1
|
Wang J, Hu L, Zhang Z, Sui C, Zhu X, Wu C, Zhang L, Lv M, Yang W, Zhou D, Shang Z. Mice fatal pneumonia model induced by less-virulent Streptococcus pneumoniae via intratracheal aerosolization. Future Microbiol 2024; 19:1055-1070. [PMID: 38913747 PMCID: PMC11323861 DOI: 10.1080/17460913.2024.2355738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 06/26/2024] Open
Abstract
Aim: Animal models of fatal pneumonia caused by Streptococcus pneumoniae (Spn) have not been reliably generated using many strains of less virulent serotypes.Materials & methods: Pulmonary infection of a less virulent Spn serotype1 strain in the immunocompetent mice was established via the intratracheal aerosolization (ITA) route. The survival, local and systemic bacterial spread, pathological changes and inflammatory responses of this model were compared with those of mice challenged via the intratracheal instillation, intranasal instillation and intraperitoneal injection routes.Results: ITA and intratracheal instillation both induced fatal pneumonia; however, ITA resulted in better lung bacterial deposition and distribution, pathological homogeneity and delivery efficiency.Conclusion: ITA is an optimal route for developing animal models of severe pulmonary infections.
Collapse
Affiliation(s)
- Jiazhen Wang
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guian New Area, 561113, China
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhijun Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chengyu Sui
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
- Department of Microbiology of Basic Medical College, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyu Zhu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chengxi Wu
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lili Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Meng Lv
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhengling Shang
- Department of Immunology of Basic Medical College, Guizhou Medical University, Guian New Area, 561113, China
| |
Collapse
|
2
|
Giménez MJ, Aguilar L, Alou L, Sevillano D. Comment on the article: In vivo Pharmacokinetics/Pharmacodynamics Profiles for Appropriate Doses of Cefditoren pivoxil against S. pneumoniae in Murine Lung-Infection Model. Pharm Res 2024; 41:1595-1597. [PMID: 38997597 DOI: 10.1007/s11095-024-03729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Affiliation(s)
- M J Giménez
- PRISM-AG, Madrid, Spain.
- Universidad Europea, Madrid, Spain.
| | | | - L Alou
- Microbiology-Medicine Department, School of Medicine, Universidad Complutense, Madrid, Spain
| | - D Sevillano
- Microbiology-Medicine Department, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
3
|
Sekulovic O, Gallagher C, Lee J, Hao L, Zinonos S, Tan CY, Anderson A, Kanevsky I. Evidence of Reduced Virulence and Increased Colonization Among Pneumococcal Isolates of Serotype 3 Clade II Lineage in Mice. J Infect Dis 2024; 230:e182-e188. [PMID: 39052735 PMCID: PMC11272092 DOI: 10.1093/infdis/jiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
Recent phylogenetic profiling of pneumococcal serotype 3 (Pn3) isolates revealed a dynamic interplay among major lineages with the emergence and global spread of a variant termed clade II. The cause of Pn3 clade II dissemination along with epidemiological and clinical ramifications are currently unknown. Here, we sought to explore biological characteristics of dominant Pn3 clades in a mouse model of pneumococcal invasive disease and carriage. Carriage and virulence potential were strain dependent with marked differences among clades. We found that clinical isolates from Pn3 clade II are less virulent and less invasive in mice compared to clade I isolates. We also observed that clade II isolates are carried for longer and at higher bacterial densities in mice compared to clade I isolates. Taken together, our data suggest that the epidemiological success of Pn3 clade II could be related to alterations in the pathogen's ability to cause invasive disease and to establish a robust carriage episode.
Collapse
Affiliation(s)
- Ognjen Sekulovic
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Caitlyn Gallagher
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Jonathan Lee
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Li Hao
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Stavros Zinonos
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| | - Charles Y Tan
- Pfizer Inc, Early Clinical Development, Collegeville, Pennsylvania
| | | | - Isis Kanevsky
- Pfizer Inc, Bacterial Vaccines and Technology, Pearl River, New York
| |
Collapse
|
4
|
Farmen K, Tofiño-Vian M, Wellfelt K, Olson L, Iovino F. Spatio-temporal brain invasion pattern of Streptococcus pneumoniae and dynamic changes in the cellular environment in bacteremia-derived meningitis. Neurobiol Dis 2024; 195:106484. [PMID: 38583642 DOI: 10.1016/j.nbd.2024.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial meningitis globally, and pneumococcal meningitis is associated with increased risk of long-term neurological sequelae. These include several sensorimotor functions that are controlled by specific brain regions which, during bacterial meningitis, are damaged by a neuroinflammatory response and the deleterious action of bacterial toxins in the brain. However, little is known about the invasion pattern of the pneumococcus into the brain. Using a bacteremia-derived meningitis mouse model, we combined 3D whole brain imaging with brain microdissection to show that all brain regions were equally affected during disease progression, with the presence of pneumococci closely associated to the microvasculature. In the hippocampus, the invasion provoked microglial activation, while the neurogenic niche showed increased proliferation and migration of neuroblasts. Our results indicate that, even before the outbreak of symptoms, the bacterial load throughout the brain is high and causes neuroinflammation and cell death, a pathological scenario which ultimately leads to a failing regeneration of new neurons.
Collapse
Affiliation(s)
- Kristine Farmen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Katrin Wellfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Koning R, van Roon MA, Brouwer MC, van de Beek D. Adjunctive treatments for pneumococcal meningitis: a systematic review of experimental animal models. Brain Commun 2024; 6:fcae131. [PMID: 38707710 PMCID: PMC11069119 DOI: 10.1093/braincomms/fcae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
New treatments are needed to improve the prognosis of pneumococcal meningitis. We performed a systematic review on adjunctive treatments in animal models of pneumococcal meningitis in order to identify treatments with the most potential to progress to clinical trials. Studies testing therapy adjunctive to antibiotics in animal models of pneumococcal meningitis were included. A literature search was performed using Medline, Embase and Scopus for studies published from 1990 up to 17 February 2023. Two investigators screened studies for inclusion and independently extracted data. Treatment effect was assessed on the clinical parameters disease severity, hearing loss and cognitive impairment and the biological parameters inflammation, brain injury and bacterial load. Adjunctive treatments were evaluated by their effect on these outcomes and the quality, number and size of studies that investigated the treatments. Risk of bias was assessed with the SYRCLE risk of bias tool. A total of 58 of 2462 identified studies were included, which used 2703 experimental animals. Disease modelling was performed in rats (29 studies), rabbits (13 studies), mice (12 studies), gerbils (3 studies) or both rats and mice (1 study). Meningitis was induced by injection of Streptococcus pneumoniae into the subarachnoid space. Randomization of experimental groups was performed in 37 of 58 studies (64%) and 12 studies (12%) were investigator-blinded. Overall, 54 treatment regimens using 46 adjunctive drugs were evaluated: most commonly dexamethasone (16 studies), daptomycin (5 studies), complement component 5 (C5; 3 studies) antibody and Mn(III)tetrakis(4-benzoicacid)porphyrin chloride (MnTBAP; 3 studies). The most frequently evaluated outcome parameters were inflammation [32 studies (55%)] and brain injury [32 studies (55%)], followed by disease severity [30 studies (52%)], hearing loss [24 studies (41%)], bacterial load [18 studies (31%)] and cognitive impairment [9 studies (16%)]. Adjunctive therapy that improved clinical outcomes in multiple studies was dexamethasone (6 studies), C5 antibodies (3 studies) and daptomycin (3 studies). HMGB1 inhibitors, matrix metalloproteinase inhibitors, neurotrophins, antioxidants and paquinimod also improved clinical parameters but only in single or small studies. Evaluating the treatment effect of adjunctive therapy was complicated by study heterogeneity regarding the animal models used and outcomes reported. In conclusion, 24 of 54 treatment regimens (44%) tested improved clinically relevant outcomes in experimental pneumococcal meningitis but few were tested in multiple well-designed studies. The most promising new adjunctive treatments are with C5 antibodies or daptomycin, suggesting that these drugs could be tested in clinical trials.
Collapse
Affiliation(s)
- Rutger Koning
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Marian A van Roon
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, 1100DD Amsterdam, The Netherlands
| |
Collapse
|
6
|
Assoni L, Couto AJM, Vieira B, Milani B, Lima AS, Converso TR, Darrieux M. Animal models of Klebsiella pneumoniae mucosal infections. Front Microbiol 2024; 15:1367422. [PMID: 38559342 PMCID: PMC10978692 DOI: 10.3389/fmicb.2024.1367422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Klebsiella pneumoniae is among the most relevant pathogens worldwide, causing high morbidity and mortality, which is worsened by the increasing rates of antibiotic resistance. It is a constituent of the host microbiota of different mucosa, that can invade and cause infections in many different sites. The development of new treatments and prophylaxis against this pathogen rely on animal models to identify potential targets and evaluate the efficacy and possible side effects of therapeutic agents or vaccines. However, the validity of data generated is highly dependable on choosing models that can adequately reproduce the hallmarks of human diseases. The present review summarizes the current knowledge on animal models used to investigate K. pneumoniae infections, with a focus on mucosal sites. The advantages and limitations of each model are discussed and compared; the applications, extrapolations to human subjects and future modifications that can improve the current techniques are also presented. While mice are the most widely used species in K. pneumoniae animal studies, they present limitations such as the natural resistance to the pathogen and difficulties in reproducing the main steps of human mucosal infections. Other models, such as Drosophila melanogaster (fruit fly), Caenorhabditis elegans, Galleria mellonella and Danio rerio (zebrafish), contribute to understanding specific aspects of the infection process, such as bacterial lethality and colonization and innate immune system response, however, they but do not present the immunological complexity of mammals. In conclusion, the choice of the animal model of K. pneumoniae infection will depend mainly on the questions being addressed by the study, while a better understanding of the interplay between bacterial virulence factors and animal host responses will provide a deeper comprehension of the disease process and aid in the development of effective preventive/therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michelle Darrieux
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
7
|
Warrier I, Perry A, Hubbell SM, Eichelman M, van Opijnen T, Meyer MM. RNA cis-regulators are important for Streptococcus pneumoniae in vivo success. PLoS Genet 2024; 20:e1011188. [PMID: 38442125 PMCID: PMC10942264 DOI: 10.1371/journal.pgen.1011188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Bacteria have evolved complex transcriptional regulatory networks, as well as many diverse regulatory strategies at the RNA level, to enable more efficient use of metabolic resources and a rapid response to changing conditions. However, most RNA-based regulatory mechanisms are not well conserved across different bacterial species despite controlling genes important for virulence or essential biosynthetic processes. Here, we characterize the activity of, and assess the fitness benefit conferred by, twelve cis-acting regulatory RNAs (including several riboswitches and a T-box), in the opportunistic pathogen Streptococcus pneumoniae TIGR4. By evaluating native locus mutants of each regulator that result in constitutively active or repressed expression, we establish that growth defects in planktonic culture are associated with constitutive repression of gene expression, while constitutive activation of gene expression is rarely deleterious. In contrast, in mouse nasal carriage and pneumonia models, strains with either constitutively active and repressed gene expression are significantly less fit than matched control strains. Furthermore, two RNA-regulated pathways, FMN synthesis/transport and pyrimidine synthesis/transport display exceptional sensitivity to mis-regulation or constitutive gene repression in both planktonic culture and in vivo environments. Thus, despite lack of obvious phenotypes associated with constitutive gene expression in vitro, the fitness benefit conferred on bacteria via fine-tuned metabolic regulation through cis-acting regulatory RNAs is substantial in vivo, and therefore easily sufficient to drive the evolution and maintenance of diverse RNA regulatory mechanisms.
