revealed ORFs corresponding to proteins and functional domains directly or indirectly involved in the aromatic compound metabolism, such as catechol 2,3-dioxygenase and ferredoxin oxidoreductase. Finally, these data suggest that the indigenous mangrove sediment microbiota developed essential mechanisms towards ecosystem remediation of petroleum hydrocarbon impact.
Collapse
Affiliation(s)
- Sanderson Tarciso Pereira de Sousa
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Gileno Vieira Lacerda-Júnior
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Melline Fontes Noronha
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Júlia Ronzella Ottoni
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Adilson Sartoratto
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Valéria Maia de Oliveira
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
7
|
Liu YF, Qi ZZ, Shou LB, Liu JF, Yang SZ, Gu JD, Mu BZ. Anaerobic hydrocarbon degradation in candidate phylum 'Atribacteria' (JS1) inferred from genomics. ISME JOURNAL 2019; 13:2377-2390. [PMID: 31171858 PMCID: PMC6776118 DOI: 10.1038/s41396-019-0448-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/11/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023]
Abstract
The hydrocarbon-enriched environments, such as oil reservoirs and oil sands tailings ponds, contain a broad diversity of uncultured microorganisms. Despite being one of the few prokaryotic lineages that is consistently detected in both production water from oil reservoirs and stable hydrocarbon-degrading enrichment cultures originated from oil reservoirs, the physiological and ecological roles of candidate phylum “Atribacteria” (OP9/JS1) are not known in deep subsurface environments. Here, we report the expanded metabolic capabilities of Atribacteria as inferred from genomic reconstructions. Seventeen newly assembled medium-to-high-quality metagenomic assembly genomes (MAGs) were obtained either from co-assembly of two metagenomes from an Alaska North Slope oil reservoir or from previous studies of metagenomes coming from different environments. These MAGs comprise three currently known genus-level lineages and four novel genus-level groups of OP9 and JS1, which expands the genomic coverage of the major lineages within the candidate phylum Atribacteria. Genes involved in anaerobic hydrocarbon degradation were found in seven MAGs associated with hydrocarbon-enriched environments, and suggest that some Atribacteria could ferment short-chain n-alkanes into fatty acid while conserving energy. This study expands predicted metabolic capabilities of Atribacteria (JS1) and suggests that they are mediating a key role in subsurface carbon cycling.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Zhen-Zhen Qi
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Li-Bin Shou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P.R. China. .,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 200237, Shanghai, P.R. China.
| |
Collapse
|
8
|
Sperfeld M, Rauschenbach C, Diekert G, Studenik S. Microbial community of a gasworks aquifer and identification of nitrate-reducing Azoarcus and Georgfuchsia as key players in BTEX degradation. WATER RESEARCH 2018; 132:146-157. [PMID: 29324294 DOI: 10.1016/j.watres.2017.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
We analyzed a coal tar polluted aquifer of a former gasworks site in Thuringia (Germany) for the presence and function of aromatic compound-degrading bacteria (ACDB) by 16S rRNA Illumina sequencing, bamA clone library sequencing and cultivation attempts. The relative abundance of ACDB was highest close to the source of contamination. Up to 44% of total 16S rRNA sequences were affiliated to ACDB including genera such as Azoarcus, Georgfuchsia, Rhodoferax, Sulfuritalea (all Betaproteobacteria) and Pelotomaculum (Firmicutes). Sequencing of bamA, a functional gene marker for the anaerobic benzoyl-CoA pathway, allowed further insights into electron-accepting processes in the aquifer: bamA sequences of mainly nitrate-reducing Betaproteobacteria were abundant in all groundwater samples, whereas an additional sulfate-reducing and/or fermenting microbial community (Deltaproteobacteria, Firmicutes) was restricted to a highly contaminated, sulfate-depleted groundwater sampling well. By conducting growth experiments with groundwater as inoculum and nitrate as electron acceptor, organisms related to Azoarcus spp. were identified as key players in the degradation of toluene and ethylbenzene. An organism highly related to Georgfuchsia toluolica G5G6 was enriched with p-xylene, a particularly recalcitrant compound. The anaerobic degradation of p-xylene requires a metabolic trait that was not described for members of the genus Georgfuchsia before. In line with this, we were able to identify a putative 4-methylbenzoyl-CoA reductase gene cluster in the respective enrichment culture, which is possibly involved in the anaerobic degradation of p-xylene.
Collapse
Affiliation(s)
- Martin Sperfeld
- Institute of Microbiology, Friedrich Schiller University Jena, Department of Applied and Ecological Microbiology, Philosophenweg 12, 07743 Jena, Germany
| | | | - Gabriele Diekert
- Institute of Microbiology, Friedrich Schiller University Jena, Department of Applied and Ecological Microbiology, Philosophenweg 12, 07743 Jena, Germany
| | - Sandra Studenik
- Institute of Microbiology, Friedrich Schiller University Jena, Department of Applied and Ecological Microbiology, Philosophenweg 12, 07743 Jena, Germany.
