1
|
Peterson EJR, Brooks AN, Reiss DJ, Kaur A, Do J, Pan M, Wu WJ, Morrison R, Srinivas V, Carter W, Arrieta-Ortiz ML, Ruiz RA, Bhatt A, Baliga NS. MtrA modulates Mycobacterium tuberculosis cell division in host microenvironments to mediate intrinsic resistance and drug tolerance. Cell Rep 2023; 42:112875. [PMID: 37542718 PMCID: PMC10480492 DOI: 10.1016/j.celrep.2023.112875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/21/2023] [Accepted: 07/11/2023] [Indexed: 08/07/2023] Open
Abstract
The success of Mycobacterium tuberculosis (Mtb) is largely attributed to its ability to physiologically adapt and withstand diverse localized stresses within host microenvironments. Here, we present a data-driven model (EGRIN 2.0) that captures the dynamic interplay of environmental cues and genome-encoded regulatory programs in Mtb. Analysis of EGRIN 2.0 shows how modulation of the MtrAB two-component signaling system tunes Mtb growth in response to related host microenvironmental cues. Disruption of MtrAB by tunable CRISPR interference confirms that the signaling system regulates multiple peptidoglycan hydrolases, among other targets, that are important for cell division. Further, MtrA decreases the effectiveness of antibiotics by mechanisms of both intrinsic resistance and drug tolerance. Together, the model-enabled dissection of complex MtrA regulation highlights its importance as a drug target and illustrates how EGRIN 2.0 facilitates discovery and mechanistic characterization of Mtb adaptation to specific host microenvironments within the host.
Collapse
Affiliation(s)
| | | | - David J Reiss
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Amardeep Kaur
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Julie Do
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Robert Morrison
- Laboratory of Malaria, Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Warren Carter
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Rene A Ruiz
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA 98109, USA; Departments of Biology and Microbiology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA; Lawrence Berkeley National Lab, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Zhu J, Liu YJ, Fortune SM. Spatiotemporal perspectives on tuberculosis chemotherapy. Curr Opin Microbiol 2023; 72:102266. [PMID: 36745965 PMCID: PMC10023397 DOI: 10.1016/j.mib.2023.102266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), accounts for over ten million infections and over 1.5 million deaths every year [1]. Upon infection, the seesaw between Mtb and our immune systems creates microenvironments that are compositionally distinctive and changing over time. While the field has begun to better understand the spatial complexity of TB disease, our understanding and experimental dissection of the temporal dynamics of TB and TB drug treatment is much more rudimentary. However, it is the combined spatiotemporal heterogeneity of TB disease that creates niches and time windows within which the pathogen can survive and thrive during treatment. Here, we review the emerging data on the interactions of spatial and temporal dynamics as they relate to TB disease and treatment. A better understanding of the interactions of Mtb, host, and antibiotics through space and time will elucidate treatment failure and potentially identify opportunities for new TB treatment regimens.
Collapse
Affiliation(s)
- Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, USA
| | - Yue J Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
3
|
Kim HB, Bacik JP, Wu R, Jha RK, Hebron M, Triandafillou C, McCown JE, Baek NI, Kim JH, Kim YJ, Goulding CW, Strauss CEM, Schmidt JG, Shetye GS, Ryoo S, Jo EK, Jeon YH, Hung LW, Terwilliger TC, Kim CY. Label-free affinity screening, design and synthesis of inhibitors targeting the Mycobacterium tuberculosis L-alanine dehydrogenase. PLoS One 2022; 17:e0277670. [PMID: 36395154 PMCID: PMC9671377 DOI: 10.1371/journal.pone.0277670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
The ability of Mycobacterium tuberculosis (Mtb) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH). Biochemical and structural analyses of AlaDH confirmed binding of nucleoside derivatives and showed a site adjacent to the nucleoside binding pocket that can confer specificity to putative inhibitors. Using a combination of dye-ligand affinity chromatography, enzyme kinetics and protein crystallographic studies, we show the development and validation of drug prototypes. Crystal structures of AlaDH-inhibitor complexes with variations at the N6 position of the adenyl-moiety of the inhibitor provide insight into the molecular basis for the specificity of these compounds. We describe a drug-designing pipeline that aims to block Mtb to proliferate upon re-oxygenation by specifically blocking NAD accessibility to AlaDH. The collective approach to drug discovery was further evaluated through in silico analyses providing additional insight into an efficient drug development strategy that can be further assessed with the incorporation of in vivo studies.
Collapse
Affiliation(s)
- Heung-Bok Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John-Paul Bacik
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Hauptman-Woodward Medical Research Institute, Buffalo, New York, United States of America
| | - Ruilian Wu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Michaeline Hebron
- Georgetown University Medical Center, Washington, D.C., United States of America
| | - Catherine Triandafillou
- Biophysical Sciences Graduate Program, University of Chicago, Chicago, Illinois, United States of America
| | - Joseph E. McCown
- Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung-Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jeong Han Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Charlie E. M. Strauss
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jurgen G. Schmidt
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Gauri S. Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois, Chicago, Illinois, United States of America
| | - Sungweon Ryoo
- Clinical Research Centre, Masan National Tuberculosis Hospital, Changwon-si, Gyeongsangnam-do, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Li-Wei Hung
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | - Chang-Yub Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
4
|
Zhao Y, Shang S, Song Y, Li T, Han M, Qin Y, Wei M, Xi J, Tang B. Sulforaphane kills Mycobacterium tuberculosis H37Ra and Mycobacterium smegmatis mc2155 through a reactive oxygen species dependent mechanism. J Microbiol 2022; 60:1095-1105. [DOI: 10.1007/s12275-022-2284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
|
5
|
Shultis MW, Mulholland CV, Berney M. Are all antibiotic persisters created equal? Front Cell Infect Microbiol 2022; 12:933458. [PMID: 36061872 PMCID: PMC9428696 DOI: 10.3389/fcimb.2022.933458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic persisters are a sub-population of bacteria able to survive in the presence of bactericidal antibiotic despite the lack of heritable drug resistance mechanisms. This phenomenon exists across many bacterial species and is observed for many different antibiotics. Though these bacteria are often described as “multidrug persisters” very few experiments have been carried out to determine the homogeneity of a persister population to different drugs. Further, there is much debate in the field as to the origins of a persister cell. Is it formed spontaneously? Does it form in response to stress? These questions are particularly pressing in the field of Mycobacterium tuberculosis, where persisters may play a crucial role in the required length of treatment and the development of multidrug resistant organisms. Here we aim to interpret the known mechanisms of antibiotic persistence and how they may relate to improving treatments for M. tuberculosis, exposing the gaps in knowledge that prevent us from answering the question: Are all antibiotic persisters created equal?
Collapse
|
6
|
Adefisayo OO, Dupuy P, Nautiyal A, Bean JM, Glickman MS. Division of labor between SOS and PafBC in mycobacterial DNA repair and mutagenesis. Nucleic Acids Res 2021; 49:12805-12819. [PMID: 34871411 PMCID: PMC8682763 DOI: 10.1093/nar/gkab1169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022] Open
Abstract
DNA repair systems allow microbes to survive in diverse environments that compromise chromosomal integrity. Pathogens such as Mycobacterium tuberculosis must contend with the genotoxic host environment, which generates the mutations that underlie antibiotic resistance. Mycobacteria encode the widely distributed SOS pathway, governed by the LexA repressor, but also encode PafBC, a positive regulator of the transcriptional DNA damage response (DDR). Although the transcriptional outputs of these systems have been characterized, their full functional division of labor in survival and mutagenesis is unknown. Here, we specifically ablate the PafBC or SOS pathways, alone and in combination, and test their relative contributions to repair. We find that SOS and PafBC have both distinct and overlapping roles that depend on the type of DNA damage. Most notably, we find that quinolone antibiotics and replication fork perturbation are inducers of the PafBC pathway, and that chromosomal mutagenesis is codependent on PafBC and SOS, through shared regulation of the DnaE2/ImuA/B mutasome. These studies define the complex transcriptional regulatory network of the DDR in mycobacteria and provide new insight into the regulatory mechanisms controlling the genesis of antibiotic resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Oyindamola O Adefisayo
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - Astha Nautiyal
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - James M Bean
- Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| | - Michael S Glickman
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, 1300 York Avenue, New York, NY 10065, USA.,Immunology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10025, USA
| |
Collapse
|
7
|
Larkins-Ford J, Greenstein T, Van N, Degefu YN, Olson MC, Sokolov A, Aldridge BB. Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis. Cell Syst 2021; 12:1046-1063.e7. [PMID: 34469743 PMCID: PMC8617591 DOI: 10.1016/j.cels.2021.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/16/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022]
Abstract
Lengthy multidrug chemotherapy is required to achieve a durable cure in tuberculosis. However, we lack well-validated, high-throughput in vitro models that predict animal outcomes. Here, we provide an extensible approach to rationally prioritize combination therapies for testing in in vivo mouse models of tuberculosis. We systematically measured Mycobacterium tuberculosis response to all two- and three-drug combinations among ten antibiotics in eight conditions that reproduce lesion microenvironments, resulting in >500,000 measurements. Using these in vitro data, we developed classifiers predictive of multidrug treatment outcome in a mouse model of disease relapse and identified ensembles of in vitro models that best describe in vivo treatment outcomes. We identified signatures of potencies and drug interactions in specific in vitro models that distinguish whether drug combinations are better than the standard of care in two important preclinical mouse models. Our framework is generalizable to other difficult-to-treat diseases requiring combination therapies. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nhi Van
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yonatan N Degefu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela C Olson
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA; Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA.
