1
|
Polani R, De Francesco A, Tomolillo D, Artuso I, Equestre M, Trirocco R, Arcari G, Antonelli G, Villa L, Prosseda G, Visca P, Carattoli A. Cefiderocol Resistance Conferred by Plasmid-Located Ferric Citrate Transport System in KPC-Producing Klebsiella pneumoniae. Emerg Infect Dis 2025; 31:123-124. [PMID: 39714320 DOI: 10.3201/eid3101.241426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Cefiderocol (FDC), a siderophore-cephalosporin conjugate, is the newest option for treating infection with carbapenem-resistant gram-negative bacteria. We identified a novel mechanism contributing to decreased FDC susceptibility in Klebsiella pneumoniae clinical isolates. The mechanism involves 2 coresident plasmids: pKpQIL, carrying variants of blaKPC carbapenemase gene, and pKPN, carrying the ferric citrate transport (FEC) system. We observed increasing FDC MICs in an Escherichia coli model system carrying different natural pKpQIL plasmids, encoding different K. pneumoniae carbapenemase (KPC) variants, in combination with a conjugative low copy number vector carrying the fec gene cluster from pKPN. We observed transcriptional repression of fiu, cirA, fepA, and fhuA siderophore receptor genes in blaKPC-fec-E. coli cells treated with ferric citrate. Screening of 27,793 K. pneumoniae whole-genome sequences revealed that the fec cluster occurs frequently in some globally distributed different KPC-producing K. pneumoniae clones (sequence types 258, 14, 45, and 512), contributing to reduced FDC susceptibility.
Collapse
|
2
|
Bianco G, Boattini M, Lupo L, Ambretti S, Greco R, Degl'Innocenti L, Chiatamone Ranieri S, Fasciana T, Mazzariol A, Gibellini D, Antonelli G, Sacco F, Quirino A, Farina C, Paglietti B, Comini S, Fiamma M, Broccolo F, Cavallo R, Costa C, Gaibani P. In vitro activity and genomic characterization of KPC-producing Klebsiella pneumoniae clinical blood culture isolates resistant to ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam: an Italian nationwide multicentre observational study (2022-23). J Antimicrob Chemother 2024:dkae450. [PMID: 39699187 DOI: 10.1093/jac/dkae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVES To evaluate the in vitro activity of ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam and comparators against KPC-producing Klebsiella pneumoniae (KPC-Kp) clinical isolates collected from a multicentre study in Italy (2022-23) and genomic characterization of the molecular mechanisms causing resistance. METHODS Consecutive KPC-Kp isolates from blood cultures (n = 264) were collected from 14 hospital centres in the period 2022-23. Antimicrobial susceptibility testing was performed using broth microdilution. WGS was used to investigate KPC-Kp strains resistant to the new approved β-lactam/β-lactam inhibitor combinations (BLICs). RESULTS Overall, meropenem/vaborbactam (95.1% susceptible by EUCAST and 93.9% susceptible by CLSI; MIC50 = 0.5 mg/L; MIC90 = 4 mg/L) and imipenem/relebactam (97% susceptible by EUCAST and 92.8% susceptible by CLSI; MIC50 = 0.25 mg/L; MIC90 = 0.5 mg/L) showed similar activity, followed by ceftazidime/avibactam (93.9% susceptible by both EUCAST and CLSI; MIC50 = 2 mg/L; MIC90 = 8 mg/L). Ten out of 13 (76.9%) KPC-Kp resistant to ceftazidime/avibactam carried a blaKPC variant including blaKPC-31, blaKPC-205, blaKPC-203 and blaKPC-93. Among KPC-Kp resistant to meropenem/vaborbactam and imipenem/relebactam, 90.9% (10/11) and 80% (4/5) harboured a WT carbapenemase (i.e. blaKPC-2 or blaKPC-3), respectively. All strains resistant to meropenem/vaborbactam and/or imipenem/relebactam carried truncated OmpK35 and/or mutated (ins135GD) OmpK36. CONCLUSIONS New BLICs were shown to be the most widely active therapeutic option against KPC-Kp clinical isolates collected in Italy. Ceftazidime/avibactam resistance is mainly driven by the expression of KPC variants, whereas the loss of function of the OmpK35 and OmpK36 porins appears to play a key but not exclusive role in the development of meropenem/vaborbactam and/or imipenem/relebactam resistance.