| |
Collapse
|
9
|
Shih CJ, Chen YL, Wang CH, Wei STS, Lin IT, Ismail WA, Chiang YR. Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments. Front Microbiol 2017; 8:1520. [PMID: 28848528 PMCID: PMC5554518 DOI: 10.3389/fmicb.2017.01520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/28/2017] [Indexed: 11/13/2022] Open
Abstract
Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment samples were spiked with testosterone (1 mM) and individual electron acceptors (10 mM), including nitrate, Fe3+, and sulfate. The analysis of androgen metabolites indicated that testosterone biodegradation under denitrifying conditions proceeds through the 2,3-seco pathway, whereas testosterone biodegradation under iron-reducing conditions may proceed through an unidentified alternative pathway. Metagenomic analysis and PCR-based functional assays suggested that Thauera spp. were the major testosterone degraders in estuarine sediment samples incubated with testosterone and nitrate. Thauera sp. strain GDN1, a testosterone-degrading betaproteobacterium, was isolated from the denitrifying sediment sample. This strain tolerates a broad range of salinity (0-30 ppt). Although testosterone biodegradation did not occur under sulfate-reducing conditions, we observed the anaerobic biotransformation of testosterone to estrogens in some testosterone-spiked sediment samples. This is unprecedented since biotransformation of androgens to estrogens is known to occur only under oxic conditions. Our metagenomic analysis suggested that Clostridium spp. might play a role in this anaerobic biotransformation. These results expand our understanding of microbial metabolism of steroids under strictly anoxic conditions.
Collapse
Affiliation(s)
- Chao-Jen Shih
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan.,Bioresource Collection and Research Center, Food Industry Research and Development InstituteHsinchu, Taiwan
| | - Yi-Lung Chen
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan
| | | | - Sean T-S Wei
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan
| | - I-Ting Lin
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan
| | - Wael A Ismail
- Environmental Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf UniversityManama, Bahrain
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan
| |
Collapse
|
10
|
von Netzer F, Kuntze K, Vogt C, Richnow HH, Boll M, Lueders T. Functional Gene Markers for Fumarate-Adding and Dearomatizing Key Enzymes in Anaerobic Aromatic Hydrocarbon Degradation in Terrestrial Environments. J Mol Microbiol Biotechnol 2016; 26:180-94. [PMID: 26959523 DOI: 10.1159/000441946] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Anaerobic degradation is a key process in many environments either naturally or anthropogenically exposed to petroleum hydrocarbons. Considerable advances into the biochemistry and physiology of selected anaerobic degraders have been achieved over the last decades, especially for the degradation of aromatic hydrocarbons. However, researchers have only recently begun to explore the ecology of complex anaerobic hydrocarbon degrader communities directly in their natural habitats, as well as in complex laboratory systems using tools of molecular biology. These approaches have mainly been facilitated by the establishment of a suite of targeted marker gene assays, allowing for rapid and directed insights into the diversity as well as the identity of intrinsic degrader populations and degradation potentials established at hydrocarbon-impacted sites. These are based on genes encoding either peripheral or central key enzymes in aromatic compound breakdown, such as fumarate-adding benzylsuccinate synthases or dearomatizing aryl-coenzyme A reductases, or on aromatic ring-cleaving hydrolases. Here, we review recent advances in this field, explain the different detection methodologies applied, and discuss how the detection of site-specific catabolic gene markers has improved the understanding of processes at contaminated sites. Functional marker gene-based strategies may be vital for the development of a more elaborate population-based assessment and prediction of aromatic degradation potentials in hydrocarbon-impacted environments.
Collapse
Affiliation(s)
- Frederick von Netzer
- Helmholtz Zentrum Mx00FC;nchen - German Research Center for Environmental Health, Institute of Groundwater Ecology, Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Porter AW, Young LY. Benzoyl-CoA, a universal biomarker for anaerobic degradation of aromatic compounds. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:167-203. [PMID: 24767428 DOI: 10.1016/b978-0-12-800260-5.00005-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aromatic compounds are a major component of the global carbon pool and include a diverse range of compounds such as humic acid, lignin, amino acids, and industrial contaminants. Due to the prevalence of aromatic compounds in the environment, aerobic and anaerobic microorganisms have evolved mechanisms by which to metabolize that available carbon. Less well understood are the anaerobic pathways. We now know that anaerobic metabolism of a variety of monoaromatic compounds can be initiated in a number of different ways, and a key metabolite for these pathways is benzoyl-CoA. Chemicals can have different upstream anaerobic degradation pathways yet can still be assessed by targeting the downstream benzoyl-CoA pathway. In this pathway, we propose that the ring opening hydrolase, encoded by the bamA gene, is especially useful because, in contrast to the benzoyl-CoA reductase, it is detected under a number of respiratory settings, including denitrifying, iron-reducing, sulfate-reducing, and fermentative conditions, and has a wide distribution in the environment. This review examines the bamA gene in enrichment cultures and environmental DNA extracts to consider whether it can be used as a biomarker for anaerobic aromatic degradation. Given the number of potential upstream inputs from natural and man-made monoaromatic compounds, the benzoyl-CoA pathway and the bamA gene in particular may play an important role in the global carbon cycle that has thus far been overlooked.
