1
|
Kajsikova M, Kajsik M, Bocanova L, Papayova K, Drahovska H, Bukovska G. Endolysin EN572-5 as an alternative to treat urinary tract infection caused by Streptococcus agalactiae. Appl Microbiol Biotechnol 2024; 108:79. [PMID: 38189950 PMCID: PMC10774192 DOI: 10.1007/s00253-023-12949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen causing urinary tract infection (UTI). Endolysin EN572-5 was identified in prophage KMB-572-E of the human isolate Streptococcus agalactiae KMB-572. The entire EN572-5 gene was cloned into an expression vector and the corresponding recombinant protein EN572-5 was expressed in Escherichia coli in a soluble form, isolated by affinity chromatography, and characterized. The isolated protein was highly active after 30 min incubation in a temperature range of - 20 °C to 37 °C and in a pH range of 5.5-8.0. The endolysin EN572-5 lytic activity was tested on different Streptococcus spp. and Lactobacillus spp. The enzyme lysed clinical GBS (n = 31/31) and different streptococci (n = 6/8), and also exhibited moderate lytic activity against UPEC (n = 4/4), but no lysis of beneficial vaginal lactobacilli (n = 4) was observed. The ability of EN572-5 to eliminate GBS during UTI was investigated using an in vitro model of UPSA. After the administration of 3 μM EN572-5, a nearly 3-log decrease of urine bacterial burden was detected within 3 h. To date, no studies have been published on the use of endolysins against S. agalactiae during UTI. KEY POINTS: • A lytic protein, EN572-5, from a prophage of a human GBS isolate has been identified. • This protein is easily produced, simple to prepare, and stable after lyophilization. • The bacteriolytic activity of EN572-5 was demonstrated for the first time in human urine.
Collapse
Affiliation(s)
- Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Michal Kajsik
- Comenius University Science Park, Ilkovicova 8, 841 04, Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15, Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
2
|
Mediati DG, Blair TA, Costas A, Monahan LG, Söderström B, Charles IG, Duggin IG. Genetic requirements for uropathogenic E. coli proliferation in the bladder cell infection cycle. mSystems 2024; 9:e0038724. [PMID: 39287381 PMCID: PMC11495030 DOI: 10.1128/msystems.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) requires an adaptable physiology to survive the wide range of environments experienced in the host, including gut and urinary tract surfaces. To identify UPEC genes required during intracellular infection, we developed a transposon-directed insertion-site sequencing approach for cellular infection models and searched for genes in a library of ~20,000 UTI89 transposon-insertion mutants that are specifically required at the distinct stages of infection of cultured bladder epithelial cells. Some of the bacterial functional requirements apparent in host bladder cell growth overlapped with those for M9-glycerol, notably nutrient utilization, polysaccharide and macromolecule precursor biosynthesis, and cell envelope stress tolerance. Two genes implicated in the intracellular bladder cell infection stage were confirmed through independent gene deletion studies: neuC (sialic acid capsule biosynthesis) and hisF (histidine biosynthesis). Distinct sets of UPEC genes were also implicated in bacterial dispersal, where UPEC erupts from bladder cells in highly filamentous or motile forms upon exposure to human urine, and during recovery from infection in a rich medium. We confirm that the dedD gene linked to septal peptidoglycan remodeling is required during UPEC dispersal from human bladder cells and may help stabilize cell division or the cell wall during envelope stress created by host cells. Our findings support a view that the host intracellular environment and infection cycle are multi-nutrient limited and create stress that demands an array of biosynthetic, cell envelope integrity, and biofilm-related functions of UPEC. IMPORTANCE Urinary tract infections (UTIs) are one of the most frequent infections worldwide. Uropathogenic Escherichia coli (UPEC), which accounts for ~80% of UTIs, must rapidly adapt to highly variable host environments, such as the gut, bladder sub-surface, and urine. In this study, we searched for UPEC genes required for bacterial growth and survival throughout the cellular infection cycle. Genes required for de novo synthesis of biomolecules and cell envelope integrity appeared to be important, and other genes were also implicated in bacterial dispersal and recovery from infection of cultured bladder cells. With further studies of individual gene function, their potential as therapeutic targets may be realized. This study expands knowledge of the UTI cycle and establishes an approach to genome-wide functional analyses of stage-resolved microbial infections.
Collapse
Affiliation(s)
- Daniel G. Mediati
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Tamika A. Blair
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ariana Costas
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
- Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Leigh G. Monahan
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Bill Söderström
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| | - Ian G. Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
3
|
Muhammad S, Faiz A, Bibi S, Rehman SU, Alshahrani MY. Investigation of dual inhibition of antibacterial and antiarthritic drug candidates using combined approach including molecular dynamics, docking and quantum chemical methods. Comput Biol Chem 2024; 113:108218. [PMID: 39378822 DOI: 10.1016/j.compbiolchem.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Emerging antibiotic resistance in bacteria threatens immune efficacy and increases susceptibility to bone degradation and arthritic disorders. In our current study, we utilized a three-layer in-silico screening approach, employing quantum chemical methods, molecular docking, and molecular dynamic methods to explore the novel drug candidates similar in structure to floroquinolone (ciprofloxacin). We investigated the interaction of novel similar compounds of ciprofloxacin with both a bacterial protein S. aureus TyrRS (1JIJ) and a protein associated with gout arthritis Neutrophil collagenase (3DPE). UTIs and gout are interconnected through the elevation of uric acid levels. We aimed to identify compounds with dual functionality: antibacterial activity against UTIs and antirheumatic properties. Our screening based on several methods, sorted out six promising ligands. Four of these (L1, L2, L3, and L6) demonstrated favorable hydrogen bonding with both proteins and were selected for further analysis. These ligands showed binding affinities of -8.3 to -9.1 kcal/mol with both proteins, indicating strong interaction potential. Notably, L6 exhibited highest binding energies of -9.10 and -9.01 kcal/mol with S. aureus TyrRS and Neutrophil collagenase respectively. Additionally, the pkCSM online database conducted ADMET analysis on all lead ligand suggested that L6 might exhibit the highest intestinal absorption and justified total clearance rate. Moreover, L6 showed a best predicted inhibition constant with both proteins. The average RMSF values for all complex systems, namely L1, L2, L3 and L6 are 0.43 Å, 0.57 Å, 0.55 Å, and 0.51 Å, respectively where the ligand residues show maximum stability. The smaller energy gap of 3.85 eV between the HOMO and LUMO of the optimized molecule L1 and L6 suggests that these are biologically active compound. All the selected four drugs show considerable stabilization energy ranging from 44.78 to 103.87 kcal/mol, which means all four compounds are chemically and physically stable. Overall, this research opens exciting avenues for the development of new therapeutic agents with dual functionalities for antibacterial and antiarthritic drug designing.
Collapse
Affiliation(s)
- Shabbir Muhammad
- Central labs, King Khalid University, AlQura'a, P. O. Box 906, Abha, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia.
| | - Amina Faiz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Shafiq Ur Rehman
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 9088, Abha 61413, Saudi Arabia
| |
Collapse
|
4
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. Genotypic and phenotypic characterisation of asymptomatic bacteriuria (ABU) isolates displaying bacterial interference against multi-drug resistant uropathogenic E. Coli. Arch Microbiol 2024; 206:394. [PMID: 39245770 PMCID: PMC11381485 DOI: 10.1007/s00203-024-04114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
Escherichia coli can colonise the urogenital tract of individuals without causing symptoms of infection, in a condition referred to as asymptomatic bacteriuria (ABU). ABU isolates can protect the host against symptomatic urinary tract infections (UTIs) by bacterial interference against uropathogenic E. coli (UPEC). The aim of this study was to investigate the genotypic and phenotypic characteristics of five ABU isolates from midstream urine samples of adults. Comparative genomic and phenotypic analysis was conducted including an antibiotic resistance profile, pangenome analysis, and a putative virulence profile. Based on the genome analysis, the isolates consisted of one from phylogroup A, three from phylogroup B2, and one from phylogroup D. Two of the isolates, PUTS 58 and SK-106-1, were noted for their lack of antibiotic resistance and virulence genes compared to the prototypic ABU strain E. coli 83,972. This study provides insights into the genotypic and phenotypic profiles of uncharacterised ABU isolates, and how relevant fitness and virulence traits can impact their potential suitability for therapeutic bacterial interference.
Collapse
Affiliation(s)
- Ciara Kenneally
- Department of Biological Sciences, Munster Technological University, Cork, T12 P928, Bishopstown, Ireland
| | - Craig P Murphy
- Department of Biological Sciences, Munster Technological University, Cork, T12 P928, Bishopstown, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Cork, T12 P928, Bishopstown, Ireland
| | - Eamonn P Culligan
- Department of Biological Sciences, Munster Technological University, Cork, T12 P928, Bishopstown, Ireland.
| |
Collapse
|
5
|
Papp SB, Hogins J, Mekala S, Christie A, Chavez J, Reitzer L, Zimmern PE. Daily and weekly urine variations in bacterial growth susceptibility in postmenopausal women with no history of urinary tract infection: a pilot study. Urology 2024:S0090-4295(24)00767-2. [PMID: 39237010 DOI: 10.1016/j.urology.2024.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/04/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES To evaluate bacterial growth in the bladder as a major virulence factor during urinary tract infections (UTIs), we assessed the variability of uropathogenic bacterial growth in urine samples over multiple timepoints from three postmenopausal women with no history of UTI. METHODS Following IRB approval, postmenopausal women who never had a UTI provided mid-stream urine samples three times daily (8 a.m., 12 p.m. and 4 p.m.), twice a week over two weeks, as well as dietary intake logs. Each sample was studied for pH and bacterial growth using three uropathogenic Escherichia coli (E.coli) strains (LRPF007, KE40, UTI89), one uropathogenic Enterococcus faecalis strain (HRH40), and one non-pathogenic E. coli strain (W3110). RESULTS Similar mean growth yields were observed for the uropathogenic strains (mean ∆OD600 = 0.1 - 0.13) with high variability (standard deviation (SD) = 0.13 - 0.28) and lower mean growth for the non-pathogenic strain (mean ∆OD600 = 0.05). Urine from each individual at different collection times never had the same bacterial growth potential for any bacterial strain. There were significant associations between urine pH decrease with higher fat (p=0.017), vitamin D (p=0.02), magnesium (p=0.049), fluid (p=0.013), and ash (p=0.01) intake. CONCLUSIONS Major variations were observed in the bacterial growth response in the urine of the same individuals. These variations imply a requirement for a normalization procedure, e.g., growth in synthetic urine, for analysis of bacterial growth in urine. There were significant associations between decreased urine pH and several nutrients found in foods that are classified as highly acidic.
