1
|
A Review of Cyanophage–Host Relationships: Highlighting Cyanophages as a Potential Cyanobacteria Control Strategy. Toxins (Basel) 2022; 14:toxins14060385. [PMID: 35737046 PMCID: PMC9229316 DOI: 10.3390/toxins14060385] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Harmful algal blooms (HABs) are naturally occurring phenomena, and cyanobacteria are the most commonly occurring HABs in freshwater systems. Cyanobacteria HABs (cyanoHABs) negatively affect ecosystems and drinking water resources through the production of potent toxins. Furthermore, the frequency, duration, and distribution of cyanoHABs are increasing, and conditions that favor cyanobacteria growth are predicted to increase in the coming years. Current methods for mitigating cyanoHABs are generally short-lived and resource-intensive, and have negative impacts on non-target species. Cyanophages (viruses that specifically target cyanobacteria) have the potential to provide a highly specific control strategy with minimal impacts on non-target species and propagation in the environment. A detailed review (primarily up to 2020) of cyanophage lifecycle, diversity, and factors influencing infectivity is provided in this paper, along with a discussion of cyanophage and host cyanobacteria relationships for seven prominent cyanoHAB-forming genera in North America, including: Synechococcus, Microcystis, Dolichospermum, Aphanizomenon, Cylindrospermopsis, Planktothrix, and Lyngbya. Lastly, factors affecting the potential application of cyanophages as a cyanoHAB control strategy are discussed, including efficacy considerations, optimization, and scalability for large-scale applications.
Collapse
|
2
|
Pearson JA, Voisey AC, Boest-Bjerg K, Wong FS, Wen L. Circadian Rhythm Modulation of Microbes During Health and Infection. Front Microbiol 2021; 12:721004. [PMID: 34512600 PMCID: PMC8430216 DOI: 10.3389/fmicb.2021.721004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms, referring to 24-h daily oscillations in biological and physiological processes, can significantly regulate host immunity to pathogens, as well as commensals, resulting in altered susceptibility to disease development. Furthermore, vaccination responses to microbes have also shown time-of-day-dependent changes in the magnitude of protective immune responses elicited in the host. Thus, understanding host circadian rhythm effects on both gut bacteria and viruses during infection is important to minimize adverse effects on health and identify optimal times for therapeutic administration to maximize therapeutic success. In this review, we summarize the circadian modulations of gut bacteria, viruses and their interactions, both in health and during infection. We also discuss the importance of chronotherapy (i.e., time-specific therapy) as a plausible therapeutic administration strategy to enhance beneficial therapeutic responses.
Collapse
Affiliation(s)
- James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alexander Christopher Voisey
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kathrine Boest-Bjerg
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Li Wen
- Section of Endocrinology, Internal Medicine, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
3
|
Predetermined clockwork microbial worlds: Current understanding of aquatic microbial diel response from model systems to complex environments. ADVANCES IN APPLIED MICROBIOLOGY 2020; 113:163-191. [PMID: 32948266 DOI: 10.1016/bs.aambs.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the photic zone of aquatic ecosystems, microorganisms with different metabolisms and their viruses form complex interactions and food webs. Within these interactions, phototrophic microorganisms such as eukaryotic microalgae and cyanobacteria interact directly with sunlight, and thereby generate circadian rhythms. Diel cycling originally generated in microbial phototrophs is directly transmitted toward heterotrophic microorganisms utilizing the photosynthetic products as they are excreted or exuded. Such diel cycling seems to be indirectly propagated toward heterotrophs as a result of complex biotic interactions. For example, cell death of phototrophic microorganisms induced by viral lysis and protistan grazing provides additional resources of dissolved organic matter to the microbial community, and so generates diel cycling in other heterotrophs with different nutrient dependencies. Likewise, differences in the diel transmitting pathway via complex interactions among heterotrophs, and between heterotrophs and their viruses, may also generate higher variation and time lag diel rhythms in different heterotrophic taxa. Thus, sunlight and photosynthesis not only contribute energy and carbon supply, but also directly or indirectly control diel cycling of the microbial community through complex interactions in the photic zone of aquatic ecosystems.
Collapse
|
4
|
Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, Beckett SJ, Shitrit D, Weitz JS, Armbrust EV, Lindell D. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME JOURNAL 2020; 15:41-54. [PMID: 32918065 PMCID: PMC7853090 DOI: 10.1038/s41396-020-00752-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Long-term stability of picocyanobacteria in the open oceans is maintained by a balance between synchronous division and death on daily timescales. Viruses are considered a major source of microbial mortality, however, current methods to measure infection have significant methodological limitations. Here we describe a method that pairs flow-cytometric sorting with a PCR-based polony technique to simultaneously screen thousands of taxonomically resolved individual cells for intracellular virus DNA, enabling sensitive, high-throughput, and direct quantification of infection by different virus lineages. Under controlled conditions with picocyanobacteria-cyanophage models, the method detected infection throughout the lytic cycle and discriminated between varying infection levels. In North Pacific subtropical surface waters, the method revealed that only a small percentage of Prochlorococcus (0.35–1.6%) were infected, predominantly by T4-like cyanophages, and that infection oscillated 2-fold in phase with the diel cycle. This corresponds to 0.35–4.8% of Prochlorococcus mortality daily. Cyanophages were 2–4-fold more abundant than Prochlorococcus, indicating that most encounters did not result in infection and suggesting infection is mitigated via host resistance, reduced phage infectivity and inefficient adsorption. This method will enable quantification of infection for key microbial taxa across oceanic regimes and will help determine the extent that viruses shape microbial communities and ecosystem level processes.
