1
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2024. [PMID: 39258739 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, School of Medicine, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
2
|
Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, Todi SK, Mohan A, Hegde A, Jagiasi BG, Krishna B, Rodrigues C, Govil D, Pal D, Divatia JV, Sengar M, Gupta M, Desai M, Rungta N, Prayag PS, Bhattacharya PK, Samavedam S, Dixit SB, Sharma S, Bandopadhyay S, Kola VR, Deswal V, Mehta Y, Singh YP, Myatra SN. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024; 28:S104-S216. [PMID: 39234229 PMCID: PMC11369928 DOI: 10.5005/jp-journals-10071-24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 09/06/2024] Open
Abstract
How to cite this article: Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, et al. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024;28(S2):S104-S216.
Collapse
Affiliation(s)
- Gopi C Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| | - Pawan Tiwari
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Atul P Kulkarni
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care Medicine, University of Health Sciences, Rohtak, Haryana, India
| | - Kapil G Zirpe
- Department of Neuro Trauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
| | - Subhash K Todi
- Department of Critical Care, AMRI Hospital, Kolkata, West Bengal, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Ashit Hegde
- Department of Medicine & Critical Care, P D Hinduja National Hospital, Mumbai, India
| | - Bharat G Jagiasi
- Department of Critical Care, Kokilaben Dhirubhai Ambani Hospital, Navi Mumbai, Maharashtra, India
| | - Bhuvana Krishna
- Department of Critical Care Medicine, St John's Medical College and Hospital, Bengaluru, India
| | - Camila Rodrigues
- Department of Microbiology, P D Hinduja National Hospital, Mumbai, India
| | - Deepak Govil
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Divya Pal
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Jigeeshu V Divatia
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mukesh Desai
- Department of Immunology, Pediatric Hematology and Oncology Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Narendra Rungta
- Department of Critical Care & Anaesthesiology, Rajasthan Hospital, Jaipur, India
| | - Parikshit S Prayag
- Department of Transplant Infectious Diseases, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
| | - Pradip K Bhattacharya
- Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Srinivas Samavedam
- Department of Critical Care, Ramdev Rao Hospital, Hyderabad, Telangana, India
| | - Subhal B Dixit
- Department of Critical Care, Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Sudivya Sharma
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Susruta Bandopadhyay
- Department of Critical Care, AMRI Hospitals Salt Lake, Kolkata, West Bengal, India
| | - Venkat R Kola
- Department of Critical Care Medicine, Yashoda Hospitals, Hyderabad, Telangana, India
| | - Vikas Deswal
- Consultant, Infectious Diseases, Medanta - The Medicity, Gurugram, Haryana, India
| | - Yatin Mehta
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Yogendra P Singh
- Department of Critical Care, Max Super Speciality Hospital, Patparganj, New Delhi, India
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Guri A, Ben-Ami T. Updated Recommendations on the Prevention and Treatment of Infections in Children With Asplenia/Hyposplenism. J Pediatr Hematol Oncol 2024; 46:225-232. [PMID: 38691084 DOI: 10.1097/mph.0000000000002855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024]
Abstract
Children with congenital or acquired asplenia or hyposplenism have an increased risk for severe and even life-threatening infections mainly due to encapsulated bacteria. Current practice focuses on preventing severe infections with timely administration of vaccinations, antibacterial prophylaxis when indicated, and urgent evaluation and treatment of febrile events. As new vaccines are now available for both children and adults with asplenia/hyposplenism, we present an up-to-date recommendation on the prevention and management of acute infections in children with asplenia/hyposplenism.
Collapse
Affiliation(s)
- Alex Guri
- Division of Pediatrics, Kaplan Medical Center, Hadassah-Hebrew University Medical School, Jerusalem
- Infectious Diseases Unit, Kaplan Medical Center, Rehovot, Israel
- Pediatric Hematology-Oncology Unit, Kaplan Medical Center, Rehovot, Israel
| | - Tal Ben-Ami
- Division of Pediatrics, Kaplan Medical Center, Hadassah-Hebrew University Medical School, Jerusalem
- Pediatric Hematology-Oncology Unit, Kaplan Medical Center, Rehovot, Israel
- The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
4
|
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol 2024; 25:743-754. [PMID: 38698239 DOI: 10.1038/s41590-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Jean Donadieu
- Trousseau Hospital for Sick Children, Centre de référence des neutropénies chroniques, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
5
|
Kurz H, Lehmberg K, Farmand S. Inborn errors of immunity with susceptibility to S. aureus infections. Front Pediatr 2024; 12:1389650. [PMID: 38720948 PMCID: PMC11078099 DOI: 10.3389/fped.2024.1389650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a significant human pathogen, in particular in patients with an underlying medical condition. It is equipped with a large variety of virulence factors enabling both colonization and invasive disease. The spectrum of manifestation is broad, ranging from superficial skin infections to life-threatening conditions like pneumonia and sepsis. As a major cause of healthcare-associated infections, there is a great need in understanding staphylococcal immunity and defense mechanisms. Patients with inborn errors of immunity (IEI) frequently present with pathological infection susceptibility, however, not all of them are prone to S. aureus infection. Thus, enhanced frequency or severity of S. aureus infections can serve as a clinical indicator of a specific underlying immunological impairment. In addition, the analysis of immunological functions in patients with susceptibility to S. aureus provides a unique opportunity of understanding the complex interplay between staphylococcal virulence and host immune predisposition. While the importance of quantitatively and qualitatively normal neutrophils is widely known, less awareness exists about the role of specific cytokines such as functional interleukin (IL)-6 signaling. This review categorizes well-known IEI in light of their susceptibility to S. aureus and discusses the relevant associated pathomechanisms. Understanding host-pathogen-interactions in S. aureus infections in susceptible individuals can pave the way for more effective management and preventive treatment options. Moreover, these insights might help to identify patients who should be screened for an underlying IEI. Ultimately, enhanced understanding of pathogenesis and immune responses in S. aureus infections may also be of relevance for the general population.
Collapse
Affiliation(s)
- Hannah Kurz
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Sahu SK, Maurya RK, Kulkarni HS. The Role of Complement Component C3 in Protection Against Pseudomonas Pneumonia-Induced Lung Injury. DNA Cell Biol 2024; 43:153-157. [PMID: 38324102 PMCID: PMC11002327 DOI: 10.1089/dna.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024] Open
Abstract
The complement system is a family of proteins that facilitate immune resistance by attacking microbes to decrease pathogen burden. As a result, deficiencies of certain complement proteins result in recurrent bacterial infections, and can also result in acute lung injury (ALI). We and others have shown that C3 is present in both immune and nonimmune cells, and modulates cellular functions such as metabolism, differentiation, cytokine production, and survival. Although the emerging roles of the complement system have implications for host responses to ALI, key questions remain vis-a-vis the lung epithelium. In this review, we summarize our recent article in which we reported that during Pseudomonas aeruginosa-induced ALI, lung epithelial cell-derived C3 operates independent of liver-derived C3. Specifically, we report the use of a combination of human cell culture systems and global as well as conditional knockout mouse models to demonstrate the centrality of lung epithelial cell-derived C3. We also summarize recent articles that have interrogated the role of intracellular and/or locally derived C3 in host defense. We propose that C3 is a highly attractive candidate for enhancing tissue resilience in lung injury as it facilitates the survival and function of the lung epithelium, a key cell type that promotes barrier function.
Collapse
Affiliation(s)
- Sanjaya K. Sahu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rahul K. Maurya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Anderson M, Levy M. Advances in the long-term treatment of neuromyelitis optica spectrum disorder. J Cent Nerv Syst Dis 2024; 16:11795735241231094. [PMID: 38312734 PMCID: PMC10836138 DOI: 10.1177/11795735241231094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune neuroinflammatory disorder with a prevalence of 1-5/100,000 globally, characterized by attacks of the central nervous system including but not limited to optic neuritis, transverse myelitis and brainstem lesions, including area postrema lesions. These autoimmune attacks can lead to irreversible damage if left untreated, therefore strategies have been developed to prevent relapses. Initial off-label treatments have achieved variable levels of success in relapse prevention, but improved relapse prevention and quality of life remain a goal in the field. A better understanding of the underlying pathophysiology of NMOSD over the last 10 years has led to newer, more specific approaches in treatment, culminating in the first FDA approved treatments in the disease. In this review, we will discuss the seminal trials of PREVENT or Eculizumab in the treatment of aquaporin-4 (AQP4)-IgG positive NMOSD, N-Momentum or Inebilizumab in the study of NMOSD (both AQP4-IgG positive and negative) and SAkura Sky and SAkuraStar which studied satralizumab in AQP4-IgG seropositive and seronegative NMOSD patients. We will also discuss the extension trials of each of these medications and what lead to their approval in AQP4-IgG seropositive NMOSD patients. We will then examine treatments in the pipeline for adult and pediatric NMOSD patients and conclude with discussions on treatment considerations in pregnant patients and how to approach treatment of NMOSD patients during COVID.
Collapse
Affiliation(s)
- Monique Anderson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Gea-Izquierdo E, Rodríguez-Caravaca G, Gil-Prieto R, Hernández-Barrera V, Gil-de-Miguel Á. Streptococcus pneumoniae Infection in Patients with Asplenia: A Spanish Perspective over a 25-Year Period. Antibiotics (Basel) 2024; 13:104. [PMID: 38275333 PMCID: PMC10812716 DOI: 10.3390/antibiotics13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Anatomical or functional asplenia constitutes a risk factor for Streptococcus pneumoniae (SP) infection, being more frequent in children and the elderly and in people with multiple comorbidities. We aimed to describe the impact of invasive pneumococcal disease (IPD) on the clinical features and outcomes of patients hospitalized for asplenia in Spain. Discharge reports from the Spanish Minimum Basic Data Set were used to retrospectively analyze hospital discharge data with a diagnosis of asplenia from 1997 to 2021. A total of 132,257 patients with asplenia (splenectomized/non-splenectomized) were identified from the Spanish database. Among the cases, 177 (37.5%) patients with splenectomy and 295 (62.5%) patients without splenectomy developed IPD. The clinical presentations (non-infection vs. infection) did not significantly differ between the two reference groups, except for patients with COPD, rheumatoid disease, AIDS, other neurological disorders, metastatic cancer, and drug abuse. The risk factors for IPD were also more frequently reported in patients without splenectomy (p < 0.001) and with comorbidities (p = 0.005). The study of patients with asplenia provides relevant information about the state of SP infection. This epidemiological tracking can serve to better understand the comorbidities that affect them, the risk factors for the disease, the prediction of antibiotic use, and vaccination in public health, among other factors.