Collapse
Affiliation(s)
- Sara B Papp
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Jacob Hogins
- The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Shreya Mekala
- The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Alana Christie
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Juliann Chavez
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| | - Larry Reitzer
- The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080
| | - Philippe E Zimmern
- UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390.
| |
Collapse
|
6
|
Hanson BS, Hailemariam A, Yang Y, Mohamed F, Donati GL, Baker D, Sacchettini J, Cai JJ, Subashchandrabose S. Identification of a copper-responsive small molecule inhibitor of uropathogenic Escherichia coli. J Bacteriol 2024; 206:e0011224. [PMID: 38856220 PMCID: PMC11270900 DOI: 10.1128/jb.00112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Urinary tract infections (UTIs) are a major global health problem and are caused predominantly by uropathogenic Escherichia coli (UPEC). UTIs are a leading cause of prescription antimicrobial use. Incessant increase in antimicrobial resistance in UPEC and other uropathogens poses a serious threat to the current treatment practices. Copper is an effector of nutritional immunity that impedes the growth of pathogens during infection. We hypothesized that copper would augment the toxicity of select small molecules against bacterial pathogens. We conducted a small molecule screening campaign with a library of 51,098 molecules to detect hits that inhibit a UPEC ΔtolC mutant in a copper-dependent manner. A molecule, denoted as E. coli inhibitor or ECIN, was identified as a copper-responsive inhibitor of wild-type UPEC strains. Our gene expression and metal content analysis results demonstrate that ECIN works in concert with copper to exacerbate Cu toxicity in UPEC. ECIN has a broad spectrum of activity against pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. Subinhibitory levels of ECIN eliminate UPEC biofilm formation. Transcriptome analysis of UPEC treated with ECIN reveals induction of multiple stress response systems. Furthermore, we demonstrate that L-cysteine rescues the growth of UPEC exposed to ECIN. In summary, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC.IMPORTANCEUrinary tract infection (UTI) is a ubiquitous infectious condition affecting millions of people annually. Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of UTI. However, UTIs are becoming increasingly difficult to resolve with antimicrobials due to increased antimicrobial resistance in UPEC and other uropathogens. Here, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC. In addition to E. coli, this small molecule also inhibits pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Braden S Hanson
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Amanuel Hailemariam
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Yongjian Yang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Faras Mohamed
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Dwight Baker
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James Sacchettini
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Li M, Cruz CD, Ilina P, Tammela P. High-throughput combination assay for studying biofilm formation of uropathogenic Escherichia coli. Arch Microbiol 2024; 206:344. [PMID: 38967798 PMCID: PMC11226472 DOI: 10.1007/s00203-024-04029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Uropathogenic Escherichia coli, the most common cause for urinary tract infections, forms biofilm enhancing its antibiotic resistance. To assess the effects of compounds on biofilm formation of uropathogenic Escherichia coli UMN026 strain, a high-throughput combination assay using resazurin followed by crystal violet staining was optimized for 384-well microplate. Optimized assay parameters included, for example, resazurin and crystal violet concentrations, and incubation time for readouts. For the assay validation, quality parameters Z' factor, coefficient of variation, signal-to-noise, and signal-to-background were calculated. Microplate uniformity, signal variability, edge well effects, and fold shift were also assessed. Finally, a screening with known antibacterial compounds was conducted to evaluate the assay performance. The best conditions found were achieved by using 12 µg/mL resazurin for 150 min and 0.023% crystal violet. This assay was able to detect compounds displaying antibiofilm activity against UMN026 strain at sub-inhibitory concentrations, in terms of metabolic activity and/or biomass.
Collapse
Affiliation(s)
- M Li
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki, FI-00014, Finland
| | - C D Cruz
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki, FI-00014, Finland
| | - P Ilina
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki, FI-00014, Finland
| | - P Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Helsinki, FI-00014, Finland.
| |
Collapse
|
8
|
Miao C, Zhang Y, Liu G, Yang J, Yu K, Lv J, Liu R, Yao Z, Niu Y, Wang X, Wang Q. Multi-step strategies for synergistic treatment of urinary tract infections based on D-xylose-decorated antimicrobial peptide carbon dots. Biomaterials 2024; 308:122547. [PMID: 38537344 DOI: 10.1016/j.biomaterials.2024.122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC), often reoccur due to the formation of intracellular bacterial colonies (IBCs) and antibiotic resistance. Given the significance of YadC for UPEC infection in our previous study, we developed D-xylose-decorated ɛ-poly-L-lysine (εPL)-based carbon dots (D-xyl@εPLCDs) that can be traced, and employed multi-step approaches to elucidate the functional roles of D-xyl@εPLCDs in UPEC infection. Compared to undecorated particles, D-xyl@εPLCDs demonstrate YadC-dependent bacterial targeting and exhibit enhanced bactericidal activities both intracellularly and extracellularly. Moreover, pre-treatment of D-xyl@εPLCDs before infection blocked the subsequent adhesion and invasion of UPEC to bladder epithelial cells 5637. Increase of ROS production and innate immune responses were observed in bladder epithelial cells 5637 treated with D-xyl@εPLCDs. In addition, treatment of D-xyl@εPLCDs post-infection facilitated clearance of UPEC in the bladders of the UTI mouse model, and reduced ultimate number of neutrophils, macrophages and inflammatory responses raised by invaded bacteria. Collectively, we presented a comprehensive evaluating system to show that D-xyl@εPLCDs exhibits superior bactericidal effects against UPEC, making them a promising candidate for drug development in clinical UTI therapeutics.
Collapse
Affiliation(s)
- Chunhui Miao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yajie Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Guowen Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jianming Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Kaiyuan Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Junqiang Lv
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yuanjie Niu
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin, 300211, China.
| | - Xiaojuan Wang
- The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin, 300211, China.
| | - Quan Wang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, 300211, China; Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), Tianjin, 300211, China.
| |
Collapse
|
9
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. Turbidimetric bioassays: A solution to antimicrobial activity detection in asymptomatic bacteriuria isolates against uropathogenic Escherichia coli. Microbiologyopen 2024; 13:e1411. [PMID: 38706434 PMCID: PMC11070844 DOI: 10.1002/mbo3.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.
Collapse
Affiliation(s)
- Ciara Kenneally
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Roy D. Sleator
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| |
Collapse
|
10
|
Chen EC, Shapiro RL, Pal A, Bartee D, DeLong K, Carter DM, Serrano-Diaz E, Rais R, Ensign LM, Freel Meyers CL. Investigating inhibitors of 1-deoxy-d-xylulose 5-phosphate synthase in a mouse model of UTI. Microbiol Spectr 2024; 12:e0389623. [PMID: 38376151 PMCID: PMC10986598 DOI: 10.1128/spectrum.03896-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments. Thus, impairing DXPS function represents a possible new antibacterial strategy. We previously investigated a DXPS-dependent metabolic adaptation as a potential target in uropathogenic Escherichia coli (UPEC) associated with urinary tract infection (UTI), using the DXPS-selective inhibitor butyl acetylphosphonate (BAP). However, investigations of DXPS inhibitors in vivo have not been conducted. The goal of the present study is to advance DXPS inhibitors as in vivo probes and assess the potential of inhibiting DXPS as a strategy to prevent UTI in vivo. We show that BAP was well-tolerated at high doses in mice and displayed a favorable pharmacokinetic profile for studies in a mouse model of UTI. Further, an alkyl acetylphosphonate prodrug (homopropargyl acetylphosphonate, pro-hpAP) was significantly more potent against UPEC in urine culture and exhibited good exposure in the urinary tract after systemic dosing. Prophylactic treatment with either BAP or pro-hpAP led to a partial protective effect against UTI, with the prodrug displaying improved efficacy compared to BAP. Overall, our results highlight the potential for DXPS inhibitors as in vivo probes and establish preliminary evidence that inhibiting DXPS impairs UPEC colonization in a mouse model of UTI.IMPORTANCENew antibiotics against new targets are needed to prevent an antimicrobial resistance crisis. Unfortunately, antibiotic discovery has slowed, and many newly FDA-approved antibiotics do not inhibit new targets. Alkyl acetylphosphonates (alkyl APs), which inhibit the enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), represent a new possible class of compounds as there are no FDA-approved DXPS inhibitors. To our knowledge, this is the first study demonstrating the in vivo safety, pharmacokinetics, and efficacy of alkyl APs in a urinary tract infection mouse model.
Collapse
Affiliation(s)
- Eric C. Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachel L. Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Bartee
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Davell M. Carter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika Serrano-Diaz
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rana Rais
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura M. Ensign
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Urs K, Zimmern PE, Reitzer L. Abundant urinary amino acids activate glutamine synthetase-encoding glnA by two different mechanisms in Escherichia coli. J Bacteriol 2024; 206:e0037623. [PMID: 38358279 PMCID: PMC10955845 DOI: 10.1128/jb.00376-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Growth of uropathogenic Escherichia coli in the bladder induces transcription of glnA which codes for the ammonia-assimilating glutamine synthetase (GS) despite the normally suppressive high ammonia concentration. We previously showed that the major urinary component, urea, induces transcription from the Crp-dependent glnAp1 promoter, but the urea-induced transcript is not translated. Our purpose here was to determine whether the most abundant urinary amino acids, which are known to inhibit GS activity in vitro, also affect glnA transcription in vivo. We found that the abundant amino acids impaired growth, which glutamine and glutamate reversed; this implies inhibition of GS activity. In strains with deletions of crp and glnG that force transcription from the glnAp2 and glnAp1 promoters, respectively, we examined growth and glnA transcription with a glnA-gfp transcriptional fusion and quantitative reverse transcription PCR with primers that can distinguish transcription from the two promoters. The abundant urinary amino acids stimulated transcription from the glnAp2 promoter in the absence of urea but from the glnAp1 promoter in the presence of urea. However, transcription from glnAp1 did not produce a translatable mRNA or GS as assessed by a glnA-gfp translational fusion, enzymatic assay of GS, and Western blot to detect GS antigen in urea-containing media. We discuss these results within the context of the extremely rapid growth of uropathogenic E. coli in urine, the different factors that control the two glnA promoters and possible mechanisms that either overcome or bypass the urea-imposed block of glutamine synthesis during bacterial growth in urine.IMPORTANCEKnowledge of the regulatory mechanisms for genes expressed at the site of infection provides insight into the virulence of pathogenic bacteria. During urinary tract infections-most often caused by Escherichia coli-growth in urine induces the glnA gene which codes for glutamine synthetase. The most abundant urinary amino acids amplified the effect of urea which resulted in hypertranscription from the glnAp1 promoter and, unexpectedly, an untranslated transcript. E. coli must overcome this block in glutamine synthesis during growth in urine, and the mechanism of glutamine acquisition or synthesis may suggest a possible therapy.
Collapse
Affiliation(s)
- Karthik Urs
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Philippe E. Zimmern
- Department of Urology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Larry Reitzer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
12
|
Zheng H, Wang C, Yu X, Zheng W, An Y, Zhang J, Zhang Y, Wang G, Qi M, Lin H, Wang F. The Role of Metabolomics and Microbiology in Urinary Tract Infection. Int J Mol Sci 2024; 25:3134. [PMID: 38542107 PMCID: PMC10969911 DOI: 10.3390/ijms25063134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 08/25/2024] Open
Abstract
One of the common illnesses that affect women's physical and mental health is urinary tract infection (UTI). The disappointing results of empirical anti-infective treatment and the lengthy time required for urine bacterial culture are two issues. Antibiotic misuse is common, especially in females who experience recurrent UTI (rUTI). This leads to a higher prevalence of antibiotic resistance in the microorganisms that cause the infection. Antibiotic therapy will face major challenges in the future, prompting clinicians to update their practices. New testing techniques are making the potential association between the urogenital microbiota and UTIs increasingly apparent. Monitoring changes in female urinary tract (UT) microbiota, as well as metabolites, may be useful in exploring newer preventive treatments for UTIs. This review focuses on advances in urogenital microbiology and organismal metabolites relevant to the identification and handling of UTIs in an attempt to provide novel methods for the identification and management of infections of the UT. Particular attention is paid to the microbiota and metabolites in the patient's urine in relation to their role in supporting host health.