| |
Collapse
|
8
|
Campelo TA, Cardoso de Sousa PR, Nogueira LDL, Frota CC, Zuquim Antas PR. Revisiting the methods for detecting Mycobacterium tuberculosis: what has the new millennium brought thus far? Access Microbiol 2021; 3:000245. [PMID: 34595396 PMCID: PMC8479963 DOI: 10.1099/acmi.0.000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 01/07/2023] Open
Abstract
Tuberculosis (TB) affects around 10 million people worldwide in 2019. Approximately 3.4 % of new TB cases are multidrug-resistant. The gold standard method for detecting Mycobacterium tuberculosis, which is the aetiological agent of TB, is still based on microbiological culture procedures, followed by species identification and drug sensitivity testing. Sputum is the most commonly obtained clinical specimen from patients with pulmonary TB. Although smear microscopy is a low-cost and widely used method, its sensitivity is 50-60 %. Thus, owing to the need to improve the performance of current microbiological tests to provide prompt treatment, different methods with varied sensitivity and specificity for TB diagnosis have been developed. Here we discuss the existing methods developed over the past 20 years, including their strengths and weaknesses. In-house and commercial methods have been shown to be promising to achieve rapid diagnosis. Combining methods for mycobacterial detection systems demonstrates a correlation of 100 %. Other assays are useful for the simultaneous detection of M. tuberculosis species and drug-related mutations. Novel approaches have also been employed to rapidly identify and quantify total mycobacteria RNA, including assessments of global gene expression measured in whole blood to identify the risk of TB. Spoligotyping, mass spectrometry and next-generation sequencing are also promising technologies; however, their cost needs to be reduced so that low- and middle-income countries can access them. Because of the large impact of M. tuberculosis infection on public health, the development of new methods in the context of well-designed and -controlled clinical trials might contribute to the improvement of TB infection control.
Collapse
Affiliation(s)
- Thales Alves Campelo
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | | | - Lucas de Lima Nogueira
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiane Cunha Frota
- Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Federal University of Ceará, Fortaleza, Brazil
| | - Paulo Renato Zuquim Antas
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Barr DA, Omollo C, Mason M, Koch A, Wilkinson RJ, Lalloo DG, Meintjes G, Mizrahi V, Warner DF, Davies G. Flow cytometry method for absolute counting and single-cell phenotyping of mycobacteria. Sci Rep 2021; 11:18661. [PMID: 34545154 PMCID: PMC8452731 DOI: 10.1038/s41598-021-98176-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022] Open
Abstract
Detection and accurate quantitation of viable Mycobacterium tuberculosis is fundamental to understanding mycobacterial pathogenicity, tuberculosis (TB) disease progression and outcomes; TB transmission; drug action, efficacy and drug resistance. Despite this importance, methods for determining numbers of viable bacilli are limited in accuracy and precision owing to inherent characteristics of mycobacterial cell biology—including the tendency to clump, and “differential” culturability—and technical challenges consequent on handling an infectious pathogen under biosafe conditions. We developed an absolute counting method for mycobacteria in liquid cultures using a bench-top flow cytometer, and the low-cost fluorescent dyes Calcein-AM (CA) and SYBR-gold (SG). During exponential growth CA + cell counts are highly correlated with CFU counts and can be used as a real-time alternative to simplify the accurate standardisation of inocula for experiments. In contrast to CFU counting, this method can detect and enumerate cell aggregates in samples, which we show are a potential source of variance and bias when using established methods. We show that CFUs comprise a sub-population of intact, metabolically active mycobacterial cells in liquid cultures, with CFU-proportion varying by growth conditions. A pharmacodynamic application of the flow cytometry method, exploring kinetics of fluorescent probe defined subpopulations compared to CFU is demonstrated. Flow cytometry derived Mycobacterium bovis bacillus Calmette-Guérin (BCG) time-kill curves differ for rifampicin and kanamycin versus isoniazid and ethambutol, as do the relative dynamics of discrete morphologically-distinct subpopulations of bacilli revealed by this high-throughput single-cell technique.
Collapse
Affiliation(s)
- David A Barr
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa. .,Institute of Infection and Global Health, University of Liverpool, Liverpool, L7 3EA, UK. .,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Charles Omollo
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mandy Mason
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Anastasia Koch
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, NW11AT, UK.,Department of Medicine, Imperial College, London, W12 0NN, UK
| | - David G Lalloo
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gerry Davies
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L7 3EA, UK
| |
Collapse
|
10
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
11
|
Transcriptional regulator-induced phenotype screen reveals drug potentiators in Mycobacterium tuberculosis. Nat Microbiol 2020; 6:44-50. [PMID: 33199862 PMCID: PMC8331221 DOI: 10.1038/s41564-020-00810-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Transposon-based strategies provide a powerful and unbiased way to study bacterial stress response1–8, but these approaches cannot fully capture the complexities of network-based behavior. Here, we present a network-based genetic screening approach: the Transcriptional Regulator Induced Phenotype (TRIP) screen, which we used to identify previously uncharacterized network adaptations of Mycobacterium tuberculosis (Mtb) to the first-line anti-TB drug isoniazid (INH). We found regulators that alter INH susceptibility when induced, several of which could not be identified by standard gene disruption approaches. We then focused on a specific regulator, mce3R, which potentiated INH activity when induced. We compared mce3R-regulated genes with baseline INH transcriptional responses and implicated the gene ctpD (Rv1469) as a putative INH effector. Evaluating a ctpD disruption mutant demonstrated a previously unknown role for this gene in INH susceptibility. Integrating TRIP screening with network information can uncover sophisticated molecular response programs.
Collapse
|
12
|
Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. Biosci Rep 2020; 39:221456. [PMID: 31820790 PMCID: PMC6923341 DOI: 10.1042/bsr20191661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), a leading infectious disease caused by Mycobacterium tuberculosis strain, takes four human lives every minute globally. Paucity of knowledge on M. tuberculosis virulence and antibiotic resistance is the major challenge for tuberculosis control. We have identified 47 acetyltransferases in the M. tuberculosis, which use diverse substrates including antibiotic, amino acids, and other chemical molecules. Through comparative analysis of the protein file of the virulent M. tuberculosis H37Rv strain and the avirulent M. tuberculosis H37Ra strain, we identified one acetyltransferase that shows significant variations with N-terminal deletion, possibly influencing its physicochemical properties. We also found that one acetyltransferase has three types of post-translation modifications (lysine acetylation, succinylation, and glutarylation). The genome context analysis showed that many acetyltransferases with their neighboring genes belong to one operon. By data mining from published transcriptional profiles of M. tuberculosis exposed to diverse treatments, we revealed that several acetyltransferases may be functional during M. tuberculosis infection. Insights obtained from the present study can potentially provide clues for developing novel TB therapeutic interventions.
Collapse
|
13
|
Safi H, Lingaraju S, Ma S, Husain S, Hoque M, Soteropoulos P, Rustad T, Sherman DR, Alland D. Rapidly Correcting Frameshift Mutations in the Mycobacterium tuberculosis orn Gene Produce Reversible Ethambutol Resistance and Small-Colony-Variant Morphology. Antimicrob Agents Chemother 2020; 64:e00213-20. [PMID: 32571828 PMCID: PMC7449195 DOI: 10.1128/aac.00213-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/18/2020] [Indexed: 11/20/2022] Open
Abstract
We have identified a previously unknown mechanism of reversible high-level ethambutol (EMB) resistance in Mycobacterium tuberculosis that is caused by a reversible frameshift mutation in the M. tuberculosisorn gene. A frameshift mutation in orn produces the small-colony-variant (SCV) phenotype, but this mutation does not change the MICs of any drug for wild-type M. tuberculosis However, the same orn mutation in a low-level EMB-resistant double embB-aftA mutant (MIC = 8 μg/ml) produces an SCV with an EMB MIC of 32 μg/ml. Reversible resistance is indistinguishable from a drug-persistent phenotype, because further culture of these orn-embB-aftA SCV mutants results in rapid reversion of the orn frameshifts, reestablishing the correct orn open reading frame, returning the culture to normal colony size, and reversing the EMB MIC back to that (8 μg/ml) of the parental strain. Transcriptomic analysis of orn-embB-aftA mutants compared to wild-type M. tuberculosis identified a 27-fold relative increase in the expression of embC, which is a cellular target for EMB. Expression of embC in orn-embB-aftA mutants was also increased 5-fold compared to that in the parental embB-aftA mutant, whereas large-colony orn frameshift revertants of the orn-embB-aftA mutant had levels of embC expression similar to that of the parental embB-aftA strain. Reversible frameshift mutants may contribute to a reversible form of microbiological drug resistance in human tuberculosis.