Collapse
Affiliation(s)
- Indu Warrier
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ariana Perry
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Sara M. Hubbell
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Matthew Eichelman
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| | - Tim van Opijnen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michelle M. Meyer
- Boston College Department of Biology, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
8
|
Afshari E, Ahangari Cohan R, Shams Nosrati MS, Mousavi SF. Development of a bivalent protein-based vaccine candidate against invasive pneumococcal diseases based on novel pneumococcal surface protein A in combination with pneumococcal histidine triad protein D. Front Immunol 2023; 14:1187773. [PMID: 37680628 PMCID: PMC10480505 DOI: 10.3389/fimmu.2023.1187773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023] Open
Abstract
Extensive efforts have been made toward improving effective strategies for pneumococcal vaccination, focusing on evaluating the potential of multivalent protein-based vaccines and overcoming the limitations of pneumococcal polysaccharide-based vaccines. In this study, we investigated the protective potential of mice co-immunization with the pneumococcal PhtD and novel rPspA proteins against pneumococcal sepsis infection. The formulations of each antigen alone or in combination were administered intraperitoneally with alum adjuvant into BALB/c mice three times at 14-day intervals. The production of antigen-specific IgG, IgG1 and IgG2a subclasses, and IL-4 and IFN-γ cytokines, were analyzed. Two in vitro complement- and opsonophagocytic-mediated killing activities of raised antibodies on day 42 were also assessed. Finally, the protection against an intraperitoneal challenge with 106 CFU/mouse of multi-drug resistance of Streptococcus pneumoniae ATCC49619 was investigated. Our findings showed a significant increase in the anti-PhtD and anti-rPspA sera IgG levels in the immunized group with the PhtD+rPspA formulation compared to each alone. Moreover, the results demonstrated a synergistic effect with a 6.7- and 1.3- fold increase in anti-PhtD and anti-rPspA IgG1, as well as a 5.59- and 1.08- fold increase in anti-PhtD and anti-rPspA IgG2a, respectively. Co-administration of rPspA+PhtD elicited a mixture of Th-2 and Th-1 immune responses, more towards Th-2. In addition, the highest complement-mediated killing activity was observed in the sera of the immunized group with PhtD+rPspA at 1/16 dilution, and the opsonophagocytic activity was increased from 74% to 86.3%. Finally, the survival rates showed that mice receiving the rPspA+PhtD formulation survived significantly longer (100%) than those receiving protein alone or PBS and exhibited the strongest clearance with a 2 log10 decrease in bacterial load in the blood 24h after challenge compared to the control group. In conclusion, the rPspA+PhtD formulation can be considered a promising bivalent serotype-independent vaccine candidate for protection against invasive pneumococcal infection in the future.
Collapse
Affiliation(s)
- Elnaz Afshari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
9
|
Kahlert CR, Nigg S, Onder L, Dijkman R, Diener L, Vidal AGJ, Rodriguez R, Vernazza P, Thiel V, Vidal JE, Albrich WC. The quorum sensing com system regulates pneumococcal colonisation and invasive disease in a pseudo-stratified airway tissue model. Microbiol Res 2023; 268:127297. [PMID: 36608536 PMCID: PMC9868095 DOI: 10.1016/j.micres.2022.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The effects of the com quorum sensing system during colonisation and invasion of Streptococcus pneumoniae (Spn) are poorly understood. METHODS We developed an ex vivo model of differentiated human airway epithelial (HAE) cells with beating ciliae, mucus production and tight junctions to study Spn colonisation and translocation. HAE cells were inoculated with Spn wild-type TIGR4 (wtSpn) or its isogenic ΔcomC quorum sensing-deficient mutant. RESULTS Colonisation density of ΔcomC mutant was lower after 6 h but higher at 19 h and 30 h compared to wtSpn. Translocation correlated inversely with colonisation density. Transepithelial electric resistance (TEER) decreased after pneumococcal inoculation and correlated with increased translocation. Confocal imaging illustrated prominent microcolony formation with wtSpn but disintegration of microcolony structures with ΔcomC mutant. ΔcomC mutant showed greater cytotoxicity than wtSpn, suggesting that cytotoxicity was likely not the mechanism leading to translocation. There was greater density- and time-dependent increase of inflammatory cytokines including NLRP3 inflammasome-related IL-18 after infection with ΔcomC compared with wtSpn. ComC inactivation was associated with increased pneumolysin expression. CONCLUSIONS ComC system allows a higher organisational level of population structure resulting in microcolony formation, increased early colonisation and subsequent translocation. We propose that ComC inactivation unleashes a very different and possibly more virulent phenotype that merits further investigation.
Collapse
Affiliation(s)
- Christian R Kahlert
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland; Children's Hospital of Eastern Switzerland, Infectious Disease & Hospital Epidemiology, St. Gallen, Switzerland.
| | - Susanne Nigg
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Cantonal Hospital St. Gallen, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Liliane Diener
- Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Ana G Jop Vidal
- Department of Cell and Molecular Biology, and Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Regulo Rodriguez
- Institute of Pathology, Cantonal Hospital St. Gallen, Switzerland
| | - Pietro Vernazza
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, and Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Werner C Albrich
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland.
| |
Collapse
|
10
|
Comparative meta-analysis of host transcriptional response during Streptococcus pneumoniae carriage or infection. Microb Pathog 2022; 173:105816. [DOI: 10.1016/j.micpath.2022.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
|
11
|
Balachandran Y, Singh B. Toll-like receptor 10 has a role in human macrophage response against Streptococcus pneumoniae. Cell Tissue Res 2022; 390:51-57. [PMID: 35867184 DOI: 10.1007/s00441-022-03671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved pathogen-associated molecular pattern recognition receptors, and play a critical role in early response against invading pathogens. Even though TLRs have been widely studied, very little is known about the expression and function of TLR10. Till date, neither any data are available on expression of TLR10 in human lungs nor there is any information on function of TLR10 in macrophages. Streptococcus pneumoniae are Gram-positive, alpha-hemolytic, and major causative agent of pneumonia, ear infections, sinus infections, and meningitis. We examined the role of TLR10 in innate immune response to S. pneumoniae infection in U937 cell line-derived human macrophages. We found a significant increase in TLR10 mRNA and protein expression in S. pneumoniae challenged macrophages. TLR10 knockdown resulted in significant reduction of IL-1β, IL-8, IL-17, and TNF-α but not IL-10 expression in infected macrophages. TLR10 knockdown in macrophages reduced nuclear translocation of NF-κB during S. pneumoniae challenge but did not affect the phagocytosis of the bacteria. Taken together, we report the first data on TLR10's role in macrophage response against S. pneumoniae.
Collapse
Affiliation(s)
- Yadu Balachandran
- Pulmonary Pathobiology Lab, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Baljit Singh
- Pulmonary Pathobiology Lab, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
12
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
13
|
Hames RG, Jasiunaite Z, Wanford JJ, Carreno D, Chung WY, Dennison AR, Oggioni MR. Analyzing Macrophage Infection at the Organ Level. Methods Mol Biol 2021; 2414:405-431. [PMID: 34784049 DOI: 10.1007/978-1-0716-1900-1_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Classical in vivo infection models are oftentimes associated with speculation due to the many physiological factors that are unseen or not accounted for when analyzing experimental outputs, especially when solely utilizing the classic approach of tissue-derived colony-forming unit (CFU) enumeration. To better understand the steps and natural progression of bacterial infection, the pathophysiology of individual organs with which the bacteria interact in their natural course of infection must be considered. In this case, it is not only important to isolate organs as much as possible from additional physiological processes, but to also consider the dynamics of the bacteria at the cellular level within these organs of interest. Here, we describe in detail two models, ex vivo porcine liver and spleen coperfusion and a murine infection model, and the numerous associated experimental outputs produced by these models that can be taken and used together to investigate the pathogen-host interactions within tissues in depth.
Collapse
Affiliation(s)
- Ryan G Hames
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Zydrune Jasiunaite
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Joseph J Wanford
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - David Carreno
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Wen Y Chung
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, University Hospitals of Leicester, Leicester, UK
| | - Marco R Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK. .,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
14
|
Development and characterization of a new swine model of invasive pneumococcal pneumonia. Lab Anim (NY) 2021; 50:327-335. [PMID: 34675433 DOI: 10.1038/s41684-021-00876-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/16/2021] [Indexed: 11/08/2022]
Abstract
Streptococcus pneumoniae is the most common microbial cause of community-acquired pneumonia. Currently, there are no available models of severe pneumococcal pneumonia in mechanically ventilated animals to mimic clinical conditions of critically ill patients. We studied endogenous pulmonary flora in 4 healthy pigs and in an additional 10 pigs in which we intra-bronchially instilled S. pneumoniae serotype 19 A, characterized by its resistance to penicillin, macrolides and tetracyclines. The pigs underwent ventilation for 72 h. All pigs that were not challenged with S. pneumoniae completed the 72-h study, whereas 30% of infected pigs did not. At 24 h, we clinically confirmed pneumonia in the infected pigs; upon necropsy, we sampled lung tissue for microbiological/histological confirmation of pneumococcal pneumonia. In control pigs, Streptococcus suis and Staphylococcus aureus were the most commonly encountered pathogens, and their lung tissue mean ± s.e.m. concentration was 7.94 ± 20 c.f.u./g. In infected pigs, S. pneumoniae was found in the lungs of all pigs (mean ± s.e.m. pulmonary concentration of 1.26 × 105 ± 2 × 102 c.f.u./g). Bacteremia was found in 50% of infected pigs. Pneumococcal pneumonia was confirmed in all infected pigs at 24 h. Pneumonia was associated with thrombocytopenia, an increase in prothrombin time, cardiac output and vasopressor dependency index and a decrease in systemic vascular resistance. Upon necropsy, microbiological/histological pneumococcal pneumonia was confirmed in 8 of 10 pigs. We have therefore developed a novel model of penicillin- and macrolide-resistant pneumococcal pneumonia in mechanically ventilated pigs with bacteremia and severe hemodynamic compromise. The model could prove valuable for appraising the pathogenesis of pneumococcal pneumonia, the effects associated with macrolide resistance and the outcomes related to the use of new diagnostic strategies and antibiotic or complementary therapies.
Collapse
|
15
|
Briestenská K, Mikušová M, Tomčíková K, Kostolanský F, Varečková E. Quantification of bacteria by in vivo bioluminescence imaging in comparison with standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). Arch Microbiol 2021; 203:4737-4742. [PMID: 34184097 PMCID: PMC8360831 DOI: 10.1007/s00203-021-02458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/03/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
In vivo bioluminescence imaging (BLI) offers a unique opportunity to analyze ongoing bacterial infections qualitatively and quantitatively in intact animals over time, leading to a reduction in the number of animals needed for a study. Since accurate determination of the bacterial burden plays an essential role in microbiological research, the present study aimed to evaluate the ability to quantify bacteria by non-invasive BLI technique in comparison to standard spread plate method and reverse transcription quantitative PCR (RT-qPCR). For this purpose, BALB/c mice were intranasally infected with 1 × 105 CFU of bioluminescent Streptococcus pneumoniae A66.1. At day 1 post-infection, the presence of S. pneumoniae in lungs was demonstrated by spread plate method and RT-qPCR, but not by in vivo BLI. However, on the second day p.i., the bioluminescent signal was already detectable, and the photon flux values positively correlated with CFU counts and RT-qPCR data within days 2–6. Though in vivo BLI is valuable research tool allowing the continuous monitoring and quantification of pneumococcal infection in living mice, it should be kept in mind that early in the infection, depending on the infective dose, the bioluminescent signal may be below the detection limit.