Collapse
Affiliation(s)
- Noor Mruwat
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Michael C G Carlson
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Svetlana Goldin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - François Ribalet
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Shay Kirzner
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yotam Hulata
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Stephen J Beckett
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dror Shitrit
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
5
|
Chen Y, Zeng Q. Temporal transcriptional patterns of cyanophage genes suggest synchronized infection of cyanobacteria in the oceans. MICROBIOME 2020; 8:68. [PMID: 32430017 PMCID: PMC7238727 DOI: 10.1186/s40168-020-00842-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Based on the peak expression times during infection, early, middle, and late genes have been characterized in viruses (cyanophages) that infect the unicellular cyanobacterium Prochlorococcus. Laboratory experiments show that some cyanophages can only replicate in the light and thus exhibit diurnal infection rhythms under light-dark cycles. Field evidence also suggests synchronized infection of Prochlorococcus by cyanophages in the oceans, which should result in progressive expression of cyanophage early, middle, and late genes. However, distinct temporal expression patterns have not been observed in cyanophage field populations. RESULTS In this study, we reanalyzed a previous metatranscriptomic dataset collected in the North Pacific Subtropical Gyre. In this dataset, it was previously shown that aggregate transcripts from cyanophage scaffolds display diurnal transcriptional rhythms with transcript abundances decreasing at night. By mapping metatranscriptomic reads to individual viral genes, we identified periodically expressed genes from putative viruses infecting the cyanobacteria Prochlorococcus and Synechococcus, heterotrophic bacteria, and algae. Of the 41 cyanophage genes, 35 were from cyanomyoviruses. We grouped the periodically expressed cyanomyovirus genes into early, middle, and late genes based on the conserved temporal expression patterns of their orthologs in cyanomyovirus laboratory cultures. We found that the peak expression times of late genes in cyanophage field populations were significantly later than those of early and middle genes, which were similar to the temporal expression patterns of synchronized cyanophage laboratory cultures. CONCLUSIONS The significantly later peak expression times of late genes in cyanomyovirus field populations suggest that cyanophage infection of Prochlorococcus is synchronized in the North Pacific Subtropical Gyre. The night-time peak expression of late genes also suggests synchronized lysis of Prochlorococcus at night, which might result in synchronized release of dissolved organic matter to the marine food web. Video abstract.
Collapse
Affiliation(s)
- Yue Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- HKUST Shenzhen Research Institute, Shenzhen, China.
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
6
|
Linking Light-Dependent Life History Traits with Population Dynamics for Prochlorococcus and Cyanophage. mSystems 2020; 5:5/2/e00586-19. [PMID: 32234774 PMCID: PMC7112961 DOI: 10.1128/msystems.00586-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prochlorococcus cyanobacteria grow in diurnal rhythms driven by diel cycles. Their ecology depends on light, nutrients, and top-down mortality processes, including lysis by viruses. Cyanophage, viruses that infect cyanobacteria, are also impacted by light. For example, the extracellular viability and intracellular infection kinetics of some cyanophage vary between light and dark conditions. Nonetheless, it remains unclear whether light-dependent viral life history traits scale up to influence population-level dynamics. Here, we examined the impact of diel forcing on both cellular- and population-scale dynamics in multiple Prochlorococcus-phage systems. To do so, we developed a light-driven population model, including both cellular growth and viral infection dynamics. We then tested the model against measurements of experimental infection dynamics with diel forcing to examine the extent to which population level changes in both viral and host abundances could be explained by light-dependent life history traits. Model-data integration reveals that light-dependent adsorption can improve fits to population dynamics for some virus-host pairs. However, light-dependent variation alone does not fully explain realized host and virus population dynamics. Instead, we show evidence consistent with lysis saturation at relatively high virus-to-cell ratios. Altogether, our study represents a quantitative approach to integrate mechanistic models to reconcile Prochlorococcus-virus dynamics spanning cellular-to-population scales.IMPORTANCE The cyanobacterium Prochlorococcus is an essential member of global ocean ecosystems. Light rhythms drive Prochlorococcus photosynthesis, ecology, and interactions with potentially lethal viruses. At present, the impact of light on Prochlorococcus-virus interactions is not well understood. Here, we analyzed Prochlorococcus and virus population dynamics with a light-driven population model and compared our results with experimental data. Our approach revealed that light profoundly drives both cellular- and population-level dynamics for some host-virus systems. However, we also found that additional mechanisms, including lysis saturation, are required to explain observed host-virus dynamics at the population scale. This study provides the basis for future work to understand the intertwined fates of Prochlorococcus and associated viruses in the surface ocean.