Collapse
Affiliation(s)
- Haoyu Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Xiao Yu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Wenxue Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Yiming An
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Jiaqi Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Yuhan Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Mingran Qi
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Hongqiang Lin
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| |
Collapse
|
13
|
Micaletto M, Fleurier S, Dion S, Denamur E, Matic I. The protein carboxymethyltransferase-dependent aspartate salvage pathway plays a crucial role in the intricate metabolic network of Escherichia coli. SCIENCE ADVANCES 2024; 10:eadj0767. [PMID: 38335294 PMCID: PMC10857468 DOI: 10.1126/sciadv.adj0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Protein carboxymethyltransferase (Pcm) is a highly evolutionarily conserved enzyme that initiates the conversion of abnormal isoaspartate to aspartate residues. While it is commonly believed that Pcm facilitates the repair of damaged proteins, a number of observations suggest that it may have another role in cell functioning. We investigated whether Pcm provides a means for Escherichia coli to recycle aspartate, which is essential for protein synthesis and other cellular processes. We showed that Pcm is required for the energy production, the maintenance of cellular redox potential and of S-adenosylmethionine synthesis, which are critical for the proper functioning of many metabolic pathways. Pcm contributes to the full growth capacity both under aerobic and anaerobic conditions. Last, we showed that Pcm enhances the robustness of bacteria when exposed to sublethal antibiotic treatments and improves their fitness in the mammalian urinary tract. We propose that Pcm plays a crucial role in E. coli metabolism by ensuring a steady supply of aspartate.
Collapse
Affiliation(s)
- Maureen Micaletto
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Sebastien Fleurier
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| | - Sara Dion
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, 75018 Paris, France
| | - Erick Denamur
- IAME, Université de Paris, INSERM U1137, Université Sorbonne Paris Nord, 75018 Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, 75018 Paris, France
| | - Ivan Matic
- Institut Cochin, Université Paris Cité, INSERM U1016, CNRS UMR 8104, 75014 Paris, France
| |
Collapse
|
14
|
Sharon BM, Arute AP, Nguyen A, Tiwari S, Reddy Bonthu SS, Hulyalkar NV, Neugent ML, Palacios Araya D, Dillon NA, Zimmern PE, Palmer KL, De Nisco NJ. Genetic and functional enrichments associated with Enterococcus faecalis isolated from the urinary tract. mBio 2023; 14:e0251523. [PMID: 37962362 PMCID: PMC10746210 DOI: 10.1128/mbio.02515-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Urinary tract infection (UTI) is a global health issue that imposes a substantial burden on healthcare systems. Women are disproportionately affected by UTI, with >60% of women experiencing at least one UTI in their lifetime. UTIs can recur, particularly in postmenopausal women, leading to diminished quality of life and potentially life-threatening complications. Understanding how pathogens colonize and survive in the urinary tract is necessary to identify new therapeutic targets that are urgently needed due to rising rates of antimicrobial resistance. How Enterococcus faecalis, a bacterium commonly associated with UTI, adapts to the urinary tract remains understudied. Here, we generated a collection of high-quality closed genome assemblies of clinical urinary E. faecalis isolated from the urine of postmenopausal women that we used alongside detailed clinical metadata to perform a robust comparative genomic investigation of genetic factors that may be involved in E. faecalis survival in the urinary tract.
Collapse
Affiliation(s)
- Belle M. Sharon
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Amanda P. Arute
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Amber Nguyen
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Suman Tiwari
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | | | - Neha V. Hulyalkar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Michael L. Neugent
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Nicholas A. Dillon
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Philippe E. Zimmern
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Nicole J. De Nisco
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
15
|
Minnullina LF, Misheeva PS, Mukhtarova GI, Sharipova MR, Mardanova AM. Features of Hemolysin Biosynthesis by Morganella morganii. Bull Exp Biol Med 2023; 176:181-186. [PMID: 38191876 DOI: 10.1007/s10517-024-05991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 01/10/2024]
Abstract
We studied the influence of medium composition and aeration on the hemolytic activity of uropathogenic Morganella morganii strain MM 190. The maximum level of hemolysis was observed in LB (59%), DMEM supplemented with fetal bovine serum (62%), and urine (53%) under aeration conditions during the exponential growth phase. The presence of 2% urea in the medium suppressed hemolysin synthesis. Moreover, addition of bacterial culture fluid containing hemolysin to a monolayer of T-24 bladder carcinoma and OKP-GS kidney carcinoma cells led to 25 and 42% cell death, respectively. We found that the maximum expression of the hemolysin gene hlyA was observed in 2-h culture in LB medium, which correlated with the hemolytic activity of the bacteria in this medium and indicated the predominance of the short hlyCA transcript in the cells.
Collapse
Affiliation(s)
- L F Minnullina
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia.
| | - P S Misheeva
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - G I Mukhtarova
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - M R Sharipova
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - A M Mardanova
- Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| |
Collapse
|
16
|
Hernández-Chiñas U, Ahumada-Cota RE, Navarro-Ocaña A, Chávez-Berrocal ME, Molina-López J, Rocha-Ramírez LM, Navarro-Cid del Prado A, Eslava CA. Phenotypic and genotypic characteristics of Escherichia coli strains isolated during a longitudinal follow-up study of chronic urinary tract infections. Front Public Health 2023; 11:1240392. [PMID: 38074750 PMCID: PMC10702777 DOI: 10.3389/fpubh.2023.1240392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Worldwide, Urinary Tract Infections (UTIs) are an important health problem with many cases reported annually, women being the most affected. UTIs are relevant because they can become a recurrent condition, associated with different factors that contribute to the chronicity of the disease (cUTI). cUTI can be classified as persistent (peUTI) when the causative agent is the same each time the infection occurs or as reinfection (reUTI) when the associated microorganism is different. The purpose of this work was to characterize Escherichia coli isolates obtained in two prospective studies of patients with cUTI, to define which of them corresponded to peUTI and which to reUTI. A total of 394 isolates of E. coli were analyzed by agglutination with specific sera, antimicrobial susceptibility by diffusion disc test, and the phylogroups and presence of genes associated with virulence by PCR assays. Additionally, in some characterized strains adherence, invasiveness, and biofilm formation were analyzed by in vitro assays. The results showed that the peUTI strains belonged mainly to the classical UPEC serogroups (O25, O75, O6), were included in the B2 phylogroup, carried a great number of virulence genes, and were adherent, invasive, and biofilm-forming. Meanwhile, reUTI strains showed great diversity of serogroups, belonged mainly in the A phylogroup, and carried fewer virulence genes. Both peUTI and reUTI strains showed extensively drug-resistant (XDR) and multidrug-resistant (MDR) profiles in the antimicrobial susceptibility test. In conclusion, it appears that peUTIs are caused principally by classical UPEC strains, while reUTIs are caused by strains that appear to be a part of the common E. coli intestinal biota. Moreover, although both peUTI and reUTI strains presented different serotypes and phylogroups, their antimicrobial resistance profile (XDR and MDR) was similar, confirming the importance of regulating prophylactic treatments and seeking alternatives for the treatment and control of cUTI. Finally, it was possible to establish the features of the E. coli strains responsible for peUTI and reUTI which could be helpful to develop a fast diagnostic methodology.
Collapse
Affiliation(s)
- Ulises Hernández-Chiñas
- Research Division, Public Health Department, Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Faculty of Medicine, UNAM, Mexico City, Mexico
- Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Ricardo E. Ahumada-Cota
- Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Armando Navarro-Ocaña
- Bacteriology Laboratory, Public Health Department, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - María E. Chávez-Berrocal
- Research Division, Public Health Department, Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Faculty of Medicine, UNAM, Mexico City, Mexico
- Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - José Molina-López
- Research Division, Public Health Department, Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Faculty of Medicine, UNAM, Mexico City, Mexico
- Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Mexico City, Mexico
| | - Luz M. Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| | | | - Carlos A. Eslava
- Research Division, Public Health Department, Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Faculty of Medicine, UNAM, Mexico City, Mexico
- Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Mexico City, Mexico
| |
Collapse
|
17
|
Urs K, Zimmern PE, Reitzer L. Control of glnA (glutamine synthetase) expression by urea in non-pathogenic and uropathogenic Escherichia coli. J Bacteriol 2023; 205:e0026823. [PMID: 37902379 PMCID: PMC10662117 DOI: 10.1128/jb.00268-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The bacteria that cause urinary tract infections often become resistant to antibiotic treatment, and genes expressed during an infection could suggest non-antibiotic targets. During growth in urine, glnA (specifying glutamine synthetase) expression is high, but our results show that urea induces glnA expression independent of the regulation that responds to nitrogen limitation. Although our results suggest that glnA is an unlikely target for therapy because of variation in urinary components between individuals, our analysis of glnA expression in urine-like environments has revealed previously undescribed layers of regulation. In other words, regulatory mechanisms that are discovered in a laboratory environment do not necessarily operate in the same way in nature.
Collapse
Affiliation(s)
- Karthik Urs
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Philippe E. Zimmern
- Department of Urology, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Larry Reitzer
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
18
|
Subramaniyan Y, Khan A, Fathima F, Rekha PD. Differential expression of urease genes and ureolytic activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa isolates in different nutritional conditions. Arch Microbiol 2023; 205:383. [PMID: 37973630 DOI: 10.1007/s00203-023-03722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Uropathogens have adaptation strategies to survive in the host urinary tract by efficiently utilizing and tolerating the urinary metabolites. Many uropathogens harbour the enzyme urease for the breakdown of urea and the enzymatic breakdown of urea increases the pH and facilitate the struvite crystallization. In this study, the differential urease activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa strains was investigated under different nutritional conditions. The experiments included measurement of growth, pH, urease activity, NH4-N generation and urease gene (ureC) expression among the bacterial strains under different conditions. Further, the implications of urea breakdown on the struvite crystallization in vitro and biofilm formation were also assessed. The study included urease positive isolates and for comparison urease negative isolates were included. Compared to the urease negative strains the urease positive strains formed higher biofilms and motility. The urease positive P. aeruginosa showed significantly higher (p < 0.01) pH and urease activity (A557-A630) compared to E. coli under experimental conditions. Further, supplementation of glucose to the growth media significantly increased the urease activity in P. aeruginosa and in contrast, it was significantly lower in E. coli. The expression profile of urease gene (ureC) was significantly higher (p < 0.001) in P. aeruginosa compared to E. coli and was consistent with the biochemical results of the urease activity under the nutritional conditions. The differential urease activity under two nutritional conditions influenced the biogenic struvite crystallization. It correlated with the urease activity showing higher crystallization rate in P. aeruginosa compared to E. coli. The results highlight the differential urease activity in two common uropathogens under different nutritional conditions that may have significant role on the regulation of virulence, pathogenicity and in the kidney stone disease.
Collapse
Affiliation(s)
- Yuvarajan Subramaniyan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Altaf Khan
- Department of Urology, Yenepoya Medical College and Hospital, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Fida Fathima
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
19
|
Flores C, Ling J, Loh A, Maset RG, Aw A, White IJ, Fernando R, Rohn JL. A human urothelial microtissue model reveals shared colonization and survival strategies between uropathogens and commensals. SCIENCE ADVANCES 2023; 9:eadi9834. [PMID: 37939183 PMCID: PMC10631729 DOI: 10.1126/sciadv.adi9834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Urinary tract infection is among the most common infections worldwide, typically studied in animals and cell lines with limited uropathogenic strains. Here, we assessed diverse bacterial species in a human urothelial microtissue model exhibiting full stratification, differentiation, innate epithelial responses, and urine tolerance. Several uropathogens invaded intracellularly, but also commensal Escherichia coli, suggesting that invasion is a shared survival strategy, not solely a virulence hallmark. The E. coli adhesin FimH was required for intracellular bacterial community formation, but not for invasion. Other shared lifestyles included filamentation (Gram-negatives), chaining (Gram-positives), and hijacking of exfoliating cells, while biofilm-like aggregates were formed mainly with Pseudomonas and Proteus. Urothelial cells expelled invasive bacteria in Rab-/LC3-decorated structures, while highly cytotoxic/invasive uropathogens, but not commensals, disrupted host barrier function and strongly induced exfoliation and cytokine production. Overall, this work highlights diverse species-/strain-specific infection strategies and corresponding host responses in a human urothelial microenvironment, providing insights at the microtissue, cell, and molecular level.