Collapse
Affiliation(s)
- Katarína Briestenská
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Miriam Mikušová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Karolína Tomčíková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - František Kostolanský
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Eva Varečková
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
16
|
McAlister E, Dutton B, Vora LK, Zhao L, Ripolin A, Zahari DSZBPH, Quinn HL, Tekko IA, Courtenay AJ, Kelly SA, Rodgers AM, Steiner L, Levin G, Levy‐Nissenbaum E, Shterman N, McCarthy HO, Donnelly RF. Directly Compressed Tablets: A Novel Drug-Containing Reservoir Combined with Hydrogel-Forming Microneedle Arrays for Transdermal Drug Delivery. Adv Healthc Mater 2021; 10:e2001256. [PMID: 33314714 DOI: 10.1002/adhm.202001256] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/15/2020] [Indexed: 01/19/2023]
Abstract
Microneedle (MN) patches consist of a hydrogel-forming MN array and a drug-containing reservoir. Drug-containing reservoirs documented in the literature include polymeric films and lyophilized wafers. While effective, both reservoir formulations are aqueous based, and so degradation can occur during formulation and drying for drugs inherently unstable in aqueous media. The preparation and characterization of novel, nonaqueous-based, directly compressed tablets (DCTs) for use in combination with hydrogel-forming MN arrays are described for the first time. In this work, a range of drug molecules are investigated. Precipitation of amoxicillin (AMX) and primaquine (PQ) in conventional hydrogel-forming MN arrays leads to use of poly(vinyl alcohol)-based MN arrays. Following in vitro permeation studies, in vivo pharmacokinetic studies are conducted in rats with MN patches containing AMX, levodopa/carbidopa (LD/CD), and levofloxacin (LVX). Therapeutically relevant concentrations of AMX (≥2 µg mL-1 ), LD (≥0.5 µg mL-1 ), and LVX (≥0.2 µg mL-1 ) are successfully achieved at 1, 2, and 1 h, respectively. Thus, the use of DCTs offers promise to expand the range of drug molecules that can be delivered transdermally using MN patches.
Collapse
Affiliation(s)
- Emma McAlister
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Bridie Dutton
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Lalitkumar K. Vora
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Li Zhao
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Anastasia Ripolin
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | | | - Helen L. Quinn
- Health and Social Care Board 12‐22 Linenhall Street Belfast BT2 8BS Ireland
| | - Ismaiel A. Tekko
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Aaron J. Courtenay
- School of Pharmacy and Pharmaceutical Sciences Ulster University Cromore Road Coleraine BT52 1SA Ireland
| | - Stephen A. Kelly
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Aoife M. Rodgers
- Department of Biology Maynooth University Co. Kildare Maynooth Ireland
| | - Lilach Steiner
- TEVA Pharmaceuticals Basel Street 5, Petah Tikvah Netanya 49131 Israel
| | - Galit Levin
- TEVA Pharmaceuticals Basel Street 5, Petah Tikvah Netanya 49131 Israel
| | | | - Nava Shterman
- TEVA Pharmaceuticals Basel Street 5, Petah Tikvah Netanya 49131 Israel
| | - Helen O. McCarthy
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| | - Ryan F. Donnelly
- School of Pharmacy Queen's University Belfast 97 Lisburn Road Belfast BT9 7BL Ireland
| |
Collapse
|
17
|
Liu X, Kimmey JM, Matarazzo L, de Bakker V, Van Maele L, Sirard JC, Nizet V, Veening JW. Exploration of Bacterial Bottlenecks and Streptococcus pneumoniae Pathogenesis by CRISPRi-Seq. Cell Host Microbe 2020; 29:107-120.e6. [PMID: 33120116 DOI: 10.1016/j.chom.2020.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/27/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that causes invasive diseases, including pneumonia, with greater health risks upon influenza A virus (IAV) co-infection. To facilitate pathogenesis studies in vivo, we developed an inducible CRISPR interference system that enables genome-wide fitness testing in one sequencing step (CRISPRi-seq). We applied CRISPRi-seq to assess bottlenecks and identify pneumococcal genes important in a murine pneumonia model. A critical bottleneck occurs at 48 h with few bacteria causing systemic infection. This bottleneck is not present during IAV superinfection, facilitating identification of pneumococcal pathogenesis-related genes. Top in vivo essential genes included purA, encoding adenylsuccinate synthetase, and the cps operon required for capsule production. Surprisingly, CRISPRi-seq indicated no fitness-related role for pneumolysin during superinfection. Interestingly, although metK (encoding S-adenosylmethionine synthetase) was essential in vitro, it was dispensable in vivo. This highlights advantages of CRISPRi-seq over transposon-based genetic screens, as all genes, including essential genes, can be tested for pathogenesis potential.
Collapse
Affiliation(s)
- Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Jacqueline M Kimmey
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Laura Matarazzo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Laurye Van Maele
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland.
| |
Collapse
|
18
|
Antibacterial activity of MPA-capped CdTe and Ag-doped CdTe nanocrystals: Showing different activity against gram-positive and gram-negative bacteria. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Fisher J, Pavan C, Ohlmeier LS, Nilson B, Lundgaard I, Linder A, Bentzer P. A functional observational battery for evaluation of neurological outcomes in a rat model of acute bacterial meningitis. Intensive Care Med Exp 2020; 8:40. [PMID: 32770475 PMCID: PMC7415049 DOI: 10.1186/s40635-020-00331-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute bacterial meningitis is a disease with a high mortality and a high incidence of neurological sequelae in survivors. There is an acute need to develop new adjuvant therapies. To ensure that new therapies evaluated in animal models are translatable to humans, studies must evaluate clinically relevant and patient-important outcomes, including neurological symptoms and sequelae. METHODS We developed and tested a functional observational battery to quantify the severity of a variety of relevant neurological and clinical symptoms in a rat model of bacterial meningitis. The functional observational battery included symptoms relating to general clinical signs, gait and posture abnormalities, involuntary motor movements, focal neurological signs, and neuromotor abnormalities which were scored according to severity and summed to obtain a combined clinical and neurological score. To test the functional observational battery, adult Sprague-Dawley rats were infected by intracisternal injection of a clinical isolate of Streptococcus pneumoniae. Rats were evaluated for 6 days following the infection. RESULTS Pneumococcal meningitis was not lethal in this model; however, it induced severe neurological symptoms. Most common symptoms were hearing loss (75% of infected vs 0% of control rats; p = 0.0003), involuntary motor movements (75% of infected vs 0% of control rats; p = 0.0003), and gait and posture abnormality (67% of infected vs 0% of control rats; p = 0.0013). Infected rats had a higher combined score when determined by the functional observational battery than control rats at all time points (24 h 12.7 ± 4.0 vs 4.0 ± 2.0; 48 h 17.3 ± 7.1 vs 3.4 ± 1.8; 6 days 17.8 ± 7.4 vs 1.7 ± 2.4; p < 0.0001 for all). CONCLUSIONS The functional observational battery described here detects clinically relevant neurological sequelae of bacterial meningitis and could be a useful tool when testing new therapeutics in rat models of meningitis.
Collapse
Affiliation(s)
- Jane Fisher
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden.
| | - Chiara Pavan
- Center for Translational Neuromedicine, Faculties of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luisa S Ohlmeier
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Bo Nilson
- Faculty of Medicine, Department of Laboratory Medicine, Division of Medical Microbiology Lund, Lund University, Lund, Sweden
- Clinical Microbiology, Labmedicin, Region Skåne, Lund, Sweden
| | - Iben Lundgaard
- Department of Experimental Medical Science, University of Lund, Lund, Sweden
- Wallenberg Center for Molecular Medicine, University of Lund, Lund, Sweden
| | - Adam Linder
- Faculty of Medicine, Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Peter Bentzer
- Department of Anesthesia and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
- Division of Anesthesia and Intensive Care, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Chen YW, Huang MZ, Chen CL, Kuo CY, Yang CY, Chiang-Ni C, Chen YYM, Hsieh CM, Wu HY, Kuo ML, Chiu CH, Lai CH. PM 2.5 impairs macrophage functions to exacerbate pneumococcus-induced pulmonary pathogenesis. Part Fibre Toxicol 2020; 17:37. [PMID: 32753046 PMCID: PMC7409448 DOI: 10.1186/s12989-020-00362-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Background Pneumococcus is one of the most common human airway pathogens that causes life-threatening infections. Ambient fine particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm (PM2.5) is known to significantly contribute to respiratory diseases. PM2.5-induced airway inflammation may decrease innate immune defenses against bacterial infection. However, there is currently limited information available regarding the effect of PM2.5 exposure on molecular interactions between pneumococcus and macrophages. Results PM2.5 exposure hampered macrophage functions, including phagocytosis and proinflammatory cytokine production, in response to pneumococcal infection. In a PM2.5-exposed pneumococcus-infected mouse model, PM2.5 subverted the pulmonary immune response and caused leukocyte infiltration. Further, PM2.5 exposure suppressed the levels of CXCL10 and its receptor, CXCR3, by inhibiting the PI3K/Akt and MAPK pathways. Conclusions The effect of PM2.5 exposure on macrophage activity enhances pneumococcal infectivity and aggravates pulmonary pathogenesis.
Collapse
Affiliation(s)
- Yu-Wen Chen
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Zi Huang
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chieh-Ying Kuo
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuan Chiang-Ni
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yi-Ywan M Chen
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chia-Ming Hsieh
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yu Wu
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Ling Kuo
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan. .,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan. .,Department of Nursing, Asia University, Taichung, Taiwan.
| |
Collapse
|
21
|
Preclinical models to optimize treatment of tuberculous meningitis - A systematic review. Tuberculosis (Edinb) 2020; 122:101924. [PMID: 32501258 DOI: 10.1016/j.tube.2020.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/19/2020] [Accepted: 03/20/2020] [Indexed: 01/04/2023]
Abstract
Tuberculous meningitis (TBM) is the most devastating form of TB, resulting in death or neurological disability in up to 50% of patients affected. Treatment is similar to that of pulmonary TB, despite poor cerebrospinal fluid (CSF) penetration of the cornerstone anti-TB drug rifampicin. Considering TBM pathology, it is critical that optimal drug concentrations are reached in the meninges, brain and/or the surrounding CSF. These type of data are difficult to collect in TBM patients. This review aims to identify and describe a preclinical model representative for human TBM which can provide the indispensable data needed for future pharmacological characterization and prioritization of new TBM regimens in the clinical setting. We reviewed existing literature on treatment of TBM in preclinical models: only eight articles, all animal studies, could be identified. None of the animal models completely recapitulated human disease and in most of the animal studies key pharmacokinetic data were missing, making the comparison with human exposure and CNS distribution, and the study of pharmacokinetic-pharmacodynamic relationships impossible. Another 18 articles were identified using other bacteria to induce meningitis with treatment including anti-TB drugs (predominantly rifampicin, moxifloxacin and levofloxacin). Of these articles the pharmacokinetics, i.e. plasma exposure and CSF:plasma ratios, of TB drugs in meningitis could be evaluated. Exposures (except for levofloxacin) agreed with human exposures and also most CSF:plasma ratios agreed with ratios in humans. Considering the lack of an ideal preclinical pharmacological TBM model, we suggest a combination of 1. basic physicochemical drug data combined with 2. in vitro pharmacokinetic and efficacy data, 3. an animal model with adequate pharmacokinetic sampling, microdialysis or imaging of drug distribution, all as a base for 4. physiologically based pharmacokinetic (PBPK) modelling to predict response to TB drugs in treatment of TBM.