Collapse
Affiliation(s)
- Gabriele Bianco
- Department of Experimental Medicine, University of Salento, Lecce, Italy
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
- Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Laura Lupo
- Clinical Pathology and Microbiology Unit, Vito Fazzi Hospital, Lecce, Italy
| | - Simone Ambretti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti, 9, Bologna 40138, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Rita Greco
- U.O.C. Microbiology and Virology, A.O.R.N. Sant'Anna e San Sebastiano, Caserta 81100, Italy
| | - Linda Degl'Innocenti
- U.O.S. Microbiology e Virology, Clinical Pathology Division A.O.R.N. A. Cardarelli, Naples 80131, Italy
| | | | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo 90127, Italy
| | - Annarita Mazzariol
- Microbiology and Virology Unit, Department of Pathology, Azienda Ospedaliera Universitaria Integrata Di Verona, Verona, Italy
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology and Virology Unit, Department of Pathology, Azienda Ospedaliera Universitaria Integrata Di Verona, Verona, Italy
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Verona, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
- University Hospital Policlinico Umberto I, Sapienza University, Viale del Policlinico 155, Rome 00161, Italy
| | - Federica Sacco
- University Hospital Policlinico Umberto I, Sapienza University, Viale del Policlinico 155, Rome 00161, Italy
| | - Angela Quirino
- Health Sciences Department, University "Magna Graecia" of Catanzaro, Catanzaro 88100, Italy
- Unit of Clinical Microbiology, Department of Health Sciences, University of Catanzaro "Magna Græcia", Catanzaro 88100, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST "Papa Giovanni XXIII", Bergamo 24127, Italy
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| | - Sara Comini
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, Ancona, Italy
| | - Maura Fiamma
- Operative Unit of Clinical Pathology, Ospedale "San Francesco", ASSL Nuoro, Sardinia 08100, Italy
| | - Francesco Broccolo
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
- Department of Public Health and Paediatrics, University of Torino, Turin, Italy
| | - Paolo Gaibani
- Microbiology and Virology Unit, Department of Pathology, Azienda Ospedaliera Universitaria Integrata Di Verona, Verona, Italy
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Zhou P, Gao H, Li M, Wu C, Han W, Wan C, Shen L, Yuan X, Shi J, Huang Y, Lv J, Zhou Y, Yu F. Characterization of a Novel KPC-2 Variant, KPC-228, Conferring Resistance to Ceftazidime-Avibactam in an ST11-KL64 Hypervirulent Klebsiella pneumoniae. Int J Antimicrob Agents 2024:107411. [PMID: 39709132 DOI: 10.1016/j.ijantimicag.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
With the widespread clinical use of ceftazidime-avibactam (CZA), reports of resistance have increased continuously, posing immense threats to public health worldwide. In this study, we explored the underlying mechanisms leading to the development of CZA resistance in an ST11-KL64 hypervirulent Klebsiella pneumoniae CRE146 that harbored the blaKPC-228 gene. Twelve carbapenem-resistant Klebsiella pneumoniae (CRKP) strains were isolated from the same patient, including K. pneumoniae CRE146. Whole genome sequencing (WGS), phylogenetic analysis, blaKPC gene cloning and pACYC-KPC construction assays were conducted to further explore the molecular mechanisms of CZA resistance. Quantitative siderophore production assay, string test, capsule quantification and Galleria mellonella in vivo infection model were applied to verify the level of pathogenicity of K. pneumoniae CRE146. This strain carried key virulence factors, iutA-iucABCD operon and rmpA gene. Compared to the wild-type KPC-2 carbapenemase, the novel KPC-228 enzyme exhibited a deletion of four amino acids in the Ω-loop (del_167-170_ELNS). In addition, the emergence of CZA resistance appeared to be associated with drug exposure, and we observed the in vivo evolution of wild-type KPC-2 to KPC-228 and then the reversion to its original wild-type KPC-2. The blaKPC-228 gene was located within the double IS26 flanking the ISKpn6-blaKPC-228-ISKpn27 core structure and carried on an IncFII/IncR-type plasmid. Notably, CRE146 exhibited high-level resistance to CZA (64/4 mg/L) but increased susceptibility to meropenem (1 mg/L) and imipenem (0.5 mg/L) respectively. PACYC-KPC plasmids were constructed and expressed in K. pneumoniae ATCC13883. Compared to K. pneumoniae ATCC13883 harboring blaKPC-2, K. pneumoniae ATCC13883 harboring blaKPC-228 exhibited a high-level resistance to CZA (32/4 mg/L) and increased susceptibility to meropenem (1 mg/L) and imipenem (0.5 mg/L). Interestingly, K. pneumoniae ATCC13883 harboring blaKPC-228 showed a significant decrease in their resistance to all β-lactamases tested except CZA and ceftazidime. In conclusion, we reported a novel KPC variant, KPC-228, in a clinical ST11-KL64 hypervirulent K. pneumoniae strain, which conferred CZA resistance, possibly through enhancing ceftazidime affinity and reducing avibactam binding. The blaKPC-228 can mutate back to blaKPC-2 under carbapenem pressure, which was very detrimental to clinical treatment. This strain carried both resistance and virulence genes, posing a major challenge in clinical management.
Collapse
Affiliation(s)
- Peiyao Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haojin Gao
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meilan Li
- Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyang Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
| | - Weihua Han
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cailing Wan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xinru Yuan
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junhong Shi
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Huang
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianbo Lv
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Gil-Gil T, Laborda P, Martínez JL, Hernando-Amado S. Use of adjuvants to improve antibiotic efficacy and reduce the burden of antimicrobial resistance. Expert Rev Anti Infect Ther 2024. [PMID: 39670956 DOI: 10.1080/14787210.2024.2441891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION The increase of antibiotic resistance, together with the absence of novel antibiotics, makes mandatory the introduction of novel strategies to optimize the use of existing antibiotics. Among them, the use of molecules that increase their activity looks promising. AREAS COVERED Different categories of adjuvants were reviewed. Anti-resistance adjuvants increase the activity of antibiotics by inhibiting antibiotic resistance determinants. Anti-virulence approaches focus on the infection process itself; reducing virulence in combination with an antibiotic can improve therapeutic efficacy. Combination of phages with antibiotics can also be useful, since they present different mechanisms of action and targets. Finally, combining antibiotics with adjuvants in the same molecule may serve to improve antibiotics' efficacy and overcome potential problems of differential pharmacokinetics/pharmacodynamics. EXPERT OPINION The successful combination of inhibitors of β-lactamases with β-lactams has shown that adjuvants can improve the efficacy of current antibiotics. In this sense, novel anti-resistance adjuvants able to inhibit efflux pumps are still needed, as well as anti-virulence compounds that improve the efficacy of antibiotics by interfering with the infection process. Although adjuvants may present different pharmacodynamics/pharmacokinetics than antibiotics, conjugates containing both compounds can solve this problem. Finally, already approved drugs can be a promising source of antibiotic adjuvants.