Collapse
Affiliation(s)
- Abigail W Porter
- Department of Environmental Science, School of Biological and Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA.
| | - Lily Y Young
- Department of Environmental Science, School of Biological and Environmental Sciences, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
12
|
An uncultivated nitrate-reducing member of the genus Herminiimonas degrades toluene. Appl Environ Microbiol 2014; 80:3233-43. [PMID: 24632261 DOI: 10.1128/aem.03975-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable isotope probing (SIP) is a cultivation-free methodology that provides information about the identity of microorganisms participating in assimilatory processes in complex communities. In this study, a Herminiimonas-related bacterium was identified as the dominant member of a denitrifying microcosm fed [(13)C]toluene. The genome of the uncultivated toluene-degrading bacterium was obtained by applying pyrosequencing to the heavy DNA fraction. The draft genome comprised ~3.8 Mb, in 131 assembled contigs. Metabolic reconstruction of aromatic hydrocarbon (toluene, benzoate, p-cresol, 4-hydroxybenzoate, phenylacetate, and cyclohexane carboxylate) degradation indicated that the bacterium might specialize in anaerobic hydrocarbon degradation. This characteristic is novel for the order Burkholderiales within the class Betaproteobacteria. Under aerobic conditions, the benzoate oxidation gene cluster (BOX) system is likely involved in the degradation of benzoate via benzoyl coenzyme A. Many putative genes for aromatic hydrocarbon degradation were closely related to those in the Rhodocyclaceae (particularly Aromatoleum aromaticum EbN1) with respect to organization and sequence similarity. Putative mobile genetic elements associated with these catabolic genes were highly abundant, suggesting gene acquisition by Herminiimonas via horizontal gene transfer.
Collapse
|
13
|
Primers: Functional Genes for Anaerobic Hydrocarbon Degrading Microbes. SPRINGER PROTOCOLS HANDBOOKS 2014. [DOI: 10.1007/8623_2014_44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Boll M, Löffler C, Morris BEL, Kung JW. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 2013; 16:612-27. [PMID: 24238333 DOI: 10.1111/1462-2920.12328] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022]
Abstract
Next to carbohydrates, aromatic compounds are the second most abundant class of natural organic molecules in living organic matter but also make up a significant proportion of fossil carbon sources. Only microorganisms are capable of fully mineralizing aromatic compounds. While aerobic microbes use well-studied oxygenases for the activation and cleavage of aromatic rings, anaerobic bacteria follow completely different strategies to initiate catabolism. The key enzymes related to aromatic compound degradation in anaerobic bacteria are comprised of metal- and/or flavin-containing cofactors, of which many use unprecedented radical mechanisms for C-H bond cleavage or dearomatization. Over the past decade, the increasing number of completed genomes has helped to reveal a large variety of anaerobic degradation pathways in Proteobacteria, Gram-positive microbes and in one archaeon. This review aims to update our understanding of the occurrence of aromatic degradation capabilities in anaerobic microorganisms and serves to highlight characteristic enzymatic reactions involved in (i) the anoxic oxidation of alkyl side chains attached to aromatic rings, (ii) the carboxylation of aromatic rings and (iii) the reductive dearomatization of central arylcarboxyl-coenzyme A intermediates. Depending on the redox potential of the electron acceptors used and the metabolic efficiency of the cell, different strategies may be employed for identical overall reactions.
Collapse
Affiliation(s)
- Matthias Boll
- Institute for Biology II, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
15
|
Porter AW, Young LY. The bamA gene for anaerobic ring fission is widely distributed in the environment. Front Microbiol 2013; 4:302. [PMID: 24133487 PMCID: PMC3794298 DOI: 10.3389/fmicb.2013.00302] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 09/19/2013] [Indexed: 11/13/2022] Open
Abstract
Benzoyl-CoA is the signature central metabolite associated with the anaerobic metabolism of a diverse range of compounds such as humic acid, lignin, amino acids, and industrial chemicals. Aromatic chemicals with different upstream degradation pathways all funnel into the downstream benzoyl-CoA pathway. Different genes encoding enzymes of the benzoyl-CoA pathway could be used as biomarkers for the anaerobic benzoyl-CoA pathway, however, the ring opening hydrolase, encoded by the bamA gene, is ideal because it is detected under a range of respiratory conditions, including under denitrifying, iron-reducing, sulfate-reducing, and fermentative conditions. This work evaluated DNA samples from six diverse environments for the presence of the bamA gene, and had positive results for every sample. Individual bamA gene clones from these sites were compared to published genome sequences. The clone sequences were distributed amongst the genome sequences, although there were clone sequences from two of the analyzed sites that formed a unique clade. Clone sequences were then grouped by site and analyzed with a functional operational taxonomic unit based clustering program to compare the bamA gene diversity of these sites to that of several locations reported in the literature. The results showed that the sequence diversity of the sites separated into two clusters, but there was no clear trend that could be related to the site characteristics. Interestingly, two pristine freshwater sites formed a subgroup within one of the larger clusters. Thus far the bamA gene has only been examined within the context of contaminated environments, however, this study demonstrates that the bamA gene is also detected in uncontaminated sites. The widespread presence of the bamA gene in diverse environments suggests that the anaerobic benzoyl-CoA pathway plays an important role in the global carbon cycle that has thus far been understudied.