Collapse
|
22
|
Ahn SY, Chang YS, Sung DK, Kim YE, Park WS. Developing a newborn rat model of ventriculitis without concomitant bacteremia by intraventricular injection of K1 (-) Escherichia coli. Pediatr Int 2020; 62:347-356. [PMID: 31846163 PMCID: PMC7187168 DOI: 10.1111/ped.14108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Neonatal meningitis caused by Escherichia coli results in high mortality and neurological disabilities, and the concomitant systemic bacteremia confounds its mortality and brain injury. This study developed an experimental model of neonatal ventriculitis without concomitant systemic bacteremia by determining the bacterial inoculum of K1 capsule-negative E. coli by intraventricular injection in newborn rats. METHODS We carried out intraventricular injections 1 × 102 (low dose), 5 × 102 (medium dose), or 1 × 103 (high dose) colony-forming units (CFU) of K1 (-) E. coli (EC5ME) in Sprague-Dawley rats at postnatal day (P) 11. Ampicillin was started at P12. Blood and cerebrospinal fluid (CSF) cultures were performed at 6 h, 1 day, and 6 days after inoculation. Brain magnetic resonance imaging (MRI) was performed at P12 and P17. Survival was monitored, and brain tissue was obtained for histological and biochemical analyses at P12 and P17. RESULTS Survival was inoculum dose-dependent, with the lowest survival in the high-dose group (20%) compared with the medium- (67%) or low- (73%) dose groups. CSF bacterial counts in the low- and medium-dose groups were significantly lower than that in the high-dose group at 6 h, but not at 24 h after inoculation. No bacteria were isolated from the blood throughout the experiment or from the CSF at P17. Brain MRI showed an inoculum dose-dependent increase in the extent of brain injury and inflammatory responses. CONCLUSIONS We developed a newborn rat model of bacterial ventriculitis without concomitant systemic bacteremia by intraventricular injection of EC5ME.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Eun Kim
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Immunogenicity Comparison of a Next Generation Pneumococcal Conjugate Vaccine in Animal Models and Human Infants. Pediatr Infect Dis J 2020; 39:70-77. [PMID: 31725555 DOI: 10.1097/inf.0000000000002522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Evaluation of a pneumococcal conjugate vaccine (PCV) in an animal model provides an initial assessment of the performance of the vaccine prior to evaluation in humans. Cost, availability, study duration, cross-reactivity and applicability to humans are several factors which contribute to animal model selection. PCV15 is an investigational 15-valent PCV which includes capsular polysaccharides from pneumococcal serotypes (ST) 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F and 33F all individually conjugated to cross-reactive material 197 (CRM197). METHODS Immunogenicity of PCV15 was evaluated in infant rhesus macaques (IRM), adult New Zealand white rabbits (NZWR) and CD1 mice using multiplexed pneumococcal electrochemiluminescent (Pn ECL) assay to measure serotype-specific IgG antibodies, multiplexed opsonophagocytosis assay (MOPA) to measure serotype-specific functional antibody responses and bacterial challenge in mice to evaluate protection against a lethal dose of S. pneumoniae. RESULTS PCV15 was immunogenic and induced both IgG and functional antibodies to all 15 vaccine serotypes in all animal species evaluated. PCV15 also protected mice from S. pneumoniae serotype 14 intraperitoneal challenge. Opsonophagocytosis assay (OPA) titers measured from sera of human infants vaccinated with PCV15 in a Phase 2 clinical trial showed a good correlation with that observed in IRM (rs=0.69, P=0.006), a medium correlation with that of rabbits (rs=0.49, P=0.06), and no correlation with that of mice (rs=0.04, P=0.89). In contrast, there was no correlation in serum IgG levels between human infants and animal models. CONCLUSIONS These results demonstrate that PCV15 is immunogenic across multiple animal species, with IRM and human infants showing the best correlation for OPA responses.
Collapse
|
24
|
|
25
|
Abstract
Streptococcus pneumoniae remains the most common bacterial pathogen causing lower respiratory tract infections and is a leading cause of morbidity and mortality worldwide, especially in children and the elderly. Another important aspect related to pneumococcal infections is the persistent rate of penicillin and macrolide resistance. Therefore, animal models have been developed to better understand the pathogenesis of pneumococcal disease and test new therapeutic agents and vaccines. This narrative review will focus on the characteristics of the different animal pneumococcal pneumonia models. The assessment of the different animal models will include considerations regarding pneumococcal strains, microbiology properties, procedures used for bacterial inoculation, pathogenesis, clinical characteristics, diagnosis, treatment, and preventive approaches.
Collapse
|
26
|
In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathog 2019; 15:e1007987. [PMID: 31356624 PMCID: PMC6687184 DOI: 10.1371/journal.ppat.1007987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/08/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
Streptococcus pneumoniae (pneumococci) is a leading cause of severe bacterial meningitis in many countries worldwide. To characterize the repertoire of fitness and virulence factors predominantly expressed during meningitis we performed niche-specific analysis of the in vivo proteome in a mouse meningitis model, in which bacteria are directly inoculated into the cerebrospinal fluid (CSF) cisterna magna. We generated a comprehensive mass spectrometry (MS) spectra library enabling bacterial proteome analysis even in the presence of eukaryotic proteins. We recovered 200,000 pneumococci from CSF obtained from meningitis mice and by MS we identified 685 pneumococci proteins in samples from in vitro filter controls and 249 in CSF isolates. Strikingly, the regulatory two-component system ComDE and substrate-binding protein AliB of the oligopeptide transporter system were exclusively detected in pneumococci recovered from the CSF. In the mouse meningitis model, AliB-, ComDE-, or AliB-ComDE-deficiency resulted in attenuated meningeal inflammation and disease severity when compared to wild-type pneumococci indicating the crucial role of ComDE and AliB in pneumococcal meningitis. In conclusion, we show here mechanisms of pneumococcal adaptation to a defined host compartment by a proteome-based approach. Further, this study provides the basis of a promising strategy for the identification of protein antigens critical for invasive disease caused by pneumococci and other meningeal pathogens. Pneumococci are one of the most common and aggressive meningitis pathogens associated with mortality rates between 10% and 30%. Due to severe complications during therapeutic intervention, prevention strategies to combat pneumococcal meningitis (PM) are preferred. The vaccines available are so far suboptimal and inefficient to prevent serious PM. Hence, deciphering the mechanisms employed by pneumococci to encounter and survive in the cerebrospinal fluid (CSF) will pave the way for the development of new antimicrobial strategies. This work used an in vivo proteome-based approach to identify pneumococcal proteins expressed in the CSF during acute meningitis. This strategy identified a nutrient uptake system and regulatory system to be highly expressed in the CSF and being crucial for PM. Knocking out two of the highly in vivo expressed proteins (AliA and ComDE) in S. pneumoniae yields to a significant increase in survival and decrease in pathogen burden of infected mice. These host compartment specific expressed pneumococcal antigens represent promising candidates for antimicrobials or protein-based vaccines.
Collapse
|
27
|
Kim BJ, Shusta EV, Doran KS. Past and Current Perspectives in Modeling Bacteria and Blood-Brain Barrier Interactions. Front Microbiol 2019; 10:1336. [PMID: 31263460 PMCID: PMC6585309 DOI: 10.3389/fmicb.2019.01336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023] Open
Abstract
The central nervous system (CNS) barriers are highly specialized cellular barriers that promote brain homeostasis while restricting pathogen and toxin entry. The primary cellular constituent regulating pathogen entry in most of these brain barriers is the brain endothelial cell (BEC) that exhibits properties that allow for tight regulation of CNS entry. Bacterial meningoencephalitis is a serious infection of the CNS and occurs when bacteria can cross specialized brain barriers and cause inflammation. Models have been developed to understand the bacterial - BEC interaction that lead to pathogen crossing into the CNS, however, these have been met with challenges due to these highly specialized BEC phenotypes. This perspective provides a brief overview and outlook of the in vivo and in vitro models currently being used to study bacterial brain penetration, and opinion on improved models for the future.
Collapse
Affiliation(s)
- Brandon J Kim
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, United States
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
28
|
Cools F, Torfs E, Aizawa J, Vanhoutte B, Maes L, Caljon G, Delputte P, Cappoen D, Cos P. Optimization and Characterization of a Galleria mellonella Larval Infection Model for Virulence Studies and the Evaluation of Therapeutics Against Streptococcus pneumoniae. Front Microbiol 2019; 10:311. [PMID: 30846978 PMCID: PMC6394149 DOI: 10.3389/fmicb.2019.00311] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/05/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial pneumonia. Infection is linked to high morbidity and mortality rates and antibiotic resistance within this pathogen is on the rise. Therefore, there is a need for novel antimicrobial therapies. To lower the time and costs of the drug discovery process, alternative in vivo models should be considered. As such, Galleria mellonella larvae can be of great value. The larval immunity consisting of several types of haemocytes is remarkably similar to the human innate immune system. Furthermore, these larvae don’t require specific housing, are cheap and are easy to handle. In this study, the use of a G. mellonella infection model to study early pneumococcal infections and treatment is proposed. Firstly, the fitness of this model to study pneumococcal virulence factors is confirmed using streptococcal strains TIGR4, ATCC®49619, D39 and its capsule-deficient counterpart R6 at different inoculum sizes. The streptococcal polysaccharide capsule is considered the most important virulence factor without which streptococci are unable to sustain an in vivo infection. Kaplan–Meier survival curves showed indeed a higher larval survival after infection with streptococcal strain R6 compared to strain D39. Then, the infection was characterized by determining the number of haemocytes, production of oxygen free radicals and bacterial burden at several time points during the course of infection. Lastly, treatment of infected larvae with the standard antibiotics amoxicillin and moxifloxacin was evaluated. Treatment has proven to have a positive outcome on the course of infection, depending on the administered dosage. These data imply that G. mellonella larvae can be used to evaluate antimicrobial therapies against S. pneumoniae, apart from using the larval model to study streptococcal properties. The in-depth knowledge acquired regarding this model, makes it more suitable for use in future research.
Collapse
Affiliation(s)
- Freya Cools
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Eveline Torfs
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Juliana Aizawa
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Bieke Vanhoutte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
29
|
Iovino F, Sender V, Henriques-Normark B. In Vivo Mouse Models to Study Pneumococcal Host Interaction and Invasive Pneumococcal Disease. Methods Mol Biol 2019; 1968:173-181. [PMID: 30929214 DOI: 10.1007/978-1-4939-9199-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Animal models are fundamental tools to study the biology of physiological processes and disease pathogenesis. To study invasive pneumococcal disease (IPD), many models using mice in particular have been established and developed during recent years. Thanks to the advances of the research in the pneumococcal field, nowadays, there is the possibility to use defined mouse models to study each disease caused by the pneumococcus. In this chapter mouse models for pneumonia, bacteremia, and meningitis are described. Since pneumococci are commensal pathogens found to a high extent in healthy individuals. Hence, we also describe a mouse model for nasopharyngeal colonization.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, SE-17164, Sweden.