Collapse
|
7
|
Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, Waldbauer JR, Coleman ML. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol 2019; 18:21-34. [PMID: 31690825 DOI: 10.1038/s41579-019-0270-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/23/2022]
Abstract
Ecosystems are controlled by 'bottom-up' (resources) and 'top-down' (predation) forces. Viral infection is now recognized as a ubiquitous top-down control of microbial growth across ecosystems but, at the same time, cell death by viral predation influences, and is influenced by, resource availability. In this Review, we discuss recent advances in understanding the biogeochemical impact of viruses, focusing on how metabolic reprogramming of host cells during lytic viral infection alters the flow of energy and nutrients in aquatic ecosystems. Our synthesis revealed several emerging themes. First, viral infection transforms host metabolism, in part through virus-encoded metabolic genes; the functions performed by these genes appear to alleviate energetic and biosynthetic bottlenecks to viral production. Second, viral infection depends on the physiological state of the host cell and on environmental conditions, which are challenging to replicate in the laboratory. Last, metabolic reprogramming of infected cells and viral lysis alter nutrient cycling and carbon export in the oceans, although the net impacts remain uncertain. This Review highlights the need for understanding viral infection dynamics in realistic physiological and environmental contexts to better predict their biogeochemical consequences.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | | | - David M Needham
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Seth G John
- Department of Earth Science, University of Southern California, Los Angeles, CA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA.,Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Matthew B Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH, USA.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, USA
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Maureen L Coleman
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Abstract
To adapt to the daily light–dark cycle, diurnal rhythms are used by the photosynthetic cyanobacteria Prochlorococcus and Synechococcus, which are the most abundant photosynthetic organisms on earth. Field studies revealed that cyanobacterial virus (cyanophage) populations in the oceans showed transcriptional rhythms. To explore the underlying mechanism, we used cyanophage laboratory cultures to find that some showed adsorption rhythms and all showed transcriptional rhythms. We discovered that the cyanophage transcriptional rhythm is partially caused by the photosynthetic activity of host cells, explaining transcriptional rhythms of field cyanophage populations. Our study shows that cultured viruses have diurnal infection rhythms which are critical for understanding how light–dark cycles shape the interaction of cyanophages and their hosts in the oceans. As an adaptation to the daily light–dark (diel) cycle, cyanobacteria exhibit diurnal rhythms of gene expression and cell cycle. The light–dark cycle also affects the life cycle of viruses (cyanophages) that infect the unicellular picocyanobacteria Prochlorococcus and Synechococcus, which are the major primary producers in the oceans. For example, the adsorption of some cyanophages to the host cells depends on light, and the burst sizes of cyanophages are positively correlated to the length of light exposure during infection. Recent metatranscriptomic studies revealed transcriptional rhythms of field cyanophage populations. However, the underlying mechanism remains to be determined, as cyanophage laboratory cultures have not been shown to exhibit diurnal transcriptional rhythms. Here, we studied variation in infection patterns and gene expression of Prochlorococcus phages in laboratory culture conditions as a function of light. We found three distinct diel-dependent life history traits in dark conditions (diel traits): no adsorption (cyanophage P-HM2), adsorption but no replication (cyanophage P-SSM2), and replication (cyanophage P-SSP7). Under light–dark cycles, each cyanophage exhibited rhythmic transcript abundance, and cyanophages P-HM2 and P-SSM2 also exhibited rhythmic adsorption patterns. Finally, we show evidence to link the diurnal transcriptional rhythm of cyanophages to the photosynthetic activity of the host, thus providing a mechanistic explanation for the field observations of cyanophage transcriptional rhythms. Our study identifies that cultured viruses can exhibit diurnal rhythms during infection, which might impact cyanophage population-level dynamics in the oceans.
Collapse
|
9
|
Finke JF, Suttle CA. The Environment and Cyanophage Diversity: Insights From Environmental Sequencing of DNA Polymerase. Front Microbiol 2019; 10:167. [PMID: 30800109 PMCID: PMC6375837 DOI: 10.3389/fmicb.2019.00167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/22/2019] [Indexed: 11/13/2022] Open
Abstract
Globally distributed and abundant cyanophages in the family Myoviridae have dsDNA genomes with variable gene content, including host-derived auxiliary metabolic genes (AMGs) that potentially can facilitate viral replication. However, it is not well understood how this variation in gene content interacts with environmental variables to shape cyanomyovirus communities. This project correlated the genetic repertoire of cyanomyoviruses with their phyologeny, and investigated cyanomyovirus ecotype distribution as a function of environmental conditions across locations and seasons. Reference cyanomyovirus genomes were compared for their overlap in gene content to infer phyologenetic distances, and these distances were compared to distances calculated based on DNA polymerase (gp43) gene sequences. In turn, gp43 partial gene sequences amplified from natural cyanophage communities were used to describe cyanomyovirus community composition and to assess the relationship between environmental variables. The results showed the following: (1) DNA polymerase gene phylogeny generally correlated with the similarity in gene content among reference cyanomyoviruses, and thus can be used to describe environmental cyanomyovirus communities; (2) spatial and seasonal patterns in cyanomyovirus communities were related to environmental variables; (3) salinity and temperature, combined with nutrient concentration were predictors of cyanomyovirus richness, diversity and community composition. This study shows that environmental variables shape viral communities by drawing on a diverse seed bank of viral genotypes. From these results it is evident that that viral ecotypes with their corresponding genetic repertoires underlie selection pressures. However, the mechanisms involved in selecting for specific viral genotypes remain to be fully understood.