Collapse
Affiliation(s)
- Enrique Gea-Izquierdo
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- María Zambrano Program, Rey Juan Carlos University, European Union, 28922 Madrid, Spain
| | - Gil Rodríguez-Caravaca
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- Department of Preventive Medicine, Hospital Universitario Fundación Alcorcón, Rey Juan Carlos University, 28922 Madrid, Spain
| | - Ruth Gil-Prieto
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
| | | | - Ángel Gil-de-Miguel
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Aldecoa KAT, Pidikiti R, Brar J, Krishnamoorthy G, Kalyan S, Cosma C, Chitagi P. Challenges in Diagnosing Post-Splenectomy Cytomegalovirus Mononucleosis. Eur J Case Rep Intern Med 2024; 11:004263. [PMID: 38352817 PMCID: PMC10860906 DOI: 10.12890/2024_004263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
Cytomegalovirus (CMV) infection is often asymptomatic. However, in certain individuals, it can cause non-specific signs and symptoms that maybe hard to recognise. The condition may therefore be overlooked or misdiagnosed, leading to prolonged illness and serious sequelae. In this case report, we present a rare instance of CMV infection in an HIV-negative patient who had a remote history of splenectomy and was experiencing prolonged fever and markedly elevated white blood cell (WBC) count. LEARNING POINTS The clinical presentation of CMV infection in a post-splenectomy patient can be intricate and deceptive, involving non-specific symptoms such as prolonged fever and a markedly elevated WBC count.The decision on treatment among individuals without apparent risk factors (such as AIDS, transplant, or cancers) led to in-depth deliberations and discussion.Post-splenectomy patients with CMV infection may exhibit prolonged illness, potentially leading to severe consequences if left untreated.
Collapse
Affiliation(s)
- Kim Abbegail Tan Aldecoa
- Department of Internal Medicine, Trinity Health Oakland, Pontiac, USA
- Wayne State University, Detroit, USA
| | - Rahul Pidikiti
- Department of Internal Medicine, Trinity Health Oakland, Pontiac, USA
- Wayne State University, Detroit, USA
| | - Jaisal Brar
- Department of Internal Medicine, Trinity Health Oakland, Pontiac, USA
- Wayne State University, Detroit, USA
| | - Geetha Krishnamoorthy
- Department of Internal Medicine, Trinity Health Oakland, Pontiac, USA
- Wayne State University, Detroit, USA
| | - Shamla Kalyan
- Department of Infectious Diseases, Trinity Health Oakland, Pontiac, USA
| | - Cecilia Cosma
- Department of Internal Medicine, Trinity Health Oakland, Pontiac, USA
- Wayne State University, Detroit, USA
| | - Pritha Chitagi
- Department of Internal Medicine, Trinity Health Oakland, Pontiac, USA
- Wayne State University, Detroit, USA
| |
Collapse
|
10
|
Wang SSY, Tang H, Loe MWC, Yeo SC, Javaid MM. Complements and Their Role in Systemic Disorders. Cureus 2024; 16:e52991. [PMID: 38406130 PMCID: PMC10894639 DOI: 10.7759/cureus.52991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
The complement system is critical to the body's innate defense against exogenous pathogens and clearance of endogenous waste, comprising the classical, alternative, and lectin pathways. Although tightly regulated, various congenital and acquired diseases can perturb the complement system, resulting in specific complement deficiencies. Systemic rheumatic, neurological, ophthalmological, renal, and hematological disorders are some prototypical complement-mediated diseases. An adequate understanding of the mechanisms of the normal complement system and the pathophysiology of complement dysregulation is critical for providing diagnostic clues and appropriately managing these conditions. This review guides clinicians in understanding the role of complement factors in systemic diseases and what diagnostic and therapeutic options are available for complement-mediated disorders.
Collapse
Affiliation(s)
| | - Haoming Tang
- Medicine, Duke-National University of Singapore Medical School, Singapore, SGP
| | | | | | - Muhammad M Javaid
- Medicine, Monash University, Melbourne, AUS
- Medicine, Deakin University, Warrnambool, AUS
- Renal Medicine, Woodlands Health, Singapore, SGP
- Nephrology, Tan Tock Seng Hospital, Singapore, SGP
| |
Collapse
|
11
|
Van Damme KFA, Hoste L, Declercq J, De Leeuw E, Maes B, Martens L, Colman R, Browaeys R, Bosteels C, Verwaerde S, Vermeulen N, Lameire S, Debeuf N, Deckers J, Stordeur P, Depuydt P, Van Braeckel E, Vandekerckhove L, Guilliams M, Schetters STT, Haerynck F, Tavernier SJ, Lambrecht BN. A complement atlas identifies interleukin-6-dependent alternative pathway dysregulation as a key druggable feature of COVID-19. Sci Transl Med 2023; 15:eadi0252. [PMID: 37611083 DOI: 10.1126/scitranslmed.adi0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
Improvements in COVID-19 treatments, especially for the critically ill, require deeper understanding of the mechanisms driving disease pathology. The complement system is not only a crucial component of innate host defense but can also contribute to tissue injury. Although all complement pathways have been implicated in COVID-19 pathogenesis, the upstream drivers and downstream effects on tissue injury remain poorly defined. We demonstrate that complement activation is primarily mediated by the alternative pathway, and we provide a comprehensive atlas of the complement alterations around the time of respiratory deterioration. Proteomic and single-cell sequencing mapping across cell types and tissues reveals a division of labor between lung epithelial, stromal, and myeloid cells in complement production, in addition to liver-derived factors. We identify IL-6 and STAT1/3 signaling as an upstream driver of complement responses, linking complement dysregulation to approved COVID-19 therapies. Furthermore, an exploratory proteomic study indicates that inhibition of complement C5 decreases epithelial damage and markers of disease severity. Collectively, these results support complement dysregulation as a key druggable feature of COVID-19.
Collapse
Affiliation(s)
- Karel F A Van Damme
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Levi Hoste
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
| | - Jozefien Declercq
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elisabeth De Leeuw
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bastiaan Maes
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Liesbet Martens
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Roos Colman
- Biostatistics Unit, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Robin Browaeys
- Bioinformatics Expertise Unit, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Cédric Bosteels
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stijn Verwaerde
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Nicky Vermeulen
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Nincy Debeuf
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Patrick Stordeur
- Belgian National Reference Center for the Complement System, Laboratory of Immunology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Depuydt
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Intensive Care Unit, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Respiratory Infection and Defense Lab, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Belgium
| | - Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
| | - Simon J Tavernier
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Primary Immune Deficiency Research Laboratory, Department of Internal Diseases and Pediatrics, Centre for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Centre, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Laboratory of Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
12
|
Belcher T, Rollier CS, Dold C, Ross JDC, MacLennan CA. Immune responses to Neisseria gonorrhoeae and implications for vaccine development. Front Immunol 2023; 14:1248613. [PMID: 37662926 PMCID: PMC10470030 DOI: 10.3389/fimmu.2023.1248613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Neisseria gonorrheoae is the causative agent of gonorrhea, a sexually transmitted infection responsible for a major burden of disease with a high global prevalence. Protective immunity to infection is often not observed in humans, possible due to high variability of key antigens, induction of blocking antibodies, or a large number of infections being relatively superficial and not inducing a strong immune response. N. gonorrhoeae is a strictly human pathogen, however, studies using mouse models provide useful insights into the immune response to gonorrhea. In mice, N. gonorrhoea appears to avoid a protective Th1 response by inducing a less protective Th17 response. In mouse models, candidate vaccines which provoke a Th1 response can accelerate the clearance of gonococcus from the mouse female genital tract. Human studies indicate that natural infection often induces a limited immune response, with modest antibody responses, which may correlate with the clinical severity of gonococcal disease. Studies of cytokine responses to gonococcal infection in humans provide conflicting evidence as to whether infection induces an IL-17 response. However, there is evidence for limited induction of protective immunity from a study of female sex workers in Kenya. A controlled human infection model (CHIM) has been used to examine the immune response to gonococcal infection in male volunteers, but has not to date demonstrated protection against re-infection. Correlates of protection for gonorrhea are lacking, which has hampered the progress towards developing a successful vaccine. However, the finding that the Neisseria meningitidis serogroup B vaccines, elicit cross-protection against gonorrhea has invigorated the gonococcal vaccine field. More studies of infection in humans, either natural infection or CHIM studies, are needed to understand better gonococcal protective immunity.
Collapse
Affiliation(s)
- Thomas Belcher
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Christina Dold
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Jonathan D. C. Ross
- Sexual Health and HIV, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Duncan MN, Ahuja M, Khan MS, Iqbal H. A classic case of Capnocytophaga induced septic shock with multi-organ failure after a dog bite in an asplenic patient. IDCases 2023; 32:e01808. [PMID: 37273844 PMCID: PMC10238923 DOI: 10.1016/j.idcr.2023.e01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
We hereby report a case of a 40-year-old male with a recent dog bite, a past history of immune thrombocytopenic purpura (ITP) and therapeutic splenectomy. He presented to the hospital with abdominal pain and shortness of breath, which progressed to sepsis and disseminated intravascular coagulation (DIC). Based on clinical presentation, Capnocytophaga-induced sepsis was suspected, and the diagnosis was confirmed through blood culture. Upon confirmation of the diagnosis, the patient was started on IV ampicillin/sulbactam which improved his condition and led to complete recovery without any long-term effects. Capnocytophaga is a genus of Gram-negative bacteria that are commensal to the oral cavity of common household pets such as dogs and cats. This case highlights the importance of considering Capnocytophaga as a potential pathogen in asplenic patients with recent pet-bites and emphasizes how early recognition and intervention can significantly improve outcomes in these critically-ill patients. It also warrants the need for healthcare providers to consider Capnocytophaga infections from minor pet-bites as a differential diagnosis in immunocompromised as well as immunocompetent individuals.
Collapse
Affiliation(s)
| | - Monica Ahuja
- Atrium Health-Navicent Medical Center, Macon, GA, USA
| | | | - Henna Iqbal
- Biomedical Sciences Department, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
14
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Aguinagalde Salazar L, den Boer MA, Castenmiller SM, Zwarthoff SA, de Haas C, Aerts PC, Beurskens FJ, Schuurman J, Heck AJR, van Kessel K, Rooijakkers SHM. Promoting Fc-Fc interactions between anti-capsular antibodies provides strong immune protection against Streptococcus pneumoniae. eLife 2023; 12:e80669. [PMID: 36947116 PMCID: PMC10032657 DOI: 10.7554/elife.80669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and an important cause of childhood mortality. Despite the introduction of successful vaccines, the global spread of both non-vaccine serotypes and antibiotic-resistant strains reinforces the development of alternative therapies against this pathogen. One possible route is the development of monoclonal antibodies (mAbs) that induce killing of bacteria via the immune system. Here, we investigate whether mAbs can be used to induce killing of pneumococcal serotypes for which the current vaccines show unsuccessful protection. Our study demonstrates that when human mAbs against pneumococcal capsule polysaccharides (CPS) have a poor capacity to induce complement activation, a critical process for immune protection against pneumococci, their activity can be strongly improved by hexamerization-enhancing mutations. Our data indicate that anti-capsular antibodies may have a low capacity to form higher-order oligomers (IgG hexamers) that are needed to recruit complement component C1. Indeed, specific point mutations in the IgG-Fc domain that strengthen hexamerization strongly enhance C1 recruitment and downstream complement activation on encapsulated pneumococci. Specifically, hexamerization-enhancing mutations E430G or E345K in CPS6-IgG strongly potentiate complement activation on S. pneumoniae strains that express capsular serotype 6 (CPS6), and the highly invasive serotype 19A strain. Furthermore, these mutations improve complement activation via mAbs recognizing CPS3 and CPS8 strains. Importantly, hexamer-enhancing mutations enable mAbs to induce strong opsonophagocytic killing by human neutrophils. Finally, passive immunization with CPS6-IgG1-E345K protected mice from developing severe pneumonia. Altogether, this work provides an important proof of concept for future optimization of antibody therapies against encapsulated bacteria.