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SE-17176, Sweden.
| | - Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, SE-17164, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Bioclinicum, Stockholm, SE-17164, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, SE-17176, Sweden
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), and Lee Kong Chian School of Medicine (LCK), Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
30
|
Sorensen RU, Edgar JDM. Overview of antibody‐mediated immunity toS. pneumoniae:pneumococcal infections, pneumococcal immunity assessment, and recommendations for IG product evaluation. Transfusion 2018; 58 Suppl 3:3106-3113. [DOI: 10.1111/trf.15044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Ricardo U. Sorensen
- Department of PediatricsLouisiana State University Health Science Center New Orleans LA
- Louisiana Primary Immunodeficiency Network and Faculty of MedicineUniversity of La Frontera Temuco Chile
| | - J. David M. Edgar
- Regional Immunology Service, The Royal Hospitals, Belfast Health & Social Care Trust and Queen's University Belfast Belfast UK
| |
Collapse
|
31
|
Age-related changes in the levels and kinetics of pulmonary cytokine and chemokine responses to Streptococcuspneumoniae in mouse pneumonia models. Cytokine 2018; 111:389-397. [PMID: 30463053 DOI: 10.1016/j.cyto.2018.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/20/2022]
Abstract
Streptococcuspneumoniae is a major human pathogen at the extremes of age. The elderly are particularly vulnerable to S.pneumoniae, the most common causative agent of bacterial pneumonia in this population. Despite the availability of vaccines and antibiotics, mortality rates associated with pneumococcal pneumonia in this age group remain high. In light of globally increasing life-expectancy, a better understanding of the patho-mechanisms of elderly pneumococcal pneumonia, including alterations in innate immune responses, is needed to develop improved therapies. In this study we aimed at investigating how increased susceptibility to pneumococcal infection relates to inflammation kinetics in the aged mouse pneumonia model by determining pulmonary cytokine and chemokine levels and comparing these parameters to those measured in young adult mice. Firstly, we detected overall higher pulmonary cytokine and chemokine levels in aged mice. However, upon induction of pneumococcal pneumonia in aged mice, delayed production of certain analytes, such as IFN-γ, MIG (CXCL9), IP-10 (CXCL10), MCP-1 (CCL2), TARC (CCL17) and MDC (CCL22) became apparent. In addition, aged mice were unable to control excess inflammatory responses: while young mice showed peak inflammatory responses at 20 h and subsequent resolution by 48 h post intranasal challenge, in aged mice increasing cytokine and chemokine levels were measured. These findings highlight the importance of considering multiple time points when delineating inflammatory responses to S.pneumoniae in an age-related context. Finally, correlation between pulmonary bacterial burden and cytokine or chemokine levels in young mice suggested that appropriately controlled inflammatory responses support the host to fight pneumococcal infection.
Collapse
|
32
|
Enzymatic Hydrolysis of Pneumococcal Capsular Polysaccharide Renders the Bacterium Vulnerable to Host Defense. Infect Immun 2018; 86:IAI.00316-18. [PMID: 29866907 DOI: 10.1128/iai.00316-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022] Open
Abstract
Despite a century of investigation, Streptococcus pneumoniae remains a major human pathogen, causing a number of diseases, such as pneumonia, meningitis, and otitis media. Like many encapsulated pathogens, the capsular polysaccharide (CPS) of S. pneumoniae is a critical component for colonization and virulence in mammalian hosts. This study aimed to evaluate the protective role of a glycoside hydrolase, Pn3Pase, targeting the CPS of type 3 S. pneumoniae, which is one of the most virulent serotypes. We have assessed the ability of Pn3Pase to degrade the capsule on a live type 3 strain. Through in vitro assays, we observed that Pn3Pase treatment increases the bacterium's susceptibility to phagocytosis by macrophages and complement-mediated killing by neutrophils. We have demonstrated that in vivo Pn3Pase treatment reduces nasopharyngeal colonization and protects mice from sepsis caused by type 3 S. pneumoniae Due to the increasing shifts in serotype distribution, the rise in drug-resistant strains, and poor immune responses to vaccine-included serotypes, it is necessary to investigate approaches to combat pneumococcal infections. This study evaluates the interaction of pneumococcal CPS with the host at molecular, cellular, and systemic levels and offers an alternative therapeutic approach for diseases caused by S. pneumoniae through enzymatic hydrolysis of the CPS.
Collapse
|
33
|
Transporters MRP1 and MRP2 Regulate Opposing Inflammatory Signals To Control Transepithelial Neutrophil Migration during Streptococcus pneumoniae Lung Infection. mSphere 2018; 3:3/4/e00303-18. [PMID: 29976647 PMCID: PMC6034076 DOI: 10.1128/msphere.00303-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium that normally inhabits the human nasopharynx asymptomatically. However, it is also a major cause of pneumonia, bacteremia, and meningitis. The transition from pneumonia to bacteremia is critical, as patients that develop septicemia have ~20% mortality rates. Previous studies have shown that while neutrophils, a major bacterium-induced leukocyte, aid in S. pneumoniae elimination, they also contribute to pathology and may mediate the lung-to-blood passage of the bacteria. Herein, we show that epithelium-derived MRP1 and MRP2 efflux immunomodulatory agents that assist in controlling passage of neutrophils during infection and that limiting neutrophil infiltration produced less bacteremia and better survival during murine infection. The importance of our work is twofold: ours is the first to identify an MRP1/MRP2 axis of neutrophil control in the lung. The second is to provide possible therapeutic targets to reduce excess inflammation, thus reducing the chances of developing bacteremia during pneumococcal pneumonia. Streptococcus pneumoniae remains a source of morbidity and mortality in both developed and underdeveloped nations of the world. Disease can manifest as pneumonia, bacteremia, and meningitis, depending on the localization of infection. Interestingly, there is a correlation in experimental murine infections between the development of bacteremia and influx of neutrophils into the pulmonary lumen. Reduction of this neutrophil influx has been shown to improve survivability during infection. In this study, we use in vitro biotinylation and neutrophil transmigration and in vivo murine infection to identify a system in which two epithelium-localized ATP-binding cassette transporters, MRP1 and MRP2, have inverse activities dictating neutrophil transmigration into the lumen of infected mouse lungs. MRP1 effluxes an anti-inflammatory molecule that maintains homeostasis in uninfected contexts, thus reducing neutrophil infiltration. During inflammatory events, however, MRP1 decreases and MRP2 both increases and effluxes the proinflammatory eicosanoid hepoxilin A3. If we then decrease MRP2 activity during experimental murine infection with S. pneumoniae, we reduce both neutrophil infiltration and bacteremia, showing that MRP2 coordinates this activity in the lung. We conclude that MRP1 assists in depression of polymorphonuclear cell (PMN) migration by effluxing a molecule that inhibits the proinflammatory effects of MRP2 activity. IMPORTANCEStreptococcus pneumoniae is a Gram-positive bacterium that normally inhabits the human nasopharynx asymptomatically. However, it is also a major cause of pneumonia, bacteremia, and meningitis. The transition from pneumonia to bacteremia is critical, as patients that develop septicemia have ~20% mortality rates. Previous studies have shown that while neutrophils, a major bacterium-induced leukocyte, aid in S. pneumoniae elimination, they also contribute to pathology and may mediate the lung-to-blood passage of the bacteria. Herein, we show that epithelium-derived MRP1 and MRP2 efflux immunomodulatory agents that assist in controlling passage of neutrophils during infection and that limiting neutrophil infiltration produced less bacteremia and better survival during murine infection. The importance of our work is twofold: ours is the first to identify an MRP1/MRP2 axis of neutrophil control in the lung. The second is to provide possible therapeutic targets to reduce excess inflammation, thus reducing the chances of developing bacteremia during pneumococcal pneumonia.
Collapse
|
34
|
Xiong C, Feng S, Qiao Y, Guo Z, Gu G. Synthesis and Immunological Studies of Oligosaccharides that Consist of the Repeating Unit ofStreptococcus pneumoniaeSerotype 3 Capsular Polysaccharide. Chemistry 2018. [DOI: 10.1002/chem.201800754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenghe Xiong
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology; Shandong University; 27 Shanda Nan Lu Jinan 250100 China
| | - Shaojie Feng
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology; Shandong University; 27 Shanda Nan Lu Jinan 250100 China
| | - Yin Qiao
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology; Shandong University; 27 Shanda Nan Lu Jinan 250100 China
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology; Shandong University; 27 Shanda Nan Lu Jinan 250100 China
- Department of Chemistry; University of Florida; 214 Leigh Hall Gainesville Florida 32611 USA
| | - Guofeng Gu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology; Shandong University; 27 Shanda Nan Lu Jinan 250100 China
| |
Collapse
|
35
|
Felix KM, Jaimez IA, Nguyen TVV, Ma H, Raslan WA, Klinger CN, Doyle KP, Wu HJJ. Gut Microbiota Contributes to Resistance Against Pneumococcal Pneumonia in Immunodeficient Rag -/- Mice. Front Cell Infect Microbiol 2018; 8:118. [PMID: 29755958 PMCID: PMC5932343 DOI: 10.3389/fcimb.2018.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae causes infection-related mortality worldwide. Immunocompromised individuals, including young children, the elderly, and those with immunodeficiency, are especially vulnerable, yet little is known regarding S. pneumoniae-related pathogenesis and protection in immunocompromised hosts. Recently, strong interest has emerged in the gut microbiota's impact on lung diseases, or the "gut-lung axis." However, the mechanisms of gut microbiota protection against gut-distal lung diseases like pneumonia remain unclear. We investigated the role of the gut commensal, segmented filamentous bacteria (SFB), against pneumococcal pneumonia in immunocompetent and immunocompromised mouse models. For the latter, we chose the Rag-/- model, with adaptive immune deficiency. Immunocompetent adaptive protection against S. pneumoniae infection is based on antibodies against pneumococcal capsular polysaccharides, prototypical T cell independent-II (TI-II) antigens. Although SFB colonization enhanced TI-II antibodies in C57BL/6 mice, our data suggest that SFB did not further protect these immunocompetent animals. Indeed, basal B cell activity in hosts without SFB is sufficient for essential protection against S. pneumoniae. However, in immunocompromised Rag-/- mice, we demonstrate a gut-lung axis of communication, as SFB influenced lung protection by regulating innate immunity. Neutrophil resolution is crucial to recovery, since an unchecked neutrophil response causes severe tissue damage. We found no early neutrophil recruitment differences between hosts with or without SFB; however, we observed a significant drop in lung neutrophils in the resolution phase of S. pneumoniae infection, which corresponded with lower CD47 expression, a molecule that inhibits phagocytosis of apoptotic cells, in SFB-colonized Rag-/- mice. SFB promoted a shift in lung neutrophil phenotype from inflammatory neutrophils expressing high levels of CD18 and low levels of CD62L, to pro-resolution neutrophils with low CD18 and high CD62L. Blocking CD47 in SFB(-) mice increased pro-resolution neutrophils, suggesting CD47 down-regulation may be one neutrophil-modulating mechanism SFB utilizes. The SFB-induced lung neutrophil phenotype remained similar with heat-inactivated S. pneumoniae treatment, indicating these SFB-induced changes in neutrophil phenotype during the resolution phase are not simply secondary to better bacterial clearance in SFB(+) than SFB(-) mice. Together, these data demonstrate that the gut commensal SFB may provide much-needed protection in immunocompromised hosts in part by promoting neutrophil resolution post lung infection.