Collapse
Affiliation(s)
- Teresa Gil-Gil
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Pablo Laborda
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
5
|
Veeraraghavan B, Walia K, Egli A. Re: 'Potent in-vitro activity of sulbactam-durlobactam against NDM-producing Escherichia coli including cefiderocol and aztreonam-avibactam-resistant isolates' by Poirel et al. Clin Microbiol Infect 2024:S1198-743X(24)00596-2. [PMID: 39672465 DOI: 10.1016/j.cmi.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Affiliation(s)
- Balaji Veeraraghavan
- Department of Clinical Microbiology, Asha Building 8(th) Floor, Christian Medical College and Hospital, Vellore, Tamil Nadu, India.
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India.
| | - Adrian Egli
- Institute of Medical Microbiology, Universität Zürich, Gloriastrasse 28/30, 8006 Zurich, Switzerland.
| |
Collapse
|
6
|
Liu X, Li Z, Zhang F, Yang X, Lei Z, Li C, Wu Y, Zhao J, Zhang Y, Hu Y, Shen F, Wang P, Yang J, Liu Y, Shi H, Lu B. In vitro antimicrobial activity of six novel β-lactam and β-lactamase inhibitor combinations and cefiderocol against NDM-producing Enterobacterales in China. Int J Antimicrob Agents 2024:107407. [PMID: 39672348 DOI: 10.1016/j.ijantimicag.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION To date, the global prevalence of New Delhi metallo-β-lactamase (NDM) in carbapenem-resistant Enterobacterales (CRE) has been of concern, which is not inhibited by classical β-lactamase inhibitors (BLIs). In this study, we investigated the newly developed antimicrobial agents or inhibitors against NDM-producing Enterobacterales (NPEs). METHODS The in vitro activities of cefiderocol, cefepime/taniborbactam, meropenem/taniborbactam, cefepime/zidebactam, meropenem/nacubactam, aztreonam/nacubactam and aztreonam/avibactam were analyzed in 204 NPE strains collected in China. The potential resistance mechanisms were identified by whole genome sequencing. RESULTS Of 204 NPE strains, 18.1% (37/204) were resistant to cefiderocol, in which cirA deleterious alteration, PBP3 insertion and NDM production were taken as potential resistance mechanisms; 28.9% (59/204) were resistant to cefepime/zidebactam, involving K. pneumoniae with ompK35 deleterious alteration; 22.5% (46/204) were resistant to cefepime/taniborbactam, in which YRIN or YRIK inserted in PBP3 and altered ompC are more frequently detected in the resistant E. coli isolates; 27.9% (57/204) were resistant to meropenem/taniborbactam. Aztreonam/avibactam and aztreonam/nacubactam exhibited excellent activity against NPE. However, meropenem/nacubactam had the lowest activity, with only 49.0% (100/204) of all isolates having MICs of <4/4 mg/L. CONCLUSIONS Aztreonam/avibactam and aztreonam/nacubactam showed the highest activity against NPE. The potential resistance mechanisms of novel antimicrobial agents against NPE should be under active surveillance.
Collapse
Affiliation(s)
- Xinmeng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyao Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Changping Laboratory, Beijing, China
| | - Feilong Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinrui Yang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zichen Lei
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; Liuyang Traditional Chinese Medicine Hospital, Changsha, Hunan, China
| | - Yongli Wu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanning Hu
- Peking University China-Japan Friendship School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - FangFang Shen
- Heping Hospital affiliated with Changzhi Medical College, Changzhi, Shanxi, China
| | - Pingbang Wang
- The People's Hospital of Liuyang, Changsha, Hunan, China
| | - Junwen Yang
- Department of Laboratory Medicine, Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan, China
| | - Yulei Liu
- Department of Laboratory Medicine, Beijing Anzhen Hospital, Beijing, China
| | - Huihui Shi
- Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) Nantong, Jiangsu, China
| | - Binghuai Lu
- Peking University China-Japan Friendship School of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; China-Japan Friendship Institute of Clinical Medical Sciences, Beijing, China; Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Richards GA, Perovic O, Brink AJ. The challenges of difficult-to-treat Acinetobacter infections. Clin Microbiol Rev 2024; 37:e0009324. [PMID: 39555919 PMCID: PMC11629631 DOI: 10.1128/cmr.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
SUMMARYInfections due to Acinetobacter spp. are among the most difficult to treat. Most are resistant to standard antibiotics, and there is difficulty in distinguishing colonizers from pathogens. This mini-review examines the available antibiotics that exhibit activity against these organisms and provides guidance as to which cultures are relevant and how to treat active infections. Antibiograms describing resistance mechanisms and the minimum inhibitory concentration (MIC) are essential to determine which agent or combination of agents should be used after confirmation of infection, utilizing clinical parameters and biomarkers such as procalcitonin. Directed therapy should be prompt as despite its reputation as a colonizer, the attributable mortality is high. However, although combination therapy is advised, no specific combination has definite evidence of superiority.