Collapse
Affiliation(s)
- Abigail W Porter
- Department of Environmental Science, School of Biological and Environmental Sciences, Rutgers University New Brunswick, NJ, USA
| | | |
Collapse
|
16
|
Presence, diversity and enumeration of functional genes (bssA and bamA) relating to toluene degradation across a range of redox conditions and inoculum sources. Biodegradation 2013; 25:189-203. [DOI: 10.1007/s10532-013-9651-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
17
|
Toluene removal efficiency, process robustness, and bacterial diversity of a biotrickling filter inoculated with Burkholderia sp. Strain T3. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0253-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Flanagan PV, Kelleher BP, O’Reilly SS, Szpak MT, Monteys X, Kelly PP, Kulakova AN, Kulakov LA, Allen CCR. A Depth Resolved Insight into Benzoyl CoA Reductase and Benzoate Dioxygenase Gene Copy Numbers within a Marine Sediment Associated with Methane Seepage. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojms.2013.34020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Juárez JF, Zamarro MT, Eberlein C, Boll M, Carmona M, Díaz E. Characterization of the mbd cluster encoding the anaerobic 3-methylbenzoyl-CoA central pathway. Environ Microbiol 2012; 15:148-66. [PMID: 22759228 DOI: 10.1111/j.1462-2920.2012.02818.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mbd cluster encoding genes of the 3-methylbenzoyl-CoA pathway involved in the anaerobic catabolism of 3-methylbenzoate and m-xylene was characterized for the first time in the denitrifying β-Proteobacterium Azoarcus sp. CIB. The mbdA gene product was identified as a 3-methylbenzoate-CoA ligase required for 3-methylbenzoate activation; its substrate spectrum was unique in activating all three methylbenzoate isomers. An inducible 3-methylbenzoyl-CoA reductase (mbdONQP gene products), displaying significant amino acid sequence similarities to known class I benzoyl-CoA reductases catalysed the ATP-dependent reduction of 3-methylbenzoyl-CoA to a methyldienoyl-CoA. The mbdW gene encodes a methyldienoyl-CoA hydratase that hydrated the methyldienoyl-CoA to a methyl-6-hydroxymonoenoyl-CoA compound. The mbd cluster also contains the genes predicted to be involved in the subsequent steps of the 3-methylbenzoyl-CoA pathway as well as the electron donor system for the reductase activity. Whereas the catabolic mbd genes are organized in two divergent inducible operons, the putative mbdR regulatory gene was transcribed separately and showed constitutive expression. The efficient expression of the mbd genes required the oxygen-dependent AcpR activator, and it was subject of carbon catabolite repression by some organic acids and amino acids. Sequence analyses suggest that the mbd gene cluster was recruited by Azoarcus sp. CIB through horizontal gene transfer.
Collapse
Affiliation(s)
- Javier F Juárez
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Müller S, Hübschmann T, Kleinsteuber S, Vogt C. High resolution single cell analytics to follow microbial community dynamics in anaerobic ecosystems. Methods 2012; 57:338-49. [DOI: 10.1016/j.ymeth.2012.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/07/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022] Open
|
21
|
Sun D, Li J, An T, Xu M, Sun G, Guo J. Bacterial community diversity and functional gene abundance of structured mixed packing and inert packing materials based biotrickling filters. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0239-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Vilchez-Vargas R, Geffers R, Suárez-Diez M, Conte I, Waliczek A, Kaser VS, Kralova M, Junca H, Pieper DH. Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. Environ Microbiol 2012; 15:1016-39. [PMID: 22515215 DOI: 10.1111/j.1462-2920.2012.02752.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite various efforts to develop tools to detect and compare the catabolic potential and activity for pollutant degradation in environmental samples, there is still a need for an open-source, curated and reliable array method. We developed a custom array system including a novel normalization strategy that can be applied to any microarray design, allowing the calculation of the reliability of signals and make cross-experimental comparisons. Array probes, which are fully available to the scientific community, were designed from knowledge-based curated databases for key aromatic catabolic gene families and key alkane degradation genes. This design assigns signals to the respective protein subfamilies, thus directly inferring function and substrate specificity. Experimental procedures were optimized using DNA of four genome sequenced biodegradation strains and reliability of signals assessed through a novel normalization procedure, where a plasmid containing four artificial targets in increased copy numbers and co-amplified with the environmental DNA served as an internal calibration curve. The array system was applied to assess the catabolic gene landscape and transcriptome of aromatic contaminated environmental samples, confirming the abundance of catabolic gene subfamilies previously detected by functional metagenomics but also revealing the presence of previously undetected catabolic groups and specifically their expression under pollutant stress.
Collapse
Affiliation(s)
- Ramiro Vilchez-Vargas
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Key players and team play: anaerobic microbial communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 2012; 94:851-73. [PMID: 22476263 DOI: 10.1007/s00253-012-4025-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 02/06/2023]
Abstract
Biodegradation of anthropogenic pollutants in shallow aquifers is an important microbial ecosystem service which is mainly brought about by indigenous anaerobic microorganisms. For the management of contaminated sites, risk assessment and control of natural attenuation, the assessment of in situ biodegradation and the underlying microbial processes is essential. The development of novel molecular methods, "omics" approaches, and high-throughput techniques has revealed new insight into complex microbial communities and their functions in anoxic environmental systems. This review summarizes recent advances in the application of molecular methods to study anaerobic microbial communities in contaminated terrestrial subsurface ecosystems. We focus on current approaches to analyze composition, dynamics, and functional diversity of subsurface communities, to link identity to activity and metabolic function, and to identify the ecophysiological role of not yet cultured microbes and syntrophic consortia. We discuss recent molecular surveys of contaminated sites from an ecological viewpoint regarding degrader ecotypes, abiotic factors shaping anaerobic communities, and biotic interactions underpinning the importance of microbial cooperation for microbial ecosystem services such as contaminant degradation.