Collapse
Affiliation(s)
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtNetherlands
- Netherlands Proteomics CenterUtrechtNetherlands
| | - Suzanne M Castenmiller
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Carla de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | | | | | - Albert JR Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht UniversityUtrechtNetherlands
- Netherlands Proteomics CenterUtrechtNetherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| | - Suzan HM Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
16
|
Stabler S, Lamblin C, Gaillard S, Just N, Mihailescu M, Viget N, Sy Ndiaye T, Dzeing Ella A, Brunin G, Weyrich P, Prevotat A, Chenivesse C, Le Rouzic O, Mortuaire G, Vuotto F, Faure K, Leurs A, Wallet F, Loiez C, Titecat M, Le Guern R, Hachulla E, Sanges S, Etienne N, Terriou L, Launay D, Lopez B, Bahuaud M, Batteux F, Dubucquoi S, Gesquière-Lasselin C, Labalette M, Lefèvre G. High Frequency of Specific Polysaccharide Antibody Deficiency in Adults With Unexplained, Recurrent and/or Severe Infections With Encapsulated Bacteria. Clin Infect Dis 2023; 76:800-808. [PMID: 36285530 DOI: 10.1093/cid/ciac842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Primary immunodeficiencies (PIDs) in adults are mainly revealed by recurrent and/or severe bacterial infections. The objective of this study was to evaluate a systematic research strategy of PIDs in adults with unexplained bacterial infections, with a special focus on specific polysaccharide antibody deficiency (SPAD). METHODS In this prospective multicenter study, inclusion criteria were recurrent benign upper and lower respiratory tract infections (RTIs) for at least two years (group 1), at least one upper or lower RTI requiring hospitalization (group 2), and/or at least one invasive infection documented with encapsulated bacteria (group 3). Main exclusion criteria were all local and general conditions that could explain infections. If no PID diagnosis was made, response to polysaccharide antigens was assessed using a pneumococcal polysaccharide vaccine. RESULTS From March 2015 to March 2020, 118 patients were included (37 males, median age of 41 years): 73, 17, and 28 in groups 1, 2, and 3, respectively. Forty-seven PIDs were diagnosed, giving an estimated frequency of 39.8% (95% confidence interval [CI] [30.4, 48.8]). SPAD was the most frequent diagnosis by far (n = 37/47, 78.7%), and was made in 23, 5, and 9 patients from groups 1 to 3, respectively. All SPAD patients received conjugate vaccines and, according to their infectious history, were on surveillance or treated with preventive antibiotics (n = 6) and/or with immunoglobulins replacement therapy (n = 10), the latter being dramatically efficient in all cases. CONCLUSIONS Considering its high prevalence among adults with unexplained recurrent and/or severe bacterial infections, SPAD should be screened in those patients. CLINICAL TRIALS REGISTRATION NCT02972281.
Collapse
Affiliation(s)
- Sarah Stabler
- Département de médecine interne et immunologie clinique, CHU Lille, Lille, France
- Centre de Référence des Maladies Auto-immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Département de maladies infectieuses et tropicales, CHU Lille, Lille, France
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Catherine Lamblin
- Département de pneumologie, Hôpital privé La Louvière, Lille, France
| | - Sacha Gaillard
- Département de pneumologie, Clinique Tessier, Valenciennes, France
| | - Nicolas Just
- Département de pneumologie, CH Roubaix, Roubaix, France
| | | | - Nathalie Viget
- Département de maladies infectieuses et tropicales, CH Tourcoing, Tourcoing, France
| | - Thierno Sy Ndiaye
- Département de médecine interne, CH d'Armentières, Armentières, France
| | - Arnaud Dzeing Ella
- Département de maladies infectieuses et tropicales, médecine interne et polyvalente, CH Denain, Denain, France
| | - Guillaume Brunin
- Département de réanimation, CH Boulogne, Boulogne Sur Mer, France
| | - Pierre Weyrich
- Département de maladies infectieuses, Groupement Hospitalier de l'Institut Catholique de Lille, Lille, France
| | - Anne Prevotat
- Département de pneumologie, CHU Lille, Lille, France
| | | | - Olivier Le Rouzic
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
- Département de pneumologie, CHU Lille, Lille, France
| | | | - Fanny Vuotto
- Département de maladies infectieuses et tropicales, CHU Lille, Lille, France
| | - Karine Faure
- Département de maladies infectieuses et tropicales, CHU Lille, Lille, France
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Amélie Leurs
- Département de médecine interne et maladies infectieuses, CH Dunkerque, Dunkerque, France
| | | | | | - Marie Titecat
- Laboratoire de Bactériologie, CHU Lille, Lille, France
- Université de Lille, U1286 INFINITE, Institut de recherche translationnelle sur l'inflammation, Lille, France
| | - Rémi Le Guern
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France
- Laboratoire de Bactériologie, CHU Lille, Lille, France
| | - Eric Hachulla
- Département de médecine interne et immunologie clinique, CHU Lille, Lille, France
- Centre de Référence des Maladies Auto-immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - Sébastien Sanges
- Département de médecine interne et immunologie clinique, CHU Lille, Lille, France
- Centre de Référence des Maladies Auto-immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - Nicolas Etienne
- Département de médecine interne et immunologie clinique, CHU Lille, Lille, France
- Centre de Référence des Maladies Auto-immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - Louis Terriou
- Département de médecine interne et immunologie clinique, CHU Lille, Lille, France
- Centre de Référence des Maladies Auto-immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
| | - David Launay
- Département de médecine interne et immunologie clinique, CHU Lille, Lille, France
- Centre de Référence des Maladies Auto-immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Université de Lille, U1286 INFINITE, Institut de recherche translationnelle sur l'inflammation, Lille, France
| | | | - Mathilde Bahuaud
- Laboratoire d'immunologie, CHU Cochin-Hôtel Dieu-Broca, Paris, France
| | - Frédéric Batteux
- Laboratoire d'immunologie, CHU Cochin-Hôtel Dieu-Broca, Paris, France
| | - Sylvain Dubucquoi
- Université de Lille, U1286 INFINITE, Institut de recherche translationnelle sur l'inflammation, Lille, France
- Institut d'Immunologie, CHU Lille, Lille, France
| | | | - Myriam Labalette
- Université de Lille, U1286 INFINITE, Institut de recherche translationnelle sur l'inflammation, Lille, France
- Institut d'Immunologie, CHU Lille, Lille, France
| | - Guillaume Lefèvre
- Département de médecine interne et immunologie clinique, CHU Lille, Lille, France
- Centre de Référence des Maladies Auto-immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Université de Lille, U1286 INFINITE, Institut de recherche translationnelle sur l'inflammation, Lille, France
- Institut d'Immunologie, CHU Lille, Lille, France
| |
Collapse
|
17
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
18
|
Sadeghalvad M, Rezaei N. Immunodeficiencies. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Abstract
Dysregulation and accelerated activation of the alternative pathway (AP) of complement is known to cause or accentuate several pathologic conditions in which kidney injury leads to the appearance of hematuria and proteinuria and ultimately to the development of chronic renal failure. Multiple genetic and acquired defects involving plasma- and membrane-associated proteins are probably necessary to impair the protection of host tissues and to confer a significant predisposition to AP-mediated kidney diseases. This review aims to explore how our current understanding will make it possible to identify the mechanisms that underlie AP-mediated kidney diseases and to discuss the available clinical evidence that supports complement-directed therapies. Although the value of limiting uncontrolled complement activation has long been recognized, incorporating complement-targeted treatments into clinical use has proved challenging. Availability of anti-complement therapy has dramatically transformed the outcome of atypical hemolytic uremic syndrome, one of the most severe kidney diseases. Innovative drugs that directly counteract AP dysregulation have also opened new perspectives for the management of other kidney diseases in which complement activation is involved. However, gained experience indicates that the choice of drug should be tailored to each patient's characteristics, including clinical, histologic, genetic, and biochemical parameters. Successfully treating patients requires further research in the field and close collaboration between clinicians and researchers who have special expertise in the complement system.
Collapse
Affiliation(s)
- Erica Daina
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
20
|
Shaughnessy J, Chabeda A, Lewis LA, Ram S. Alternative pathway amplification and infections. Immunol Rev 2023; 313:162-180. [PMID: 36336911 DOI: 10.1111/imr.13160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway (AP) is the phylogenetically oldest arm of the complement system and may have evolved to mark pathogens for elimination by phagocytes. Studies using purified AP proteins or AP-specific serum showed that C3b amplification on bacteria commenced following a lag phase of about 5 min and was highly dependent on the concentration of complement. Most pathogens have evolved several elegant mechanisms to evade complement, including expressing proteases that degrade AP proteins and secreting proteins that block function of C3 convertases. In an example of convergent evolution, many microbes recruit the AP inhibitor factor H (FH) using molecular mechanisms that mimic FH interactions with host cells. In most instances, the AP serves to amplify C3b deposited on microbes by the classical pathway (CP). The role of properdin on microbes appears to be restricted to stabilization of C3 convertases; scant evidence exists for its role as an initiator of the AP on pathogens in the context of serum. Therapeutic complement inhibition carries with it an increased risk of infection. Antibody (Ab)-dependent AP activation may be critical for complement activation by vaccine-elicited Ab when the CP is blocked, and its molecular mechanism is discussed.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
21
|
Bernstein ZS, Vaillant JJ, Michelena HI, Pislaru SV, DeSimone DC. Recurrent Neisseria cinerea bacteremia secondary to cardiovascular implantable electronic device infection. IDCases 2023; 32:e01745. [PMID: 36949888 PMCID: PMC10025977 DOI: 10.1016/j.idcr.2023.e01745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023] Open
Abstract
We present the first case of cardiac implantable electronic device (CIED) infection due to Neisseria cinerea in a 64-year-old woman from Panama. She had a history of splenectomy, aortic valve stenosis requiring transcatheter aortic valve replacement (TAVR), and permanent pacemaker placement. She presented with relapsing N. cinerea bacteremia over a 3-month period. Transesophageal echocardiography revealed a lead vegetation in the superior vena cava. She was successfully treated with pacemaker removal and 2 weeks of IV antibiotic therapy. N. cinerea is an aerobic gram-negative commensal diplococcus typically found in the human nasopharynx. Infection in humans is rare with few case reports in the literature.