Collapse
Affiliation(s)
- Guy A. Richards
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Olga Perovic
- AMR Division at WITS Health Consortium, Pathologist Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses (CHARM), at the National Institute for Communicable Diseases, a division of NHLS and the University of the Witwatersrand, Johannesburg, South Africa
| | - Adrian J. Brink
- Division of Medical Microbiology, Faculty of Health Sciences, National Health Laboratory Services, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Wang X, Lu Z, Dou L, Ma L, He T, Gao C, Zhao X, Tao J, Luo L, Li Q, Wang Y, Shen Y, Shen J, Wang Z, Wen K. Modified Carba PBP test for rapid detection and differentiation between different classes of carbapenemases in Enterobacterales. Mikrochim Acta 2024; 192:7. [PMID: 39636434 DOI: 10.1007/s00604-024-06859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
An advanced biochemical assay named modified Carba PBP test was innovated to identify and differentiate distinct categories of clinically significant carbapenemases (Ambler classes A, B, and D) within the Enterobacterales. The mechanism of mCarba PBP hinges on two core attributes: (i) the hydrolysis of the meropenem substrate by various carbapenemases, (ii) the immobilized penicillin and free meropenem in their affinity to interact with a limited quantity of penicillin-binding protein (PBP). Specific inhibitors for class A (phenylboronic acid, PBA) and class B (ethylenediaminetetraacetic acid, EDTA) were employed to inhibit the hydrolysis activity of carbapenemase and facilitate the classification of carbapenemase classes within 25 min. A comprehensive evaluation was undertaken using 94 clinical Enterobacterales isolates, comprising 75 carbapenemase-producing strains and 19 non-carbapenemase-producing strains. Its overall specificity and sensitivity were 100% and 97.3%, respectively, including detection of all types of OXA-48-like carbapenemases. For precise carbapenemase type identification, the assay exhibited remarkable sensitivities for class A, class B, and class D detection at 94.7%, 100%, and 100%, respectively. This user-friendly test presents a promising tool for carbapenemase identification, refining the selection of β-lactam/β-endoenzyme inhibitor combinations for effectively treating infections due to carbapenemase-producing organisms.
Collapse
Affiliation(s)
- Xiaonan Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Zhimin Lu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Licai Ma
- Beijing WDWK Biotechnology Co. Ltd, Beijing, 100095, People's Republic of China
| | - Tong He
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Chenxi Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Xiangjun Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Jin Tao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Yingbo Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road 2#, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
9
|
Luo Q, Lu P, Chen Y, Shen P, Zheng B, Ji J, Ying C, Liu Z, Xiao Y. ESKAPE in China: epidemiology and characteristics of antibiotic resistance. Emerg Microbes Infect 2024; 13:2317915. [PMID: 38356197 PMCID: PMC10896150 DOI: 10.1080/22221751.2024.2317915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The escalation of antibiotic resistance and the diminishing antimicrobial pipeline have emerged as significant threats to public health. The ESKAPE pathogens - Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. - were initially identified as critical multidrug-resistant bacteria, demanding urgently effective therapies. Despite the introduction of various new antibiotics and antibiotic adjuvants, such as innovative β-lactamase inhibitors, these organisms continue to pose substantial therapeutic challenges. People's Republic of China, as a country facing a severe bacterial resistance situation, has undergone a series of changes and findings in recent years in terms of the prevalence, transmission characteristics and resistance mechanisms of antibiotic resistant bacteria. The increasing levels of population mobility have not only shaped the unique characteristics of antibiotic resistance prevalence and transmission within People's Republic of China but have also indirectly reflected global patterns of antibiotic-resistant dissemination. What's more, as a vast nation, People's Republic of China exhibits significant variations in the levels of antibiotic resistance and the prevalence characteristics of antibiotic resistant bacteria across different provinces and regions. In this review, we examine the current epidemiology and characteristics of this important group of bacterial pathogens, delving into relevant mechanisms of resistance to recently introduced antibiotics that impact their clinical utility in China.
Collapse
Affiliation(s)
- Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yunbo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital of Medical School, College of medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
10
|
Hidalgo-Tenorio C, Bou G, Oliver A, Rodríguez-Aguirregabiria M, Salavert M, Martínez-Martínez L. The Challenge of Treating Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria: A Narrative Review. Drugs 2024; 84:1519-1539. [PMID: 39467989 DOI: 10.1007/s40265-024-02102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
Gram-negative multidrug-resistant (MDR) bacteria, including Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa, pose a significant challenge in clinical practice. Infections caused by metallo-β-lactamase (MBL)-producing Gram-negative organisms, in particular, require careful consideration due to their complexity and varied prevalence, given that the microbiological diagnosis of these pathogens is intricate and compounded by challenges in assessing the efficacy of anti-MBL antimicrobials. We discuss both established and new approaches in the treatment of MBL-producing Gram-negative infections, focusing on 3 strategies: colistin; the recently approved combination of aztreonam with avibactam (or with ceftazidime/avibactam); and cefiderocol. Despite its significant activity against various Gram-negative pathogens, the efficacy of colistin is limited by resistance mechanisms, while nephrotoxicity and acute renal injury call for careful dosing and monitoring in clinical practice. Aztreonam combined with avibactam (or with avibactam/ceftazidime if aztreonam plus avibactam is not available) exhibits potent activity against MBL-producing Gram-negative pathogens. Cefiderocol in monotherapy is effective against a wide range of multidrug-resistant organisms, including MBL producers, and favorable clinical outcomes have been observed in various clinical trials and case series. After examining scientific evidence in the management of infections caused by MBL-producing Gram-negative bacteria, we have developed a comprehensive clinical algorithm to guide therapeutic decision making. We recommend reserving colistin as a last-resort option for MDR Gram-negative infections. Cefiderocol and aztreonam/avibactam represent favorable options against MBL-producing pathogens. In the case of P. aeruginosa with MBL-producing enzymes and with difficult-to-treat resistance, cefiderocol is the preferred option. Further research is needed to optimize treatment strategies and minimize resistance.