Collapse
Affiliation(s)
- Carlos Flores
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Jefferson Ling
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Amanda Loh
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ramón G. Maset
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Angeline Aw
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| | - Ian J. White
- Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | - Raymond Fernando
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
- Royal Free London NHS Foundation Trust & Anthony Nolan Laboratories, NW3 2QG London, UK
| | - Jennifer L. Rohn
- Centre for Urological Biology, Division of Medicine, University College London, WC1E 6BT London, UK
| |
Collapse
|
20
|
Vautrin N, Dahyot S, Leoz M, Caron F, Grand M, Feldmann A, Gravey F, Legris S, Ribet D, Alexandre K, Pestel-Caron M. Are Escherichia coli causing recurrent cystitis just ordinary Uropathogenic E. coli (UPEC) strains? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566351. [PMID: 37986820 PMCID: PMC10659292 DOI: 10.1101/2023.11.08.566351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Specific determinants associated with Uropathogenic Escherichia coli (UPEC) causing recurrent cystitis are still poorly characterized. The aims of this study were (i) to describe genomic and phenotypic traits associated with recurrence using a large collection of recurrent and paired sporadic UPEC isolates, and (ii) to explore within-host genomic adaptation associated with recurrence using series of 2 to 5 sequential UPEC isolates. Whole genome comparative analyses between 24 recurrent cystitis isolates (RCIs) and 24 phylogenetically paired sporadic cystitis isolates (SCIs) suggested a lower prevalence of putative mobile genetic elements (MGE) in RCIs, such as plasmids and prophages. The intra-patient evolution of the 24 RCI series over time was characterized by SNP occurrence in genes involved in metabolism or membrane transport, and by plasmid loss in 5 out of the 24 RCI series. Genomic evolution occurred early in the course of recurrence, suggesting rapid adaptation to strong selection pressure in the urinary tract. However, RCIs did not exhibit specific virulence factor determinants and could not be distinguished from SCIs by their fitness, biofilm formation, or ability to invade HTB-9 bladder epithelial cells. Taken together, these results suggest a rapid but not convergent adaptation of RCIs that involves both strain- and host-specific characteristics.
Collapse
Affiliation(s)
- Nicolas Vautrin
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, F-76000 Rouen, France
| | - Sandrine Dahyot
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, department of microbiology, F-76000 Rouen, France
| | - Marie Leoz
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, F-76000 Rouen, France
| | - François Caron
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, department of infectious diseases, F-76000 Rouen, France
| | - Maxime Grand
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, F-76000 Rouen, France
| | - Audrey Feldmann
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, F-76000 Rouen, France
| | - François Gravey
- Université de Caen Normandie, Univ Rouen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, F-14000 Caen, France
| | - Stéphanie Legris
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, F-76000 Rouen, France
| | - David Ribet
- Univ Rouen Normandie, INSERM, Normandie Univ, ADEN UMR 1073, Nutrition, inflammation and microbiota-gut-brain axis, F-76000 Rouen, France
| | - Kévin Alexandre
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, department of infectious diseases, F-76000 Rouen, France
| | - Martine Pestel-Caron
- Univ Rouen Normandie, Université de Caen Normandie, INSERM, Normandie Univ, DYNAMICURE UMR 1311, CHU Rouen, department of microbiology, F-76000 Rouen, France
| |
Collapse
|
21
|
Psotta C, Nilsson EJ, Sjöberg T, Falk M. Bacteria-Infected Artificial Urine Characterization Based on a Combined Approach Using an Electronic Tongue Complemented with 1H-NMR and Flow Cytometry. BIOSENSORS 2023; 13:916. [PMID: 37887109 PMCID: PMC10605348 DOI: 10.3390/bios13100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
The prevailing form of bacterial infection is within the urinary tract, encompassing a wide array of bacteria that harness the urinary metabolome for their growth. Through their metabolic actions, the chemical composition of the growth medium undergoes modifications as the bacteria metabolize urine compounds, leading to the subsequent release of metabolites. These changes can indirectly indicate the existence and proliferation of bacterial organisms. Here, we investigate the use of an electronic tongue, a powerful analytical instrument based on a combination of non-selective chemical sensors with a partial specificity for data gathering combined with principal component analysis, to distinguish between infected and non-infected artificial urine samples. Three prevalent bacteria found in urinary tract infections were investigated, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. Furthermore, the electronic tongue analysis was supplemented with 1H NMR spectroscopy and flow cytometry. Bacteria-specific changes in compound consumption allowed for a qualitative differentiation between artificial urine medium and bacterial growth.
Collapse
Affiliation(s)
| | | | | | - Magnus Falk
- Biomedical Science, Faculty of Health and Society, and Biofilms Research Center, Malmö University, 205 06 Malmö, Sweden; (C.P.); (E.J.N.); (T.S.)
| |
Collapse
|
22
|
Hogins J, Xuan Z, Zimmern PE, Reitzer L. The distinct transcriptome of virulence-associated phylogenetic group B2 Escherichia coli. Microbiol Spectr 2023; 11:e0208523. [PMID: 37724859 PMCID: PMC10580932 DOI: 10.1128/spectrum.02085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/28/2023] [Indexed: 09/21/2023] Open
Abstract
Escherichia coli strains of phylogenetic group B2 are often associated with urinary tract infections (UTIs) and several other diseases. Recent genomic and transcriptomic analyses have not suggested or identified specific genes required for virulence, but have instead suggested multiple virulence strategies and complex host-pathogen interactions. Previous analyses have not compared core gene expression between phylogenetic groups or between pathogens and nonpathogens within phylogenetic groups. We compared the core gene expression of 35 strains from three phylogenetic groups that included both pathogens and nonpathogens after growth in a medium that allowed comparable growth of both types of strains. K-means clustering suggested a B2 cluster with 17 group B2 strains and two group A strains; an AD cluster with six group A strains, five group D strains and one B2 strain; and four outliers which included the highly studied model uropathogenic E. coli strains UTI89 and CFT073. Half of the core genes were differentially expressed between B2 and AD cluster strains, including transcripts of genes for all aspects of macromolecular synthesis-replication, transcription, translation, and peptidoglycan synthesis-energy metabolism, and environmental-sensing transcriptional regulators. Notably, core gene expression between nonpathogenic and uropathogenic transcriptomes within phylogenetic groups did not differ. If differences between pathogens and nonpathogens exist, then the differences do not require transcriptional reprogramming. In summary, B2 cluster strains have a distinct transcription pattern that involves hundreds of genes. We propose that this transcription pattern is one factor that contributes to virulence. IMPORTANCE Escherichia coli is a diverse species and an opportunistic pathogen that is associated with various diseases, such as urinary tract infections. When examined, phylogenetic group B2 strains are more often associated with these diseases, but the specific properties that contribute to their virulence are not known. From a comparative transcriptomic analysis, we found that group B2 strains grown in a nutrient-rich medium had a distinct transcription pattern, which is the first evidence that core gene expression differs between phylogenetic groups. Understanding the consequences of group B2 transcription pattern will provide important information on basic E. coli biology, the basis for E. coli virulence, and possibly for developing therapies for a majority of urinary tract infections and other group B2-associated diseases.
Collapse
Affiliation(s)
- Jacob Hogins
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Philippe E. Zimmern
- Department of Urology, The University of Texas Southwestern, Dallas, Texas, USA
| | - Larry Reitzer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
23
|
Sharon BM, Arute AP, Nguyen A, Tiwari S, Bonthu SSR, Hulyalkar NV, Neugent ML, Araya DP, Dillon NA, Zimmern PE, Palmer KL, De Nisco NJ. Functional and genetic adaptations contributing to Enterococcus faecalis persistence in the female urinary tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541374. [PMID: 37293065 PMCID: PMC10245761 DOI: 10.1101/2023.05.18.541374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enterococcus faecalis is the leading Gram-positive bacterial species implicated in urinary tract infection (UTI). An opportunistic pathogen, E. faecalis is a commensal of the human gastrointestinal tract (GIT) and its presence in the GIT is a predisposing factor for UTI. The mechanisms by which E. faecalis colonizes and survives in the urinary tract (UT) are poorly understood, especially in uncomplicated or recurrent UTI. The UT is distinct from the GIT and is characterized by a sparse nutrient landscape and unique environmental stressors. In this study, we isolated and sequenced a collection of 37 clinical E. faecalis strains from the urine of primarily postmenopausal women. We generated 33 closed genome assemblies and four highly contiguous draft assemblies and conducted a comparative genomics to identify genetic features enriched in urinary E. faecalis with respect to E. faecalis isolated from the human GIT and blood. Phylogenetic analysis revealed high diversity among urinary strains and a closer relatedness between urine and gut isolates than blood isolates. Plasmid replicon (rep) typing further underscored possible UT-GIT interconnection identifying nine shared rep types between urine and gut E. faecalis . Both genotypic and phenotypic analysis of antimicrobial resistance among urinary E. faecalis revealed infrequent resistance to front-line UTI antibiotics nitrofurantoin and fluoroquinolones and no vancomycin resistance. Finally, we identified 19 candidate genes enriched among urinary strains that may play a role in adaptation to the UT. These genes are involved in the core processes of sugar transport, cobalamin import, glucose metabolism, and post-transcriptional regulation of gene expression. IMPORTANCE Urinary tract infection (UTI) is a global health issue that imposes substantial burden on healthcare systems. Women are disproportionately affected by UTI with >60% of women experiencing at least one UTI in their lifetime. UTIs can recur, particularly in postmenopausal women, leading to diminished quality of life and potentially life-threatening complications. Understanding how pathogens colonize and survive in the urinary tract is necessary to identify new therapeutic targets that are urgently needed due to rising rates of antimicrobial resistance. How Enterococcus faecalis , a bacterium commonly associated with UTI, adapts to the urinary tract remains understudied. Here, we generated a collection of high-quality closed genome assemblies of clinical urinary E. faecalis isolated from the urine of postmenopausal women that we used alongside detailed clinical metadata to perform a robust comparative genomic investigation of genetic factors that may mediate urinary E. faecalis adaptation to the female urinary tract.
Collapse
|
24
|
Čeprnja M, Hadžić E, Oros D, Melvan E, Starcevic A, Zucko J. Current Viewpoint on Female Urogenital Microbiome-The Cause or the Consequence? Microorganisms 2023; 11:1207. [PMID: 37317181 PMCID: PMC10224287 DOI: 10.3390/microorganisms11051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
An increasing amount of evidence implies that native microbiota is a constituent part of a healthy urinary tract (UT), making it an ecosystem on its own. What is still not clear is whether the origin of the urinary microbial community is the indirect consequence of the more abundant gut microbiota or a more distinct separation exists between these two systems. Another area of uncertainty is the existence of a link between the shifts in UT microbial composition and both the onset and persistence of cystitis symptoms. Cystitis is one of the most common reasons for antimicrobial drugs prescriptions in primary and secondary care and an important contributor to the problem of antimicrobial resistance. Despite this fact, we still have trouble distinguishing whether the primary cause of the majority of cystitis cases is a single pathogen overgrowth or a systemic disorder affecting the entire urinary microbiota. There is an increasing trend in studies monitoring changes and dynamics of UT microbiota, but this field of research is still in its infancy. Using NGS and bioinformatics, it is possible to obtain microbiota taxonomic profiles directly from urine samples, which can provide a window into microbial diversity (or the lack of) underlying each patient's cystitis symptoms. However, while microbiota refers to the living collection of microorganisms, an interchangeably used term microbiome referring to the genetic material of the microbiota is more often used in conjunction with sequencing data. It is this vast amount of sequences, which are truly "Big Data", that allow us to create models that describe interactions between different species contributing to an UT ecosystem, when coupled with machine-learning techniques. Although in a simplified predator-prey form these multi-species interaction models have the potential to further validate or disprove current beliefs; whether it is the presence or the absence of particular key players in a UT microbial ecosystem, the exact cause or consequence of the otherwise unknown etiology in the majority of cystitis cases. These insights might prove to be vital in our ongoing struggle against pathogen resistance and offer us new and promising clinical markers.