Collapse
|
24
|
Kojima H, Fukui M. Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 2011; 61:1651-1655. [DOI: 10.1099/ijs.0.024968-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel facultatively autotrophic bacterium, designated strain sk43HT, was isolated from water of a freshwater lake in Japan. Cells of the isolate were curved rods, motile and Gram-reaction-negative. Strain sk43HT was facultatively anaerobic and autotrophic growth was observed only under anaerobic conditions. The isolate oxidized thiosulfate, elemental sulfur and hydrogen as sole energy sources for autotrophic growth and could utilize nitrate as an electron acceptor. Growth was observed at 8–32 °C (optimum 25 °C) and 6.4–7.6 (optimum pH 6.7–6.9). Optimum growth of the isolate occurred at NaCl concentrations of less than 50 mM. The G+C content of genomic DNA was around 67 mol%. The fatty acid profile of strain sk43HT when grown on acetate under aerobic conditions was characterized by the presence of C16 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) as the major components. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was a member of the class Betaproteobacteria showing highest sequence similarity with Georgfuchsia toluolica G5G6T (94.7 %) and Denitratisoma oestradiolicum AcBE2-1T (94.3 %). Phylogenetic analyses were also performed using genes involved in sulfur oxidation. On the basis of its phylogenetic and phenotypic properties, strain sk43HT ( = DSM 22779T = NBRC 105852T) represents a novel species of a new genus, for which the name Sulfuritalea hydrogenivorans gen. nov., sp. nov. is proposed.
Collapse
Affiliation(s)
- Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
25
|
Combined application of PCR-based functional assays for the detection of aromatic-compound-degrading anaerobes. Appl Environ Microbiol 2011; 77:5056-61. [PMID: 21602396 DOI: 10.1128/aem.00335-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To explore the reliability of assays that detect aromatic-compound-degrading anaerobes, a combination of three functional-gene-targeting assays was applied to microcosms from benzene-contaminated aquifers. Results of the assays were consistent and suggest that species related to the genera Azoarcus and Geobacter dominated benzene degradation at the individual sites.
Collapse
|
26
|
Kolukirik M, Ince O, Ince BK. Increment in anaerobic hydrocarbon degradation activity of Halic Bay sediments via nutrient amendment. MICROBIAL ECOLOGY 2011; 61:871-884. [PMID: 21390532 DOI: 10.1007/s00248-011-9825-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 02/08/2011] [Indexed: 05/30/2023]
Abstract
In this study, hydrocarbon (HC) degradation activity of a HC-rich marine sediment was assessed in anaerobic microcosms during a 224 days incubation period. Natural TOC/N/P ratio of the sediment porewater (1,000/5/1) was gradually decreased to 1,000/40/6 which resulted in approximately ninefold increase in gas production (CH(4)+CO(2)) and HC removal. Addition of external HCs to the microcosms was also resulted in approximately twofold higher gas production and HC removal. A high proportion (92%) of aromatic HCs and all n-alkanes were removed from the microcosms under unlimited nutrient supply conditions without external HC addition. The microorganisms of the sediment degraded a wide range of aliphatic (n-C(9-31) alkanes and acyclic isoprenoids) and aromatic (18 different one- to five-ring aromatics) HCs. Monitoring functional gene and transcript abundances revealed that methanogenesis and dissimilatory sulfate reduction took place simultaneously during the first 126 days, afterwards, only the syntrophic methanogenic consortium was active. Genes and transcripts related to initial activation of HCs were highly abundant throughout the incubation period showing that fumarate addition was the main pathway of anaerobic HC degradation. In conclusion, biostimulation of highly polluted anoxic marine sediments via nutrient amendment is effective and may constitute a suitable and cost-effective field-scale bioremediation strategy.
Collapse
Affiliation(s)
- Mustafa Kolukirik
- Department of Molecular Biology and Genetics, Istanbul Technical University, 34469 Istanbul, Turkey.
| | | | | |
Collapse
|
27
|
Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl Environ Microbiol 2009; 75:6258-67. [PMID: 19684169 DOI: 10.1128/aem.01029-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-Arctic soils have low nutrient availability, low moisture content, and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at the Canadian high-Arctic stations of Alert (ex situ approach) and Eureka (in situ approach). Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as quantitative reverse transcriptase PCR targeting key functional genes. The results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon-ring-hydroxylating dioxygenases were observed 1 month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e., ex situ versus in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation.
Collapse
|
28
|
Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 2009; 73:71-133. [PMID: 19258534 PMCID: PMC2650882 DOI: 10.1128/mmbr.00021-08] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.