Collapse
Affiliation(s)
- Carmen Hidalgo-Tenorio
- Hospital Universitario Virgen de las Nieves de Granada, Instituto de Investigación Biosanitario de Granada (IBS-Granada), Granada, Spain.
- Departamento de Medicina, Universidad de Granada, Granada, Spain.
| | - German Bou
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miguel Salavert
- Infectious Diseases Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain
- Department of Agricultural Chemistry, Soil Sciences and Microbiology, Universidad de Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Bouvier M, Bachtarzi M, Poirel L, Nordmann P. Rapid detection of imipenem/relebactam susceptibility/resistance in Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 2024; 110:116474. [PMID: 39191152 DOI: 10.1016/j.diagmicrobio.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES Imipenem-relebactam (IPR) has been reported to exhibit a good activity against non-metallo-ß-lactamase carbapenem-resistant Pseudomonas aeruginosa (CRPA), and the rapid detection of susceptibility/resistance to this new therapeutic alternative may be crucial. Therefore, the Rapid IPR Pseudomonas NP test was developed to quickly identify IPR susceptibility/resistance among multidrug-resistant P. aeruginosa. METHODS The principle of the Rapid IPR Pseudomonas NP test is based on visually detecting glucose metabolization by observing (or not) a color change from yellow to red or orange of the red phenol pH indicator in the presence of imipenem at 2 mg/L and relebactam at 4 mg/L A total of 80 clinical Pseudomonas aeruginosa isolates were analyzed, among which 42 isolates were IPR resistant according to EUCAST guidelines (MICs, susceptible ≤2 mg/L, resistant >2 mg/L). Results obtained with the Rapid IPR Pseudomonas NP test were compared with the reference broth microdilution (BMD). RESULTS The sensitivity, specificity and accuracy of the test were found to be 100 %, 89.5 % and 95 %, respectively, using the BMD reference method as a comparator. Moreover, five out of the IPR-susceptible isolates (n = 38) exhibiting an MIC of IPR close to the breakpoint (MIC = 1 mg/L, n = 2; MIC = 2 mg/L, n = 3) yielded to a major error result, namely a positive result with the rapid IPR Pseudomonas NP test (resistance). By contrast, all IPR-resistant isolates (n = 42) were all correctly categorized. CONCLUSIONS The Rapid IPR Pseudomonas NP test is sensitive, specific, and easy to perform and interpret. Therefore, it is suitable for implementation in routine clinical laboratories.
Collapse
Affiliation(s)
- Maxime Bouvier
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland
| | - Mohamed Bachtarzi
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Medical Microbiology laboratory, CHU Mustapha Bacha, Alger, Algeria
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Switzerland.
| |
Collapse
|
12
|
Bassetti M, Vena A, Larosa B, Giacobbe DR. New antibiotics in clinical pipeline for treating infections caused by metallo-β-lactamases producing Gram-negative bacteria. Curr Opin Infect Dis 2024; 37:582-588. [PMID: 39106036 PMCID: PMC11556884 DOI: 10.1097/qco.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
PURPOSE OF REVIEW To discuss novel antibiotics under clinical development, focusing on agents showing in-vitro activity against metallo-β-lactamases (MBL)-producing carbapenem-resistant Gram-negative bacteria (CR-GNB). RECENT FINDINGS Currently, only a few approved agents show activity, alone or in synergistic combinations, against MBL-producing CR-GNB. If approved by regulatory agencies in case of favorable results from ongoing (and, for some agents, already completed) phase-3 studies, some novel β-lactam/β-lactamase inhibitor (BL/BLI) combinations could become available in the next few years as additional important options for treating MBL-producing CR-GNB infections. Additional interesting agents that belong both to BL/BLI combinations and to antibiotic classes other than BL and BL/BLI combinations have also shown activity against MBL-producing CR-GNB, with most of them being in early phases of clinical development. SUMMARY Improving the use of these novel agents through virtuous antimicrobial stewardship frameworks able to guarantee both the efficacious treatment of infections requiring their use and the avoidance of their use whenever not necessary remains a challenge of utmost importance that should not be overlooked.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
13
|