Collapse
Affiliation(s)
- Jan F. Finke
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Thamatrakoln K, Talmy D, Haramaty L, Maniscalco C, Latham JR, Knowles B, Natale F, Coolen MJL, Follows MJ, Bidle KD. Light regulation of coccolithophore host-virus interactions. THE NEW PHYTOLOGIST 2019; 221:1289-1302. [PMID: 30368816 DOI: 10.1111/nph.15459] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Viruses that infect photoautotrophs have a fundamental relationship with light, given the need for host resources. We investigated the role of light on Coccolithovirus (EhV) infection of the globally distributed coccolithophore, Emiliania huxleyi. Light was required for EhV adsorption, and viral production was highest when host cultures were maintained in continuous light or at irradiance levels of 150-300 μmol m-2 s-1 . During the early stages of infection, photosynthetic electron transport remained high, while RuBisCO expression decreased concomitant with an induction of the pentose phosphate pathway, the primary source of de novo nucleotides. A mathematical model developed and fitted to the laboratory data supported the hypothesis that EhV replication was controlled by a trade-off between host nucleotide recycling and de novo synthesis, and that photoperiod and photon flux could toggle this switch. Laboratory results supported field observations that light was the most robust driver of EhV replication within E. huxleyi populations collected across a 2000 nautical mile transect in the North Atlantic. Collectively, these findings demonstrate that light can drive host-virus interactions through a mechanistic interplay between host metabolic processes, which serve to structure infection and phytoplankton mortality in the upper ocean.
Collapse
Affiliation(s)
- Kimberlee Thamatrakoln
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - David Talmy
- Department of Microbiology, The University of Tennessee, Ken and Blaire Mossman Bldg, 1311 Cumberland Ave #307, Knoxville, TN 37996, USA
| | - Liti Haramaty
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Christopher Maniscalco
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Jason R Latham
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Ben Knowles
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Frank Natale
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Marco J L Coolen
- WA Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael J Follows
- Department of Earth, Atmosphere and Planetary Sciences, MIT, Cambridge, MA, 02139, USA
| | - Kay D Bidle
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Road, New Brunswick, NJ, 08901, USA
| |
Collapse
|
11
|
Prasinovirus Attack of Ostreococcus Is Furtive by Day but Savage by Night. J Virol 2018; 92:JVI.01703-17. [PMID: 29187539 PMCID: PMC5790953 DOI: 10.1128/jvi.01703-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022] Open
Abstract
Prasinoviruses are large DNA viruses that infect diverse genera of green microalgae worldwide in aquatic ecosystems, but molecular knowledge of their life cycles is lacking. Several complete genomes of both these viruses and their marine algal hosts are now available and have been used to show the pervasive presence of these species in microbial metagenomes. We have analyzed the life cycle of Ostreococcus tauri virus 5 (OtV5), a lytic virus, using transcriptome sequencing (RNA-Seq) from 12 time points of healthy or infected Ostreococcus tauri cells over a day/night cycle in culture. In the day, viral gene transcription remained low while host nitrogen metabolism gene transcription was initially strongly repressed for two successive time points before being induced for 8 h, but during the night, viral transcription increased steeply while host nitrogen metabolism genes were repressed and many host functions that are normally reduced in the dark appeared to be compensated either by genes expressed from the virus or by increased expression of a subset of 4.4% of the host's genes. Some host cells underwent lysis progressively during the night, but a larger proportion were lysed the following morning. Our data suggest that the life cycles of algal viruses mirror the diurnal rhythms of their hosts.IMPORTANCE Prasinoviruses are common in marine environments, and although several complete genomes of these viruses and their hosts have been characterized, little is known about their life cycles. Here we analyze in detail the transcriptional changes occurring over a 27-h-long experiment in a natural diurnal rhythm, in which the growth of host cells is to some extent synchronized, so that host DNA replication occurs late in the day or early in the night and cell division occurs during the night. Surprisingly, viral transcription remains quiescent over the daytime, when the most energy (from light) is available, but during the night viral transcription activates, accompanied by expression of a few host genes that are probably required by the virus. Although our experiment was accomplished in the lab, cyclical changes have been documented in host transcription in the ocean. Our observations may thus be relevant for eukaryotic phytoplankton in natural environments.