Collapse
Affiliation(s)
- Manuel Carmona
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Higashioka Y, Kojima H, Sato S, Fukui M. Microbial community analysis at crude oil-contaminated soils targeting the 16S ribosomal RNA, xylM, C23O, and bcr genes. J Appl Microbiol 2009; 107:126-35. [PMID: 19298506 DOI: 10.1111/j.1365-2672.2009.04198.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The analyses targeting multiple functional genes were performed on the samples of crude oil-contaminated soil, to investigate community structures of organisms involved in monoaromatic hydrocarbon degradation. METHODS AND RESULTS Environmental samples were obtained from two sites that were contaminated with different components of crude oil. The analysis on 16S rRNA gene revealed that bacterial community structures were clearly different between the two sites. The cloning analyses were performed by using primers specific for the catabolic genes involved in the aerobic or anaerobic degradation of monoaromatic hydrocarbons, i.e. xylene monooxygenase (xylM), catechol 2,3-dioxygenase (C23O), and benzoyl-CoA reductase (bcr) genes. From the result of xylM gene, it was suggested that there are lineages specific to the respective sites, reflecting the differences of sampling sites. In the analysis of the C23O gene, the results obtained with two primer sets were distinct from each other. A comparison of these suggested that catabolic types of major bacteria carrying this gene were different between the two sites. As for the bcr gene, no amplicon was obtained from one sample. Phylogenetic analysis revealed that the sequences obtained from the other sample were distinct from the known sequences. CONCLUSIONS The differences between the two sites were demonstrated in the analyses of all tested genes. As for aerobic cleavage of the aromatic ring, it was also suggested that analysis using two primer sets provide more detailed information about microbial communities in the contaminated site. SIGNIFICANCE AND IMPACT OF THE STUDY The present study demonstrated that analysis targeting multiple functional genes as molecular markers is practical to examine microbial community in crude oil-contaminated environments.
Collapse
Affiliation(s)
- Y Higashioka
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | |
Collapse
|
30
|
Durante-Rodríguez G, Zamarro MT, García JL, Díaz E, Carmona M. New insights into the BzdR-mediated transcriptional regulation of the anaerobic catabolism of benzoate in Azoarcus sp. CIB. MICROBIOLOGY-SGM 2008; 154:306-316. [PMID: 18174149 DOI: 10.1099/mic.0.2007/011361-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The expression of the bzd genes involved in the anaerobic degradation of benzoate in Azoarcus sp. CIB is controlled by the specific BzdR transcriptional repressor at the P(N) promoter. This catabolic promoter is also subject to catabolite repression by some organic acids. In vivo and in vitro experiments have shown that BzdR behaves as a repressor of the P(R) promoter by overlapping the transcription initiation site as well as the -35 and -10 boxes, benzoyl-CoA being the inducer molecule. In addition, by using a P(N) : : lacZ fusion both in Azoarcus sp. CIB and in an isogenic strain lacking the bzdR gene, we have shown that the succinate-dependent catabolite repression requires participation of the BzdR repressor.
Collapse
Affiliation(s)
- Gonzalo Durante-Rodríguez
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - M Teresa Zamarro
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José L García
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Eduardo Díaz
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Carmona
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
31
|
Kuntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow HH, Boll M. 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol 2008; 10:1547-56. [PMID: 18312395 DOI: 10.1111/j.1462-2920.2008.01570.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In anaerobic bacteria, most aromatic growth substrates are channelled into the benzoyl-coenzyme A (CoA) degradation pathway where the aromatic ring is dearomatized and cleaved into an aliphatic thiol ester. The initial step of this pathway is catalysed by dearomatizing benzoyl-CoA reductases yielding the two electron-reduction product, cyclohexa-1,5-diene-1-carbonyl-CoA, to which water is subsequently added by a hydratase. The next two steps have so far only been studied in facultative anaerobes and comprise the oxidation of the 6-hydroxyl-group to 6-oxocyclohex-1-ene-1-carbonyl-CoA (6-OCH-CoA), the addition of water and hydrolytic ring cleavage yielding 3-hydroxypimelyl-CoA. In this work, two benzoate-induced genes from the obligately anaerobic bacteria, Geobacter metallireducens (bamA(Geo)) and Syntrophus aciditrophicus (bamA(Syn)), were heterologously expressed in Escherichia coli, purified and characterized as 6-OCH-CoA hydrolases. Both enzymes consisted of a single 43 kDa subunit. Some properties of the enzymes are presented and compared with homologues from facultative anaerobes. An alignment of the nucleotide sequences of bamA(Geo) and bamA(Syn) with the corresponding genes from facultative anaerobes identified highly conserved DNA regions, which enabled the discrimination of genes coding for 6-OCH-CoA hydrolases from those coding for related enzymes. A degenerate oligonucleotide primer pair was deduced from conserved regions and applied in polymerase chain reaction reactions. Using these primers, the expected DNA fragment of the 6-OCH-CoA hydrolase genes was specifically amplified from the DNA of nearly all known facultative and obligate anaerobes that use aromatic growth substrates. The only exception was the aromatic compound-degrading Rhodopseudomonas palustris, which uniquely uses a modified benzoyl-CoA degradation pathway. Using the oligonucleotide primers, the expected DNA fragment was also amplified in a toluene-degrading and a m-xylene-degrading enrichment culture demonstrating its potential use in less defined bacterial communities. The gene probe established in this work provides for the first time a general tool for the detection of a central functionality in aromatic compound-degrading anaerobes.