Collapse
Affiliation(s)
- Zachary S. Bernstein
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - James J. Vaillant
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Corresponding author.
| | - Hector I. Michelena
- Divisions of Structural Heart Disease and Cardiovascular Ultrasound, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Sorin V. Pislaru
- Divisions of Structural Heart Disease and Cardiovascular Ultrasound, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel C. DeSimone
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Muri L, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammüller M, Pluschke G, Ispasanie E. Inhibition of the different complement pathways has varying impacts on the serum bactericidal activity and opsonophagocytosis against Haemophilus influenzae type b. Front Immunol 2022; 13:1020580. [PMID: 36578495 PMCID: PMC9791579 DOI: 10.3389/fimmu.2022.1020580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Defense against Haemophilus influenzae type b (Hib) is dependent on antibodies and complement, which mediate both serum bactericidal activity (SBA) and opsonophagocytosis. Here we evaluated the influence of capsule-specific antibodies and complement inhibitors targeting the central component C3, the alternative pathway (AP; fB, fD), the lectin pathway (LP; MASP-2) and the terminal pathway (C5) on both effector functions. Findings may be relevant for the treatment of certain diseases caused by dysregulation of the complement system, where inhibitors of complement factors C3 or C5 are used. Inhibitors against other complement components are being evaluated as potential alternative treatment options that may carry a reduced risk of infection by encapsulated bacteria. Serum and reconstituted blood of healthy adults were tested for bactericidal activity before and after vaccination with the Hib capsule-conjugate vaccine ActHIB. Most sera had bactericidal activity prior to vaccination, but vaccination significantly enhanced SBA titers. Independently of the vaccination status, both C3 and C5 inhibition abrogated SBA, whereas inhibition of the LP had no effect. AP inhibition had a major inhibitory effect on SBA of pre- vaccination serum, but vaccination mitigated this inhibition for all disease isolates tested. Despite this, SBA-mediated killing of some Hib isolates remained retarded. Even for the most serum-resistant isolate, SBA was the dominating defense mechanism in reconstituted whole blood, as addition of blood cells to the serum did not enhance bacterial killing. Limited Fc receptor-mediated opsonophagocytosis was unmasked when bacterial killing by the membrane attack complex was blocked. In the presence of C3 or C5 inhibitors, addition of post-vaccination, but not of pre-vaccination serum to the blood cells triggered opsonophagocytosis, leading to suppression of bacterial multiplication. Taken together, our data indicate that for host defense against Hib, killing by SBA is more efficient than by blood cell opsonophagocytosis. However, additional defense mechanisms, such as bacterial clearance by spleen and liver, may play an important role in preventing Hib-mediated sepsis, in particular for Hib isolates with increased serum-resistance. Results indicate potentially improved safety profile of AP inhibitors over C3 and C5 inhibitors as alternative therapeutic agents in patients with increased susceptibility to Hib infection.
Collapse
Affiliation(s)
- Lukas Muri
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| | - Anna Schubart
- Department Autoimmunity, Transplantation and Inflammation, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Natasa Zamurovic
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Holbro
- Global Drug Development, Novartis Pharma AG, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland,*Correspondence: Gerd Pluschke,
| | - Emma Ispasanie
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland,University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
de Breuk A, Lechanteur YTE, Astuti G, Galbany JC, Klaver CCW, Hoyng CB, den Hollander AI. Common and rare variants in patients with early onset drusen maculopathy. Clin Genet 2022; 102:414-423. [PMID: 36053979 PMCID: PMC9825904 DOI: 10.1111/cge.14212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 01/11/2023]
Abstract
Early onset drusen maculopathy (EODM) can lead to advanced macular degeneration at a young age, affecting quality of life. However, the genetic causes of EODM are not well studied. We performed whole genome sequencing in 49 EODM patients. Common genetic variants were analysed by calculating genetic risk scores based on 52 age-related macular generation (AMD)-associated variants, and we analysed rare variants in candidate genes to identify potential deleterious variants that might contribute to EODM development. We demonstrate that the 52 AMD-associated variants contributed to EODM, especially variants located in the complement pathway. Furthermore, we identified 26 rare genetic variants predicted to be pathogenic based on in silico prediction tools or based on reported pathogenicity in literature. These variants are located predominantly in the complement and lipid metabolism pathways. Last, evaluation of 18 genes causing inherited retinal dystrophies that can mimic AMD characteristics, revealed 11 potential deleterious variants in eight EODM patients. However, phenotypic characteristics did not point towards a retinal dystrophy in these patients. In conclusion, this study reports new insights into rare variants that are potentially involved in EODM development, and which are relevant for future studies unravelling the aetiology of EODM.
Collapse
Affiliation(s)
- Anita de Breuk
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Yara T. E. Lechanteur
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Galuh Astuti
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands,Division of Human Genetics, Center for Biomedical Research, Faculty of MedicineDiponegoro UniversitySemarangIndonesia
| | | | - Caroline C. W. Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands,Department of Ophthalmology, Department of EpidemiologyErasmus Medical CenterRotterdamThe Netherlands,Institute of Molecular and Clinical OphthalmologyBaselSwitzerland
| | - Carel B. Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Anneke I. den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands,Present address:
AbbVie, Genomics Research CenterCambridgeMassachusettsUSA
| |
Collapse
|
24
|
Opstrup KV, Bennike TB, Christiansen G, Birkelund S. Complement killing of clinical Klebsiella pneumoniae isolates is serum concentration dependent. Microbes Infect 2022; 25:105074. [PMID: 36336240 DOI: 10.1016/j.micinf.2022.105074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Klebsiella pneumoniae is an opportunistic gram-negative pathogen causing serious infections, including sepsis. In plasma, activation of the complement cascades is important for killing bacteria. Thirty clinical Klebsiella spp. blood isolates were analyzed for serum susceptibility in 75% normal human serum (NHS). Twenty-two were serum resistant and eight were serum sensitive, and subsequently tested in 5-75% NHS. Two isolates were killed in 5% and the remaining six in 50%-75% NHS. The two 5% sensitive isolates showed binding of complement (C)4 and C3 in 5% NHS with formation of membrane attack complex (MAC). Inhibition of the classical/lectin mediated pathways (CP/LP) using a C4 specific nanobody, hC4Nb8, led to survival of both isolates in 5% NHS. Using nanobody hC3Nb1, inhibiting the alternative pathway (AP), the isolates were killed in 5% NHS, and amplification of the CP/LP by AP was not necessary for killing. Sole AP killing of these isolates when inhibiting CP/LP with hC4Nb8 was observed in 50% NHS, stressing the concentration dependent functionality of AP. For the less sensitive isolates, killing required activation of CP/LP and AP demonstrated by inhibition with nanobodies. AP inhibition resulted in no C3 deposition on the serum resistant isolate, supporting that AP was the sole activation pathway.
Collapse
Affiliation(s)
- Katharina V Opstrup
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg East, Denmark
| | - Tue B Bennike
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg East, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg East, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 5, 9220, Aalborg East, Denmark.
| |
Collapse
|
25
|
Kou TS, Wu JH, Chen XW, Peng B. Functional proteomics identify mannitol metabolism in serum resistance and therapeutic implications in Vibrio alginolyticus. Front Immunol 2022; 13:1010526. [PMID: 36389821 PMCID: PMC9660324 DOI: 10.3389/fimmu.2022.1010526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 08/18/2023] Open
Abstract
Serum resistance is recognized as one of the most important pathogenic traits of bacterial pathogens, and no control measure is available. Based on our previous discovery that pathogenic Escherichia coli represses glycine, serine, and threonine metabolism to confer serum resistance and that the reactivation of this pathway by exogenous glycine could restore serum sensitivity, we further investigate the mechanism underlying the action of glycine in Vibrio alginolyticus. Thus, V. alginolyticus is treated with glycine, and the proteomic change is profiled with tandem mass tag-based quantitative proteomics. Compared to the control group, glycine treatment influences the expression of a total of 291 proteins. Among them, a trap-type mannitol/chloroaromatic compound transport system with periplasmic component, encoded by N646_0992, is the most significantly increased protein. In combination with the pathway enrichment analysis showing the altered fructose and mannitol metabolism, mannitol has emerged as a possible metabolite in enhancing the serum killing activity. To demonstrate this, exogenous mannitol reduces bacterial viability. This synergistic effect is further confirmed in a V. alginolyticus-Danio rerio infection model. Furthermore, the mechanism underlying mannitol-enabled serum killing is dependent on glycolysis and the pyruvate cycle that increases the deposition of complement components C3b and C5b-9 on the bacterial surface, whereas inhibiting glycolysis or the pyruvate cycle significantly weakened the synergistic effects and complement deposition. These data together suggest that mannitol is a potent metabolite in reversing the serum resistance of V. alginolyticus and has promising use in aquaculture.