Collapse
Affiliation(s)
- Marina Čeprnja
- Biochemical Laboratory, Special Hospital Agram, Polyclinic Zagreb, 10000 Zagreb, Croatia
| | - Edin Hadžić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Zagreb University, 10000 Zagreb, Croatia
| | - Damir Oros
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Zagreb University, 10000 Zagreb, Croatia
| | - Ena Melvan
- Department of Biological Science, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia
| | - Antonio Starcevic
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Zagreb University, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Zagreb University, 10000 Zagreb, Croatia
| |
Collapse
|
25
|
Tan A, Alsenani Q, Lanz M, Birchall C, Drage LKL, Picton D, Mowbray C, Ali A, Harding C, Pickard RS, Hall J, Aldridge PD. Evasion of toll-like receptor recognition by Escherichia coli is mediated via population level regulation of flagellin production. Front Microbiol 2023; 14:1093922. [PMID: 37032848 PMCID: PMC10078357 DOI: 10.3389/fmicb.2023.1093922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Uropathogenic Escherichia coli is a major cause of urinary tract infections. Analysis of the innate immune response in immortalized urothelial cells suggests that the bacterial flagellar subunit, flagellin, is key in inducing host defenses. A panel of 48 clinical uro-associated E. coli isolates recovered from either cystitis, pyelonephritis asymptomatic bacteriuria (ABU) or UTI-associated bacteraemia infections were characterized for motility and their ability to induce an innate response in urothelial cells stably transfected with a NF-κB luciferase reporter. Thirty-two isolates (67%) were identified as motile with strains recovered from cystitis patients exhibiting an uneven motility distribution pattern; seven of the cystitis isolates were associated with a > 5-fold increase in NF-κB signaling. To explore whether the NF-κB signaling response reflected antigenic variation, flagellin was purified from 14 different isolates. Purified flagellin filaments generated comparable NF-κB signaling responses, irrespective of either the source of the isolate or H-serotype. These data argued against any variability between isolates being related to flagellin itself. Investigations also argued that neither TLR4 dependent recognition of bacterial lipopolysaccharide nor growth fitness of the isolates played key roles in leading to the variable host response. To determine the roles, if any, of flagellar abundance in inducing these variable responses, flagellar hook numbers of a range of cystitis and ABU isolates were quantified. Images suggested that up to 60% of the isolate population exhibited flagella with the numbers averaging between 1 and 2 flagella per bacterial cell. These data suggest that selective pressures exist in the urinary tract that allow uro-associated E. coli strains to maintain motility, but exploit population heterogeneity, which together function to prevent host TLR5 recognition and bacterial killing.
Collapse
Affiliation(s)
- Aaron Tan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Qusai Alsenani
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marcello Lanz
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher Birchall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lauren K. L. Drage
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David Picton
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine Mowbray
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ased Ali
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher Harding
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Urology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Robert S. Pickard
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Urology Department, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Judith Hall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Judith Hall,
| | - Phillip D. Aldridge
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Phillip D. Aldridge,
| |
Collapse
|
26
|
Chan CCY, Lewis IA. Role of metabolism in uropathogenic Escherichia coli. Trends Microbiol 2022; 30:1174-1204. [PMID: 35941063 DOI: 10.1016/j.tim.2022.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is responsible for more than 75% of urinary tract infections (UTIs) and has been studied extensively to better understand the molecular underpinnings of infection and pathogenesis. Although the macromolecular adaptations UPEC employs - including the expression of virulence factors, adhesion molecules, and iron-acquisition systems - are well described, the role that metabolism plays in enabling infection is still unclear. However, a growing body of literature shows that metabolic function can have a profound impact on which strains can colonize the urinary tract. The goal of this review is to critically appraise this emerging body of literature to better understand the role that nutritional selection plays in enabling urinary tract colonization and the progression of UTIs.
Collapse
Affiliation(s)
- Carly C Y Chan
- Department of Biological Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Ian A Lewis
- Department of Biological Science, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
27
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
28
|
Brauer AL, Learman BS, Taddei SM, Deka N, Hunt BC, Armbruster CE. Preferential catabolism of l- vs d-serine by Proteus mirabilis contributes to pathogenesis and catheter-associated urinary tract infection. Mol Microbiol 2022; 118:125-144. [PMID: 35970717 PMCID: PMC9486832 DOI: 10.1111/mmi.14968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Abstract
Proteus mirabilis is a common cause of urinary tract infection, especially in catheterized individuals. Amino acids are the predominant nutrient for bacteria during growth in urine, and our prior studies identified several amino acid import and catabolism genes as fitness factors for P. mirabilis catheter-associated urinary tract infection (CAUTI), particularly those for d- and l-serine. In this study, we sought to determine the hierarchy of amino acid utilization by P. mirabilis and to examine the relative importance of d- vs l-serine catabolism for critical steps in CAUTI development and progression. Herein, we show that P. mirabilis preferentially catabolizes l-serine during growth in human urine, followed by d-serine, threonine, tyrosine, glutamine, tryptophan, and phenylalanine. Independently disrupting catabolism of either d- or l-serine has minimal impact on in vitro phenotypes while completely disrupting both pathways decreases motility, biofilm formation, and fitness due to perturbation of membrane potential and cell wall biosynthesis. In a mouse model of CAUTI, loss of either serine catabolism system decreased fitness, but disrupting l-serine catabolism caused a greater fitness defect than disrupting d-serine catabolism. We, therefore, conclude that the hierarchical utilization of amino acids may be a critical component of P. mirabilis colonization and pathogenesis within the urinary tract.
Collapse
Affiliation(s)
- Aimee L. Brauer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Brian S. Learman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Steven M. Taddei
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Namrata Deka
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Benjamin C. Hunt
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Chelsie E. Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
29
|
Azam MW, Khan AU. CRISPRi -mediated suppression of E. coli Nissle 1917 virulence factors: A strategy for creating an engineered probiotic using csgD gene suppression. Front Nutr 2022; 9:938989. [PMID: 35978963 PMCID: PMC9376613 DOI: 10.3389/fnut.2022.938989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background Biofilm formation is a complex phenomenon, and it is the causative agent of several human infections. Bacterial amyloids are involved in biofilm formation leading to infection persistence. Due to antibiotic resistance, their treatment is a great challenge for physicians. Probiotics, especially E. coli Nissle 1917 (EcN), are used to treat human intestinal disorders and ulcerative colitis. It also expresses virulence factors associated with biofilm and amyloid formation. EcN produces biofilm equivalent to the pathogenic UPEC strains. Methods CRISPRi was used to create the knockdown mutants of the csgD gene (csgD-KD). The qRT-PCR was performed to assess the expression of the csgD gene in csgD-KD cells. The csgD-KD cells were also evaluated for the expression of csgA, csgB, fimA, fimH, ompR, luxS, and bolA genes. The gene expression data obtained was further confirmed by spectroscopic, microscopic, and other assays to validate our study. Results CRISPRi-mediated knockdown of csgD gene shows reduction in curli amyloid formation, biofilm formation, and suppression of genes (csgA, csgB, fimA, fimH, ompR, bolA, and luxS) involved in virulence factors production. Conclusion Curli amyloid fibers and fimbriae fibers play a critical role in biofilm formation leading to pathogenicity. CsgD protein is the master regulator of curli synthesis in E. coli. Hence, curli amyloid inhibition through the csgD gene may be used to improve the EcN and different probiotic strains by suppressing virulence factors.
Collapse
Affiliation(s)
- Mohd W Azam
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
30
|
Zhang L, Wang B, Yin G, Wang J, He M, Yang Y, Wang T, Tang T, Yu XA, Tian J. Rapid Fluorescence Sensor Guided Detection of Urinary Tract Bacterial Infections. Int J Nanomedicine 2022; 17:3723-3733. [PMID: 36061124 PMCID: PMC9428933 DOI: 10.2147/ijn.s377575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Urinary tract infections (UTI) are one of the most serious human bacterial infections affecting millions of people every year. Therefore, simple and reliable identification of the urinary tract pathogenic bacteria within a few minutes would be of great significance for diagnosis and treatment of clinical patients with UTIs. In this study, the fluorescence sensor was reported to guide the detection of urinary tract bacterial infections rapidly. Methods The Ami-AuNPs-DNAs sensor was fabricated by the amino-modified Au nanoparticles (Ami-AuNPs) and six DNAs signal molecules, which bound to the urinary tract pathogenic bacteria and generated corresponding response signals. Further, based on the collected response signals, identification was performed by principal component analysis (PCA) and linear discriminant analysis (LDA). The Ami-AuNPs and Ami-AuNPs-DNAs were characterized by transmission electron microscopy, UV−vis absorption spectrum, Fourier transform infrared spectrum, dynamic light scattering and zeta potentials. Thereafter, the Ami-AuNPs-DNAs sensor was used to discriminate and identify five kinds of urinary tract pathogenic bacteria. Moreover, the quantitative analysis performance towards individual bacteria at different concentrations were also evaluated. Results The Ami-AuNPs-DNAs sensor were synthesized successfully in terms of spherical, well-dispersed and uniform in size, which could well discriminate five main urinary tract pathogenic bacteria with unique fingerprint-like patterns and was sufficiently sensitive to determine individual bacteria with a detection limit to 1×107 cfu/mL. Furthermore, the sensor had also been successfully applied to identify bacteria in urine samples collected from clinical UTIs. Conclusion The developed fluorescence sensor could be applied to rapid and accurate discrimination of urinary tract pathogenic bacteria and holds great promise for the diagnosis of the disease caused by bacterial infection.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People’s Republic of China
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
| | - Guo Yin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
| | - Jue Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
| | - Ming He
- Dermatology Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, 550002, People’s Republic of China
| | - Yuqi Yang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, 550002, People’s Republic of China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
| | - Ting Tang
- Dermatology Department, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, 550002, People’s Republic of China
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, Shenzhen Institute for Drug Control, Shenzhen, Guangdong Province, 518057, People’s Republic of China
- Correspondence: Xie-An Yu; Jiangwei Tian, Email ;
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People’s Republic of China
| |
Collapse
|
31
|
Interactions of Bacterial Toxin CNF1 and Host JAK1/2 Driven by Liquid-Liquid Phase Separation Enhance Macrophage Polarization. mBio 2022; 13:e0114722. [PMID: 35766380 PMCID: PMC9426534 DOI: 10.1128/mbio.01147-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Urinary tract infections (UTIs) are a global public health concern, which is mainly caused by uropathogenic Escherichia coli (UPEC). Cytotoxic necrotizing factor 1 (CNF1) is a key UPEC toxin and regulates multiple host cellular processes through activating the Rho GTPases; however, the effect of CNF1 on macrophage polarization remains unknown. Here, we found that CNF1 promoted M1 macrophage polarization through regulating NF-κB and JAK-STAT1 signaling pathways in kidney at an early stage of acute UTIs. Notably, we identified CNF1 could directly interact with JAK1/2 through its domain without Rho GTPases activation, which induced JAK1/2 phosphorylation, subsequent STAT1 activation and M1 polarization. Moreover, CNF1 exhibited liquid-liquid phase separation (LLPS) to induce a CNF1-JAK1/2 complex, promoting macrophage reprogramming. These findings highlight the LLPS-dependent and Rho GTPase-independent effect of CNF1 as an adaptor on interfering with host cell signals.