Collapse
Affiliation(s)
- Kevin Kuntze
- Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Botton S, van Harmelen M, Braster M, Parsons JR, Röling WFM. Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. FEMS Microbiol Ecol 2007; 62:118-30. [PMID: 17784862 DOI: 10.1111/j.1574-6941.2007.00371.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Microbial community structure was linked to degradation potential in benzene-, toluene- or xylene- (BTX) degrading, iron-reducing enrichments derived from an iron-reducing aquifer polluted with landfill leachate. Enrichments were characterized using 16S rRNA gene-based analysis, targeting of the benzylsuccinate synthase-encoding bssA gene and phospholipid fatty acid (PLFA) profiling in combination with tracking of labelled substrate. 16S rRNA gene analysis indicated the dominance of Geobacteraceae, and one phylotype in particular, in all enrichments inoculated with polluted aquifer material. Upon cultivation, progressively higher degradation rates with a concomitant decrease in species richness occurred in all primary incubations and successive enrichments. Yet, the same Geobacteraceae phylotype remained common and dominant, indicating its involvement in BTX degradation. However, the bssA gene sequences in BTX degrading enrichments differed considerably from those of Geobacter isolates, suggesting that the first steps of toluene, but also benzene and xylene oxidation, are carried out by another member of the enrichments. Therefore, BTX would be synthrophically degraded by a bacterial consortium in which Geobacteraceae utilized intermediate metabolites. PLFA analysis in combination with (13)C-toluene indicated that the enriched Geobacteraceae were assimilating carbon originally present in toluene. Combined with previous studies, this research suggests that Geobacteraceae play a key role in the natural attenuation of each BTX compound in situ.
Collapse
Affiliation(s)
- Sabrina Botton
- Earth Surface Processes and Materials Department, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Winderl C, Schaefer S, Lueders T. Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol 2007; 9:1035-46. [PMID: 17359274 DOI: 10.1111/j.1462-2920.2006.01230.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzylsuccinate synthase (Bss) is the key enzyme of anaerobic toluene degradation and has been found in all anaerobic toluene degrading bacterial isolates tested. However, only a few pure cultures capable of anaerobic toluene oxidation are available to date, and it is important to understand the relevance of these model organisms for in situ bioremediation of hydrocarbon-contaminated aquifers. Due to their phylogenetic dispersal, it is not possible to specifically target anaerobic toluene degraders using marker rRNA genes. We therefore established an assay targeting a approximately 794 bp fragment within the Bss alpha-subunit (bssA) gene, which allows for the specific detection and affiliation of both known and unknown anaerobic degraders. Three distinct tar-oil-contaminated aquifer sites were screened for intrinsic bssA gene pools in order to identify and compare the diversity of hydrocarbon degraders present at these selected sites. We were able to show that local diversity patterns of degraders were entirely distinct, apparently highly specialized and well-adapted to local biogeochemical settings. Discovered at one of the sites were bssA genes closely related to that of Geobacter spp., which provides evidence for an importance of iron reduction for toluene degradation in these sediments. Retrieved from the other two sites, dominated by sulfate reduction, were previously unidentified bssA genes and also deeply branching putative bssA homologues. We provide evidence for a previously unrecognized diversity of anaerobic toluene degraders and also of other hydrocarbon degraders using fumarate-adding key reactions in contaminated aquifers. These findings enhance our current understanding of intrinsic hydrocarbon-degrading microbial communities in perturbed aquifers and may have potential for the future assessment and prediction of natural attenuation based on degradation genes.
Collapse
Affiliation(s)
- Christian Winderl
- Institute of Groundwater Ecology, GSF - National Research Center for Environment and Health, Neuherberg, Germany
| | | | | |
Collapse
|
34
|
Peters F, Shinoda Y, McInerney MJ, Boll M. Cyclohexa-1,5-diene-1-carbonyl-coenzyme A (CoA) hydratases of Geobacter metallireducens and Syntrophus aciditrophicus: Evidence for a common benzoyl-CoA degradation pathway in facultative and strict anaerobes. J Bacteriol 2007; 189:1055-60. [PMID: 17122342 PMCID: PMC1797300 DOI: 10.1128/jb.01467-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Accepted: 11/13/2006] [Indexed: 11/20/2022] Open
Abstract
In the denitrifying bacterium Thauera aromatica, the central intermediate of anaerobic aromatic metabolism, benzoyl-coenzyme A (CoA), is dearomatized by the ATP-dependent benzoyl-CoA reductase to cyclohexa-1,5-diene-1-carbonyl-CoA (dienoyl-CoA). The dienoyl-CoA is further metabolized by a series of beta-oxidation-like reactions of the so-called benzoyl-CoA degradation pathway resulting in ring cleavage. Recently, evidence was obtained that obligately anaerobic bacteria that use aromatic growth substrates do not contain an ATP-dependent benzoyl-CoA reductase. In these bacteria, the reactions involved in dearomatization and cleavage of the aromatic ring have not been shown, so far. In this work, a characteristic enzymatic step of the benzoyl-CoA pathway in obligate anaerobes was demonstrated and characterized. Dienoyl-CoA hydratase activities were determined in extracts of Geobacter metallireducens (iron reducing), Syntrophus aciditrophicus (fermenting), and Desulfococcus multivorans (sulfate reducing) cells grown with benzoate. The benzoate-induced genes putatively coding for the dienoyl-CoA hydratases in the benzoate degraders G. metallireducens and S. aciditrophicus were heterologously expressed and characterized. Both gene products specifically catalyzed the reversible hydration of dienoyl-CoA to 6-hydroxycyclohexenoyl-CoA (Km, 80 and 35 microM; Vmax, 350 and 550 micromol min(-1) mg(-1), respectively). Neither enzyme had significant activity with cyclohex-1-ene-1-carbonyl-CoA or crotonyl-CoA. The results suggest that benzoyl-CoA degradation proceeds via dienoyl-CoA and 6-hydroxycyclohexanoyl-CoA in strictly anaerobic bacteria. The steps involved in dienoyl-CoA metabolism appear identical in all nonphotosynthetic anaerobic bacteria, although totally different benzene ring-dearomatizing enzymes are present in facultative and obligate anaerobes.