Collapse
Affiliation(s)
- Tian-shun Kou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia-han Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuan-wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Beudeker CR, Vijlbrief DC, van Montfrans J, Rooijakkers SH, van der Flier M. Neonatal sepsis and transient immunodeficiency: Potential for novel immunoglobulin therapies? Front Immunol 2022; 13:1016877. [PMID: 36330515 PMCID: PMC9623314 DOI: 10.3389/fimmu.2022.1016877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 10/30/2023] Open
Abstract
Neonates, especially preterm neonates, have the highest risk of sepsis of all age groups. Transient immaturity of the neonatal immune system is an important risk factor. Neonates suffer from hypogammaglobulinemia as nor IgA nor IgM is transferred over the placenta and IgG is only transferred over the placenta late in gestation. In addition, neutrophil numbers and complement function are also decreased. This mini-review focuses on strategies to improve neonatal host-defense. Both clinical and preclinical studies have attempted to boost neonatal immunity to lower the incidence of sepsis and improve outcome. Recent advances in the development of (monoclonal) antibodies show promising results in preclinical studies but have yet to be tested in clinical trials. Strategies to increase complement activity seem efficient in vitro but potential disadvantages such as hyperinflammation have held back further clinical development. Increase of neutrophil numbers has been tested extensively in clinical trials but failed to show improvement in mortality. Future research should focus on clinical applicability of promising new prevention strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Coco R. Beudeker
- Department of Pediatric Infectious Diseases and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daniel C. Vijlbrief
- Department of Neonatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joris M. van Montfrans
- Department of Pediatric Infectious Diseases and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases and Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
27
|
Zhang Y, Wang Z, Basharat Z, Hu M, Hong W, Chen X. Nomogram of intra-abdominal infection after surgery in patients with gastric cancer: A retrospective study. Front Oncol 2022; 12:982807. [PMID: 36263227 PMCID: PMC9574043 DOI: 10.3389/fonc.2022.982807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Surgical resection is still the primary way to treat gastric cancer. Therefore, postoperative complications such as IAI (intra-abdominal infection) are major problems that front-line clinical workers should pay special attention to. This article was to build and validate IAI’s RF (regression function) model. Furthermore, it analyzed the prognosis in patients with IAI after surgery for stomach cancer. The above two points are our advantages, which were not involved in previous studies. Methods The data of this study was divided into two parts, the training data set and the validation data set. The training data for this article were from the patients treated surgically with gastric cancer in our center from December 2015 to February 2017. We examined IAI’s morbidity, etiological characteristics, and prognosis in the training data set. Univariate and multivariate logistic regression analyses were used to screen risk factors, establish an RF model and create a nomogram. Data from January to March 2021 were used to validate the accuracy of the RF model. Results The incidence of IAI was 7.2%. The independent risk factors for IAI were hypertension (Odds Ratio [OR] = 3.408, P = 0.001), history of abdominal surgery (OR = 2.609, P = 0.041), combined organ excision (OR = 4.123, P = 0.010), and operation time ≥240 min (OR = 3.091, P = 0.005). In the training data set and validation data set, the area under the ROC curve of IAI predicted by the RF model was 0.745 ± 0.048 (P<0.001) and 0.736 ± 0.069 (P=0.003), respectively. In addition, IAI significantly extended the length of hospital stay but had little impact on survival. Conclusions Patients with hypertension, combined organ excision, a history of abdominal surgery, and a surgical duration of 240 min or more are prone to IAI, and the RF model may help to identify them.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Otolaryngology, Wenzhou People’s Hospital, Wenzhou, China
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengfei Wang
- Department of Hepato-biliary Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mengjun Hu
- Department of Pathology, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, China
- *Correspondence: Mengjun Hu, ; Wandong Hong, ; Xiangjian Chen,
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Mengjun Hu, ; Wandong Hong, ; Xiangjian Chen,
| | - Xiangjian Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Mengjun Hu, ; Wandong Hong, ; Xiangjian Chen,
| |
Collapse
|
28
|
Urwyler P, Moser S, Trendelenburg M, Sendi P, Osthoff M. Targeting thromboinflammation in COVID-19 - A narrative review of the potential of C1 inhibitor to prevent disease progression. Mol Immunol 2022; 150:99-113. [PMID: 36030710 PMCID: PMC9393183 DOI: 10.1016/j.molimm.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is associated with a clinical spectrum ranging from asymptomatic carriers to critically ill patients with complications including thromboembolic events, myocardial injury, multisystemic inflammatory syndromes and death. Since the beginning of the pandemic several therapeutic options emerged, with a multitude of randomized trials, changing the medical landscape of COVID-19. The effect of various monoclonal antibodies, antiviral, anti-inflammatory and anticoagulation drugs have been studied, and to some extent, implemented into clinical practice. In addition, a multitude of trials improved the understanding of the disease and emerging evidence points towards a significant role of the complement system, kallikrein-kinin, and contact activation system as drivers of disease in severe COVID-19. Despite their involvement in COVID-19, treatments targeting these plasmatic cascades have neither been systematically studied nor introduced into clinical practice, and randomized studies with regards to these treatments are scarce. Given the multiple-action, multiple-target nature of C1 inhibitor (C1-INH), the natural inhibitor of these cascades, this drug may be an interesting candidate to prevent disease progression and combat thromboinflammation in COVID-19. This narrative review will discuss the current evidence with regards to the involvement of these plasmatic cascades as well as endothelial cells in COVID-19. Furthermore, we summarize the evidence of C1-INH in COVID-19 and potential benefits and pitfalls of C1-INH treatment in COVID-19.
Collapse
Affiliation(s)
- Pascal Urwyler
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland; Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Stephan Moser
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Michael Osthoff
- Department of Clinical Research and Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Internal Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Shaughnessy J, Chabeda A, Tran Y, Zheng B, Nowak N, Steffens C, DeOliveira RB, Gulati S, Lewis LA, Maclean J, Moss JA, Wycoff KL, Ram S. An optimized Factor H-Fc fusion protein against multidrug-resistant Neisseria gonorrhoeae. Front Immunol 2022; 13:975676. [PMID: 36110842 PMCID: PMC9468773 DOI: 10.3389/fimmu.2022.975676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci evade killing by complement by binding factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized as a single chain. Gonococci bind FH through domains 6 and 7, and C-terminal domains 18 through 20. Previously, we showed that a chimeric protein comprising (from the N- to C-terminus) FH domains 18-20 (containing a point mutation in domain 19 to prevent lysis of host cells) fused to human IgG1 Fc (called FH*/Fc1) killed gonococci in a complement-dependent manner and reduced the duration and bacterial burden in the mouse vaginal colonization model of gonorrhea. Considering the N. gonorrhoeae-binding FH domains 18-20 are C-terminal in native FH, we reasoned that positioning Fc N-terminal to FH* (Fc1/FH*) would improve binding and bactericidal activity. Although both molecules bound gonococci similarly, Fc1/FH* displayed a 5-fold lower IC50 (the concentration required for 50% killing in complement-dependent bactericidal assays) than FH*/Fc1. To further increase complement activation, we replaced human IgG1 Fc in Fc1/FH* with Fc from human IgG3, the most potent complement-activating IgG subclass, to obtain Fc3/FH*. Bactericidal activity was further increased ~2.3-fold in Fc3/FH* compared to Fc1/FH*. Fc3/FH* killed (defined by <50% survival) 45/45 (100%) diverse PorB1B-expessing gonococci, but only 2/15 PorB1A-expressing isolates, in a complement-dependent manner. Decreased Fc3/FH* binding accounted for the limited activity against PorB1A strains. Fc3/FH* was efficacious against all four tested PorB1B gonococcal strains in the mouse vaginal colonization model when administered at a dose of 5 µg intravaginally, daily. Furthermore, Fc3/FH* retained bactericidal activity when reconstituted following lyophilization or spray-drying, suggesting feasibility for formulation into intravaginal rings. In conclusion, Fc3/FH* represents a promising prophylactic immunotherapeutic against multidrug-resistant gonococci.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aleyo Chabeda
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Y. Tran
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Nancy Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Carolynn Steffens
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Lisa A. Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - James Maclean
- Planet Biotechnology, Inc., Hayward, CA, United States
| | - John A. Moss
- Oak Crest Institute of Science, Monrovia, CA, United States
| | | | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
30
|
Screening for Immunodeficiencies in Children With Invasive Pneumococcal Disease: Six-year Experience From a UK Children's Hospital. Pediatr Infect Dis J 2022; 41:575-578. [PMID: 35421038 DOI: 10.1097/inf.0000000000003554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A previous study showed that investigation of children with invasive pneumococcal disease (IPD) revealed an immunodeficiency in up to 10% of cases. Following this report, we implemented a protocol to investigate children with IPD, to assess the proportion with an immunodeficiency in our setting. METHODS We retrospectively identified patients who presented with IPD from January 2015 to November 2020 and collected data from medical records. Immunological investigations included complement C3 and C4 levels, classical and alternative pathway complement function, IgG, IgA and IgM levels, specific IgG levels (H. influenza B, tetanus and pneumococcal serotypes), peripheral blood film, lymphocyte subsets, and CD62L-shedding upon activation with Toll-like receptor-agonists in selected cases. RESULTS We identified a total of 68 children with IPD, with a mortality of 6%. Immunological investigations were performed in 51 children. Four children (8%) had abnormal findings that were deemed of clinical significance. Two children had complement deficiencies (Factor I and C2 deficiency), one child had specific antibody deficiency, and another child had low IgM, low NK-cells and poor persistence of serotype-specific anti-pneumococcal IgG concentrations. Of the 17 children with IPD who were not tested for immunodeficiencies, 4 died and four had possible explanations for the infection. CONCLUSIONS We identified clinically relevant abnormal immunological findings in 4/51 (8%) of children with IPD. Our results support the recommendation to perform immunological investigations in children with IPD, since this might reveal underlying immunodeficiencies, allowing for necessary preventive measures and close follow-up.
Collapse
|
31
|
Wang H, Chen D, Lu H. Anti-bacterial monoclonal antibodies: next generation therapy against superbugs. Appl Microbiol Biotechnol 2022; 106:3957-3972. [PMID: 35648146 DOI: 10.1007/s00253-022-11989-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
Abstract
Prior to the nineteenth century, infectious disease was one of the leading causes of death. Human life expectancy has roughly doubled over the past century as a result of the development of antibiotics and vaccines. However, the emergence of antibiotic-resistant superbugs brings new challenges. The side effects of broad-spectrum antibiotics, such as causing antimicrobial resistance and destroying the normal flora, often limit their applications. Furthermore, the development of new antibiotics has lagged far behind the emergence and spread of antibiotic resistance. On the other hand, the genome complexity of bacteria makes it difficult to create effective vaccines. Therefore, novel therapeutic agents in supplement to antibiotics and vaccines are urgently needed to improve the treatment of infections. In recent years, monoclonal antibodies (mAbs) have achieved remarkable clinical success in a variety of fields. In the treatment of infectious diseases, mAbs can play functions through multiple mechanisms, including toxins neutralization, virulence factors inhibition, complement-mediated killing activity, and opsonic phagocytosis. Toxins and bacterial surface components are good targets to generate antibodies against. The U.S. FDA has approved three monoclonal antibody drugs, and there are numerous candidates in the preclinical or clinical trial stages. This article reviews recent advances in the research and development of anti-bacterial monoclonal antibody drugs in order to provide a valuable reference for future studies in this area. KEY POINTS: • Novel drugs against antibiotic-resistant superbugs are urgently required • Monoclonal antibodies can treat bacterial infections through multiple mechanisms • There are many anti-bacterial monoclonal antibodies developed in recent years and some candidates have entered the preclinical or clinical stages of development.
Collapse
Affiliation(s)
- Hui Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
32
|
Kulasekararaj AG, Brodsky RA, Nishimura JI, Patriquin CJ, Schrezenmeier H. The importance of terminal complement inhibition in paroxysmal nocturnal hemoglobinuria. Ther Adv Hematol 2022; 13:20406207221091046. [PMID: 35663504 PMCID: PMC9160915 DOI: 10.1177/20406207221091046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, chronic hematologic disorder associated with inappropriate terminal complement activity on blood cells that can result in intravascular hemolysis (IVH), thromboembolic events (TEs), and organ damage. Untreated individuals with PNH have an increased risk of morbidity and mortality. Patients with PNH experiencing IVH often present with an elevated lactate dehydrogenase (LDH; ⩾ 1.5 × the upper limit of normal) level which is associated with a significantly higher risk of TEs, one of the leading causes of death in PNH. LDH is therefore used as a biomarker for IVH in PNH. The main objective of PNH treatment should therefore be prevention of morbidity and mortality due to terminal complement activation, with the aim of improving patient outcomes. Approval of the first terminal complement inhibitor, eculizumab, greatly changed the treatment landscape of PNH by giving patients an effective therapy and demonstrated the critical role of terminal complement and the possibility of modulating it therapeutically. The current mainstays of treatment for PNH are the terminal complement component 5 (C5) inhibitors, eculizumab and ravulizumab, which have shown efficacy in controlling terminal complement-mediated IVH, reducing TEs and organ damage, and improving health-related quality of life in patients with PNH since their approval by the United States Food and Drug Administration in 2007 and 2018, respectively. Moreover, the use of eculizumab has been shown to reduce mortality due to PNH. More recently, interest has arisen in developing additional complement inhibitors with different modes of administration and therapeutics targeting other components of the complement cascade. This review focuses on the pathophysiology of clinical complications in PNH and explores why sustained inhibition of terminal complement activity through the use of complement inhibitors is essential for the management of patients with this chronic and debilitating disease.