Collapse
Affiliation(s)
- Hassan Safi
- Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Subramanya Lingaraju
- Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Seema Husain
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Mainul Hoque
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Patricia Soteropoulos
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Tige Rustad
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - David R Sherman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - David Alland
- Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
14
|
Asay BC, Edwards BB, Andrews J, Ramey ME, Richard JD, Podell BK, Gutiérrez JFM, Frank CB, Magunda F, Robertson GT, Lyons M, Ben-Hur A, Lenaerts AJ. Digital Image Analysis of Heterogeneous Tuberculosis Pulmonary Pathology in Non-Clinical Animal Models using Deep Convolutional Neural Networks. Sci Rep 2020; 10:6047. [PMID: 32269234 PMCID: PMC7142129 DOI: 10.1038/s41598-020-62960-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/18/2020] [Indexed: 01/28/2023] Open
Abstract
Efforts to develop effective and safe drugs for treatment of tuberculosis require preclinical evaluation in animal models. Alongside efficacy testing of novel therapies, effects on pulmonary pathology and disease progression are monitored by using histopathology images from these infected animals. To compare the severity of disease across treatment cohorts, pathologists have historically assigned a semi-quantitative histopathology score that may be subjective in terms of their training, experience, and personal bias. Manual histopathology therefore has limitations regarding reproducibility between studies and pathologists, potentially masking successful treatments. This report describes a pathologist-assistive software tool that reduces these user limitations, while providing a rapid, quantitative scoring system for digital histopathology image analysis. The software, called 'Lesion Image Recognition and Analysis' (LIRA), employs convolutional neural networks to classify seven different pathology features, including three different lesion types from pulmonary tissues of the C3HeB/FeJ tuberculosis mouse model. LIRA was developed to improve the efficiency of histopathology analysis for mouse tuberculosis infection models, this approach has also broader applications to other disease models and tissues. The full source code and documentation is available from https://Github.com/TB-imaging/LIRA.
Collapse
Affiliation(s)
- Bryce C Asay
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Blake Blue Edwards
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jenna Andrews
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michelle E Ramey
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jameson D Richard
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Juan F Muñoz Gutiérrez
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chad B Frank
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Forgivemore Magunda
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gregory T Robertson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael Lyons
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anne J Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America.
| |
Collapse
|
15
|
Safi H, Gopal P, Lingaraju S, Ma S, Levine C, Dartois V, Yee M, Li L, Blanc L, Ho Liang HP, Husain S, Hoque M, Soteropoulos P, Rustad T, Sherman DR, Dick T, Alland D. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance. Proc Natl Acad Sci U S A 2019; 116:19665-19674. [PMID: 31488707 PMCID: PMC6765255 DOI: 10.1073/pnas.1907631116] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The length and complexity of tuberculosis (TB) therapy, as well as the propensity of Mycobacterium tuberculosis to develop drug resistance, are major barriers to global TB control efforts. M. tuberculosis is known to have the ability to enter into a drug-tolerant state, which may explain many of these impediments to TB treatment. We have identified a mechanism of genetically encoded but rapidly reversible drug tolerance in M. tuberculosis caused by transient frameshift mutations in a homopolymeric tract (HT) of 7 cytosines (7C) in the glpK gene. Inactivating frameshift mutations associated with the 7C HT in glpK produce small colonies that exhibit heritable multidrug increases in minimal inhibitory concentrations and decreases in drug-dependent killing; however, reversion back to a fully drug-susceptible large-colony phenotype occurs rapidly through the introduction of additional insertions or deletions in the same glpK HT region. These reversible frameshift mutations in the 7C HT of M. tuberculosis glpK occur in clinical isolates, accumulate in M. tuberculosis-infected mice with further accumulation during drug treatment, and exhibit a reversible transcriptional profile including induction of dosR and sigH and repression of kstR regulons, similar to that observed in other in vitro models of M. tuberculosis tolerance. These results suggest that GlpK phase variation may contribute to drug tolerance, treatment failure, and relapse in human TB. Drugs effective against phase-variant M. tuberculosis may hasten TB treatment and improve cure rates.
Collapse
Affiliation(s)
- Hassan Safi
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ 07103;
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Pooja Gopal
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Republic of Singapore
| | - Subramanya Lingaraju
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Shuyi Ma
- Center for Infectious Disease, Seattle Children's Hospital, Seattle, WA 98105
| | - Carly Levine
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Veronique Dartois
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - Michelle Yee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Republic of Singapore
| | - Liping Li
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - Landry Blanc
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Hsin-Pin Ho Liang
- The Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - Seema Husain
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Mainul Hoque
- Genomics Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | | | - Tige Rustad
- Center for Infectious Disease, Seattle Children's Hospital, Seattle, WA 98105
| | - David R Sherman
- Center for Infectious Disease, Seattle Children's Hospital, Seattle, WA 98105
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110
| | - David Alland
- Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, NJ 07103;
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| |
Collapse
|
16
|
de Wet TJ, Warner DF, Mizrahi V. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery. Acc Chem Res 2019; 52:2340-2348. [PMID: 31361123 PMCID: PMC6704484 DOI: 10.1021/acs.accounts.9b00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is the leading cause of mortality globally resulting from an infectious disease, killing almost 1.6 million people annually and accounting for approximately 30% of deaths attributed to antimicrobial resistance (AMR). This despite the widespread administration of a neonatal vaccine, and the availability of an effective combination drug therapy against the causative agent, Mycobacterium tuberculosis (Mtb). Instead, TB prevalence worldwide is characterized by high-burden regions in which co-epidemics, such as HIV, and social and economic factors, undermine efforts to control TB. These elements additionally ensure conditions that favor the emergence of drug-resistant Mtb strains, which further threaten prospects for future TB control. To address this challenge, significant resources have been invested in developing a TB drug pipeline, an initiative given impetus by the recent regulatory approval of two new anti-TB drugs. However, both drugs have been reserved for drug-resistant disease, and the seeming inevitability of new resistance plus the recognized need to shorten the duration of chemotherapy demands continual replenishment of the pipeline with high-quality "hits" with novel mechanisms of action. This represents a massive challenge, which has been undermined by key gaps in our understanding of Mtb physiology and metabolism, especially during host infection. Whereas drug discovery for other bacterial infections can rely on predictive in vitro assays and animal models, for Mtb, inherent metabolic flexibility and uncertainties about the nutrients available to infecting bacilli in different host (micro)environments instead requires educated predictions or demonstrations of efficacy in animal models of arguable relevance to human disease. Even microbiological methods for enumeration of viable mycobacterial cells are fraught with complication. Our research has focused on elucidating those aspects of mycobacterial metabolism that contribute to the robustness of the bacillus to host immunological defenses and applied antibiotics and that, possibly, drive the emergence of drug resistance. This work has identified a handful of metabolic pathways that appear vulnerable to antibiotic targeting. Those highlighted, here, include the inter-related functions of pantothenate and coenzyme A biosynthesis and recycling and nucleotide metabolism-the last of which reinforces our view that DNA metabolism constitutes an under-explored area for new TB drug development. Although nonessential functions have traditionally been deprioritized for antibiotic development, a common theme emerging from this work is that these very functions might represent attractive targets because of the potential to cripple mechanisms critical to bacillary survival under stress (for example, the RelMtb-dependent stringent response) or to adaptability under unfavorable, potentially lethal, conditions including antibiotic therapy (for example, DnaE2-dependent SOS mutagenesis). The bar, however, is high: demonstrating convincingly the likely efficacy of this strategy will require innovative models of human TB disease. In the concluding section, we focus on the need for improved techniques to elucidate mycobacterial metabolism during infection and its impact on disease outcomes. Here, we argue that developments in other fields suggest the potential to break through this barrier by harnessing chemical-biology approaches in tandem with the most advanced technologies. As researchers based in a high-burden country, we are impelled to continue participating in this important endeavor.
Collapse
Affiliation(s)
- Timothy J. de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
17
|
Competing evolutionary paths in growing populations with applications to multidrug resistance. PLoS Comput Biol 2019; 15:e1006866. [PMID: 30986219 PMCID: PMC6483269 DOI: 10.1371/journal.pcbi.1006866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/25/2019] [Accepted: 02/13/2019] [Indexed: 11/19/2022] Open
Abstract
Investigating the emergence of a particular cell type is a recurring theme in models of growing cellular populations. The evolution of resistance to therapy is a classic example. Common questions are: when does the cell type first occur, and via which sequence of steps is it most likely to emerge? For growing populations, these questions can be formulated in a general framework of branching processes spreading through a graph from a root to a target vertex. Cells have a particular fitness value on each vertex and can transition along edges at specific rates. Vertices represent cell states, say genotypes or physical locations, while possible transitions are acquiring a mutation or cell migration. We focus on the setting where cells at the root vertex have the highest fitness and transition rates are small. Simple formulas are derived for the time to reach the target vertex and for the probability that it is reached along a given path in the graph. We demonstrate our results on several scenarios relevant to the emergence of drug resistance, including: the orderings of resistance-conferring mutations in bacteria and the impact of imperfect drug penetration in cancer. How long does it take for a treatment naive, growing bacterial colony to be able to survive exposure to a cocktail of antibiotics? En route to multidrug resistance, what order did the drugs become impotent in? Questions such as these that pertain to the emergence of a significant cell type in a growing population arise frequently. They are often investigated via mathematical modelling but biologically insightful results are challenging to obtain. Here we outline a general framework of a stochastically growing population spreading through a graph to study such questions and provide simple formulas as answers. The significant cell type appears upon the population reaching a target vertex. Due to their simplicity, the derived formulas are widely accessible and can be used to guide and develop intuition on a range of biological scenarios. We demonstrate this on several settings including: how a region where drugs cannot penetrate affects the emergence of resistance, and, the ordering of mutations that leads to drugs being ineffective.