Collapse
Affiliation(s)
- Franziska Peters
- Institute for Biology II, Microbiology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
The high resonance energy of the benzene ring is responsible for the relative resistance of aromatic compounds to biodegradation. Nevertheless, bacteria from nearly all physiological groups have been isolated which utilize aromatic growth substrates as the sole source of cell carbon and energy. The enzymatic dearomatization of the benzene nucleus by microorganisms is accomplished in two different manners. In aerobic bacteria the aromatic ring is dearomatized by oxidation, catalyzed by oxygenases. In contrast, anaerobic bacteria attack the aromatic ring by reductive steps. Key intermediates in the anaerobic aromatic metabolism are benzoyl-CoA and compounds with at least two meta-positioned hydroxyl groups (resorcinol, phloroglucinol and hydroxyhydroquinone). In facultative anaerobes, the reductive dearomatization of the key intermediate benzoyl-CoA requires a stoichiometric coupling to ATP hydrolysis, whereas reduction of the other intermediates is readily achieved with suitable electron donors. Obligately anaerobic bacteria appear to use a totally different enzymology for the reductive dearomatization of benzoyl-CoA including selenocysteine- and molybdenum- containing enzymes.
Collapse
Affiliation(s)
- Matthias Boll
- Institute for Biology II, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Powell SM, Ferguson SH, Snape I, Siciliano SD. Fertilization stimulates anaerobic fuel degradation of antarctic soils by denitrifying microorganisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:2011-7. [PMID: 16570629 DOI: 10.1021/es051818t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human activities in the Antarctic have resulted in hydrocarbon contamination of these fragile polar soils. Bioremediation is one of the options for remediation of these sites. However, little is known about anaerobic hydrocarbon degradation in polar soils and the influence of bioremediation practices on these processes. Using a field trial at Old Casey Station, Antarctica, we assessed the influence of fertilization on the anaerobic degradation of a 20-year old fuel spill. Fertilization increased hydrocarbon degradation in both anaerobic and aerobic soils when compared to controls, but was of most benefit for anaerobic soils where evaporation was negligible. This increased biodegradation in the anaerobic soils corresponded with a shift in the denitrifier community composition and an increased abundance of denitrifiers and benzoyl-CoA reductase. A microcosm study using toluene and hexadecane confirmed the degradative capacity within these soils under anaerobic conditions. It was observed that fertilized anaerobic soil degraded more of this hydrocarbon spike when incubated anaerobically than when incubated aerobically. We conclude that denitrifiers are actively involved in hydrocarbon degradation in Antarctic soils and that fertilization is an effective means of stimulating their activity. Further, when communities stimulated to degrade hydrocarbons under anaerobic conditions are exposed to oxygen, hydrocarbon degradation is suppressed. The commonly accepted belief that remediation of polar soils requires aeration needs to be reevaluated in light of this new data.
Collapse
Affiliation(s)
- Shane M Powell
- School of Agricultural Science, University of Tasmania, Hobart 7001, Australia.
| | | | | | | |
Collapse
|
37
|
Carmona M, Díaz E. Iron-reducing bacteria unravel novel strategies for the anaerobic catabolism of aromatic compounds. Mol Microbiol 2006; 58:1210-5. [PMID: 16313610 DOI: 10.1111/j.1365-2958.2005.04937.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the aerobic degradation of aromatic compounds has been extensively studied in many microorganisms, the anaerobic mineralization of the aromatic ring is a more recently discovered microbial capacity on which very little information is available from facultative anaerobic bacteria. In this issue of Molecular Microbiology, Wischgoll and colleagues use proteomic and reverse-transcription polymerase chain reaction (PCR) approaches to identify for the first time the gene clusters involved in the central pathway for the catabolism of aromatic compounds in Geobacter metallireducens, a strictly anaerobic iron-reducing bacterium. This work highlights that the major difference in anaerobic benzoate metabolism of facultative and strictly anaerobic bacteria is the reductive process for dearomatization of benzoyl-CoA. The authors propose that a new type of benzoyl-CoA reductase, comprising molybdenum- and selenocysteine-containing proteins, is present in strictly anaerobic bacteria. This work paves the way to fundamental studies on the biochemistry and regulation of this new reductive process and provides the first genetic clues on the anaerobic catabolism of benzoate by strict anaerobes.
Collapse
Affiliation(s)
- Manuel Carmona
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Department of Molecular Microbiology, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | |
Collapse
|