Gundeslioglu OO, Haytoglu Z, Gumus HH, Ekinci F, Kibar F, Cay U, Alabaz D, Ozlu F, Horoz OO, Yıldızdas RD. Clinical experience with ceftazidime/avibactam for the treatment of extensively drug-resistant or pandrug-resistant Klebsiella pneumoniae in neonates and children. Eur J Clin Microbiol Infect Dis 2024; 43:2361-2369. [PMID: 39352616 DOI: 10.1007/s10096-024-04948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE Klebsiella pneumoniae is a significant cause of healthcare-associated infections, resulting in high morbidity and mortality rates due to limited treatment options. In this study, we aimed to evaluate the treatment outcomes and the safety of Ceftazidime-avibactam in infections caused by extensively drug-resistant or pandrug-resistant Klebsiella pneumoniae in pediatric patients. METHODS This study included pediatric patients who received ceftazidime-avibactam treatment due to extensively drug-resistant or pandrug-resistant Klebsiella pneumoniae infections, monitored in the pediatric intensive care, neonatal intensive care, and pediatric wards of Cukurova University Faculty of Medicine between 2022 and 2023. Patients' microbiological responses, clinical responses, medication side effects, and 30-day survival rates were evaluated. RESULTS Eleven pediatric patients were included in the study, of whom nine were male (81.8%). The median age at the initiation of ceftazidime-avibactam treatment was 15 months (range: 14 days-183 months). Sepsis was diagnosed in 9 patients (81.8%). Two premature infants (27 and 35 weeks) were admitted to the neonatal ICU. Regarding the Klebsiella pneumoniae strains, 10 (91%) were extensively drug-resistant (XDR), and 1 (9%) was pandrug-resistant (PDR). Eight strains (72.7%) were carbapenem-resistant, and 9 (81.8%) were colistin-resistant. Microbiological response was noted in 8 patients (72.7%), clinical response was evident in 6 patients (54.5%). The 30-day survival rate was 54.5%, with six patients surviving. CONCLUSION In our study, ceftazidime-avibactam has been identified as a significant treatment option for resistant Klebsiella pneumoniae infection in critically ill children and premature infants with sepsis and organ failure, and it has been found to be well tolerated.
Collapse
Affiliation(s)
- Ozlem Ozgur Gundeslioglu
- Faculty of Medicine, Cukurova University, Adana, Turkey.
- Department of Pediatric Infectious Diseases, Balcalı Hospital, Sarıçam, Adana, Turkey.
| | - Zeliha Haytoglu
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatrics, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Hatice Hale Gumus
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Medical Microbiology, Cukurova University Balcalı Hospital Central Laboratory, Adana, Turkey
| | - Faruk Ekinci
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Intensive Care, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Filiz Kibar
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Medical Microbiology, Cukurova University Balcalı Hospital Central Laboratory, Adana, Turkey
| | - Ummuhan Cay
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Infectious Diseases, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Derya Alabaz
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Infectious Diseases, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Ferda Ozlu
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Neonatology, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Ozden Ozgur Horoz
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Intensive Care, Balcalı Hospital, Sarıçam, Adana, Turkey
| | - Rıza Dincer Yıldızdas
- Faculty of Medicine, Cukurova University, Adana, Turkey
- Department of Pediatric Intensive Care, Balcalı Hospital, Sarıçam, Adana, Turkey
| |
Collapse
|
14
|
Al Musawa M, Bleick CR, Herbin SR, Caniff KE, Van Helden SR, Rybak MJ. Aztreonam-avibactam: The dynamic duo against multidrug-resistant gram-negative pathogens. Pharmacotherapy 2024. [PMID: 39601336 DOI: 10.1002/phar.4629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Antimicrobial resistance poses a significant public health challenge, particularly with the rise of gram-negative hospital-acquired infections resistant to carbapenems. Aztreonam-avibactam (ATM-AVI) is a promising new combination therapy designed to combat multidrug-resistant (MDR) gram-negative bacteria, including those producing metallo-β-lactamases (MBLs). Aztreonam, a monobactam antibiotic, is resistant to hydrolysis by MBLs but can be degraded by other β-lactamases. Avibactam, a novel non-β-lactam β-lactamase inhibitor, effectively neutralizes extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases, restoring aztreonam's efficacy against resistant pathogens. This review covers the chemistry, mechanisms of action, spectrum of activity, pharmacokinetics, pharmacodynamics, and clinical efficacy of ATM-AVI. ATM-AVI combination has shown efficacy against a wide range of resistant Enterobacterales and other gram-negative bacteria in both in vitro and clinical studies. Pharmacokinetic and pharmacodynamic analyses demonstrate that ATM-AVI maintains effective drug concentrations in the body, with dose adjustments recommended for patients with renal impairment. Clinical trials, including the REVISIT and ASSEMBLE studies, have demonstrated the safety and efficacy of ATM-AVI in treating complicated intra-abdominal infections (cIAI), urinary tract infections (UTIs), and hospital-acquired pneumonia (HAP) caused by MDR gram-negative pathogens. The European Medicines Agency (EMA) has approved ATM-AVI for these indications, and further research is ongoing to optimize dosing regimens and expand its clinical use. This combination represents a critical advancement in the fight against antimicrobial resistance, offering a new therapeutic option for treating severe infections caused by MDR gram-negative, including MBL-producing, bacteria.