Collapse
|
12
|
Thompson LR, Zeng Q, Chisholm SW. Gene Expression Patterns during Light and Dark Infection of Prochlorococcus by Cyanophage. PLoS One 2016; 11:e0165375. [PMID: 27788196 PMCID: PMC5082946 DOI: 10.1371/journal.pone.0165375] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/11/2016] [Indexed: 01/09/2023] Open
Abstract
Cyanophage infecting the marine cyanobacteria Prochlorococcus and Synechococcus require light and host photosystem activity for optimal reproduction. Many cyanophages encode multiple photosynthetic electron transport (PET) proteins, which are presumed to maintain electron flow and produce ATP and NADPH for nucleotide biosynthesis and phage genome replication. However, evidence suggests phage augment NADPH production via the pentose phosphate pathway (PPP), thus calling into question the need for NADPH production by PET. Genes implicated in cyclic PET have since been identified in cyanophage genomes. It remains an open question which mode of PET, cyclic or linear, predominates in infected cyanobacteria, and thus whether the balance is towards producing ATP or NADPH. We sequenced transcriptomes of a cyanophage (P-HM2) and its host (Prochlorococcus MED4) throughout infection in the light or in the dark, and analyzed these data in the context of phage replication and metabolite measurements. Infection was robust in the light, but phage were not produced in the dark. Host gene transcripts encoding high-light inducible proteins and two terminal oxidases (plastoquinol terminal oxidase and cytochrome c oxidase)-implicated in protecting the photosynthetic membrane from light stress-were the most enriched in light but not dark infection. Among the most diminished transcripts in both light and dark infection was ferredoxin-NADP+ reductase (FNR), which uses the electron acceptor NADP+ to generate NADPH in linear photosynthesis. The phage gene for CP12, which putatively inhibits the Calvin cycle enzyme that receives NADPH from FNR, was highly expressed in light infection. Therefore, both PET production of NADPH and its consumption by carbon fixation are putatively repressed during phage infection in light. Transcriptomic evidence is thus consistent with cyclic photophosphorylation using oxygen as the terminal electron acceptor as the dominant mode of PET under infection, with ATP from PET and NADPH from the PPP producing the energy and reducing equivalents for phage nucleotide biosynthesis and replication.
Collapse
Affiliation(s)
- Luke R. Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (LRT); (SWC)
| | - Qinglu Zeng
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sallie W. Chisholm
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (LRT); (SWC)
| |
Collapse
|
13
|
Spatially extensive microbial biogeography of the Indian Ocean provides insights into the unique community structure of a pristine coral atoll. Sci Rep 2015; 5:15383. [PMID: 26481089 PMCID: PMC4611231 DOI: 10.1038/srep15383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/24/2015] [Indexed: 11/09/2022] Open
Abstract
Microorganisms act both as drivers and indicators of perturbations in the marine environment. In an effort to establish baselines to predict the response of marine habitats to environmental change, here we report a broad survey of microbial diversity across the Indian Ocean, including the first microbial samples collected in the pristine lagoon of Salomon Islands, Chagos Archipelago. This was the first large-scale ecogenomic survey aboard a private yacht employing a ‘citizen oceanography’ approach and tools and protocols easily adapted to ocean going sailboats. Our data highlighted biogeographic patterns in microbial community composition across the Indian Ocean. Samples from within the Salomon Islands lagoon contained a community which was different even from adjacent samples despite constant water exchange, driven by the dominance of the photosynthetic cyanobacterium Synechococcus. In the lagoon, Synechococcus was also responsible for driving shifts in the metatranscriptional profiles. Enrichment of transcripts related to photosynthesis and nutrient cycling indicated bottom-up controls of community structure. However a five-fold increase in viral transcripts within the lagoon during the day, suggested a concomitant top-down control by bacteriophages. Indeed, genome recruitment against Synechococcus reference genomes suggested a role of viruses in providing the ecological filter for determining the β-diversity patterns in this system.
Collapse
|
14
|
Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc Natl Acad Sci U S A 2015; 112:8008-12. [PMID: 26080407 DOI: 10.1073/pnas.1424279112] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-capita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean.
Collapse
|
15
|
Impairment of O-antigen production confers resistance to grazing in a model amoeba-cyanobacterium predator-prey system. Proc Natl Acad Sci U S A 2012; 109:16678-83. [PMID: 23012457 DOI: 10.1073/pnas.1214904109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The grazing activity of predators on photosynthetic organisms is a major mechanism of mortality and population restructuring in natural environments. Grazing is also one of the primary difficulties in growing cyanobacteria and other microalgae in large, open ponds for the production of biofuels, as contaminants destroy valuable biomass and prevent stable, continuous production of biofuel crops. To address this problem, we have isolated a heterolobosean amoeba, HGG1, that grazes upon unicellular and filamentous freshwater cyanobacterial species. We have established a model predator-prey system using this amoeba and Synechococcus elongatus PCC 7942. Application of amoebae to a library of mutants of S. elongatus led to the identification of a grazer-resistant knockout mutant of the wzm ABC O-antigen transporter gene, SynPCC7942_1126. Mutations in three other genes involved in O-antigen synthesis and transport also prevented the expression of O-antigen and conferred resistance to HGG1. Complementation of these rough mutants returned O-antigen expression and susceptibility to amoebae. Rough mutants are easily identifiable by appearance, are capable of autoflocculation, and do not display growth defects under standard laboratory growth conditions, all of which are desired traits for a biofuel production strain. Thus, preventing the production of O-antigen is a pathway for producing resistance to grazing by certain amoebae.