Collapse
|
32
|
Thuy TTD, Lu HF, Kuo PY, Lin WH, Lin TP, Lee YT, Duong TTT, Wang MC, Lee YH, Wen LL, Chen YC, Kao CY. Whole-genome-sequence-based characterization of an NDM-5-producing uropathogenic Escherichia coli EC1390. BMC Microbiol 2022; 22:150. [PMID: 35668362 PMCID: PMC9172118 DOI: 10.1186/s12866-022-02562-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Urinary tract infection (UTI) is one of the most common outpatient bacterial infections. In this study, we isolated and characterized an extensively-drug resistant (XDR) NDM-5-producing Escherichia coli EC1390 from a UTI patient by using whole-genome sequencing (WGS) in combination with phenotypic assays. Methods Antimicrobial susceptibility to 23 drugs was determined by disk diffusion method. The genome sequence of EC1390 was determined by Nanopore MinION MK1C platform. Conjugation assays were performed to test the transferability of EC1390 plasmids to E. coli recipient C600. Phenotypic assays, including growth curve, biofilm formation, iron acquisition ability, and cell adhesion, were performed to characterize the function of EC1390 plasmids. Results Our results showed that EC1390 was only susceptible to tigecycline and colistin, and thus was classified as XDR E. coli. A de novo genome assembly was generated using Nanopore 73,050 reads with an N50 value of 20,936 bp and an N90 value of 7,624 bp. WGS analysis showed that EC1390 belonged to the O101-H10 serotype and phylogenetic group A E. coli. Moreover, EC1390 contained 2 conjugative plasmids with a replicon IncFIA (pEC1390-1 with 156,286 bp) and IncFII (pEC1390-2 with 71,840 bp), respectively. No significant difference was observed in the bacterial growth rate in LB broth and iron acquisition ability between C600, C600 containing pEC1390-1, C600 containing pEC1390-2, and C600 containing pEC1390-1 and pEC1390-2. However, the bacterial growth rate in nutrition-limited M9 broth was increased in C600 containing pEC1390-2, and the cell adhesion ability was increased in C600 containing both pEC1390-1 and pEC1390-2. Moreover, these plasmids modulated the biofilm formation under different conditions. Conclusions In summary, we characterized the genome of XDR-E. coli EC1390 and identified two plasmids contributing to the antimicrobial resistance, growth of bacteria in a nutrition-limited medium, biofilm formation, and cell adhesion. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02562-6.
Collapse
Affiliation(s)
- Tran Thi Dieu Thuy
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan
| | - Hsu-Feng Lu
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung City, Taiwan
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Ping Lin
- Department of Urology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tran Thi Thuy Duong
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan
| | - Ming-Cheng Wang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hong Lee
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan
| | - Li-Li Wen
- Department of Clinical Laboratory, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
33
|
In-Human Multiyear Evolution of Carbapenem-Resistant Klebsiella pneumoniae Causing Chronic Colonization and Intermittent Urinary Tract Infections: A Case Study. mSphere 2022; 7:e0019022. [PMID: 35531657 PMCID: PMC9241548 DOI: 10.1128/msphere.00190-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a frequent pathogen of the urinary tract, but how CRKP adapts in vivo over time is unclear. We examined 10 CRKP strains from a patient who experienced chronic colonization and recurrent urinary tract infections over a period of 4.5 years. We performed whole-genome sequencing and phenotypic assays to compare isolates that had evolved relative to the first isolate collected and to correlate genetic and phenotypic changes over time with the meropenem-containing regimen received. Phylogenetic analysis indicated that all 10 strains originated from the same sequence type 258 (ST258) clone and that three sublineages (SL) evolved over time; strains from two dominant sublineages were selected for detailed analysis. Up to 60 new mutations were acquired progressively in genes related to antibiotic resistance, cell metabolism, and biofilm production over time. Doubling of meropenem MICs, increases in biofilm production and blaKPC expression, and altered carbon metabolism occurred in the latter strains from the last sublineage compared to the initial strain. Subinhibitory meropenem exposure in vitro significantly induced or maintained high levels of biofilm production in colonizing isolates, but isolates causing infection were unaffected. Despite acquiring different mutations that affect carbon metabolism, overall carbon utilization was maintained across different strains. Together, these data showed that isolated urinary CRKP evolved through multiple adaptations affecting carbon metabolism, carbapenem resistance, and biofilm production to support chronic colonization and intermittent urinary tract infections. Our findings highlight the pliability of CRKP in adapting to repeated antibiotic exposure and should be considered when developing novel therapeutic and stewardship strategies. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKP) can cause a variety of infections such as recurrent urinary tract infections (rUTI) with the ability to change with the host environment over time. However, it is unclear how CRKP adapts to the urinary tract during chronic infections and colonization. Here, we studied the evolution of CRKP strains from a patient who experienced chronic colonization and recurrent UTIs over a period of 4.5 years despite multiple treatment courses with meropenem-containing regimens. Our findings show the flexibility of CRKP strains in developing changes in carbapenem resistance, biofilm production, and carbon metabolism over time, which could facilitate their persistence in the human body for long periods of time in spite of repeated antibiotic therapy.
Collapse
|
34
|
Andersen S, Nawrocki A, Johansen AE, Herrero-Fresno A, Menéndez VG, Møller-Jensen J, Olsen JE. Proteomes of Uropathogenic Escherichia coli Growing in Human Urine and in J82 Urinary Bladder Cells. Proteomes 2022; 10:proteomes10020015. [PMID: 35645373 PMCID: PMC9149909 DOI: 10.3390/proteomes10020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) are the most common cause of urinary tract infection (UTI). UPEC normally reside in the intestine, and during establishment of UTI, they undergo metabolic adaptations, first to urine and then upon tissue invasion to the bladder cell interior. To understand these adaptations, we used quantitative proteomic profiling to characterize protein expression of the UPEC strain UTI89 growing in human urine and when inside J82 bladder cells. In order to facilitate detection of UPEC proteins over the excess amount of eukaryotic proteins in bladder cells, we developed a method where proteins from UTI89 grown in MOPS and urine was spiked-in to enhance detection of bacterial proteins. More than 2000 E. coli proteins were detected. During growth in urine, proteins associated with iron acquisition and several amino acid uptake and biosynthesis systems, most prominently arginine metabolism, were significantly upregulated. During growth in J82 cells, proteins related to iron uptake and arginine metabolisms were likewise upregulated together with proteins involved in sulfur compound turnover. Ribosomal proteins were downregulated relative to growth in MOPS in this environment. There was no direct correlation between upregulated proteins and proteins reported to be essential for infections, showing that upregulation during growth does not signify that the proteins are essential for growth under a condition.
Collapse
Affiliation(s)
- Sisse Andersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (A.N.); (J.M.-J.)
| | - Andreas Eske Johansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
| | - Vanesa García Menéndez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (A.N.); (J.M.-J.)
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark; (S.A.); (A.E.J.); (A.H.-F.); (V.G.M.)
- Correspondence:
| |
Collapse
|
35
|
Fortney KR, Smith SN, van Rensburg JJ, Brothwell JA, Gardner JJ, Katz BP, Ahsan N, Duerfeldt AS, Mobley HLT, Spinola SM. CpxA Phosphatase Inhibitor Activates CpxRA and Is a Potential Treatment for Uropathogenic Escherichia coli in a Murine Model of Infection. Microbiol Spectr 2022; 10:e0243021. [PMID: 35297652 PMCID: PMC9045377 DOI: 10.1128/spectrum.02430-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/19/2022] [Indexed: 11/20/2022] Open
Abstract
CpxRA is an envelope stress response system that is highly conserved in the Enterobacteriaceae. CpxA has kinase activity for CpxR and phosphatase activity for phospho-CpxR (CpxR-P), a transcription factor. In response to membrane stress, CpxR-P is produced and upregulates genes involved in membrane repair and downregulates genes that encode virulence factors that are trafficked across the cell membrane. Mutants that constitutively activate CpxRA in Salmonella enterica serovar Typhimurium and in uropathogenic Escherichia coli (UPEC) are attenuated in murine models. We hypothesized that pharmacologic activation of CpxR could serve as an antimicrobial/antivirulence strategy and recently showed that 2,3,4,9-tetrahydro-1H-carbazol-1-amines activate the CpxRA system by inhibiting CpxA phosphatase activity. Here, we tested the ability of a series of three CpxRA-activating compounds with increasing potency to clear UPEC stain CFT073 in a murine urinary tract infection model. We show that these compounds are well tolerated and achieve sufficient levels to activate CpxR in the kidneys, bladder, and urine. Although the first two compounds were ineffective in promoting clearance of CFT073 in the murine model, the most potent derivative, compound 26, significantly reduced bacterial recovery in the urine and trended toward reducing bacterial recovery in the bladder and kidneys, with efficacy similar to ciprofloxacin. Treatment of CFT073 cultured in human urine with compound 26 fostered accumulation of CpxR-P and decreased the expression of proteins involved in siderophore biosynthesis and binding, heme degradation, and flagellar movement. These studies suggest that chemical activation of CpxRA may present a viable strategy for treating infections due to UPEC. IMPORTANCE The increasing prevalence of urinary tract infections (UTIs) due to antibiotic-resistant uropathogenic Escherichia coli (UPEC) is a major public health concern. Bacteria contain proteins that sense their environment and have no human homologs and, thus, are attractive drug targets. CpxRA is a conserved sensing system whose function is to reduce stress in the bacterial cell membrane; activation of CpxRA reduces the expression of virulence determinants, which must cross the cell membrane to reach the bacterial surface. We previously identified a class of compounds that activate CpxRA. We show in a mouse UTI model that our most potent compound significantly reduced recovery of UPEC in the urine, trended toward reducing bacterial recovery in the bladder and kidneys, did not kill UPEC, and downregulated multiple proteins involved in UPEC virulence. Since these compounds do not act by a killing mechanism, they have potential to treat UTIs caused by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Kate R. Fortney
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Julia J. van Rensburg
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Julie A. Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jessi J. Gardner
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Barry P. Katz
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biostatistics, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Adam S. Duerfeldt
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stanley M. Spinola
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
36
|
Liu J, Lin X, Soteyome T, Ye Y, Chen D, Yang L, Xu Z. A strategy design based on antibiotic‑resistance and plasmid replicons genes of clinical Escherichia coli strains. Bioengineered 2022; 13:7500-7514. [PMID: 35259054 PMCID: PMC9208507 DOI: 10.1080/21655979.2022.2047543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since antimicrobial resistance, especially β-lactam resistance genes were common in clinical Escherichia coli strains, this study had designed and developed multiplex amplification platform for rapid and accurate detection of such resistance genes in 542 clinical E. coli isolates. The obtained specimens were subjected to bacteriological examination, antimicrobial susceptibility testing, and detection of β-lactamase genes and plasmid replicons. The major virulence genes were detected by 7 groups of multiplex PCR and eight groups of multiplex PCR were designed to detect 8 different plasmid replicons including parA-parB, iteron, repA, and RNAI. It was found that most MDR isolates were co-resistant to penicillins (AMP) and fluoroquindones (LVX, CIP) and distribution of LVX and CIP resistance was significantly higher among female than male gender. RNAI (AY234375) showed the highest detection rate, followed by the iteron (J01724) and repA (M26308), indicating the relatively higher carriage rate of corresponding plasmids. BlaOXA acquired the highest carriage rate, followed by group 2 blaCTX-M and blaSHV-1, indicating their prevalence among clinical E. coli. Among the β-lactamase genes, blaOXA acquired the highest carriage rate, followed by group 2 blaCTX-M and blaSHV-1, indicating their prevalence among clinical E. coli. The RNAI (AY234375) showed the highest detection rate, followed by the iteron (J01724) and repA (M26308), indicating the relatively higher carriage rate of the corresponding plasmids by clinical E. coli isolates. It is shown that the developed multiplex amplification methodology is applicable to AMR detection, and such identification of plasmid replicons and β-lactamase genes may aid in the understanding of clinical E. coli isolate epidemiology.