Collapse
Affiliation(s)
- Mohammed Al Musawa
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Callan R Bleick
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Shelbye R Herbin
- John D. Dingell VA Medical Center, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
| | - Kaylee E Caniff
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Sean R Van Helden
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
- Division of Infectious Diseases, School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
15
|
Le Terrier C, Raro OHF, Saad AM, Nordmann P, Poirel L. In-vitro activity of newly-developed β-lactamase inhibitors avibactam, relebactam and vaborbactam in combination with anti-pseudomonal β-lactam antibiotics against AmpC-overproducing clinical Pseudomonas aeruginosa isolates. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04965-x. [PMID: 39589655 DOI: 10.1007/s10096-024-04965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE Overproduction of the intrinsic chromosomally-encoded AmpC β-lactamase is one of the main mechanisms responsible for broad-spectrum β-lactam resistance in Pseudomonas aeruginosa. Our study aimed to evaluate the in-vitro activity of anti-pseudomonal β-lactam molecules associated with the recently-developed and commercially-available β-lactamase inhibitors, namely avibactam, relebactam and vaborbactam, against P. aeruginosa isolates overproducing their AmpC. METHODS MIC values of ceftazidime, cefepime, meropenem, imipenem and ceftolozane with or without β-lactam inhibitor were determined for 50 AmpC-overproducing P. aeruginosa clinical isolates. MIC breakpoints for resistance were retained at 8 mg/L for β-lactams and β-lactam/β-lactamase inhibitor combinations containing ceftazidime, cefepime and meropenem, while 4 mg/L was used for those containing imipenem and ceftolozane. The concentration of all β-lactamases inhibitors was fixed at 4 mg/L, except for vaborbactam (8 mg/L). RESULTS The rates of isolates not being resistant to ceftazidime, cefepime, meropenem, imipenem and ceftolozane were found at 12%, 22%, 34%, 8% and 74%, respectively. When combined with avibactam, those rates increased to 60%, 62%, 60%, 46%, and 80%, respectively. The highest rates were found with relebactam-based combinations, being 76%, 64%, 66%, 76% and 84%, respectively. By contrast, associations with vaborbactam did not lead to significantly increased "non-resistance" rates. CONCLUSION Our results showed that all combinations including relebactam led to higher "non-resistance" rates against AmpC-overproducing P. aeruginosa clinical isolates. The best activity was achieved by combining ceftolozane and relebactam, that might therefore be considered as an excellent clinical alternative against AmpC overproducers.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Otávio Hallal Ferreira Raro
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
| | - Alaaeldin Mohamed Saad
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Chemin du Musée 18, Fribourg, CH-1700, Switzerland.
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland.
| |
Collapse
|
16
|
Jung J, Park H, Oh S, Choi J, An S, Jeong Y, Kim J, Baek YJ, Lee E, Kim TH. Impact of universal contact precautions and chlorhexidine bathing on the acquisition of carbapenem-resistant enterobacterales in the intensive care unit: a cohort study. Antimicrob Resist Infect Control 2024; 13:139. [PMID: 39578838 PMCID: PMC11583449 DOI: 10.1186/s13756-024-01495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND For the prevention of carbapenem-resistant Enterobacterales (CRE) acquisition in the intensive care unit (ICU), the effectiveness of universal contact precautions (UCP) and chlorhexidine gluconate (CHG) bathing is controversial. METHODS With the aim of evaluating the effectiveness of UCP and CHG on CRE acquisition, this study was conducted in an ICU at a university-affiliated hospital in Seoul. Beginning in April 2017, all patients admitted to the ICU underwent weekly CRE screening and surveillance tests, and beginning in January 2018, UCP and CHG bathing were implemented for all patients. The pre-intervention period spanned from April to December 2017; the post-intervention period spanned from January 2018 to December 2019. The pre- and post-intervention CRE acquisition rates were subsequently compared using Kaplan-Meier analysis and log-rank tests, and independent risk factors for CRE acquisition were analysed using Cox proportional hazard modelling. RESULTS Of 1,747 patients, 35 acquired CRE during their ICU stay. The CRE acquisition rate was 1.94 and 1.45 per 1,000 patient-days before and after the intervention, respectively, with no significant difference (p = 0.357). The incidence rate of multidrug-resistant organism (MDRO) colonisation decreased from 19.33 to 13.57 per 1,000 patient-days, with Poisson regression analysis showing a relative risk of 0.85 (95% confidence interval [CI] 0.738-0.945, p = 0.004). Additionally, multivariable Cox regression revealed that CRE acquisition was significantly associated with carbapenem exposure (adjusted hazard ratio [aHR] 2.555, 95% CI 1.208-5.405, p = 0.013) and the presence of more than four patients colonised with CRE during their ICU stay (aHR 2.639, 95% CI 1.157-5.243, p = 0.019). However, UCP and CHG bathing were not significantly associated with CRE acquisition (aHR 0.657, 95% CI 0.301-1.433; p = 0.291). CONCLUSIONS UCP and CHG bathing did not affect the CRE acquisition rate in the ICU of a low-prevalence area. A multimodal strategy including antibiotic stewardship is necessary for controlling the nosocomial spread of MDROs.
Collapse
Affiliation(s)
- Jongtak Jung
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hyein Park
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Sunmi Oh
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Jiseon Choi
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Seoyun An
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Yeonsu Jeong
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Jinhwa Kim
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Yae Jee Baek
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Eunjung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea.