Collapse
|
16
|
Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond. Appl Environ Microbiol 2012; 78:5805-11. [PMID: 22685141 DOI: 10.1128/aem.00571-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viruses play important roles in regulating the abundance, clonal diversity, and composition of their host populations. To assess their impact on the host populations, it is essential to understand the dynamics of virus infections in the natural environment. Cyanophages often carry host-like genes, including photosynthesis genes, which maintain host photosynthesis. This implies a diurnal pattern of cyanophage infection depending on photosynthesis. Here we investigated the infection pattern of Microcystis cyanophage by following the abundances of the Ma-LMM01-type phage tail sheath gene g91 and its transcript in a natural population. The relative g91 mRNA abundance within host cells showed a peak during the daylight hours and was lowest around midnight. The phage g91 DNA copy numbers in host cell fractions, which are predicted to indicate phage replication, increased in the afternoon, followed by an increase in the free-phage fractions. In all fractions, at least 1 of 71 g91 genotypes was observed (in tested host cell, free-phage, and RNA fractions), indicating that the replication cycle of the cyanophage (i.e., injection, transcription, replication, and release of progeny phages) was occurring. Thus, Microcystis cyanophage infection occurs in a diel cycle, which may depend on the light cycle. Additionally, our data show that the abundance of mature cyanophage produced within host cells was 1 to 2 orders of magnitude greater than that of released phages, suggesting that phage production may be higher than previously reported.
Collapse
|
17
|
Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci U S A 2011; 108:E757-64. [PMID: 21844365 DOI: 10.1073/pnas.1102164108] [Citation(s) in RCA: 322] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanophages infecting the marine cyanobacteria Prochlorococcus and Synechococcus encode and express genes for the photosynthetic light reactions. Sequenced cyanophage genomes lack Calvin cycle genes, however, suggesting that photosynthetic energy harvested via phage proteins is not used for carbon fixation. We report here that cyanophages carry and express a Calvin cycle inhibitor, CP12, whose host homologue directs carbon flux from the Calvin cycle to the pentose phosphate pathway (PPP). Phage CP12 was coexpressed with phage genes involved in the light reactions, deoxynucleotide biosynthesis, and the PPP, including a transaldolase gene that is the most prevalent PPP gene in cyanophages. Phage transaldolase was purified to homogeneity from several strains and shown to be functional in vitro, suggesting that it might facilitate increased flux through this key reaction in the host PPP, augmenting production of NADPH and ribose 5-phosphate. Kinetic measurements of phage and host transaldolases revealed that the phage enzymes have k(cat)/K(m) values only approximately one third of the corresponding host enzymes. The lower efficiency of phage transaldolase may be a tradeoff for other selective advantages such as reduced gene size: we show that more than half of host-like cyanophage genes are significantly shorter than their host homologues. Consistent with decreased Calvin cycle activity and increased PPP and light reaction activity under infection, the host NADPH/NADP ratio increased two-fold in infected cells. We propose that phage-augmented NADPH production fuels deoxynucleotide biosynthesis for phage replication, and that the selection pressures molding phage genomes involve fitness advantages conferred through mobilization of host energy stores.
Collapse
|
18
|
Clokie MRJ, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J 2010; 7:291. [PMID: 21029435 PMCID: PMC2984593 DOI: 10.1186/1743-422x-7-291] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/28/2010] [Indexed: 11/30/2022] Open
Abstract
From genomic sequencing it has become apparent that the marine cyanomyoviruses capable of infecting strains of unicellular cyanobacteria assigned to the genera Synechococcus and Prochlorococcus are not only morphologically similar to T4, but are also genetically related, typically sharing some 40-48 genes. The large majority of these common genes are the same in all marine cyanomyoviruses so far characterized. Given the fundamental physiological differences between marine unicellular cyanobacteria and heterotrophic hosts of T4-like phages it is not surprising that the study of cyanomyoviruses has revealed novel and fascinating facets of the phage-host relationship. One of the most interesting features of the marine cyanomyoviruses is their possession of a number of genes that are clearly of host origin such as those involved in photosynthesis, like the psbA gene that encodes a core component of the photosystem II reaction centre. Other host-derived genes encode enzymes involved in carbon metabolism, phosphate acquisition and ppGpp metabolism. The impact of these host-derived genes on phage fitness has still largely to be assessed and represents one of the most important topics in the study of this group of T4-like phages in the laboratory. However, these phages are also of considerable environmental significance by virtue of their impact on key contributors to oceanic primary production and the true extent and nature of this impact has still to be accurately assessed.