Collapse
Affiliation(s)
- Austin G. Kulasekararaj
- Department of Haematological Medicine, King’s College Hospital, Denmark Hill, London SE5 9RS, UK
- National Institute of Health Research/Wellcome King’s Clinical Research Facility and King’s College London, London, UK
| | | | - Jun-ichi Nishimura
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Christopher J. Patriquin
- Division of Medical Oncology & Hematology, University Health Network – Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, and Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, and University Hospital Ulm, Ulm, Germany
| |
Collapse
|
33
|
Nahm MH, Yu J, Calix JJ, Ganaie F. Ficolin-2 Lectin Complement Pathway Mediates Capsule-Specific Innate Immunity Against Invasive Pneumococcal Disease. Front Immunol 2022; 13:841062. [PMID: 35418983 PMCID: PMC8996173 DOI: 10.3389/fimmu.2022.841062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Reports conflict regarding which lectin-microbial ligand interactions elicit a protective response from the lectin pathway (LP) of complement. Using fluorescent microscopy, we demonstrate the human lectin ficolin-2 binds to Streptococcus pneumoniae serotype 11A capsule polysaccharide dependent on the O-acetyltransferase gene wcjE. This triggers complement deposition and promotes opsonophagocytosis of encapsulated pneumococci. Even partial loss of ficolin-2 ligand expression through wcjE mutation abrogated bacterial killing. Ficolin-2 did not interact with any pneumococcal non-capsule structures, including teichoic acid. We describe multiple 11A clonal derivatives expressing varying degrees of wcjE-dependent epitopes co-isolated from single blood specimens, likely representing microevolutionary shifts towards wcjE-deficient populations during invasive pneumococcal disease (IPD). We find epidemiological evidence of wcjE impairing pneumococcal invasiveness, supporting that the LP's ficolin-2 axis provides innate, serotype-specific serological protection against IPD. The fact that the LP is triggered by only a few discrete carbohydrate ligands emphasizes the need to reevaluate its impact in a glycopolymer-specific manner.
Collapse
Affiliation(s)
- Moon H. Nahm
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jigui Yu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan J. Calix
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Infectious Diseases, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Feroze Ganaie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Dutta K, Friscic J, Hoffmann MH. Targeting the tissue-complosome for curbing inflammatory disease. Semin Immunol 2022; 60:101644. [PMID: 35902311 DOI: 10.1016/j.smim.2022.101644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/15/2023]
Abstract
Hyperactivated local tissue is a cardinal feature of immune-mediated inflammatory diseases of various organs such as the joints, the gut, the skin, or the lungs. Tissue-resident structural and stromal cells, which get primed during repeated or long-lasting bouts of inflammation form the basis of this sensitization of the tissue. During priming, cells change their metabolism to make them fit for the heightened energy demands that occur during persistent inflammation. Epigenetic changes and, curiously, an activation of intracellularly expressed parts of the complement system drive this metabolic invigoration and enable tissue-resident cells and infiltrating immune cells to employ an arsenal of inflammatory functions, including activation of inflammasomes. Here we provide a current overview on complement activation and inflammatory transformation in tissue-occupying cells, focusing on fibroblasts during arthritis, and illustrate ways how therapeutics directed at complement C3 could potentially target the complosome to unprime cells in the tissue and induce long-lasting abatement of inflammation.
Collapse
Affiliation(s)
- Kuheli Dutta
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jasna Friscic
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany
| | - Markus H Hoffmann
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
35
|
Clinical Outcome and Underlying Genetic Cause of Functional Terminal Complement Pathway Deficiencies in a Multicenter UK Cohort. J Clin Immunol 2022; 42:665-671. [PMID: 35084692 PMCID: PMC8793329 DOI: 10.1007/s10875-022-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/11/2022] [Indexed: 10/27/2022]
Abstract
BACKGROUND Terminal complement pathway deficiencies often present with severe and recurrent infections. There is a lack of good-quality data on these rare conditions. This study investigated the clinical outcome and genetic variation in a large UK multi-center cohort with primary and secondary terminal complement deficiencies. METHODS Clinicians from seven UK centers provided anonymised demographic, clinical, and laboratory data on patients with terminal complement deficiencies, which were collated and analysed. RESULTS Forty patients, median age 19 (range 3-62) years, were identified with terminal complement deficiencies. Ten (62%) of 16 patients with low serum C5 concentrations had underlying pathogenic CFH or CFI gene variants. Two-thirds were from consanguineous Asian families, and 80% had an affected family member. The median age of the first infection was 9 years. Forty-three percent suffered meningococcal serotype B and 43% serotype Y infections. Nine (22%) were treated in intensive care for meningococcal septicaemia. Two patients had died, one from intercurrent COVID-19. Twenty-one (52%) were asymptomatic and diagnosed based on family history. All but one patient had received booster meningococcal vaccines and 70% were taking prophylactic antibiotics. DISCUSSION The genetic etiology and clinical course of patients with primary and secondary terminal complement deficiency are variable. Patients with low antigenic C5 concentrations require genetic testing, as the low level may reflect consumption secondary to regulatory defects in the pathway. Screening of siblings is important. Only half of the patients develop septicaemia, but all should have a clear management plan.
Collapse
|
36
|
Li S, Qiu Y, Yu J, Shao M, Li Y, Cao W, Sun X. Serum complement component 3, complement component 4 and complement component 1q levels predict progressive visual field loss in older women with primary angle closure glaucoma. Br J Ophthalmol 2022; 107:828-835. [PMID: 35017157 DOI: 10.1136/bjophthalmol-2021-320541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 01/07/2023]
Abstract
AIM To evaluate the association between serum levels of complement component (C) 3, C4 and C1q and visual field (VF) loss in patients with primary angle closure glaucoma (PACG). METHODS In this prospective cohort study, a total of 308 patients with PACG were included. The patients were followed up every 6 months (at least 2 years), with clinical examination and VF testing. Based on their sex and age, the subjects were stratified into male and female subgroups, and by age at <60 and ≥60 years per subgroup. RESULTS One hundred twenty-three (39.94%) patients showed glaucoma VF progression. The serum levels of C3, C4 and C1q were significantly lower (p<0.05) in the progression group compared with the non-progression group in the ≥60 years female subgroup. In female patients with age ≥60 years, (1) lower levels of baseline C3 (HR=0.98, p<0.001), C4 (HR=0.96, p=0.01) and C1q levels (HR=0.99, p=0.003) were associated with a greater risk of VF progression; (2) patients with lower C3 levels had significantly (p<0.05) higher rates of VF loss progression, similar to those with lower C4 and lower C1q levels; and (3) the generalised additive model revealed a negative correlation between baseline C3 (p<0.001), C4 (p<0.001) and C1q (p<0.001) levels with the risk of VF progression. No statistical significance was observed in the male (<60 and ≥60 years) and female (<60 years) subgroups. CONCLUSION Decreased C3, C4 and C1q levels at baseline were significantly associated with a greater risk of VF loss progression only in older women with PACG.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yichao Qiu
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingzhu Li
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
37
|
de Latour RP, Hosokawa K, Risitano AM. Hemolytic paroxysmal nocturnal hemoglobinuria: 20 years of medical progress. Semin Hematol 2022; 59:38-46. [DOI: 10.1053/j.seminhematol.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
|
38
|
Descoeudres N, Jouneau L, Henry C, Gorrichon K, Derré-Bobillot A, Serror P, Gillespie LL, Archambaud C, Pagliuso A, Bierne H. An Immunomodulatory Transcriptional Signature Associated With Persistent Listeria Infection in Hepatocytes. Front Cell Infect Microbiol 2021; 11:761945. [PMID: 34858876 PMCID: PMC8631403 DOI: 10.3389/fcimb.2021.761945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes causes severe foodborne illness in pregnant women and immunocompromised individuals. After the intestinal phase of infection, the liver plays a central role in the clearance of this pathogen through its important functions in immunity. However, recent evidence suggests that during long-term infection of hepatocytes, a subpopulation of Listeria may escape eradication by entering a persistence phase in intracellular vacuoles. Here, we examine whether this long-term infection alters hepatocyte defense pathways, which may be instrumental for bacterial persistence. We first optimized cell models of persistent infection in human hepatocyte cell lines HepG2 and Huh7 and primary mouse hepatocytes (PMH). In these cells, Listeria efficiently entered the persistence phase after three days of infection, while inducing a potent interferon response, of type I in PMH and type III in HepG2, while Huh7 remained unresponsive. RNA-sequencing analysis identified a common signature of long-term Listeria infection characterized by the overexpression of a set of genes involved in antiviral immunity and the under-expression of many acute phase protein (APP) genes, particularly involved in the complement and coagulation systems. Infection also altered the expression of cholesterol metabolism-associated genes in HepG2 and Huh7 cells. The decrease in APP transcripts was correlated with lower protein abundance in the secretome of infected cells, as shown by proteomics, and also occurred in the presence of APP inducers (IL-6 or IL-1β). Collectively, these results reveal that long-term infection with Listeria profoundly deregulates the innate immune functions of hepatocytes, which could generate an environment favorable to the establishment of persistent infection.
Collapse
Affiliation(s)
- Natalie Descoeudres
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kevin Gorrichon
- Université Paris-Saclay, Institut de Biologie Intégrative de la Cellule, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France
| | | | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laura Lee Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
39
|
Muri L, Ispasanie E, Schubart A, Thorburn C, Zamurovic N, Holbro T, Kammüller M, Pluschke G. Alternative Complement Pathway Inhibition Abrogates Pneumococcal Opsonophagocytosis in Vaccine-Naïve, but Not in Vaccinated Individuals. Front Immunol 2021; 12:732146. [PMID: 34707606 PMCID: PMC8543009 DOI: 10.3389/fimmu.2021.732146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 01/19/2023] Open
Abstract
To assess the relative contribution of opsonisation by antibodies, classical and alternative complement pathways to pneumococcal phagocytosis, we analyzed killing of pneumococci by human blood leukocytes collected from vaccine-naïve and PCV13-vaccinated subjects. With serotype 4 pneumococci as model, two different physiologic opsonophagocytosis assays based on either hirudin-anticoagulated whole blood or on washed cells from EDTA-anticoagulated blood reconstituted with active serum, were compared. Pneumococcal killing was measured in the presence of inhibitors targeting the complement components C3, C5, MASP-2, factor B or factor D. The two assay formats yielded highly consistent and comparable results. They highlighted the importance of alternative complement pathway activation for efficient opsonophagocytic killing in blood of vaccine-naïve subjects. In contrast, alternative complement pathway inhibition did not affect pneumococcal killing in PCV13-vaccinated individuals. Independent of amplification by the alternative pathway, even low capsule-specific antibody concentrations were sufficient to efficiently trigger classical pathway mediated opsonophagocytosis. In heat-inactivated or C3-inhibited serum, high concentrations of capsule-specific antibodies were required to trigger complement-independent opsonophagocytosis. Our findings suggest that treatment with alternative complement pathway inhibitors will increase susceptibility for invasive pneumococcal infection in non-immune subjects, but it will not impede pneumococcal clearance in vaccinated individuals.