Collapse
|
18
|
Kapil S, Petit C, Drago VN, Ronning DR, Sucheck SJ. Synthesis and in Vitro Characterization of Trehalose-Based Inhibitors of Mycobacterial Trehalose 6-Phosphate Phosphatases. Chembiochem 2019; 20:260-269. [PMID: 30402996 PMCID: PMC6467533 DOI: 10.1002/cbic.201800551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/17/2022]
Abstract
α,α'-Trehalose plays roles in the synthesis of several cell wall components involved in pathogenic mycobacteria virulence. Its absence in mammalian biochemistry makes trehalose-related biochemical processes potential targets for chemotherapy. The trehalose 6-phosphate synthase (TPS)/trehalose 6-phosphate phosphatase (TPP) pathway, also known as the OtsA/OtsB2 pathway, is the major pathway involved in the production of trehalose in Mycobacterium tuberculosis (Mtb). In addition, TPP is essential for Mtb survival. We describe the synthesis of α,α'-trehalose derivatives in the forms of the 6-phosphonic acid 4 (TMP), the 6-methylenephosphonic acid 5 (TEP), and the 6-N-phosphonamide 6 (TNP). These non-hydrolyzable substrate analogues of TPP were examined as inhibitors of Mtb, Mycobacterium lentiflavum (Mlt), and Mycobacterium triplex (Mtx) TPP. In all cases the compounds were most effective in inhibiting Mtx TPP, with TMP [IC50 =(288±32) μm] acting most strongly, followed by TNP [IC50 =(421±24) μm] and TEP [IC50 =(1959±261) μm]. The results also indicate significant differences in the analogue binding profile when comparing Mtb TPP, Mlt TPP, and Mtx TPP homologues.
Collapse
Affiliation(s)
- Sunayana Kapil
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| | - Cecile Petit
- Dr. C. Petit, EMBL Hamburg, c/oDESY, Building 25A, Notkestraß, e85, 22603 Hamburg, Germany
| | - Victoria N. Drago
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| | - Donald R. Ronning
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States ;
| |
Collapse
|
19
|
Hussain A, Singh S, Das SS, Anjireddy K, Karpagam S, Shakeel F. Nanomedicines as Drug Delivery Carriers of Anti-Tubercular Drugs: From Pathogenesis to Infection Control. Curr Drug Deliv 2019; 16:400-429. [PMID: 30714523 PMCID: PMC6637229 DOI: 10.2174/1567201816666190201144815] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
In spite of advances in tuberculosis (TB) chemotherapy, TB is still airborne deadly disorder as a major issue of health concern worldwide today. Extensive researches have been focused to develop novel drug delivery systems to shorten the lengthy therapy approaches, prevention of relapses, reducing dose-related toxicities and to rectify technologically related drawbacks of anti-tubercular drugs. Moreover, the rapid emergence of drug resistance, poor patient compliance due to negative therapeutic outcomes and intracellular survival of Mycobacterium highlighted to develop carrier with optimum effectiveness of the anti-tubercular drugs. This could be achieved by targeting and concentrating the drug on the infection reservoir of Mycobacterium. In this article, we briefly compiled the general aspects of Mycobacterium pathogenesis, disease treatment along with progressive updates in novel drug delivery carrier system to enhance therapeutic effects of drug and the high level of patient compliance. Recently developed several vaccines might be shortly available as reported by WHO.
Collapse
Affiliation(s)
| | | | | | | | | | - Faiyaz Shakeel
- Address correspondence to this author at the Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Tel: +966-14673139; E-mail:
| |
Collapse
|
20
|
Koch A, Mizrahi V. Mycobacterium tuberculosis. Trends Microbiol 2018; 26:555-556. [PMID: 29580884 DOI: 10.1016/j.tim.2018.02.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 11/27/2022]
Abstract
In this infographic, the genetics, phylogeny, physiology, and pathogenesis mechanisms of Mycobacterium tuberculosis are shown. Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), the leading cause of death due to a single infectious agent, claiming 1.7 million lives in 2016. Of the deaths attributable to TB in 2016, 22% occurred in people coinfected with HIV, and close to 5% of the 10.4 million incident cases of this disease were resistant to at least two of the first-line TB drugs. In this infographic, we describe the fundamental features of the genetics, phylogeny, and physiology of this member of the phylum Actinobacteria, which is associated increasingly with drug resistance mediated by mutations and rearrangements in its single, circular chromosome. We also highlight the key pathogenesis mechanisms employed by this slow-growing, facultative intracellular bacterium, which include avoidance of host cell clearance by arrest of the normal macrophage maturation process.
Collapse
Affiliation(s)
- Anastasia Koch
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
21
|
Identification of Fitness Determinants during Energy-Limited Growth Arrest in Pseudomonas aeruginosa. mBio 2017; 8:mBio.01170-17. [PMID: 29184024 PMCID: PMC5705914 DOI: 10.1128/mbio.01170-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial growth arrest can be triggered by diverse factors, one of which is energy limitation due to scarcity of electron donors or acceptors. Genes that govern fitness during energy-limited growth arrest and the extent to which they overlap between different types of energy limitation are poorly defined. In this study, we exploited the fact that Pseudomonas aeruginosa can remain viable over several weeks when limited for organic carbon (pyruvate) as an electron donor or oxygen as an electron acceptor. ATP values were reduced under both types of limitation, yet more severely in the absence of oxygen. Using transposon-insertion sequencing (Tn-seq), we identified fitness determinants in these two energy-limited states. Multiple genes encoding general functions like transcriptional regulation and energy generation were required for fitness during carbon or oxygen limitation, yet many specific genes, and thus specific activities, differed in their relevance between these states. For instance, the global regulator RpoS was required during both types of energy limitation, while other global regulators such as DksA and LasR were required only during carbon or oxygen limitation, respectively. Similarly, certain ribosomal and tRNA modifications were specifically required during oxygen limitation. We validated fitness defects during energy limitation using independently generated mutants of genes detected in our screen. Mutants in distinct functional categories exhibited different fitness dynamics: regulatory genes generally manifested a phenotype early, whereas genes involved in cell wall metabolism were required later. Together, these results provide a new window into how P. aeruginosa survives growth arrest. Growth-arrested bacteria are ubiquitous in nature and disease yet understudied at the molecular level. For example, growth-arrested cells constitute a major subpopulation of mature biofilms, serving as an antibiotic-tolerant reservoir in chronic infections. Identification of the genes required for survival of growth arrest (encompassing entry, maintenance, and exit) is an important first step toward understanding the physiology of bacteria in this state. Using Tn-seq, we identified and validated genes required for fitness of Pseudomonas aeruginosa when energy limited for organic carbon or oxygen, which represent two common causes of growth arrest for P. aeruginosa in diverse habitats. This unbiased, genome-wide survey is the first to reveal essential activities for a pathogen experiencing different types of energy limitation, finding both shared and divergent activities that are relevant at different survival stages. Future efforts can now be directed toward understanding how the biomolecules responsible for these activities contribute to fitness under these conditions.
Collapse
|
22
|
Lahiri S, Rizzi M, Rossi F, Miggiano R. Mycobacterium tuberculosis
UvrB forms dimers in solution and interacts with UvrA in the absence of ligands. Proteins 2017; 86:98-109. [DOI: 10.1002/prot.25412] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Samarpita Lahiri
- DSF-Dipartimento di Scienze del Farmaco; University of Piemonte Orientale; Novara Italy
| | - Menico Rizzi
- DSF-Dipartimento di Scienze del Farmaco; University of Piemonte Orientale; Novara Italy
| | - Franca Rossi
- DSF-Dipartimento di Scienze del Farmaco; University of Piemonte Orientale; Novara Italy
| | - Riccardo Miggiano
- DSF-Dipartimento di Scienze del Farmaco; University of Piemonte Orientale; Novara Italy
| |
Collapse
|
23
|
Abstract
This is a review of the preclinical efficacy testing of new antituberculosis drug candidates. It describes existing dynamic in vitro and in vivo models of antituberculosis chemotherapy and their utility in preclinical evaluations of promising new drugs and combination regimens, with an effort to highlight recent developments. Emphasis is given to the integration of quantitative pharmacokinetic/pharmacodynamic analyses and the impact of lesion pathology on drug efficacy. Discussion also includes in vivo models of chemotherapy of latent tuberculosis infection.