Collapse
Affiliation(s)
- Martha R J Clokie
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | | |
Collapse
|
19
|
Jia Y, Shan J, Millard A, Clokie MRJ, Mann NH. Light-dependent adsorption of photosynthetic cyanophages to Synechococcus sp. WH7803. FEMS Microbiol Lett 2010; 310:120-6. [PMID: 20704597 DOI: 10.1111/j.1574-6968.2010.02054.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cyanophages infecting marine Synechococcus strains are abundant in the world's oceans and are of considerable ecological significance by virtue of their hosts' role as prominent primary producers in the marine environment. In nature, cyanobacteria experience diel light-dark (LD) cycles, which may exert significant effects on the phage life cycle. An investigation into the role of light revealed that cyanophage S-PM2 adsorption to Synechococcus sp. WH7803 was a light-dependent process. Phage adsorption assays were carried out under illumination at different wavelengths and also in the presence of photosynthesis inhibitors. Furthermore, phage adsorption was also assayed to LD-entrained cells at different points in the circadian cycle. Cyanophage S-PM2 exhibited a considerably decreased adsorption rate under red light as compared with blue, green, yellow light or daylight. However, photosynthesis per se was not required for adsorption as inhibitors such as dichlorophenyldimethyl urea did not affect the process. Neither was S-PM2 adsorption influenced by the circadian rhythm of the host cells. The presence or absence of the photosynthetic reaction centre gene psbA in cyanophage genomes was not correlated with the light-dependent phage adsorption.
Collapse
Affiliation(s)
- Ying Jia
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | | | | | | | |
Collapse
|
20
|
Summer EJ, Enderle CJ, Ahern SJ, Gill JJ, Torres CP, Appel DN, Black MC, Young R, Gonzalez CF. Genomic and biological analysis of phage Xfas53 and related prophages of Xylella fastidiosa. J Bacteriol 2010; 192:179-90. [PMID: 19897657 PMCID: PMC2798268 DOI: 10.1128/jb.01174-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 10/27/2009] [Indexed: 02/07/2023] Open
Abstract
We report the plaque propagation and genomic analysis of Xfas53, a temperate phage of Xylella fastidiosa. Xfas53 was isolated from supernatants of X. fastidiosa strain 53 and forms plaques on the sequenced strain Temecula. Xfas53 forms short-tailed virions, morphologically similar to podophage P22. The 36.7-kb genome is predicted to encode 45 proteins. The Xfas53 terminase and structural genes are related at a protein and gene order level to P22. The left arm of the Xfas53 genome has over 90% nucleotide identity to multiple prophage elements of the sequenced X. fastidiosa strains. This arm encodes proteins involved in DNA metabolism, integration, and lysogenic control. In contrast to Xfas53, each of these prophages encodes head and DNA packaging proteins related to the siphophage lambda and tail morphogenesis proteins related to those of myophage P2. Therefore, it appears that Xfas53 was formed by recombination between a widespread family of X. fastidiosa P2-related prophage elements and a podophage distantly related to phage P22. The lysis cassette of Xfas53 is predicted to encode a pinholin, a signal anchor and release (SAR) endolysin, and Rz and Rz1 equivalents. The holin gene encodes a pinholin and appears to be subject to an unprecedented degree of negative regulation at both the level of expression, with rho-independent transcriptional termination and RNA structure-dependent translational repression, and the level of holin function, with two upstream translational starts predicted to encode antiholin products. A notable feature of Xfas53 and related prophages is the presence of 220- to 390-nucleotide degenerate tandem direct repeats encoding putative DNA binding proteins. Additionally, each phage encodes at least two BroN domain-containing proteins possibly involved in lysogenic control. Xfas53 exhibits unusually slow adsorption kinetics, possibly an adaptation to the confined niche of its slow-growing host.