Collapse
Affiliation(s)
- Krysta M. Felix
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Ivan A. Jaimez
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Thuy-Vi V. Nguyen
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Heqing Ma
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Walid A. Raslan
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | | | - Kristian P. Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Hsin-Jung J. Wu
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
- Arizona Arthritis Center, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
36
|
Evaluation of Protective Efficacy of Selected Immunodominant B-Cell Epitopes within Virulent Surface Proteins of Streptococcus pneumoniae. Infect Immun 2018; 86:IAI.00673-17. [PMID: 29263108 DOI: 10.1128/iai.00673-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/17/2017] [Indexed: 02/07/2023] Open
Abstract
Four previously identified immunodominant B-cell epitopes, located within known virulent pneumococcal proteins CbpD, PhtD, PhtE, and ZmpB, had shown promising in vivo immunological characteristics, indicating their potential to be used as vaccine antigens. In this study, we further evaluated the opsonophagocytic activity of antibodies against these epitopes and their capacity to protect mice from pneumococcal sepsis. An opsonophagocytic killing assay (OPKA) revealed that OPKA titers of human anti-peptide antibodies against pneumococcal serotypes 1, 3, and 19A were significantly higher (P < 0.001) than those of the control sera, suggesting their functional potential against virulent clinical isolates. Data obtained from mice actively immunized with any of the selected epitope analogues or with a mixture of these (G_Mix group) showed, compared to controls, enhanced survival against the highly virulent pneumococcal serotype 3 (P < 0.001). Moreover, passive transfer of hyperimmune serum from G_Mix to naive mice also conferred protection to a lethal challenge with serotype 3, which demonstrates that the observed protection was antibody mediated. All immunized murine groups elicited gradually higher antibody titers and avidity, suggesting a maturation of immune response over time. Among the tested peptides, PhD_pep19 and PhtE_pep40 peptides, which reside within the zinc-binding domains of PhtD and PhtE proteins, exhibited superior immunological characteristics. Recently it has been shown that zinc uptake is of high importance for the virulence of Streptococcus pneumoniae; thus, our findings suggest that these epitopes deserve further evaluation as novel immunoreactive components for the development of a polysaccharide-independent pneumococcal vaccine.
Collapse
|
37
|
Visan L, Rouleau N, Proust E, Peyrot L, Donadieu A, Ochs M. Antibodies to PcpA and PhtD protect mice against Streptococcus pneumoniae by a macrophage- and complement-dependent mechanism. Hum Vaccin Immunother 2017; 14:489-494. [PMID: 29135332 PMCID: PMC5806646 DOI: 10.1080/21645515.2017.1403698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Currently marketed Streptococcus pneumoniae (Spn) vaccines, which contain polysaccharide capsular antigens from the most common Spn serotypes, have substantially reduced pneumococcal disease rates but have limited coverage. A trivalent pneumococcal protein vaccine containing pneumococcal choline-binding protein A (PcpA), pneumococcal histidine triad protein D (PhtD), and detoxified pneumolysin is being developed to provide broader, cross-serotype protection. Antibodies against detoxified pneumolysin protect against bacterial pneumonia by neutralizing Spn-produced pneumolysin, but how anti-PhtD and anti-PcpA antibodies protect against Spn has not been established. Here, we used a murine passive protection sepsis model to investigate the mechanism of protection by anti-PhtD and anti-PcpA antibodies. Depleting complement using cobra venom factor eliminated protection by anti-PhtD and anti-PcpA monoclonal antibodies (mAbs). Consistent with a requirement for complement, complement C3 deposition on Spn in vitro was enhanced by anti-PhtD and anti-PcpA mAbs and by sera from PhtD- and PcpA-immunized rabbits and humans. Moreover, in the presence of complement, anti-PhtD and anti-PcpA mAbs increased uptake of Spn by human granulocytes. Depleting neutrophils using anti-Ly6G mAbs, splenectomy, or a combination of both did not affect passive protection against Spn, whereas depleting macrophages using clodronate liposomes eliminated protection. These results suggest anti-PhtD and anti-PcpA antibodies induced by pneumococcal protein vaccines protect against Spn by a complement- and macrophage-dependent opsonophagocytosis.
Collapse
Affiliation(s)
- Lucian Visan
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Nicolas Rouleau
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Emilie Proust
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Loïc Peyrot
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Arnaud Donadieu
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| | - Martina Ochs
- a Sanofi Pasteur , Research & Non Clinical Safety Department , Marcy l'Etoile , France
| |
Collapse
|
38
|
Ginders M, Leschnik M, Künzel F, Kampner D, Mikula C, Steindl G, Eichhorn I, Feßler AT, Schwarz S, Spergser J, Loncaric I. Characterization of Streptococcus pneumoniae isolates from Austrian companion animals and horses. Acta Vet Scand 2017; 59:79. [PMID: 29137652 PMCID: PMC5686899 DOI: 10.1186/s13028-017-0348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of the present study was to investigate the genetic relatedness and the antimicrobial resistance profiles of a collection of Austrian Streptococcus pneumoniae isolates from companion animals and horses. A total of 12 non-repetitive isolates presumptively identified as S. pneumoniae were obtained during routinely diagnostic activities between March 2009 and January 2017. RESULTS Isolates were confirmed as S. pneumoniae by bile solubility and optochin susceptibility testing, matrix-assisted laser desorption-ionization-time of flight (MALDI-TOF) mass spectrometry and sequence analysis of a part recA and the 16S rRNA genes. Isolates were further characterized by pneumolysin polymerase chain reaction (PCR) and genotyped by multilocus sequence typing (MLST). Antimicrobial susceptibility testing was performed and resistance genes were detected by specific PCR assays. All isolates were serotyped. Four sequence types (ST) (ST36, ST3546, ST6934 and ST6937) and four serotypes (3, 19A, 19F and 23F) were detected. Two isolates from twelve displayed a multidrug-resistance pheno- and genotype. CONCLUSIONS This study represents the first comprehensive investigation on characteristics of S. pneumoniae isolates recovered from Austrian companion animals and horses. The obtained results indicate that common human sero- (23F) and sequence type (ST36) implicated in causing invasive pneumococcal disease (IPD) may circulate in dogs. Isolates obtained from other examined animals seem to be host-adapted.
Collapse
|
39
|
Jindal HM, Zandi K, Ong KC, Velayuthan RD, Rasid SM, Samudi Raju C, Sekaran SD. Mechanisms of action and in vivo antibacterial efficacy assessment of five novel hybrid peptides derived from Indolicidin and Ranalexin against Streptococcus pneumoniae. PeerJ 2017; 5:e3887. [PMID: 29018620 PMCID: PMC5632533 DOI: 10.7717/peerj.3887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/13/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are of great potential as novel antibiotics for the treatment of broad spectrum of pathogenic microorganisms including resistant bacteria. In this study, the mechanisms of action and the therapeutic efficacy of the hybrid peptides were examined. METHODS TEM, SEM and ATP efflux assay were used to evaluate the effect of hybrid peptides on the integrity of the pneumococcal cell wall/membrane. DNA retardation assay was assessed to measure the impact of hybrid peptides on the migration of genomic DNA through the agarose gel. In vitro synergistic effect was checked using the chequerboard assay. ICR male mice were used to evaluate the in vivo toxicity and antibacterial activity of the hybrid peptides in a standalone form and in combination with ceftriaxone. RESULTS The results obtained from TEM and SEM indicated that the hybrid peptides caused significant morphological alterations in Streptococcus pneumoniae and disrupting the integrity of the cell wall/membrane. The rapid release of ATP from pneumococcal cells after one hour of incubation proposing that the antibacterial action for the hybrid peptides is based on membrane permeabilization and damage. The DNA retardation assay revealed that at 62.5 µg/ml all the hybrid peptides were capable of binding and preventing the pneumococcal genomic DNA from migrating through the agarose gel. In vitro synergy was observed when pneumococcal cells treated with combinations of hybrid peptides with each other and with conventional drugs erythromycin and ceftriaxone. The in vivo therapeutic efficacy results revealed that the hybrid peptide RN7-IN8 at 20 mg/kg could improve the survival rate of pneumococcal bacteremia infected mice, as 50% of the infected mice survived up to seven days post-infection. In vivo antibacterial efficacy of the hybrid peptide RN7-IN8 was signficantly improved when combined with the standard antibiotic ceftriaxone at (20 mg/kg + 20 mg/kg) as 100% of the infected mice survived up to seven days post-infection. DISCUSSION Our results suggest that attacking and breaching the cell wall/membrane is most probably the principal mechanism for the hybrid peptides. In addition, the hybrid peptides could possess another mechanism of action by inhibiting intracellular functions such as DNA synthesis. AMPs could play a great role in combating antibiotic resistance as they can reduce the therapeutic concentrations of standard drugs.
Collapse
Affiliation(s)
- Hassan Mahmood Jindal
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, United States of America
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University Malaya, Malaysia
| | - Rukumani Devi Velayuthan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sara Maisha Rasid
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shamala Devi Sekaran
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Genetic background impacts vaccine-induced reduction of pneumococcal colonization. Vaccine 2017; 35:5235-5241. [PMID: 28822643 DOI: 10.1016/j.vaccine.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
Vaccination has been one of the most successful strategies to reduce morbidity and mortality caused by respiratory infections. Recent evidence suggests that differences in the host genetic background and environmental factors may contribute to heterogeneity in the immune response to vaccination. During pre-clinical testing, vaccines are often evaluated in a single mouse inbred strain, which may not translate well to the heterogeneous human population. Here, we examined the influence of host genetic background on vaccine-induced protection against pneumococcal colonization in two commonly used inbred mouse strains, i.e. C57BL/6 and BALB/cas well as the F1 cross of these two strains. Groups of mice were vaccinated intranasally with a vaccine formulation containing a model pneumococcal antigen, i.e. pneumococcal surface protein A (PspA), adjuvanted with cholera toxin subunit B (CTB). Even in the absence of vaccination, differences in colonization density were observed between mouse strains. Although vaccination significantly reduced pneumococcal density in all mouse strains, differences were observed in the magnitude of protection. We therefore examined immunological parameters known to be involved in vaccine-induced mucosal clearance of S. pneumoniae. We found that PspA-specific IgG levels in nasal tissue differed between mouse strains, but in all cases it correlated significantly with a reduction in colonization. Furthermore, increased mucosal IL17A, but not IFNγ, IL10, or IL4, was found to be mouse strain specific. This suggests that the reduction of bacterial load may be accompanied by a Th17 response in all genetic backgrounds, although the cytokine dynamics may differ. Increased insight into the different immune mechanisms that affect pneumococcal carriage will contribute to development of future vaccines against S. pneumoniae.