Collapse
Affiliation(s)
- Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China.,Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.,Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xin Lin
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China.,Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.,Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Sarshar M, Scribano D, Limongi D, Zagaglia C, Palamara AT, Ambrosi C. Adaptive strategies of uropathogenic Escherichia coli CFT073: from growth in lab media to virulence during host cell adhesion. Int Microbiol 2022; 25:481-494. [PMID: 35106679 DOI: 10.1007/s10123-022-00235-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Urinary tract infections (UTIs) are a major concern in public health. The prevalent uropathogenic bacterium in healthcare settings is Escherichia coli. The increasing rate of antibiotic-resistant strains demands studies to understand E. coli pathogenesis to drive the development of new therapeutic approaches. This study compared the gene expression profile of selected target genes in the prototype uropathogenic E. coli (UPEC) strain CFT073 grown in Luria Bertani (LB), artificial urine (AU), and during adhesion to host bladder cells by semi-quantitative real-time PCR (RT-PCR) assays. AU effectively supported the growth of strain CFT073 as well as other E. coli strains with different lifestyles, thereby confirming the appropriateness of this medium for in vitro models. Unexpectedly, gene expression of strain CFT073 in LB and AU was quite similar; conversely, during the adhesion assay, adhesins and porins were upregulated, while key global regulators were downregulated with respect to lab media. Interestingly, fimH and papGII genes were significantly expressed in all tested conditions. Taken together, these results provide for the first time insights of the metabolic and pathogenic profile of strain CFT073 during the essential phase of host cell adhesion.
Collapse
Affiliation(s)
- Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy.,Dani Di Giò Foundation-Onlus, 00193, Rome, Italy
| | - Dolores Limongi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS San Raffaele Rome, 00166, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy.,Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS San Raffaele Rome, 00166, Rome, Italy.
| |
Collapse
|
38
|
The Promoter of the Immune-Modulating Gene TIR-Containing Protein C of the Uropathogenic Escherichia coli Strain CFT073 Reacts to the Pathogen's Environment. Int J Mol Sci 2022; 23:ijms23031148. [PMID: 35163072 PMCID: PMC8835471 DOI: 10.3390/ijms23031148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
The TIR-containing protein C (TcpC) of the uropathogenic Escherichia coli strain CFT073 modulates innate immunity by interfering with the Toll-like receptor and NALP3 inflammasome signaling cascade. During a urinary tract infection the pathogen encounters epithelial and innate immune cells and replicates by several orders of magnitude. We therefore analyzed whether these cell types and also the density of the pathogen would induce the recently defined promoter of the CFT073 tcpC gene to, in time, dampen innate immune responses. Using reporter constructs we found that the uroepithelial cell line T24/83 and the monocytic cell line THP-1 induced the tcpC promoter. Differentiation of monocytic THP-1 cells to macrophages increased their potential to switch on the promoter. Cell-associated CFT073 displayed the highest promoter activity. Since potassium represents the most abundant intracellular ion and is secreted to induce the NLRP3 inflammasome, we tested its ability to activate the tcpC promoter. Potassium induced the promoter with high efficiency. Sodium, which is enriched in the renal cortex generating an antibacterial hypersalinity, also induced the tcpC promoter. Finally, the bacterial density modulated the tcpC promoter activity. In the search for promoter-regulating proteins, we found that the DNA-binding protein H-NS dampens the promoter activity. Taken together, different cell types and salts, present in the kidney, are able to induce the tcpC promoter and might explain the mechanism of TcpC induction during a kidney infection with uropathogenic E. coli strains.
Collapse
|
39
|
Distinct Characteristics of Escherichia coli Isolated from Patients with Urinary Tract Infections in a Medical Center at a Ten-Year Interval. Pathogens 2021; 10:pathogens10091156. [PMID: 34578189 PMCID: PMC8469484 DOI: 10.3390/pathogens10091156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli causing urinary tract infections (UTIs) are one of the most common outpatient bacterial infections. This study aimed to compare the characteristics of E. coli isolated from UTI patients in a single medical center in 2009-2010 (n = 504) and 2020 (n = 340). The antimicrobial susceptibility of E. coli was determined by the disk diffusion method. PCRs were conducted to detect phylogenetic groups, ST131, K1 capsule antigen, and 15 virulence factors. Phylogenetic group B2 dominated in our 2009-2010 and 2020 isolates. Moreover, no phylogenetic group E strains were isolated in 2020. E. coli isolates in 2020 were more susceptible to amoxicillin, ampicillin/sulbactam, cefuroxime, cefmetazole, ceftazidime, cefoxitin, tetracycline, and sulfamethoxazole/trimethoprim, compared to the isolates in 2009-2010. Extensively drug-resistant (XDR)-E. coli in 2009-2010 were detected in groups B1 (5 isolates), B2 (12 isolates), F (8 isolates), and unknown (1 isolate). In 2020, XDR-E. coli were only detected in groups A (2 isolates), B2 (5 isolates), D (1 isolate), and F (4 isolates). The prevalence of virulence factor genes aer and fimH were higher in E. coli in 2009-2010 compared to those in 2020. In contrast, afa and sat showed higher frequencies in E. coli isolates in 2020 compared to E. coli in 2009-2010.
Collapse
|
40
|
Minnullina L, Kostennikova Z, Evtugin V, Akosah Y, Sharipova M, Mardanova A. Diversity in the swimming motility and flagellar regulon structure of uropathogenic Morganella morganii strains. Int Microbiol 2021; 25:111-122. [PMID: 34363151 DOI: 10.1007/s10123-021-00197-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
In current times, the opportunistic pathogen Morganella morganii is increasingly becoming a cause of urinary tract infections. The condition has been further complicated by the multiple drug resistance of most isolates. Swimming motility plays an important role in the development of urinary tract infections, allowing bacteria to colonize the upper urinary tract. We determined the differences between the growth, swimming motility, and biofilm formation of two M. morganii strains MM 1 and MM 190 isolated from the urine of patients who had community-acquired urinary tract infections. MM 190 showed a lower growth rate but better-formed biofilms in comparison to MM 1. In addition, MM 190 possessed autoaggregation abilities. It was found that a high temperature (37 °C) inhibits the flagellation of strains and makes MM 190 less motile. At the same time, the MM 1 strain maintained its rate of motility at this temperature. We demonstrated that urea at a concentration of 1.5% suppresses the growth and swimming motility of both strains. Genome analysis showed that MM 1 has a 17.7-kb-long insertion in flagellar regulon between fliE and glycosyltransferase genes, which was not identified in corresponding loci of MM 190 and 9 other M. morganii strains with whole genomes. Both strains carry two genes encoding flagellin, which may indicate flagellar antigen phase variation. However, the fliC2 genes have only 91% identity to each other and exhibit some variability in the regulatory region. We assume that all these differences influence the swimming motility of the strains.
Collapse
Affiliation(s)
- Leyla Minnullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia.
| | - Zarina Kostennikova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Vladimir Evtugin
- Interdisciplinary Center for Analytical Microscopy, Kazan (Volga region) Federal University, Kazan, Russia
| | - Yaw Akosah
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Margarita Sharipova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| | - Ayslu Mardanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
41
|
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, Rohn JL. Recurrent Urinary Tract Infection: A Mystery in Search of Better Model Systems. Front Cell Infect Microbiol 2021; 11:691210. [PMID: 34123879 PMCID: PMC8188986 DOI: 10.3389/fcimb.2021.691210] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases worldwide but are significantly understudied. Uropathogenic E. coli (UPEC) accounts for a significant proportion of UTI, but a large number of other species can infect the urinary tract, each of which will have unique host-pathogen interactions with the bladder environment. Given the substantial economic burden of UTI and its increasing antibiotic resistance, there is an urgent need to better understand UTI pathophysiology - especially its tendency to relapse and recur. Most models developed to date use murine infection; few human-relevant models exist. Of these, the majority of in vitro UTI models have utilized cells in static culture, but UTI needs to be studied in the context of the unique aspects of the bladder's biophysical environment (e.g., tissue architecture, urine, fluid flow, and stretch). In this review, we summarize the complexities of recurrent UTI, critically assess current infection models and discuss potential improvements. More advanced human cell-based in vitro models have the potential to enable a better understanding of the etiology of UTI disease and to provide a complementary platform alongside animals for drug screening and the search for better treatments.
Collapse
Affiliation(s)
- Benjamin O. Murray
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Carlos Flores
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Corin Williams
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Deborah A. Flusberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Elizabeth E. Marr
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Karolina M. Kwiatkowska
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| | - Joseph L. Charest
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Brett C. Isenberg
- Department of Bioengineering, Charles Stark Draper Laboratory, Inc., Cambridge, MA, United States
| | - Jennifer L. Rohn
- Centre for Urological Biology, Department of Renal Medicine, University College London, London, United Kingdom
| |
Collapse
|
42
|
The Nutrient and Energy Pathway Requirements for Surface Motility of Nonpathogenic and Uropathogenic Escherichia coli. J Bacteriol 2021; 203:JB.00467-20. [PMID: 33782053 PMCID: PMC8117529 DOI: 10.1128/jb.00467-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Uropathogenic E. coli (UPEC) is the causative pathogen for most uncomplicated urinary tract infections. Motility is likely to contribute to these infections, and E. coli possesses flagella-dependent swimming motility, flagella-dependent surface motility (often called swarming), and the recently observed pili-dependent surface motility. Surface motility has not been extensively studied, but for the strains that have been tested nonpathogenic E. coli (NPEC) lab strains use pili, NPEC hypermotile derivatives of these lab strains use flagella, and UPEC strains use flagella. Using a representative of these three types of strains, we showed differences in the nutritional and pathway requirements for surface motility with respect to the glucose concentration, the glycolytic pathway utilized, acetogenesis, and the TCA cycle. In addition, glucose controlled flagella synthesis for the NPEC strain, but not for the hypermotile NPEC variant or the UPEC strain. The requirements for surface motility are likely to reflect major metabolic differences between strains for the pathways and regulation of energy metabolism.IMPORTANCEUrinary tract infections (UTIs) are one of the most common bacterial infections and are an increasing burden on the healthcare system because of recurrence and antibiotic resistance (1, 2). The most common uropathogen is E. coli (3, 4), which is responsible for about 80-90% of community acquired UTIs and 40-50% of nosocomial acquired UTIs (2). Virulence requires both pili and flagella, and either appendage can contribute to surface motility, although surface motility of uropathogenic E. coli has not been examined. We found different appendage, nutrient and pathway requirements for surface motility of a nonpathogenic E. coli lab strain and a uropathogenic E. coli We propose that these differences are the result of differences in the pathways and regulation of energy metabolism.