Collapse
|
24
|
Lou J, Wang Y, Zhang Z, Qiu W. MiR-20b inhibits mycobacterium tuberculosis induced inflammation in the lung of mice through targeting NLRP3. Exp Cell Res 2017; 358:120-128. [DOI: 10.1016/j.yexcr.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
|
25
|
Maitra A, Kamil TK, Shaik M, Danquah CA, Chrzastek A, Bhakta S. Early diagnosis and effective treatment regimens are the keys to tackle antimicrobial resistance in tuberculosis (TB): A report from Euroscicon's international TB Summit 2016. Virulence 2017; 8:1005-1024. [PMID: 27813702 PMCID: PMC5626228 DOI: 10.1080/21505594.2016.1256536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
To say that tuberculosis (TB) has regained a strong foothold in the global human health and wellbeing scenario would be an understatement. Ranking alongside HIV/AIDS as the top reason for mortality due to a single infectious disease, the impact of TB extends far into socio-economic context worldwide. As global efforts led by experts and political bodies converge to mitigate the predicted outcome of growing antimicrobial resistance, the academic community of students, practitioners and researchers have mobilised to develop integrated, inter-disciplinary programmes to bring the plans of the former to fruition. Enabling this crucial requirement for unimpeded dissemination of scientific discovery was the TB Summit 2016, held in London, United Kingdom. This report critically discusses the recent breakthroughs made in diagnostics and treatment while bringing to light the major hurdles in the control of the disease as discussed in the course of the 3-day international event. Conferences and symposia such as these are the breeding grounds for successful local and global collaborations and therefore must be supported to expand the understanding and outreach of basic science research.
Collapse
Affiliation(s)
- Arundhati Maitra
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Tengku Karmila Kamil
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Monisha Shaik
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Cynthia Amaning Danquah
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Alina Chrzastek
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
26
|
Abstract
Humans serve as both host and reservoir for Mycobacterium tuberculosis, making tuberculosis a theoretically eradicable disease. How M. tuberculosis alternates between host-imposed quiescence and sporadic bouts of replication to complete its life cycle, however, remains unknown. Here, we identify a metabolic adaptation that is triggered upon entry into hypoxia-induced quiescence but facilitates subsequent cell cycle re-entry. Catabolic remodelling of the cell surface trehalose mycolates of M. tuberculosis specifically generates metabolic intermediates reserved for re-initiation of peptidoglycan biosynthesis. These adaptations reveal a metabolic network with the regulatory capacity to mount an anticipatory response.
Collapse
|
27
|
Hartman TE, Wang Z, Jansen RS, Gardete S, Rhee KY. Metabolic Perspectives on Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0026-2016. [PMID: 28155811 PMCID: PMC5302851 DOI: 10.1128/microbiolspec.tbtb2-0026-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with Mycobacterium tuberculosis persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of M. tuberculosis physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of M. tuberculosis metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.
Collapse
Affiliation(s)
- Travis E. Hartman
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Zhe Wang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Robert S. Jansen
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Susana Gardete
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
- Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
28
|
A Flow Cytometry Method for Rapidly Assessing Mycobacterium tuberculosis Responses to Antibiotics with Different Modes of Action. Antimicrob Agents Chemother 2016; 60:3869-83. [PMID: 26902767 PMCID: PMC4914659 DOI: 10.1128/aac.02712-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/13/2016] [Indexed: 12/22/2022] Open
Abstract
Current methods for assessing the drug susceptibility of Mycobacterium tuberculosis are lengthy and do not capture information about viable organisms that are not immediately culturable under standard laboratory conditions as a result of antibiotic exposure. We have developed a rapid dual-fluorescence flow cytometry method using markers for cell viability and death. We show that the fluorescent marker calcein violet with an acetoxy-methyl ester group (CV-AM) can differentiate between populations of M. tuberculosis growing at different rates, while Sytox green (SG) can differentiate between live and dead mycobacteria. M. tuberculosis was exposed to isoniazid or rifampin at different concentrations over time and either dual stained with CV-AM and SG and analyzed by flow cytometry or plated to determine the viability of the cells. Although similar trends in the loss of viability were observed when the results of flow cytometry and the plate counting methods were compared, there was a lack of correlation between these two approaches, as the flow cytometry analysis potentially captured information about cell populations that were unable to grow under standard conditions. The flow cytometry approach had an additional advantage in that it could provide insights into the mode of action of the drug: antibiotics targeting the cell wall gave a flow cytometry profile distinct from those inhibiting intracellular processes. This rapid drug susceptibility testing method could identify more effective antimycobacterials, provide information about their potential mode of action, and accelerate their progress to the clinic.
Collapse
|
29
|
Management and control of multidrug-resistant tuberculosis (MDR-TB): Addressing policy needs for India. J Public Health Policy 2016; 37:277-299. [PMID: 27153155 DOI: 10.1057/jphp.2016.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) challenges TB control efforts because of delays in diagnosis plus its long-term treatment which has toxic effects. Of TB high-incidence countries, India carries the highest burden of MDR-TB cases. We describe policy issues in India concerning MDR-TB diagnosis and management in a careful review of the literature including a systematic review of studies on the prevalence of MDR-TB. Of 995 articles published during 2001-2016 and retrieved from the PubMed, only 20 provided data on the population prevalence of MDR-TB. We further reviewed and describe diagnostic criteria and treatment algorithms in use and endorsed by the Revised National TB Control Program of India. We discuss problems encountered in treating MDR-TB patients with standardized regimens. Finally, we provide realistic suggestions for policymakers and program planners to improve the management and control of MDR-TB in India.Journal of Public Health Policy advance online publication, 6 May 2016; doi:10.1057/jphp.2016.14.
Collapse
|
30
|
Liu Y, Tan S, Huang L, Abramovitch RB, Rohde KH, Zimmerman MD, Chen C, Dartois V, VanderVen BC, Russell DG. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J Exp Med 2016; 213:809-25. [PMID: 27114608 PMCID: PMC4854729 DOI: 10.1084/jem.20151248] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/03/2016] [Indexed: 11/04/2022] Open
Abstract
Successful chemotherapy against Mycobacterium tuberculosis (Mtb) must eradicate the bacterium within the context of its host cell. However, our understanding of the impact of this environment on antimycobacterial drug action remains incomplete. Intriguingly, we find that Mtb in myeloid cells isolated from the lungs of experimentally infected mice exhibit tolerance to both isoniazid and rifampin to a degree proportional to the activation status of the host cells. These data are confirmed by in vitro infections of resting versus activated macrophages where cytokine-mediated activation renders Mtb tolerant to four frontline drugs. Transcriptional analysis of intracellular Mtb exposed to drugs identified a set of genes common to all four drugs. The data imply a causal linkage between a loss of fitness caused by drug action and Mtb's sensitivity to host-derived stresses. Interestingly, the environmental context exerts a more dominant impact on Mtb gene expression than the pressure on the drugs' primary targets. Mtb's stress responses to drugs resemble those mobilized after cytokine activation of the host cell. Although host-derived stresses are antimicrobial in nature, they negatively affect drug efficacy. Together, our findings demonstrate that the macrophage environment dominates Mtb's response to drug pressure and suggest novel routes for future drug discovery programs.
Collapse
Affiliation(s)
- Yancheng Liu
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - Shumin Tan
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - Lu Huang
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Kyle H Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | | | - Chao Chen
- Public Health Research Institute, Newark, NJ 07103
| | | | - Brian C VanderVen
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - David G Russell
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| |
Collapse
|
31
|
de Keijzer J, Mulder A, de Beer J, de Ru AH, van Veelen PA, van Soolingen D. Mechanisms of Phenotypic Rifampicin Tolerance in Mycobacterium tuberculosis Beijing Genotype Strain B0/W148 Revealed by Proteomics. J Proteome Res 2016; 15:1194-204. [PMID: 26930559 DOI: 10.1021/acs.jproteome.5b01073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The "successful" Russian clone B0/W148 of Mycobacterium tuberculosis Beijing is well-known for its capacity to develop antibiotic resistance. During treatment, resistant mutants can occur that have inheritable resistance to specific antibiotics. Next to mutations, M. tuberculosis has several mechanisms that increase their tolerance to a variety of antibiotics. Insights in the phenotypic mechanisms that contribute to drug tolerance will increase our understanding of how antibiotic resistance develops in M. tuberculosis. In this study, we examined the (phospho)proteome dynamics in M. tuberculosis Beijing strain B0/W148 when exposed to a high dose of rifampicin; one of the most potent first-line antibiotics. A total of 2,534 proteins and 191 phosphorylation sites were identified, and revealed the differential regulation of DosR regulon proteins, which are necessary for the development of a dormant phenotype that is less susceptible to antibiotics. By examining independent phenotypic markers of dormancy, we show that persisters of in vitro rifampicin exposure entered a metabolically hypoactive state, which yields rifampicin and other antibiotics largely ineffective. These new insights in the role of protein regulation and post-translational modifications during the initial phase of rifampicin treatment reveal a shortcoming in the antituberculosis regimen that is administered to 8-9 million individuals annually.