Collapse
Affiliation(s)
- Elizabeth J. Summer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Christopher J. Enderle
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Stephen J. Ahern
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Jason J. Gill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Cruz P. Torres
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - David N. Appel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Mark C. Black
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| | - Carlos F. Gonzalez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, Department of Plant Pathology and Microbiology, Texas A&M University, College, Station, Texas 77843-2132, Texas AgriLife Research and Extension Center, Uvalde, Texas 78801-6205
| |
Collapse
|
21
|
Shan J, Jia Y, Clokie MR, Mann NH. Infection by the ‘photosynthetic’ phage S-PM2 induces increased synthesis of phycoerythrin in Synechococcus sp. WH7803. FEMS Microbiol Lett 2008; 283:154-61. [DOI: 10.1111/j.1574-6968.2008.01148.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Long A, McDaniel LD, Mobberley J, Paul JH. Comparison of lysogeny (prophage induction) in heterotrophic bacterial and Synechococcus populations in the Gulf of Mexico and Mississippi River plume. ISME JOURNAL 2007; 2:132-44. [PMID: 18049460 DOI: 10.1038/ismej.2007.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lysogeny has been documented as a fundamental process occurring in natural marine communities of heterotrophic and autotrophic bacteria. Prophage induction has been observed to be prevalent during conditions of low host abundance, but factors controlling the process are poorly understood. A research cruise was undertaken to the Gulf of Mexico during July 2005 to explore environmental factors associated with lysogeny. Ambient physical and microbial parameters were measured and prophage induction experiments were performed in contrasting oligotrophic Gulf and eutrophic Mississippi plume areas. Three of 11 prophage induction experiments in heterotrophic bacteria (27%) demonstrated significant induction in response to Mitomycin C. In contrast, there was significant Synechococcus cyanophage induction in seven of nine experiments (77.8%). A strong negative correlation was observed between lysogeny and log-transformed activity measurements for both heterotrophic and autotrophic populations (r=-0.876, P=0.002 and r=-0.815, P=0.025, respectively), indicating that bacterioplankton with low host growth favor lysogeny. Multivariate statistical analyses indicated that ambient level of viral abundance and productivity were inversely related to heterotrophic prophage induction and both factors combined were most predictive of lysogeny (rho=0.899, P=0.001). For Synechococcus, low ambient cyanophage abundance was most predictive of lysogeny (rho=0.862, P=0.005). Abundance and productivity of heterotrophic bacteria was strongly inversely correlated with salinity, while Synechococcus was not. This indicated that heterotrophic bacterial populations were well adapted to the river plume environments, thus providing a possible explanation for differences in prevalence of lysogeny observed between the two populations.
Collapse
Affiliation(s)
- Amy Long
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St Petersburg, FL 33701, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Prokaryotic cyanobacteria express robust circadian (daily) rhythms under the control of a clock system that appears to be similar to those of eukaryotes in many ways. On the other hand, the KaiABC-based core cyanobacterial clockwork is clearly different from the transcription-translation feedback loop model of eukaryotic clocks in that the cyanobacterial clock system regulates gene expression patterns globally, and specific clock gene promoters are not essential in mediating the circadian feedback loop. A novel model, the oscilloid model, proposes that the KaiABC oscillator ultimately mediates rhythmic changes in the status of the cyanobacterial chromosome, and these topological changes underlie the global rhythms of transcription. The authors suggest that this model represents one of several possible modes of regulating gene expression by circadian clocks, even those of eukaryotes.
Collapse
Affiliation(s)
| | - Carl Hirschie Johnson
- To whom all correspondence should be addressed: Carl Johnson, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235;
| |
Collapse
|
24
|
Abstract
In contrast to the phages of heterotrophic hosts, light can play a key role in all aspects of the life cycle of phages infecting ecologically important marine unicellular cyanobacteria of the genera Synechococcus and Prochlorococcus. Phage adsorption, replication, modulation of the host cell metabolism, and survival in the environment following lysis, all exhibit light-dependent components. The analysis of cyanophage genomes has revealed the acquisition of key photosynthetic genes during the course of evolution, such as those encoding central components of the light harvesting apparatus. These discoveries are beginning to reveal novel features of the interactions between parasite and host that shape the biology of both.
Collapse
Affiliation(s)
- Martha R J Clokie
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
25
|
Gopinath K, Dragnea B, Kao C. Interaction between Brome mosaic virus proteins and RNAs: effects on RNA replication, protein expression, and RNA stability. J Virol 2005; 79:14222-34. [PMID: 16254357 PMCID: PMC1280218 DOI: 10.1128/jvi.79.22.14222-14234.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/20/2005] [Indexed: 11/20/2022] Open
Abstract
Brome mosaic virus (BMV) RNA replication has been examined in a number of systems, including Saccharomyces cerevisiae. We developed an efficient T-DNA-based gene delivery system using Agrobacterium tumefaciens to transiently express BMV RNAs in Nicotiana benthamiana. The expressed RNAs can systemically infect plants and provide material to extract BMV replicase that can perform template-dependent RNA-dependent RNA synthesis in vitro. We also expressed the four BMV-encoded proteins from nonreplicating RNAs and analyzed their effects on BMV RNA accumulation. The capsid protein that coinfiltrated with constructs expressing RNA1 and RNA2 suppressed minus-strand levels but increased plus-strand RNA accumulation. The replication proteins 1a and 2a could function in trans to replicate and transcribe the BMV RNAs. None of the BMV proteins or RNA could efficiently suppress posttranscriptional silencing. However, 1a expressed in trans will suppress the production of a recombinant green fluorescent protein expressed from the nontranslated portions of BMV RNA1 and RNA2, suggesting that 1a may regulate translation from BMV RNAs. BMV replicase proteins 1a did not affect the accumulation of the BMV RNAs in the absence of RNA replication, unlike the situation reported for S. cerevisiae. This work demonstrates that the Agrobacterium-mediated gene delivery system can be used to study the cis- and trans-acting requirements for BMV RNA replication in plants and that significant differences can exist for BMV RNA replication in different hosts.
Collapse
Affiliation(s)
- K Gopinath
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|