Collapse
|
41
|
Unger MD, Pleticha J, Collins JE, Armien AG, Brazzell JL, Newman LK, Heilmann LF, Scholz JA, Maus TP, Beutler AS. Fatal Meningitis in Swine after Intrathecal Administration of Adeno-associated Virus Expressing Syngeneic Interleukin-10. Mol Ther 2017; 25:2526-2532. [PMID: 28822691 DOI: 10.1016/j.ymthe.2017.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022] Open
Abstract
Interleukin-10 (IL-10) delivered by intrathecal (i.t.) gene vectors is a candidate investigational new drug (IND) for several chronic neurological disorders such as neuropathic pain. We performed a preclinical safety study of IL-10. A syngeneic large animal model was used delivering porcine IL-10 (pIL-10) to the i.t. space in swine by adeno-associated virus serotype 8 (AAV8), a gene vector that was previously found to be nontoxic in the i.t. space. Unexpectedly, animals became ill, developing ataxia, seizures, and an inability to feed and drink, and required euthanasia. Necropsy demonstrated lymphocytic meningitis without evidence of infection in the presence of normal laboratory findings for body fluids and normal histopathology of peripheral organs. Results were replicated in a second animal cohort by a team of independent experimenters. An extensive infectious disease and neuropathology workup consisting of comprehensive testing of tissues and body fluids in a specialized research veterinary pathology environment did not identify a pathogen. These observations raise the concern that i.t. IL-10 therapy may not be benign, that previously used xenogeneic models testing the human homolog of IL-10 may not have been sensitive enough to detect toxicity, and that additional preclinical studies may be needed before clinical testing of IL-10 can be considered.
Collapse
Affiliation(s)
- Mark D Unger
- Translational Science Track, Departments of Anesthesiology and Oncology, Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Josef Pleticha
- Translational Science Track, Departments of Anesthesiology and Oncology, Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - James E Collins
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Anibal G Armien
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | - Laura K Newman
- Translational Science Track, Departments of Anesthesiology and Oncology, Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Lukas F Heilmann
- Translational Science Track, Departments of Anesthesiology and Oncology, Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA
| | - Jodi A Scholz
- Department of Comparative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy P Maus
- Section of Interventional Pain Management, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Andreas S Beutler
- Translational Science Track, Departments of Anesthesiology and Oncology, Mayo Graduate School, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
42
|
Xu K, Li L, Cui M, Han Y, Karahan HE, Chow VTK, Xu C. Cold Chain-Free Storable Hydrogel for Infant-Friendly Oral Delivery of Amoxicillin for the Treatment of Pneumococcal Pneumonia. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18440-18449. [PMID: 28513136 PMCID: PMC5465509 DOI: 10.1021/acsami.7b01462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Pneumonia is the major cause of death in children under five, particularly in developing countries. Antibiotics such as amoxicillin greatly help in mitigating this problem. However, there is a lack of an infant/toddler-friendly formulation for countries with limited clean water orr electricity. Here, we report the development of a shear-thinning hydrogel system for the oral delivery of amoxicillin to infant/toddler patients, without the need of clean water and refrigeration. The hydrogel formulation consists of metolose (hydroxypropyl methylcellulose) and amoxicillin. It preserves the structural integrity of antibiotics and their antibacterial activity over 12 weeks at room temperature. Pharmacokinetic profiling of mice reveals that the hydrogel formulation increases the bioavailability of drugs by ∼18% compared to that with aqueous amoxicillin formulation. More importantly, oral gavage of this formulation in a mouse model of secondary pneumococcal pneumonia significantly ameliorates inflammatory infiltration and tissue damage in lungs, with a 10-fold reduction in bacterial counts compared to those in untreated ones. Given the remarkable antibacterial efficacy as well as the use of FDA-regulated ingredients (metolose and amoxicillin), the hydrogel formulation holds great promise for rapid clinical translation.
Collapse
Affiliation(s)
- Keming Xu
- School of Chemical
and Biomedical Engineering, Nanyang Technological
University, 70 Nanyang
Drive, 637457 Singapore
| | - Liang Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Mingyue Cui
- School of Chemical
and Biomedical Engineering, Nanyang Technological
University, 70 Nanyang
Drive, 637457 Singapore
| | - Yiyuan Han
- School of Chemical
and Biomedical Engineering, Nanyang Technological
University, 70 Nanyang
Drive, 637457 Singapore
| | - H. Enis Karahan
- School of Chemical
and Biomedical Engineering, Nanyang Technological
University, 70 Nanyang
Drive, 637457 Singapore
| | - Vincent T. K. Chow
- Department of Microbiology and Immunology,
Yong Loo Lin School of Medicine, National
University of Singapore, 5 Science Drive 2, 117545 Singapore
| | - Chenjie Xu
- School of Chemical
and Biomedical Engineering, Nanyang Technological
University, 70 Nanyang
Drive, 637457 Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
43
|
From Immunologically Archaic to Neoteric Glycovaccines. Vaccines (Basel) 2017; 5:vaccines5010004. [PMID: 28134792 PMCID: PMC5371740 DOI: 10.3390/vaccines5010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Polysaccharides (PS) are present in the outermost surface of bacteria and readily come in contact with immune cells. They interact with specific antibodies, which in turn confer protection from infections. Vaccines with PS from pneumococci, meningococci, Haemophilus influenzae type b, and Salmonella typhi may be protective, although with the important constraint of failing to generate permanent immunological memory. This limitation has in part been circumvented by conjugating glycovaccines to proteins that stimulate T helper cells and facilitate the establishment of immunological memory. Currently, protection evoked by conjugated PS vaccines lasts for a few years. The same approach failed with PS from staphylococci, Streptococcus agalactiae, and Klebsiella. All those germs cause severe infections in humans and often develop resistance to antibiotic therapy. Thereby, prevention is of increasing importance to better control outbreaks. As only 23 of more than 90 pneumococcal serotypes and 4 of 13 clinically relevant Neisseria meningitidis serogroups are covered by available vaccines there is still tremendous clinical need for PS vaccines. This review focuses on glycovaccines and the immunological mechanisms for their success or failure. We discuss recent advances that may facilitate generation of high affinity anti-PS antibodies and confer specific immunity and long-lasting protection.
Collapse
|
44
|
Caro-Aguilar I, Indrawati L, Kaufhold RM, Gaunt C, Zhang Y, Nawrocki DK, Giovarelli C, Winters MA, Smith WJ, Heinrichs J, Skinner JM. Immunogenicity differences of a 15-valent pneumococcal polysaccharide conjugate vaccine (PCV15) based on vaccine dose, route of immunization and mouse strain. Vaccine 2017; 35:865-872. [PMID: 28087148 DOI: 10.1016/j.vaccine.2016.12.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 11/30/2022]
Abstract
Pneumococcal disease continues to be a medical need even with very effective vaccines on the market. Globally, there are extensive research efforts to improve serotype coverage with novel vaccines; therefore, conducting preclinical studies in different animal models becomes essential. The work presented herein focuses on evaluating a 15-valent pneumococcal conjugate vaccine (PCV15) in mice. Initially we evaluated several doses of PCV15 in Balb/c mice. The optimal vaccine dose was determined to be 0.4μg per pneumococcal polysaccharide (PS) (0.8μg of 6B) for subsequent studies. This PS dose was chosen for PCV evaluation in mice based on antibody levels determined by multiplexed electrochemiluminescent (ECL) assays, T-cell responses following in vitro stimulation with CRM197 peptides and protection from pneumococcal challenge. We then selected four mouse strains for evaluation: Balb/c, C3H/HeN, CD1 and Swiss Webster (SW), immunized with PCV15 by either intraperitoneal (IP) or intramuscular (IM) routes. We assessed IgG responses by ECL assays and functional antibody activity by multiplexed opsonophagocytic assays (MOPA). Every mouse strain evaluated responded to all 15 serotypes contained in the vaccine. Mice tended to have lower responses to serotypes 6B, 23F and 33F. The IP route of immunization resulted in higher antibody titers for most serotypes in Balb/c, C3H and SW. CD1 mice tended to respond similarly for most serotypes, regardless of route of immunization. Similar trends were observed with the four mouse strains when evaluating functional antibody activity. Given the differences in antibody responses based on mouse strain and route of immunization, it is critical to evaluate pneumococcal vaccines in multiple animal models to determine the optimal formulation before moving to clinical trials.
Collapse
Affiliation(s)
- Ivette Caro-Aguilar
- Department of Infectious Diseases/Vaccines, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - Lani Indrawati
- Department of Infectious Diseases/Vaccines, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - Robin M Kaufhold
- Department of Infectious Diseases/Vaccines, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - Christine Gaunt
- Department of Infectious Diseases/Vaccines, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - Yuhua Zhang
- Non-clinical Statistics, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - Denise K Nawrocki
- Bioprocess Research & Development, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - Cecilia Giovarelli
- Bioprocess Research & Development, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - Michael A Winters
- Bioprocess Research & Development, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - William J Smith
- Bioprocess Research & Development, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - Jon Heinrichs
- Department of Infectious Diseases/Vaccines, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States
| | - Julie M Skinner
- Department of Infectious Diseases/Vaccines, MRL (West Point, PA), Merck & Co., Inc., Kenilworth, NJ, United States.
| |
Collapse
|
45
|
Park C, Kwon EY, Choi SM, Cho SY, Byun JH, Park JY, Lee DG, Kang JH, Shin J, Kim H. Comparative evaluation of a newly developed 13-valent pneumococcal conjugate vaccine in a mouse model. Hum Vaccin Immunother 2016; 13:1169-1176. [PMID: 27960627 PMCID: PMC5443391 DOI: 10.1080/21645515.2016.1261772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Animal models facilitate evaluation of vaccine efficacy at relatively low cost. This study was a comparative evaluation of the immunogenicity and protective efficacy of a new 13-valent pneumococcal conjugate vaccine (PCV13) with a control vaccine in a mouse model. After vaccination, anti-capsular antibody levels were evaluated by pneumococcal polysaccharide (PnP) enzyme-linked immunosorbent assay (ELISA) and opsonophagocytic killing assay (OPA). Also, mice were challenged intraperitoneally with 100-fold of the 50% lethal dose of Streptococcus pneumoniae. The anti-capsular IgG levels against serotypes 1, 4, 7F, 14, 18C, 19A, and 19F were high (quartile 2 >1,600), while those against the other serotypes were low (Q2 ≤ 800). Also, the OPA titres were similar to those determined by PnP ELISA. Comparative analysis between new PCV13 and control vaccination group in a mouse model exhibited significant differences in serological immunity of a few serotypes and the range of anti-capsular IgG in the population. Challenge of wild-type or neutropenic mice with serotypes 3, 5, 6A, 6B, and 9V showed protective immunity despite of induced relatively low levels of anti-capsular antibodies. With comparison analysis, a mouse model should be adequate for evaluating serological efficacy and difference in the population level as preclinical trial.