Collapse
Affiliation(s)
- Jeroen de Keijzer
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Arnout Mulder
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands
| | - Jessica de Beer
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands
| | - Arnoud H de Ru
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Peter A van Veelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC) , Leiden 2300 RC, The Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM) , Bilthoven 3720 BA, The Netherlands.,Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Medical Center , Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
32
|
Abstract
Genetic strategies have yet to come into their own as tools for antibiotic development. While holding a lot of initial promise, they have only recently started to bear fruit in the quest for new drug targets. An ever-increasing body of knowledge is showing that genetics can lead to significant improvements in the success and efficiency of drug discovery. Techniques such as high-frequency transposon mutagenesis and expression modulation have matured and have been applied successfully not only to the identification and characterization of new targets, but also to their validation as tractable weaknesses of bacteria. Past experience shows that choosing targets must not rely on gene essentiality alone, but rather needs to incorporate knowledge of the system as a whole. The ability to manipulate genes and their expression is key to ensuring that we understand the entire set of processes that are affected by drug treatment. Focusing on exacerbating these perturbations, together with the identification of new targets to which resistance has not yet occurred--both enabled by genetic approaches--may point us toward the successful development of new combination therapies engineered based on underlying biology.
Collapse
|
33
|
Evangelopoulos D, da Fonseca JD, Waddell SJ. Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them. Int J Infect Dis 2016; 32:76-80. [PMID: 25809760 DOI: 10.1016/j.ijid.2014.11.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/23/2014] [Indexed: 01/04/2023] Open
Abstract
Tuberculosis still remains a global health emergency, claiming 1.5 million lives in 2013. The bacterium responsible for this disease, Mycobacterium tuberculosis (M.tb), has successfully survived within hostile host environments, adapting to immune defence mechanisms, for centuries. This has resulted in a disease that is challenging to treat, requiring lengthy chemotherapy with multi-drug regimens. One explanation for this difficulty in eliminating M.tb bacilli in vivo is the disparate action of antimicrobials on heterogeneous populations of M.tb, where mycobacterial physiological state may influence drug efficacy. In order to develop improved drug combinations that effectively target diverse mycobacterial phenotypes, it is important to understand how such subpopulations of M.tb are formed during human infection. We review here the in vitro and in vivo systems used to model M.tb subpopulations that may persist during drug therapy, and offer aspirations for future research in this field.
Collapse
Affiliation(s)
| | | | - Simon J Waddell
- Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| |
Collapse
|
34
|
Crystal structure of Mycobacterium tuberculosis O6-methylguanine-DNA methyltransferase protein clusters assembled on to damaged DNA. Biochem J 2015; 473:123-33. [PMID: 26512127 DOI: 10.1042/bj20150833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis O(6)-methylguanine-DNA methyltransferase (MtOGT) contributes to protect the bacterial GC-rich genome against the pro-mutagenic potential of O(6)-methylated guanine in DNA. Several strains of M. tuberculosis found worldwide encode a point-mutated O(6)-methylguanine-DNA methyltransferase (OGT) variant (MtOGT-R37L), which displays an arginine-to-leucine substitution at position 37 of the poorly functionally characterized N-terminal domain of the protein. Although the impact of this mutation on the MtOGT activity has not yet been proved in vivo, we previously demonstrated that a recombinant MtOGT-R37L variant performs a suboptimal alkylated-DNA repair in vitro, suggesting a direct role for the Arg(37)-bearing region in catalysis. The crystal structure of MtOGT complexed with modified DNA solved in the present study reveals details of the protein-protein and protein-DNA interactions occurring during alkylated-DNA binding, and the protein capability also to host unmodified bases inside the active site, in a fully extrahelical conformation. Our data provide the first experimental picture at the atomic level of a possible mode of assembling three adjacent MtOGT monomers on the same monoalkylated dsDNA molecule, and disclose the conformational flexibility of discrete regions of MtOGT, including the Arg(37)-bearing random coil. This peculiar structural plasticity of MtOGT could be instrumental to proper protein clustering at damaged DNA sites, as well as to protein-DNA complexes disassembling on repair.
Collapse
|
35
|
Thakur RS, Basavaraju S, Khanduja JS, Muniyappa K, Nagaraju G. Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria. J Biol Chem 2015; 290:24119-39. [PMID: 26276393 DOI: 10.1074/jbc.m115.671164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 11/06/2022] Open
Abstract
Aberrant DNA replication, defects in the protection, and restart of stalled replication forks are major causes of genome instability in all organisms. Replication fork reversal is emerging as an evolutionarily conserved physiological response for restart of stalled forks. Escherichia coli RecG, RuvAB, and RecA proteins have been shown to reverse the model replication fork structures in vitro. However, the pathways and the mechanisms by which Mycobacterium tuberculosis, a slow growing human pathogen, responds to different types of replication stress and DNA damage are unclear. Here, we show that M. tuberculosis RecG rescues E. coli ΔrecG cells from replicative stress. The purified M. tuberculosis RecG (MtRecG) and RuvAB (MtRuvAB) proteins catalyze fork reversal of model replication fork structures with and without a leading strand single-stranded DNA gap. Interestingly, single-stranded DNA-binding protein suppresses the MtRecG- and MtRuvAB-mediated fork reversal with substrates that contain lagging strand gap. Notably, our comparative studies with fork structures containing template damage and template switching mechanism of lesion bypass reveal that MtRecG but not MtRuvAB or MtRecA is proficient in driving the fork reversal. Finally, unlike MtRuvAB, we find that MtRecG drives efficient reversal of forks when fork structures are tightly bound by protein. These results provide direct evidence and valuable insights into the underlying mechanism of MtRecG-catalyzed replication fork remodeling and restart pathways in vivo.
Collapse
Affiliation(s)
- Roshan Singh Thakur
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Shivakumar Basavaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Jasbeer Singh Khanduja
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - K Muniyappa
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Ganesh Nagaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
36
|
Gautam US, Mehra S, Kaushal D. In-Vivo Gene Signatures of Mycobacterium tuberculosis in C3HeB/FeJ Mice. PLoS One 2015; 10:e0135208. [PMID: 26270051 PMCID: PMC4535907 DOI: 10.1371/journal.pone.0135208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/19/2015] [Indexed: 11/28/2022] Open
Abstract
Despite considerable progress in understanding the pathogenesis of Mycobacterium tuberculosis (Mtb), development of new therapeutics and vaccines against it has proven difficult. This is at least in part due to the use of less than optimal models of in-vivo Mtb infection, which has precluded a study of the physiology of the pathogen in niches where it actually persists. C3HeB/FeJ (Kramnik) mice develop human-like lesions when experimentally infected with Mtb and thus make available, a faithful and highly tractable system to study the physiology of the pathogen in-vivo. We compared the transcriptomics of Mtb and various mutants in the DosR (DevR) regulon derived from Kramnik mouse granulomas to those cultured in-vitro. We recently showed that mutant ΔdosS is attenuated in C3HeB/FeJ mice. Aerosol exposure of mice with the mutant mycobacteria resulted in a substantially different and a relatively weaker transcriptional response (< = 20 genes were induced) for the functional category ‘Information Pathways’ in Mtb:ΔdosR; ‘Lipid Metabolism’ in Mtb:ΔdosT; ‘Virulence, Detoxification, Adaptation’ in both Mtb:ΔdosR and Mtb:ΔdosT; and ‘PE/PPE’ family in all mutant strains compare to wild-type Mtb H37Rv, suggesting that the inability to induce DosR functions to different levels can modulate the interaction of the pathogen with the host. The Mtb genes expressed during growth in C3HeB/FeJ mice appear to reflect adaptation to differential nutrient utilization for survival in mouse lungs. The genes such as glnB, Rv0744c, Rv3281, sdhD/B, mce4A, dctA etc. downregulated in mutant ΔdosS indicate their requirement for bacterial growth and flow of carbon/energy source from host cells. We conclude that genes expressed in Mtb during in-vivo chronic phase of infection in Kramnik mice mainly contribute to growth, cell wall processes, lipid metabolism, and virulence.