Collapse
|
43
|
Lin WH, Wang MC, Liu PY, Chen PS, Wen LL, Teng CH, Kao CY. Escherichia coli urinary tract infections: Host age-related differences in bacterial virulence factors and antimicrobial susceptibility. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:249-256. [PMID: 33972179 DOI: 10.1016/j.jmii.2021.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) are one of the most common outpatient bacterial infections. Although bacterial and host factors are reported to be associated with UTI pathogenesis, little is known about the host age-related differences in bacterial virulence factors and antimicrobial susceptibility. METHODS PCRs were carried out to detect K1 capsule antigen, 15 virulence factors, and phylogenetic groups in E. coli isolates. Antimicrobial susceptibility of selected agents was determined by the disk diffusion method. Isolates were divided into 6 groups based on their host age. RESULTS The results showed that virulence factors PapGII, PapGIII, Cnf1, Aer, Usp, Iha, OmpT, HlyA, and Sat, had highest frequencies in the host age group 0-3. Phylogenetic group B2 dominated in our isolates (59.6%) followed by group D (20.7%). In addition, 77.4% of strains isolated from 0 to 3 age group belonged to phylogenetic group B2. Antimicrobial susceptibility tests showed that E. coli strains isolated were significantly more resistant to antimicrobial agents as host age increased. Phylogenetic group B2 isolates were more susceptible to antimicrobial agents, compared to A, B1, and D isolates. CONCLUSION We found E. coli isolated from elders were more resistant to antimicrobial agents and had less virulence factors.
Collapse
Affiliation(s)
- Wei-Hung Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Cheng Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Yao Liu
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Shun Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089-0482, United States
| | - Li-Li Wen
- Department of Clinical Laboratory, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
44
|
Escherichia coli Sequence Type 457 Is an Emerging Extended-Spectrum-β-Lactam-Resistant Lineage with Reservoirs in Wildlife and Food-Producing Animals. Antimicrob Agents Chemother 2020; 65:AAC.01118-20. [PMID: 33020161 DOI: 10.1128/aac.01118-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 01/16/2023] Open
Abstract
Silver gulls carry phylogenetically diverse Escherichia coli, including globally dominant extraintestinal pathogenic E. coli (ExPEC) sequence types and pandemic ExPEC-ST131 clades; however, our large-scale study (504 samples) on silver gulls nesting off the coast of New South Wales identified E. coli ST457 as the most prevalent. A phylogenetic analysis of whole-genome sequences (WGS) of 138 ST457 samples comprising 42 from gulls, 2 from humans (Australia), and 14 from poultry farmed in Paraguay were compared with 80 WGS deposited in public databases from diverse sources and countries. E. coli ST457 strains are phylogenetic group F, carry fimH145, and partition into five main clades in accordance to predominant flagella H-antigen carriage. Although we identified considerable phylogenetic diversity among the 138 ST457 strains, closely related subclades (<100 SNPs) suggested zoonotic or zooanthroponosis transmission between humans, wild birds, and food-producing animals. Australian human clinical and gull strains in two of the clades were closely related (≤80 SNPs). Regarding plasmid content, country, or country/source, specific connections were observed, including I1/ST23, I1/ST314, and I1/ST315 disseminating bla CMY-2 in Australia, I1/ST113 carrying bla CTX-M-8 and mcr-5 in Paraguayan poultry, and F2:A-:B1 plasmids of Dutch origin being detected across multiple ST457 clades. We identified a high prevalence of nearly identical I1/ST23 plasmids carrying bla CMY-2 among Australian gull and clinical human strains. In summary, ST457 is a broad host range, geographically diverse E. coli lineage that can cause human extraintestinal disease, including urinary tract infection, and displays a remarkable ability to capture mobile elements that carry and transmit genes encoding resistance to critically important antibiotics.
Collapse
|
45
|
Abbott IJ, Roberts JA, Meletiadis J, Peleg AY. Antimicrobial pharmacokinetics and preclinical in vitro models to support optimized treatment approaches for uncomplicated lower urinary tract infections. Expert Rev Anti Infect Ther 2020; 19:271-295. [PMID: 32820686 DOI: 10.1080/14787210.2020.1813567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Urinary tract infections (UTIs) are extremely common. Millions of people, particularly healthy women, are affected worldwide every year. One-in-two women will have a recurrence within 12-months of an initial UTI. Inadequate treatment risks worsening infection leading to acute pyelonephritis, bacteremia and sepsis. In an era of increasing antimicrobial resistance, it is critical to provide optimized antimicrobial treatment. AREAS COVERED Literature was searched using PubMed and Google Scholar (up to 06/2020), examining the etiology, diagnosis and oral antimicrobial therapy for uncomplicated UTIs, with emphasis on urinary antimicrobial pharmacokinetics (PK) and the application of dynamic in vitro models for the pharmacodynamic (PD) profiling of pathogen response. EXPERT OPINION The majority of antimicrobial agents included in international guidelines were developed decades ago without well-described dose-response relationships. Microbiology laboratories still apply standard diagnostic methodology that has essentially remained unchanged for decades. Furthermore, it is uncertain how relevant standard in vitro susceptibility is for predicting antimicrobial efficacy in urine. In order to optimize UTI treatments, clinicians must exploit the urine-specific PK of antimicrobial agents. Dynamic in vitro models are valuable tools to examine the PK/PD and urodynamic variables associated with UTIs, while informing uropathogen susceptibility reporting, optimized dosing schedules, clinical trials and treatment guidelines.
Collapse
Affiliation(s)
- Iain J Abbott
- Department of Infectious Diseases, the Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,School of Pharmacy, Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Greece
| | - Anton Y Peleg
- Department of Infectious Diseases, the Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
46
|
Zhang F, Li B, Dong H, Chen M, Yao S, Li J, Zhang H, Liu X, Wang H, Song N, Zhang K, Du N, Xu S, Gu L. YdiV regulates Escherichia coli ferric uptake by manipulating the DNA-binding ability of Fur in a SlyD-dependent manner. Nucleic Acids Res 2020; 48:9571-9588. [PMID: 32813023 PMCID: PMC7515728 DOI: 10.1093/nar/gkaa696] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Iron is essential for all bacteria. In most bacteria, intracellular iron homeostasis is tightly regulated by the ferric uptake regulator Fur. However, how Fur activates the iron-uptake system during iron deficiency is not fully elucidated. In this study, we found that YdiV, the flagella gene inhibitor, is involved in iron homeostasis in Escherichia coli. Iron deficiency triggers overexpression of YdiV. High levels of YdiV then transforms Fur into a novel form which does not bind DNA in a peptidyl-prolyl cis-trans isomerase SlyD dependent manner. Thus, the cooperation of YdiV, SlyD and Fur activates the gene expression of iron-uptake systems under conditions of iron deficiency. Bacterial invasion assays also demonstrated that both ydiV and slyD are necessary for the survival and growth of uropathogenic E. coli in bladder epithelial cells. This reveals a mechanism where YdiV not only represses flagella expression to make E. coli invisible to the host immune system, but it also promotes iron acquisition to help E. coli overcome host nutritional immunity.
Collapse
Affiliation(s)
- Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, P.R. China
| | - Hongjie Dong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Min Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Shun Yao
- School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Jingwen Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266237, P.R. China
| | - Honghai Zhang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, P. R. China
| | - Xiangguo Liu
- School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, P.R. China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Ning Du
- School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| |
Collapse
|
47
|
Garretto A, Miller-Ensminger T, Ene A, Merchant Z, Shah A, Gerodias A, Biancofiori A, Canchola S, Canchola S, Castillo E, Chowdhury T, Gandhi N, Hamilton S, Hatton K, Hyder S, Krull K, Lagios D, Lam T, Mitchell K, Mortensen C, Murphy A, Richburg J, Rokas M, Ryclik S, Sulit P, Szwajnos T, Widuch M, Willis J, Woloszyn M, Brassil B, Johnson G, Mormando R, Maskeri L, Batrich M, Stark N, Shapiro JW, Montelongo Hernandez C, Banerjee S, Wolfe AJ, Putonti C. Genomic Survey of E. coli From the Bladders of Women With and Without Lower Urinary Tract Symptoms. Front Microbiol 2020; 11:2094. [PMID: 33013764 PMCID: PMC7500147 DOI: 10.3389/fmicb.2020.02094] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023] Open
Abstract
Urinary tract infections (UTIs) are one of the most common human bacterial infections. While UTIs are commonly associated with colonization by Escherichia coli, members of this species also have been found within the bladder of individuals with no lower urinary tract symptoms (no LUTS), also known as asymptomatic bacteriuria. Prior studies have found that both uropathogenic E. coli (UPEC) strains and E. coli isolates that are not associated with UTIs encode for virulence factors. Thus, the reason(s) why E. coli sometimes causes UTI-like symptoms remain(s) elusive. In this study, the genomes of 66 E. coli isolates from adult female bladders were sequenced. These isolates were collected from four cohorts, including women: (1) without lower urinary tract symptoms, (2) overactive bladder symptoms, (3) urgency urinary incontinence, and (4) a clinical diagnosis of UTI. Comparative genomic analyses were conducted, including core and accessory genome analyses, virulence and motility gene analyses, and antibiotic resistance prediction and testing. We found that the genomic content of these 66 E. coli isolates does not correspond with the participant's symptom status. We thus looked beyond the E. coli genomes to the composition of the entire urobiome and found that the presence of E. coli alone was not sufficient to distinguish between the urobiomes of individuals with UTI and those with no LUTS. Because E. coli presence, abundance, and genomic content appear to be weak predictors of UTI status, we hypothesize that UTI symptoms associated with detection of E. coli are more likely the result of urobiome composition.
Collapse
Affiliation(s)
- Andrea Garretto
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
| | | | - Adriana Ene
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
| | - Zubia Merchant
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Aashaka Shah
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
| | - Athina Gerodias
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
| | - Anthony Biancofiori
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Stacey Canchola
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Stephanie Canchola
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Emanuel Castillo
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Tasnim Chowdhury
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Nikita Gandhi
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Sarah Hamilton
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Kyla Hatton
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Syed Hyder
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Koty Krull
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Demetrios Lagios
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Thinh Lam
- Neuroscience Program, Loyola University Chicago, Chicago, IL, United States
| | - Kennedy Mitchell
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Christine Mortensen
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Amber Murphy
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Joseph Richburg
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Meghan Rokas
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Suzanne Ryclik
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Pauline Sulit
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Thomas Szwajnos
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Manuel Widuch
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Jessica Willis
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Mary Woloszyn
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Bridget Brassil
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Genevieve Johnson
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
| | - Rita Mormando
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
| | - Laura Maskeri
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
| | - Mary Batrich
- Niehoff School of Nursing, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Nicole Stark
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Jason W. Shapiro
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Cesar Montelongo Hernandez
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Swarnali Banerjee
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, United States
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, United States
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Department of Computer Science, Loyola University Chicago, Chicago, IL, United States
| |
Collapse
|
48
|
Advances in Understanding the Human Urinary Microbiome and Its Potential Role in Urinary Tract Infection. mBio 2020; 11:mBio.00218-20. [PMID: 32345639 PMCID: PMC7188990 DOI: 10.1128/mbio.00218-20] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent advances in the analysis of microbial communities colonizing the human body have identified a resident microbial community in the human urinary tract (UT). Compared to many other microbial niches, the human UT harbors a relatively low biomass. Studies have identified many genera and species that may constitute a core urinary microbiome. However, the contribution of the UT microbiome to urinary tract infection (UTI) and recurrent UTI (rUTI) pathobiology is not yet clearly understood. Evidence suggests that commensal species within the UT and urogenital tract (UGT) microbiomes, such as Lactobacillus crispatus, may act to protect against colonization with uropathogens. However, the mechanisms and fundamental biology of the urinary microbiome-host relationship are not understood. The ability to measure and characterize the urinary microbiome has been enabled through the development of next-generation sequencing and bioinformatic platforms that allow for the unbiased detection of resident microbial DNA. Translating technological advances into clinical insight will require further study of the microbial and genomic ecology of the urinary microbiome in both health and disease. Future diagnostic, prognostic, and therapeutic options for the management of UTI may soon incorporate efforts to measure, restore, and/or preserve the native, healthy ecology of the urinary microbiomes.
Collapse
|
49
|
Abstract
Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes. Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin.
Collapse
|