Collapse
Affiliation(s)
- Lukas Muri
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Emma Ispasanie
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Anna Schubart
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Natasa Zamurovic
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Holbro
- Novartis Pharma AG, Global Drug Development, Basel, Switzerland
| | - Michael Kammüller
- Translational Medicine-Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology Unit, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
40
|
Martinón-Torres F, Bertrand-Gerentes I, Oster P. A novel vaccine to prevent meningococcal disease beyond the first year of life: an early review of MenACYW-TT. Expert Rev Vaccines 2021; 20:1123-1146. [PMID: 34365870 DOI: 10.1080/14760584.2021.1964962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Although quadrivalent meningococcal conjugate vaccines have been effective in preventing invasive meningococcal disease (IMD) caused by serogroups A, C, W, and Y across age groups from infants to adults, data on their efficacy and safety in adults ≥56 years of age are lacking. Moreover, multiple available quadrivalent conjugate vaccines require reconstitution prior to administration, introducing the potential for error. A novel quadrivalent meningococcal conjugate vaccine, MenACYW-TT (MenQuadfi®) was approved in 2020 for use in individuals ≥12 months of age as a single dose in the European Union and some other countries and in individuals ≥2 years of age in the United States. AREAS COVERED The findings of Phase II/III studies that included >6600 individuals and evaluated the immunogenicity and safety of MenACYW-TT beyond the first year of life are comprehensively summarized and discussed. EXPERT OPINION Extensive data on immunogenicity and safety, co-administration with routine vaccines, elicitation of robust booster responses, and significantly higher Men C responses versus monovalent MenC or MenACWY standard-of-care vaccines in toddlers suggest that MenACYW-TT may be suitable for inclusion in National Immunization Programs (NIPs) globally. The authors provide their perspectives on the clinical use of MenACYW-TT across age groups from toddlers through adults.
Collapse
Affiliation(s)
- Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario and Universidad De Santiago De Compostela (USC), Galicia, Spain.,Genetics, Vaccines, and Pediatric Infectious Diseases Research Group (GENVIP), Instituto De Investigación Sanitaria De Santiago and Universidad De Santiago De Compostela (USC), Galicia, Spain
| | | | - Philipp Oster
- Global Medical Affairs, Sanofi Pasteur, Lyon, France
| |
Collapse
|
41
|
Mao X, Kim J, Zhang Q, Jiang T, Ahn DH, Jung Y, Matsushita M, Bae T, Lee BL. The N2N3 domains of ClfA, FnbpA and FnbpB in Staphylococcus aureus bind to human complement factor H, and their antibodies enhance the bactericidal capability of human blood. J Biochem 2021; 169:543-553. [PMID: 33326036 DOI: 10.1093/jb/mvaa142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the complement system, the opsonin C3b binds to the bacterial cell surface and mediates the opsonophagocytosis. However, the cell-wall protein SdrE of Staphylococcus aureus inhibits the C3b activity by recruiting the complement regulatory protein factor H (fH). SdrE binds to fH via its N-terminal N2N3 domain, which are also found in six other staphylococcal cell-wall proteins. In this study, we report that not only the N2N3 domain of SdrE but also those of ClfA, FnbpA and FnbpB can bind to fH. When immobilized on a microplate, the N2N3 domains recruited fH and enhanced the factor I (fI)-mediated cleavage of C3b. When mixed with fH and S. aureus cells, the N2N3 domains inhibited the fH binding to S. aureus cells and reduced the fI-mediated C3b cleavage on the bacterial cell surface. The F(ab)'2 fragments of the rabbit N2N3 antibodies also inhibited the fH binding to the S. aureus cell surface. When added to human blood, the N2N3 antibodies or the N2N3 domain proteins significantly increased the bactericidal activity. Based on these results, we conclude that, in S. aureus, not only SdrE but also ClfA, FnbpA and FnbpB can contribute to the inhibition of C3b-mediated opsonophagocytosis.
Collapse
Affiliation(s)
- Xinrui Mao
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Junghyun Kim
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - QingFeng Zhang
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - TingTing Jiang
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Ho Ahn
- New Drug Development Section of Clips Company, Mapo-gu, Seoul 04168, Republic of Korea
| | - Yunjin Jung
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka 259-1292, Japan
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | - Bok Luel Lee
- Host Defense Protein Laboratory, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
42
|
Mondal AK, Chattopadhyay K. Structures and functions of the membrane-damaging pore-forming proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:241-288. [PMID: 35034720 DOI: 10.1016/bs.apcsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pore-forming proteins (PFPs) of the diverse life forms have emerged as the potent cell-killing entities owing to their specialized membrane-damaging properties. PFPs have the unique ability to perforate the plasma membranes of their target cells, and they exert this functionality by creating oligomeric pores in the membrane lipid bilayer. Pathogenic bacteria employ PFPs as toxins to execute their virulence mechanisms, whereas in the higher vertebrates PFPs are deployed as the part of the immune system and to generate inflammatory responses. PFPs are the unique dimorphic proteins that are generally synthesized as water-soluble molecules, and transform into membrane-inserted oligomeric pore assemblies upon interacting with the target membranes. In spite of sharing very little sequence similarity, PFPs from diverse organisms display incredible structural similarity. Yet, at the same time, structure-function mechanisms of the PFPs document remarkable versatility. Such notions establish PFPs as the fascinating model system to explore variety of unsolved issues pertaining to the structure-function paradigm of the proteins that interact and act in the membrane environment. In this article, we discuss our current understanding regarding the structural basis of the pore-forming functions of the diverse class of PFPs. We attempt to highlight the similarities and differences in their structures, membrane pore-formation mechanisms, and their implications for the various biological processes, ranging from the bacterial virulence mechanisms to the inflammatory immune response generation in the higher animals.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
43
|
Barbieri N, Salva S, Herrera M, Villena J, Alvarez S. Nasal Priming with Lactobacillus rhamnosus CRL1505 Stimulates Mononuclear Phagocytes of Immunocompromised Malnourished Mice: Improvement of Respiratory Immune Response. Probiotics Antimicrob Proteins 2021; 12:494-504. [PMID: 31030404 DOI: 10.1007/s12602-019-09551-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effect of Lactobacillus rhamnosus CRL1505 (Lr) on macrophages (Ma) and dendritic cells (DC) in the orchestration of anti-pneumococcal immunity was studied using malnutrition and pneumococcal infection mouse models. Monocytes (Mo), Ma, and DC in two groups of malnourished mice fed with balanced diet (BCD) were studied through flow cytometry; one group was nasally administered with Lr (BCD+Lr group), and the other group was not (BCD group). Well-nourished (WNC) and malnourished (MNC) mice were used as controls.Malnutrition affected the number of respiratory and splenic mononuclear phagocytes. The BCD+Lr treatment, unlike BCD, was able to increase and normalize lung Mo and Ma. The BCD+Lr mice were also able to upregulate the expression of the activation marker MHC II in lung DC and to improve this population showing a more significant effect on CD11b+ DC subpopulation. At post-infection, lung Mo values were higher in BCD+Lr mice than in BCD mice and similar to those obtained in WNC group. Although both repletion treatments showed similar values of lung Ma post-infection, the Ma activation state in BCD+Lr mice was higher than that in BCD mice. Furthermore, BCD+Lr treatment was able to normalize the number and activation of splenic Ma and DC after the challenge.Lr administration stimulates respiratory and systemic mononuclear phagocytes. Stimulation of Ma and DC populations would increase the microbicide activity and improve the adaptive immunity through its antigen-presenting capacity. Thus, Lr contributes to improved outcomes of pneumococcal infection in immunocompromised hosts.
Collapse
Affiliation(s)
- Natalia Barbieri
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina.,Departamento de Ciencias Básicas y Tecnológicas, Universidad Nacional de Chilecito (UNdeC), CONICET, 9 de Julio 22, F5360CKB, Chilecito, La Rioja, Argentina
| | - Susana Salva
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina
| | - Matías Herrera
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina.,Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pje. Caseros, T4001MVB, San Miguel deTucumán, Tucumán, Argentina
| | - Julio Villena
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina
| | - Susana Alvarez
- Laboratorio de Inmunobiotecnología, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC, San Miguel deTucumán, Tucumán, Argentina. .,Instituto de Bioquímica Aplicada, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Balcarce 747, 4000, San Miguel deTucumán, Tucumán, Argentina.
| |
Collapse
|
44
|
Xie L, Chen Z, Guo H, Tao Y, Miao X, Wu R, Li Y. Congenital Asplenia Interrupts Immune Homeostasis and Leads to Excessive Systemic Inflammation in Zebrafish. Front Cell Infect Microbiol 2021; 11:668859. [PMID: 34262881 PMCID: PMC8274418 DOI: 10.3389/fcimb.2021.668859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022] Open
Abstract
Splenectomy or congenital asplenia in humans increases susceptibility to infections. We have previously reported that congenital asplenia in zebrafish reduces resistance to Aeromonas hydrophila infection. However, the molecular mechanism of systemic immune response in congenitally asplenic individuals is largely unexplored. In this study, we found that pro-inflammatory cytokines were more highly induced in congenitally asplenic zebrafish than wild-type after pathogenic A. hydrophila infection and lipopolysaccharide exposure. In addition, a higher aggregation of apoptotic cells was observed in congenitally asplenic zebrafish than that in wild-type. Next, we examined the transcriptome profiles of whole kidneys from wild-type and congenitally asplenic zebrafish to investigate the effects of congenital asplenia on innate and adaptive immune responses induced by the inactivated A. hydrophila. Congenital asplenia inactivated the splenic anti-inflammatory reflex, disrupted immune homeostasis, and induced excessive inflammation as evidenced by the highly induced stress response–related biological processes, inflammatory and apoptosis-associated pathways, and pro-inflammatory cytokines/chemokines in congenitally asplenic zebrafish compared with wild-type after vaccination. In addition, complement component genes (c3a.1, c3a.6, c4, c6, and c9) and several important immune-related genes (tabp.1, tap1, hamp, prg4b, nfil3, defbl1, psmb9a, tfr1a, and sae1) were downregulated in congenitally asplenic zebrafish. Furthermore, congenital asplenia impaired adaptive immunity as demonstrated by downregulation of biological processes and signaling pathways involved in adaptive immune response after vaccination in congenitally asplenic zebrafish. The expression of MHCII/IgM was also significantly reduced in the congenitally asplenic zebrafish when compared with wild-type. Together, our study provides an in-depth understanding of spleen function in controlling immune homeostasis and may offer insight into the pathological response in splenectomized or congenitally asplenic patients after infections.