Collapse
Affiliation(s)
- Uma Shankar Gautam
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail: (DK); (USG)
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Louisiana State University School of Veterinary Medicine Department of Pathobiological Sciences, Baton Rouge, Louisiana, United States of America
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail: (DK); (USG)
| |
Collapse
|
37
|
Liu W, Peng Y, Yin Y, Zhou Z, Zhou W, Dai Y. The involvement of NADPH oxidase-mediated ROS in cytokine secretion from macrophages induced by Mycobacterium tuberculosis ESAT-6. Inflammation 2015; 37:880-92. [PMID: 24408010 DOI: 10.1007/s10753-013-9808-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis is strongly correlated with subversion of innate immune responses against invading mycobacteria. To understand the role of ESAT-6 in macrophage response against M. tuberculosis, the effects of ESAT-6 on macrophage generation of reactive oxygen species (ROS) and production of cytokines were studied. ESAT-6-induced macrophage secretion of monocyte chemoattractant protein-1 and TNF-α was found in a time- and dose-dependent manner. Signaling inhibition experiments indicate that NF-κB activation mediated by p38/JNK mitogen-activated protein kinase (MAPK) was involved in ESAT-6-triggered cytokine production. Moreover, TLR2 was engaged in ESAT-6-stimulated macrophage activation via rapidly induced ROS production and regulated activation of JNK/p38 MAPKs and NF-κB. More importantly, NADPH oxidase-mediated ROS generation is required during this process. Our study has identified a novel signal transduction pathway involving NADPH-ROS-JNK/p38-NF-κB in ESAT-6-induced cytokine production from macrophages. These findings provide an important evidence to understand the pathogenesis of M. tuberculosis infection in the modulation of the immune response.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Immunology, Tongji University School of Medicine, Medical Research Building, Rm F509, 1239 Siping Road, Shanghai, 200092, China
| | | | | | | | | | | |
Collapse
|
38
|
Mata-Espinosa D, Molina-Salinas GM, Barrios-Payán J, Navarrete-Vázquez G, Marquina B, Ramos-Espinosa O, Bini EI, Baeza I, Hernández-Pando R. Therapeutic efficacy of liposomes containing 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine in a murine model of progressive pulmonary tuberculosis. Pulm Pharmacol Ther 2015; 32:7-14. [PMID: 25843004 DOI: 10.1016/j.pupt.2015.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES Tuberculosis (TB) is one of the deadliest infectious diseases and comprises a global public health concern because co-infection with Human immunodeficiency virus (HIV) and, in particular, the continuous isolation of new Multidrug-resistant strains (MDR), rendering the discovery of novel anti-TB agents a strategic priority. One of the most effective first-line mycobactericidal drugs is Isoniazid (INH). Previously, we reported in vitro anti-mycobacterial activity against sensitive and MDR Mycobacterium tuberculosis strains of a new oxadiazole obtained from the hybridization of INH and palmitic acid. The present study evaluated the therapeutic potential of liposomes including Phosphatidylcholine (PC) and L-α Phosphatidic acid (PA) or PC and Cholesterol (Chol) containing 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine in BALB/c male mice infected by intratracheal (i.t.) route with drug-sensitive or MDR M. tuberculosis. METHODS The lipophilic 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine was obtained to mix INH and palmitoyl chloride. The in vivo anti-TB effect of this oxadiazole derivative contained in two different liposomes was tested in BALB/c mice infected with a sensitive strain of M. tuberculosis, initiating treatment 2 months post-infection, by i.t. route, of 50 μg of oxadiazole derivative for 1 month. In a second stage, mice were infected with an MDR (resistant to first-line drugs) and treated with 150 μg of an oxadiazole derivative carried by PC + Chol liposomes for 2 months. The effect of the oxadiazole derivative in vivo was determined by the quantification of lung bacilli loads and histopathology. RESULTS In comparison with control animals, drug-sensitive, strain-infected mice treated for 1 month with 50 μg of this oxadiazole derivative contained in the liposomes of PC + Chol showed a significant, 80% decrease of live bacilli in lungs, which correlated with the morphometric observation, and the group of MDR clinical isolate-infected mice treated with 150 μg of the oxadiazole derivative contained in the same type of liposome showed significantly lower lung bacillary loads than control mice, producing 90% of bacilli burden reduction after 2 months of treatment. CONCLUSION These results confirm and extend the reported highly efficient anti-mycobacterial activity of this lipophilic oxidazole derivative when it is carried by liposomes in mice suffering from late progressive pulmonary TB induced by drug-sensitive, and most prominently by, MDR strains.
Collapse
Affiliation(s)
- Dulce Mata-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Col. Vasco de Quiroga No. 15, Delegación Tlalpan, 14080 México, D.F., Mexico.
| | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Unidad Médica de Alta Especialidad (UMAE), Centro Médico Nacional Lic. Ignacio García Téllez, Instituto Mexicano del Seguro Social (IMSS), Calle 41 No. 439, x 32 y 34, Col. Industrial, 97150 Mérida, Yucatán, Mexico.
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Col. Vasco de Quiroga No. 15, Delegación Tlalpan, 14080 México, D.F., Mexico.
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos (UAEM), Av. Universidad No. 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico.
| | - Brenda Marquina
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Col. Vasco de Quiroga No. 15, Delegación Tlalpan, 14080 México, D.F., Mexico.
| | - Octavio Ramos-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Col. Vasco de Quiroga No. 15, Delegación Tlalpan, 14080 México, D.F., Mexico.
| | - Estela Isabel Bini
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Col. Vasco de Quiroga No. 15, Delegación Tlalpan, 14080 México, D.F., Mexico.
| | - Isabel Baeza
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (INP), Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Delegación Miguel Hidalgo, 11349 México, D.F., Mexico.
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Col. Vasco de Quiroga No. 15, Delegación Tlalpan, 14080 México, D.F., Mexico.
| |
Collapse
|
39
|
Li J, Chai QY, Zhang Y, Li BX, Wang J, Qiu XB, Liu CH. Mycobacterium tuberculosis Mce3E suppresses host innate immune responses by targeting ERK1/2 signaling. THE JOURNAL OF IMMUNOLOGY 2015; 194:3756-67. [PMID: 25780035 DOI: 10.4049/jimmunol.1402679] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
Crucial to the pathogenesis of the tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis is its ability to subvert host immune defenses to promote its intracellular survival. The mammalian cell entry protein 3E (Mce3E), located in the region of difference 15 of the M. tuberculosis genome and absent in Mycobacterium bovis bacillus Calmette-Guérin, has an essential role in facilitating the internalization of mammalian cells by mycobacteria. However, relatively little is known about the role of Mce3E in modulation of host innate immune responses. In this study, we demonstrate that Mce3E inhibits the activation of the ERK1/2 signaling pathway, leading to the suppression of Tnf and Il6 expression, and the promotion of mycobacterial survival within macrophages. Mce3E interacts and colocalizes with ERK1/2 at the endoplasmic reticulum in a DEF motif (an ERK-docking motif)-dependent manner, relocates ERK1/2 from cytoplasm to the endoplasmic reticulum, and finally reduces the association of ERK1/2 with MEK1 and blocks the nuclear translocation of phospho-ERK1/2. A DEF motif mutant form of Mce3E (F294A) loses its ability to suppress Tnf and Il6 expression and to promote intracellular survival of mycobacteria. Inhibition of the ERK1/2 pathway in macrophages using U0126, a specific inhibitor of the ERK pathway, also leads to the suppressed Tnf and Il6 expression and the enhanced intracellular survival of mycobacteria. Taken together, these results suggest that M. tuberculosis Mce3E exploits the ERK1/2 signaling pathway to suppress host innate immune responses, providing a potential Mce3E-ERK1/2 interface-based drug target against M. tuberculosis.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Bing-Xi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Xiao-Bo Qiu
- Department of Cell Biology, Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| |
Collapse
|
40
|
Bhatter P, Chatterjee A, Mistry N. Kinetics of recA and recX induction in drug-susceptible and MDR clinical strains of Mycobacterium tuberculosis. J Antimicrob Chemother 2014; 69:3199-202. [DOI: 10.1093/jac/dku319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Kigondu EM, Wasuna A, Warner DF, Chibale K. Pharmacologically active metabolites, combination screening and target identification-driven drug repositioning in antituberculosis drug discovery. Bioorg Med Chem 2014; 22:4453-61. [PMID: 24997576 DOI: 10.1016/j.bmc.2014.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 01/14/2023]
Abstract
There has been renewed interest in alternative strategies to address bottlenecks in antibiotic development. These include the repurposing of approved drugs for use as novel anti-infective agents, or their exploitation as leads in drug repositioning. Such approaches are especially attractive for tuberculosis (TB), a disease which remains a leading cause of morbidity and mortality globally and, increasingly, is associated with the emergence of drug-resistance. In this review article, we introduce a refinement of traditional drug repositioning and repurposing strategies involving the development of drugs that are based on the active metabolite(s) of parental compounds with demonstrated efficacy. In addition, we describe an approach to repositioning the natural product antibiotic, fusidic acid, for use against Mycobacterium tuberculosis. Finally, we consider the potential to exploit the chemical matter arising from these activities in combination screens and permeation assays which are designed to confirm mechanism of action (MoA), elucidate potential synergies in polypharmacy, and to develop rules for drug permeability in an organism that poses a special challenge to new drug development.
Collapse
Affiliation(s)
- Elizabeth M Kigondu
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Antonina Wasuna
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Digby F Warner
- Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa; MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch 7701, South Africa.
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
42
|
Gopinath K, Moosa A, Mizrahi V, Warner DF. Vitamin B(12) metabolism in Mycobacterium tuberculosis. Future Microbiol 2014; 8:1405-18. [PMID: 24199800 DOI: 10.2217/fmb.13.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis is included among a select group of bacteria possessing the capacity for de novo biosynthesis of vitamin B12, the largest and most complex natural organometallic cofactor. The bacillus is also able to scavenge B12 and related corrinoids utilizing an ATP-binding cassette-type protein that is distinct from the only known bacterial B12-specific transporter, BtuFCD. Consistent with the inferred requirement for vitamin B12 for metabolic function, the M. tuberculosis genome encodes two B12 riboswitches and three B12-dependent enzymes. Two of these enzymes have been shown to operate in methionine biosynthesis (MetH) and propionate utilization (MutAB), while the function of the putative nrdZ-encoded ribonucleotide reductase remains unknown. Taken together, these observations suggest that M. tuberculosis has the capacity to regulate core metabolic functions according to B12 availability - whether acquired via endogenous synthesis or through uptake from the host environment - and, therefore, imply that there is a role for vitamin B12 in pathogenesis, which remains poorly understood.