Collapse
Affiliation(s)
- Chulmin Park
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Eun-Young Kwon
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Su-Mi Choi
- b Division of Infectious Diseases , Department of Internal Medicine, College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Sung-Yeon Cho
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea.,b Division of Infectious Diseases , Department of Internal Medicine, College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Ji-Hyun Byun
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Jung Yeon Park
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Dong-Gun Lee
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea.,b Division of Infectious Diseases , Department of Internal Medicine, College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Jin Han Kang
- a Vaccine Bio Research Institute , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea.,c Department of Pediatrics , College of Medicine, The Catholic University of Korea , Seoul , the Republic of Korea
| | - Jinhwan Shin
- d School of Pharmacy , Sungkyunkwan University , Suwon , the Republic of Korea.,e SK Chemicals Co. Ltd ., Seongnam , Gynuggi-do , the Republic of Korea
| | - Hun Kim
- e SK Chemicals Co. Ltd ., Seongnam , Gynuggi-do , the Republic of Korea
| |
Collapse
|
46
|
Influenza A Virus Infection Predisposes Hosts to Secondary Infection with Different Streptococcus pneumoniae Serotypes with Similar Outcome but Serotype-Specific Manifestation. Infect Immun 2016; 84:3445-3457. [PMID: 27647871 DOI: 10.1128/iai.00422-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/14/2016] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) and Streptococcus pneumoniae are major causes of respiratory tract infections, particularly during coinfection. The synergism between these two pathogens is characterized by a complex network of dysregulated immune responses, some of which last until recovery following IAV infection. Despite the high serotype diversity of S. pneumoniae and the serotype replacement observed since the introduction of conjugate vaccines, little is known about pneumococcal strain dependency in the enhanced susceptibility to severe secondary S. pneumoniae infection following IAV infection. Thus, we studied how preinfection with IAV alters host susceptibility to different S. pneumoniae strains with various degrees of invasiveness using a highly invasive serotype 4 strain, an invasive serotype 7F strain, and a carrier serotype 19F strain. A murine model of pneumococcal coinfection during the acute phase of IAV infection showed a significantly increased degree of pneumonia and mortality for all tested pneumococcal strains at otherwise sublethal doses. The incidence and kinetics of systemic dissemination, however, remained bacterial strain dependent. Furthermore, we observed strain-specific alterations in the pulmonary levels of alveolar macrophages, neutrophils, and inflammatory mediators ultimately affecting immunopathology. During the recovery phase following IAV infection, bacterial growth in the lungs and systemic dissemination were enhanced in a strain-dependent manner. Altogether, this study shows that acute IAV infection predisposes the host to lethal S. pneumoniae infection irrespective of the pneumococcal serotype, while the long-lasting synergism between IAV and S. pneumoniae is bacterial strain dependent. These results hold implications for developing tailored therapeutic treatment regimens for dual infections during future IAV outbreaks.
Collapse
|
47
|
Reyes LF, Restrepo MI, Hinojosa CA, Soni NJ, Shenoy AT, Gilley RP, Gonzalez-Juarbe N, Noda JR, Winter VT, de la Garza MA, Shade RE, Coalson JJ, Giavedoni LD, Anzueto A, Orihuela CJ. A Non-Human Primate Model of Severe Pneumococcal Pneumonia. PLoS One 2016; 11:e0166092. [PMID: 27855182 PMCID: PMC5113940 DOI: 10.1371/journal.pone.0166092] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and infectious death in adults worldwide. A non-human primate model is needed to study the molecular mechanisms that underlie the development of severe pneumonia, identify diagnostic tools, explore potential therapeutic targets, and test clinical interventions during pneumococcal pneumonia. OBJECTIVE To develop a non-human primate model of pneumococcal pneumonia. METHODS Seven adult baboons (Papio cynocephalus) were surgically tethered to a continuous monitoring system that recorded heart rate, temperature, and electrocardiography. Animals were inoculated with 109 colony-forming units of S. pneumoniae using bronchoscopy. Three baboons were rescued with intravenous ampicillin therapy. Pneumonia was diagnosed using lung ultrasonography and ex vivo confirmation by histopathology and immunodetection of pneumococcal capsule. Organ failure, using serum biomarkers and quantification of bacteremia, was assessed daily. RESULTS Challenged animals developed signs and symptoms of pneumonia 4 days after infection. Infection was characterized by the presence of cough, tachypnea, dyspnea, tachycardia and fever. All animals developed leukocytosis and bacteremia 24 hours after infection. A severe inflammatory reaction was detected by elevation of serum cytokines, including Interleukin (IL)1Ra, IL-6, and IL-8, after infection. Lung ultrasonography precisely detected the lobes with pneumonia that were later confirmed by pathological analysis. Lung pathology positively correlated with disease severity. Antimicrobial therapy rapidly reversed symptomology and reduced serum cytokines. CONCLUSIONS We have developed a novel animal model for severe pneumococcal pneumonia that mimics the clinical presentation, inflammatory response, and infection kinetics seen in humans. This is a novel model to test vaccines and treatments, measure biomarkers to diagnose pneumonia, and predict outcomes.
Collapse
Affiliation(s)
- Luis F. Reyes
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Marcos I. Restrepo
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
- * E-mail:
| | - Cecilia A. Hinojosa
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Nilam J. Soni
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Anukul T. Shenoy
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ryan P. Gilley
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Norberto Gonzalez-Juarbe
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Julio R. Noda
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Vicki T. Winter
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | | | - Robert E. Shade
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Jacqueline J. Coalson
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Luis D. Giavedoni
- Texas Biomedical Research Institute, San Antonio, TX, United States of America
| | - Antonio Anzueto
- Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
48
|
Parameswarappa SG, Reppe K, Geissner A, Ménová P, Govindan S, Calow ADJ, Wahlbrink A, Weishaupt MW, Monnanda BP, Bell RL, Pirofski LA, Suttorp N, Sander LE, Witzenrath M, Pereira CL, Anish C, Seeberger PH. A Semi-synthetic Oligosaccharide Conjugate Vaccine Candidate Confers Protection against Streptococcus pneumoniae Serotype 3 Infection. Cell Chem Biol 2016; 23:1407-1416. [PMID: 27818299 PMCID: PMC5234679 DOI: 10.1016/j.chembiol.2016.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/07/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
The identification of immunogenic glycotopes that render glycoconjugate vaccines protective is key to improving vaccine efficacy. Synthetic oligosaccharides are an attractive alternative to the heterogeneous preparations of purified polysaccharides that most marketed glycoconjugate vaccines are based on. To investigate the potency of semi-synthetic glycoconjugates, we chose the least-efficient serotype in the current pneumococcal conjugate vaccine Prevnar 13, Streptococcus pneumoniae serotype 3 (ST3). Glycan arrays containing synthetic ST3 repeating unit oligosaccharides were used to screen a human reference serum for antibodies and to define the recognition site of two ST3-specific protective monoclonal antibodies. The glycan array screens identified a tetrasaccharide that was selected for in-depth immunological evaluation. The tetrasaccharide-CRM197 carrier protein conjugate elicited protective immunity as evidenced by opsonophagocytosis assays and protection against pneumonia caused by ST3 in mice. Formulation of the defined protective lead candidate glycotope has to be further evaluated to elicit optimal long-term immunity.
Collapse
Affiliation(s)
| | - Katrin Reppe
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Andreas Geissner
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Petra Ménová
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Subramanian Govindan
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Adam D J Calow
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Annette Wahlbrink
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus W Weishaupt
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Bopanna Ponnappa Monnanda
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Roland Lawrence Bell
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Liise-Anne Pirofski
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Norbert Suttorp
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| | - Claney Lebev Pereira
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Chakkumkal Anish
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
49
|
Duitman J, Valls Serón M, Engelen-Lee J, Brouwer MC, Spek CA, van de Beek D. Detrimental role for CCAAT/enhancer binding protein δ in blood-borne brain infection. BMC Infect Dis 2016; 16:670. [PMID: 27835970 PMCID: PMC5106828 DOI: 10.1186/s12879-016-1963-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022] Open
Abstract
Background The most frequent pathogen that causes bacterial meningitis is the Gram-positive bacterium Streptococcus (S.) pneumoniae. CCAAT/enhancer binding protein δ is a transcription factor that has recently been hypothesized to play a detrimental role in outcome of meningitis caused by S. pneumoniae. Here, we studied the role of C/EBPδ prior to the development of pneumococcal meningitis. Methods Wild-type and C/EBPδ-deficient mice (C/EBPδ−/−) were intraveneously infected with S. pneumoniae and sacrificed after 24 or 48 h. cebpδ expression, bacterial loads, inflammatory response and pathology in the brain were assessed. Results S. pneumoniae induces cebpδ expression in the brain during blood-borne brain infection. In comparison to wild-type mice, C/EBPδ−/− animals showed decreased bacterial loads in blood and brain 48 h after inoculation. In the blood compartment, the host inflammatory response was significantly lower upon infection in C/EBPδ−/− mice as compared to wild-type mice. Conclusion C/EBPδ facilitates bacterial dissemination to the brain and enhances the immune response in the blood compartment. Our study suggests that C/EBPδ plays a detrimental role during the initial development of blood-borne brain infection.
Collapse
Affiliation(s)
- JanWillem Duitman
- Center for Experimental and Molecular Medicine (CEMM) Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100DD, Amsterdam, The Netherlands.
| | - Mercedes Valls Serón
- Department of Neurology, Academic Medical Center, 1100DD, Amsterdam, The Netherlands.,Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - JooYeon Engelen-Lee
- Department of Neurology, Academic Medical Center, 1100DD, Amsterdam, The Netherlands.,Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Academic Medical Center, 1100DD, Amsterdam, The Netherlands.,Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine (CEMM) Academic Medical Center, University of Amsterdam, P.O. Box 22660, 1100DD, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Academic Medical Center, 1100DD, Amsterdam, The Netherlands.,Neuroinfection and Inflammation, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
50
|
van de Beek D, Brouwer M, Hasbun R, Koedel U, Whitney CG, Wijdicks E. Community-acquired bacterial meningitis. Nat Rev Dis Primers 2016; 2:16074. [PMID: 27808261 DOI: 10.1038/nrdp.2016.74] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meningitis is an inflammation of the meninges and subarachnoid space that can also involve the brain cortex and parenchyma. It can be acquired spontaneously in the community - community-acquired bacterial meningitis - or in the hospital as a complication of invasive procedures or head trauma (nosocomial bacterial meningitis). Despite advances in treatment and vaccinations, community-acquired bacterial meningitis remains one of the most important infectious diseases worldwide. Streptococcus pneumoniae and Neisseria meningitidis are the most common causative bacteria and are associated with high mortality and morbidity; vaccines targeting these organisms, which have designs similar to the successful vaccine that targets Haemophilus influenzae type b meningitis, are now being used in many routine vaccination programmes. Experimental and genetic association studies have increased our knowledge about the pathogenesis of bacterial meningitis. Early antibiotic treatment improves the outcome, but the growing emergence of drug resistance as well as shifts in the distribution of serotypes and groups are fuelling further development of new vaccines and treatment strategies. Corticosteroids were found to be beneficial in high-income countries depending on the bacterial species. Further improvements in the outcome are likely to come from dampening the host inflammatory response and implementing preventive measures, especially the development of new vaccines.
Collapse
Affiliation(s)
- Diederik van de Beek
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. BOX 22660, 1100DD Amsterdam, The Netherlands
| | - Matthijs Brouwer
- Department of Neurology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, P.O. BOX 22660, 1100DD Amsterdam, The Netherlands
| | - Rodrigo Hasbun
- Department of Internal Medicine, UT Health McGovern Medical School, Houston, Texas, USA
| | - Uwe Koedel
- Department of Neurology, Clinic Grosshadern of the Ludwig-Maximilians University of Munich, Munich, Germany
| | - Cynthia G Whitney
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Eelco Wijdicks
- Division of Critical Care Neurology, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|