Collapse
Affiliation(s)
- Lang Xie
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Zheyu Chen
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Hui Guo
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Yixi Tao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Xiaomin Miao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China
| | - Ronghua Wu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China.,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), The Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, China.,Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), The Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Illouz T, Biragyn A, Iulita MF, Flores-Aguilar L, Dierssen M, De Toma I, Antonarakis SE, Yu E, Herault Y, Potier MC, Botté A, Roper R, Sredni B, London J, Mobley W, Strydom A, Okun E. Immune Dysregulation and the Increased Risk of Complications and Mortality Following Respiratory Tract Infections in Adults With Down Syndrome. Front Immunol 2021; 12:621440. [PMID: 34248930 PMCID: PMC8267813 DOI: 10.3389/fimmu.2021.621440] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The risk of severe outcomes following respiratory tract infections is significantly increased in individuals over 60 years, especially in those with chronic medical conditions, i.e., hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease, and cancer. Down Syndrome (DS), the most prevalent intellectual disability, is caused by trisomy-21 in ~1:750 live births worldwide. Over the past few decades, a substantial body of evidence has accumulated, pointing at the occurrence of alterations, impairments, and subsequently dysfunction of the various components of the immune system in individuals with DS. This associates with increased vulnerability to respiratory tract infections in this population, such as the influenza virus, respiratory syncytial virus, SARS-CoV-2 (COVID-19), and bacterial pneumonias. To emphasize this link, here we comprehensively review the immunobiology of DS and its contribution to higher susceptibility to severe illness and mortality from respiratory tract infections.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer’s Disease Research, Bar-Ilan University, Ramat Gan, Israel
| | - Arya Biragyn
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institute of Health, Baltimore, MD, United States
| | - Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Lisi Flores-Aguilar
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Mara Dierssen
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain
| | - Ilario De Toma
- Center for Genomic Regulation, The Barcelona Institute for Science and Technology, Barcelona, Spain
- University Pompeu Fabra, Barcelona, Spain
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
- Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Eugene Yu
- The Children’s Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, United States
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC - UMR 7104 - Inserm U1258, Illkirch, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alexandra Botté
- Paris Brain Institute (ICM), CNRS UMR7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Randall Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Benjamin Sredni
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | - William Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry Psychology and Neuroscience, King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- The Paul Feder Laboratory on Alzheimer’s Disease Research, Bar-Ilan University, Ramat Gan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
46
|
Love AC, Grisham K, Krall JB, Goodchild CG, DuRant SE. Perception of infection: disease-related social cues influence immunity in songbirds. Biol Lett 2021; 17:20210125. [PMID: 34102069 PMCID: PMC8187024 DOI: 10.1098/rsbl.2021.0125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
While avoidance of sick conspecifics is common among animals, little is known about how detecting diseased conspecifics influences an organism's physiological state, despite its implications for disease transmission dynamics. The avian pathogen Mycoplasma gallisepticum (MG) causes obvious visual signs of infection in domestic canaries (Serinus canaria domestica), including lethargy and conjunctivitis, making this system a useful tool for investigating how the perception of cues from sick individuals shapes immunity in healthy individuals. We tested whether disease-related social information can stimulate immune responses in canaries housed in visual contact with either healthy or MG-infected conspecifics. We found higher complement activity and higher heterophil counts in healthy birds viewing MG-infected individuals around 6-12 days post-inoculation, which corresponded with the greatest degree of disease pathology in infected stimulus birds. However, we did not detect the effects of disease-related social cues on the expression of two proinflammatory cytokines in the blood. These data indicate that social cues of infection can alter immune responses in healthy individuals and suggest that public information about the disease can shape how individuals respond to infection.
Collapse
Affiliation(s)
- Ashley C. Love
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
- Department of Biological Sciences, University of Arkansas, 601 Science and Engineering, Fayetteville, AR 72701, USA
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA
| | - Kevin Grisham
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Jeffrey B. Krall
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA
| | - Christopher G. Goodchild
- Department of Biology, University of Central Oklahoma, 100 North University Drive, Edmond, OK 73034, USA
| | - Sarah E. DuRant
- Department of Biological Sciences, University of Arkansas, 601 Science and Engineering, Fayetteville, AR 72701, USA
| |
Collapse
|
47
|
Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, Sadighi Akha AA, Kumánovics A, Jyonouchi S, Ngo SY, Vinh DC, Hagin D, Forbes Satter LR, Marsh RA, Chiang SCC, Willrich MAV, Frazer-Abel AA, Rider NL. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3293-3307.e6. [PMID: 34033983 DOI: 10.1016/j.jaip.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Hey Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pa
| | - Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Karin Chen
- Department of Immunology, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Suzanne Y Ngo
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Donald C Vinh
- Division of Infectious Diseases, Allergy & Clinical Immunology, Department of Medical Microbiology and Human Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa R Forbes Satter
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Ashley A Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo
| | - Nicholas L Rider
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex.
| |
Collapse
|
48
|
Zewde NT, Hsu RV, Morikis D, Palermo G. Systems Biology Modeling of the Complement System Under Immune Susceptible Pathogens. FRONTIERS IN PHYSICS 2021; 9:603704. [PMID: 35145963 PMCID: PMC8827490 DOI: 10.3389/fphy.2021.603704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The complement system is assembled from a network of proteins that function to bring about the first line of defense of the body against invading pathogens. However, complement deficiencies or invasive pathogens can hijack complement to subsequently increase susceptibility of the body to infections. Moreover, invasive pathogens are increasingly becoming resistant to the currently available therapies. Hence, it is important to gain insights into the highly dynamic interaction between complement and invading microbes in the frontlines of immunity. Here, we developed a mathematical model of the complement system composed of 670 ordinary differential equations with 328 kinetic parameters, which describes all three complement pathways (alternative, classical, and lectin) and includes description of mannose-binding lectin, collectins, ficolins, factor H-related proteins, immunoglobulin M, and pentraxins. Additionally, we incorporate two pathogens: (type 1) complement susceptible pathogen and (type 2) Neisseria meningitidis located in either nasopharynx or bloodstream. In both cases, we generate time profiles of the pathogen surface occupied by complement components and the membrane attack complex (MAC). Our model shows both pathogen types in bloodstream are saturated by complement proteins, whereas MACs occupy <<1.0% of the pathogen surface. Conversely, the MAC production in nasopharynx occupies about 1.5-10% of the total N. meningitidis surface, thus making nasal MAC levels at least about eight orders of magnitude higher. Altogether, we predict complement-imbalance, favoring overactivation, is associated with nasopharynx homeostasis. Conversely, orientating toward complement-balance may cause disruption to the nasopharynx homeostasis. Thus, for sporadic meningococcal disease, our model predicts rising nasal levels of complement regulators as early infection biomarkers.
Collapse
Affiliation(s)
- Nehemiah T. Zewde
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Rohaine V. Hsu
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- Correspondence: Giulia Palermo, , Dimitrios Morikis,
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- Correspondence: Giulia Palermo, , Dimitrios Morikis,
| |
Collapse
|
49
|
Guilcher GMT, Rivard L, Huang JT, Wright NAM, Anderson L, Eissa H, Pelletier W, Ramachandran S, Schechter T, Shah AJ, Wong K, Chow EJ. Immune function in childhood cancer survivors: a Children's Oncology Group review. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:284-294. [PMID: 33600774 PMCID: PMC8725381 DOI: 10.1016/s2352-4642(20)30312-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 11/20/2022]
Abstract
Childhood cancer and its treatment often impact the haematopoietic and lymphatic systems, with immunological consequences. Immunological assessments are not routinely included in surveillance guidelines for most survivors of childhood cancer, although a robust body of literature describes immunological outcomes, testing recommendations, and revaccination guidelines after allogeneic haematopoietic cell transplantation. Survivorship care providers might not fully consider the impaired recovery of a child's immune system after cancer treatment if the child has not undergone haematopoietic cell transplantation. We did a scoping review to collate the existing literature describing immune function after childhood cancer therapy, including both standard-dose chemotherapy and high-dose chemotherapy with haematopoietic cell rescue. This Review aims to summarise: the principles of immunology and testing of immune function; the body of literature describing immunological outcomes after childhood cancer therapy, with an emphasis on the risk of infection, when is testing indicated, and preventive strategies; and knowledge gaps and opportunities for future research.
Collapse
Affiliation(s)
- Gregory M T Guilcher
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Linda Rivard
- Pediatric Hematology and Oncology, Advocate Children's Hospital, Oak Lawn, IL, USA
| | - Jennifer T Huang
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Nicola A M Wright
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Hesham Eissa
- Department of Pediatrics, University of Colorado, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital of Colorado, Aurora, CO, USA
| | - Wendy Pelletier
- Section of Pediatric Oncology and BMT, Alberta Children's Hospital, Calgary, AB, Canada
| | - Shanti Ramachandran
- School of Paediatrics and Child Health, University of Western Australia, Nedland, WA, Australia; Department of Oncology, Haematology, Blood and Marrow Transplantation, Child and Adolescent Health Services, Perth Children's Hospital, Nedland, WA, Australia
| | - Tal Schechter
- Division of Hematology and Oncology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Ami J Shah
- Department of Pediatrics, Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Palo Alto, CA, USA
| | - Ken Wong
- Department of Radiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA; Children's Hospital Los Angeles, Cancer and Blood Disease Institute, Los Angeles, CA, USA
| | - Eric J Chow
- Fred Hutchinson Cancer Research Center, Clinical Research and Public Health Sciences Divisions, Seattle, WA, USA
| |
Collapse
|
50
|
Zhang AQ, Liu YX, Jin JY, Wang CY, Fan LL, Xu DB. Identification of a novel mutation in the C6 gene of a Han Chinese C6SD child with meningococcal disease. Exp Ther Med 2021; 21:510. [PMID: 33791019 DOI: 10.3892/etm.2021.9941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/05/2021] [Indexed: 11/06/2022] Open
Abstract
Deficiency of the sixth complement component (C6D) is a genetic disease associated with increased susceptibility to Neisseria meningitides infection. Individuals with C6D usually present with recurrent meningococcal disease (MD). According to the patients' C6 levels, C6D is divided into complete genetic deficiency of C6 and subtotal deficiency of C6 (C6SD). The present study reported on a Han Chinese pediatric patient with MD, in whom further investigation revealed a C6SD genetic lesion. A heterozygote nonsense mutation (c.1062C>G/p.Y354*) in the C6 gene was identified by Sanger sequencing. The mutation alters the tyrosine codon at position 354 to a termination codon and results in a truncated protein. In conclusion, the genetic lesion of a pediatric patient with C6SD who was diagnosed due to having MD was investigated and a novel pathogenic mutation in the C6 gene was identified. The study confirmed the clinical diagnosis for this patient with C6SD and also expanded the spectrum of C6 mutations.
Collapse
Affiliation(s)
- Ai-Qian Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu-Xing Liu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie-Yuan Jin
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chen-Yu Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Liang-Liang Fan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China.,Hunan Key Laboratory of Animals for Human Disease, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Da-Bao Xu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|