Collapse
Affiliation(s)
- Krishnamoorthy Gopinath
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Center of Excellence for Biomedical TB Research, Institute of Infectious Disease & Molecular Medicine & Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | | | | | | |
Collapse
|
43
|
Brzostek A, Szulc I, Klink M, Brzezinska M, Sulowska Z, Dziadek J. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis. PLoS One 2014; 9:e92799. [PMID: 24658131 PMCID: PMC3962454 DOI: 10.1371/journal.pone.0092799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022] Open
Abstract
The intracellular pathogen Mycobacterium tuberculosis (Mtb) is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs). These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR) and non-homologous ends joining (NHEJ), in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA), NHEJ [Δ(ku,ligD)], or both DSB repair systems [Δ(ku,ligD,recA)]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA) mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA) mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages.
Collapse
Affiliation(s)
- Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Izabela Szulc
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marta Brzezinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Zofia Sulowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail:
| |
Collapse
|
44
|
Antimicrobial treatment improves mycobacterial survival in nonpermissive growth conditions. Antimicrob Agents Chemother 2014; 58:2798-806. [PMID: 24590482 PMCID: PMC3993263 DOI: 10.1128/aac.02774-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antimicrobials targeting cell wall biosynthesis are generally considered inactive against nonreplicating bacteria. Paradoxically, we found that under nonpermissive growth conditions, exposure of Mycobacterium bovis BCG bacilli to such antimicrobials enhanced their survival. We identified a transcriptional regulator, RaaS (for regulator of antimicrobial-assisted survival), encoded by bcg1279 (rv1219c) as being responsible for the observed phenomenon. Induction of this transcriptional regulator resulted in reduced expression of specific ATP-dependent efflux pumps and promoted long-term survival of mycobacteria, while its deletion accelerated bacterial death under nonpermissive growth conditions in vitro and during macrophage or mouse infection. These findings have implications for the design of antimicrobial drug combination therapies for persistent infectious diseases, such as tuberculosis.
Collapse
|
45
|
Liu L, Huang C, He ZG. A TetR family transcriptional factor directly regulates the expression of a 3-methyladenine DNA glycosylase and physically interacts with the enzyme to stimulate its base excision activity in Mycobacterium bovis BCG. J Biol Chem 2014; 289:9065-75. [PMID: 24509852 DOI: 10.1074/jbc.m113.528919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
3-Methyladenine DNA glycosylase recognizes and excises a wide range of damaged bases and thus plays a critical role in base excision repair. However, knowledge on the regulation of DNA glycosylase in prokaryotes and eukaryotes is limited. In this study, we successfully characterized a TetR family transcriptional factor from Mycobacterium bovis bacillus Calmette-Guerin (BCG), namely BCG0878c, which directly regulates the expression of 3-methyladenine DNA glycosylase (designated as MbAAG) and influences the base excision activity of this glycosylase at the post-translational level. Using electrophoretic mobility shift assay and DNase I footprinting experiments, we identified two conserved motifs within the upstream region of mbaag specifically recognized by BCG0878c. Significant down-regulation of mbaag was observed in BCG0878c-overexpressed M. bovis BCG strains. By contrast, about 12-fold up-regulation of mbaag expression was found in bcg0878c-deleted mutant M. bovis BCG strains. β-Galactosidase activity assays also confirmed these results. Thus, BCG0878c can function as a negative regulator of mbaag expression. In addition, the regulator was shown to physically interact with MbAAG to enhance the ability of the glycosylase to bind damaged DNA. Interaction between the two proteins was further found to facilitate AAG-catalyzed removal of hypoxanthine from DNA. These results indicate that a TetR family protein can dually regulate the function of 3-methyladenine DNA glycosylase in M. bovis BCG both at the transcriptional and post-translational levels. These findings enhance our understanding of the expression and regulation of AAG in mycobacteria.
Collapse
Affiliation(s)
- Lei Liu
- From the National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
46
|
Cheng Y, Moraski GC, Cramer J, Miller MJ, Schorey JS. Bactericidal activity of an imidazo[1, 2-a]pyridine using a mouse M. tuberculosis infection model. PLoS One 2014; 9:e87483. [PMID: 24498115 PMCID: PMC3909116 DOI: 10.1371/journal.pone.0087483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022] Open
Abstract
Tuberculosis remains a global threat due in part to the long treatment regimen and the increased prevalence of drug resistant M. tuberculosis strains. Therefore, new drug regimens are urgently required to combat this deadly disease. We previously synthesized and evaluated a series of new anti-tuberculosis compounds which belong to the family of imidazo[1,2-a]pyridines. This family of compounds showed low nM MIC (minimal inhibitory concentration) values against M. tuberculosis in vitro. In this study, a derivative of imidazo[1,2-a]pyridines, (N-(4-(4-chlorophenoxy)benzyl)-2,7-dimethylimidazo[1,2-a]pyridine-3-carboxamide) (ND-09759), was selected as a promising lead compound to determine its protective efficacy using a mouse infection model. Pharmacokinetic analysis of ND-09759 determined that at a dosage of 30 mg/kg mouse body weight (PO) gave a maximum serum drug concentration (Cmax) of 2.9 µg/ml and a half-life of 20.1 h. M. tuberculosis burden in the lungs and spleens was significantly decreased in mice treated once daily 6 days per week for 4-weeks with ND-09759 compared to untreated mice and this antibiotic activity was equivalent to isoniazid (INH) and rifampicin (RMP), two first-line anti-TB drugs. We observed slightly higher efficacy when using a combination of ND-09759 with either INH or RMP. Finally, the histopathological analysis revealed that infected mice treated with ND-09759 had significantly reduced inflammation relative to untreated mice. In conclusion, our findings indicate ND-09759 might be a potent candidate for the treatment of active TB in combination with current standard anti-TB drugs.
Collapse
Affiliation(s)
- Yong Cheng
- Department of Biological Sciences, Center for Rare and Neglected Diseases and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Garrett C. Moraski
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeffrey Cramer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Marvin J. Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jeffrey S. Schorey
- Department of Biological Sciences, Center for Rare and Neglected Diseases and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
47
|
Banerjee R, Schecter GF, Flood J, Porco TC. Extensively drug-resistant tuberculosis: new strains, new challenges. Expert Rev Anti Infect Ther 2014; 6:713-24. [DOI: 10.1586/14787210.6.5.713] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Martins MC, Giampaglia CMS, Chimara E, Oliveira RS, Vedovello D, Sakamoto SM, Ferrazoli L. Viability of stressed Mycobacterium tuberculosis and association with multidrug resistance. Braz J Microbiol 2013; 44:465-8. [PMID: 24294238 PMCID: PMC3833144 DOI: 10.1590/s1517-83822013000200019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/10/2012] [Indexed: 11/22/2022] Open
Abstract
This study investigated biological characteristics of recovered stressed M. tuberculosis isolates that failed to grow in differential culture media for phenotypic identification and in culture media containing anti-tuberculosis drugs for drug-susceptibility testing, despite of having grown in primary culture. It represents an improvement in the diagnosis of MDR tuberculosis and tuberculosis control.
Collapse
|
49
|
Grant SS, Kawate T, Nag PP, Silvis MR, Gordon K, Stanley SA, Kazyanskaya E, Nietupski R, Golas A, Fitzgerald M, Cho S, Franzblau SG, Hung DT. Identification of novel inhibitors of nonreplicating Mycobacterium tuberculosis using a carbon starvation model. ACS Chem Biol 2013; 8:2224-34. [PMID: 23898841 PMCID: PMC3864639 DOI: 10.1021/cb4004817] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During Mycobacterium tuberculosis infection, a population of bacteria is thought to exist in a nonreplicating state, refractory to antibiotics, which may contribute to the need for prolonged antibiotic therapy. The identification of inhibitors of the nonreplicating state provides tools that can be used to probe this hypothesis and the physiology of this state. The development of such inhibitors also has the potential to shorten the duration of antibiotic therapy required. Here we describe the development of a novel nonreplicating assay amenable to high-throughput chemical screening coupled with secondary assays that use carbon starvation as the in vitro model. Together these assays identify compounds with activity against replicating and nonreplicating M. tuberculosis as well as compounds that inhibit the transition from nonreplicating to replicating stages of growth. Using these assays we successfully screened over 300,000 compounds and identified 786 inhibitors of nonreplicating M. tuberculosis In order to understand the relationship among different nonreplicating models, we tested 52 of these molecules in a hypoxia model, and four different chemical scaffolds in a stochastic persister model, and a streptomycin-dependent model. We found that compounds display varying levels of activity in different models for the nonreplicating state, suggesting important differences in bacterial physiology between models. Therefore, chemical tools identified in this assay may be useful for determining the relevance of different nonreplicating in vitro models to in vivo M. tuberculosis infection. Given our current limited understanding, molecules that are active across multiple models may represent more promising candidates for further development.
Collapse
Affiliation(s)
- Sarah Schmidt Grant
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schuessler DL, Cortes T, Fivian-Hughes AS, Lougheed KEA, Harvey E, Buxton RS, Davis EO, Young DB. Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA. Mol Microbiol 2013; 90:195-207. [PMID: 23927792 PMCID: PMC3912914 DOI: 10.1111/mmi.12358] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, Escherichia coli and Mycobacterium smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis.
Collapse
Affiliation(s)
- Dorothée L Schuessler
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|