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea.
| | - Tae Hyong Kim
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesagwan-ro, Yongsan-gu, 04401, Seoul, Republic of Korea
- Infection Control Team, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| |
Collapse
|
17
|
Lee JA, Kuo YW, Du SH, Lee TF, Liao CH, Huang YT, Hsueh PR. High diversity of strain clonality and metallo-β-lactamases genes among carbapenem-resistant Enterobacterales in Taiwan. Eur J Clin Microbiol Infect Dis 2024:10.1007/s10096-024-04993-7. [PMID: 39551908 DOI: 10.1007/s10096-024-04993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE This study aimed to investigate the genetic and clinical characteristics of carbapenem-resistant Enterobacterales (CRE) isolates carrying metallo-β-lactamases (MBLs) genes. METHODS A total of 146 non-duplicated isolates of CRE were collected in 2022. Their ceftazidime/avibactam (CZA) susceptibilities were determined using the E test. The phenotypic identification of carbapenemases was conducted using the modified carbapenem inactivation method, followed by sequencing of the five common carbapenemase genes (blaKPC, blaNDM, blaVIM, blaIMP, and blaOXA-48). Multilocus sequence typing of selected Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae complex isolates were performed. RESULTS Among the 146 CRE isolates, 52 (35.6%) were resistant to CZA. MBL-encoding genes were detected in 46 (31.5%) of all tested CRE isolates, with 82.6% (n = 38) of them exhibiting resistance to CZA. Fourteen isolates were resistant to CZA without any detected MBL genes. The most commonly identified MBL genes were blaIMP (n = 20), followed by blaNDM (n = 19), and blaVIM (n = 5). In CZA-R, the most common definite antibiotic before the CZA E test was CZA (n = 18), followed by tigecycline (n = 13), and fluroquinolone (n = 10). The 14-day and 30-day mortality rates were 9.0% (n = 13) and 22.8% (n = 34), and were associated with intensive care unit admission at onset (P = 0.029 and P = 0.001, respectively). The sequence types of CRE isolates carrying MBLs were diverse without major clones. CONCLUSION The continuous emergence of MBL gene-encoding CRE with multiple clones has led to reduced CZA susceptibilities and worse outcomes.
Collapse
Affiliation(s)
- Jia-Arng Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yao-Wen Kuo
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shin-Hei Du
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tai-Fen Lee
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chun-Hsing Liao
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Colleague of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
- Ph.D Program for Aging, College of Medicine, China Medical University, Taichung, Taiwan.
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
Yang W, Xu H, Zhao Y, Chen W, Ma X, Hu F. Identification of bla KPC-90 in Klebsiella pneumoniae associated with ceftazidime-avibactam resistance and the translocation & truncation of resistant genes mediated by IS26. Int J Antimicrob Agents 2024; 65:107388. [PMID: 39551275 DOI: 10.1016/j.ijantimicag.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVES In this study, we discovered blaKPC-90 in ceftazidime-avibactam resistant clinical isolates of K. pneumoniae from a patient with multiple comorbidities and investigated the resistance & transfer mechanism of blaKPC-90. METHODS K. pneumoniae strains carrying blaKPC-2 and blaKPC-90 were isolated from the patient. Antimicrobial susceptibility tests and whole genome sequencing were performed to investigate the phenotype & genotype of strains. Conjugation assays, cloning experiment, kinetic parameters measuring, outer membrane protein SDS-PAGE and qRT-PCR were performed to explore the spread and antimicrobial resistance mechanisms. RESULTS KPC-90 isolates had an insertion of two amino acids (Thr180_Ser181 ins Tyr Thr) compared to the wildtype KPC-2. Antimicrobial susceptibility testing of isolates with KPC-90 vs. KPC-2 showed ceftazidime-avibactam MICs of >128 vs. 1-2 mg/L, meropenem-vaborbactam MICs of 4 vs. 1 mg/L, meropenem MICs of 4-8 vs. >128 mg/L and imipenem MICs of 0.5-1 vs. 64 mg/L. Analysis of kinetic parameters of KPC-90 compared to KPC-2 showed decreased hydrolysis of carbapenems and increased IC50 of avibactam. Genetic characterization of the plasmid revealed that IS26 could mediate the intramolecular inversion, translocation and truncation of the resistance determinant region. CONCLUSION We have described the case of a patient infected with blaKPC-90-carrying K. pneumoniae strains and investigated the mechanism of resistance to carbapenems and ceftazidime-avibactam associated with blaKPC-2 and its variants. We have also focused on the functional diversity of IS26 in relation to antimicrobial resistance. In the future, it is crucial to pay more attention to the evolution and horizontal transmission of blaKPC.
Collapse
Affiliation(s)
- Weiwei Yang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Heping Xu
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China; Department of Medical Microbiology, Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuanxun Zhao
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wannan Chen
- Department of Medical Microbiology, Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaobo Ma
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China.
| |
Collapse
|
19
|
Sangiorgio G, Calvo M, Stefani S. Aztreonam and avibactam combination therapy for metallo-β-lactamase-producing gram-negative bacteria: a comprehensive review. Clin Microbiol Infect 2024:S1198-743X(24)00532-9. [PMID: 39528085 DOI: 10.1016/j.cmi.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Carbapenem-resistant gram-negative bacteria represent a challenging healthcare threat, accounting for metallo-β-lactamases (MBL) production increase across the world. MBL-producing Enterobacterales and Pseudomonas aeruginosa represent the main target for ultimate antibiotics combinations due to the difficulty to include carbapenems within the antimicrobial treatment. OBJECTIVES To provide a comprehensive review of the current knowledge about the aztreonam/avibactam (ATM-AVI) combination, which has emerged as a promising option for treating MBL-producing bacteria. SOURCES Relevant in vitro and in vivo studies on ATM-AVI effectiveness. CONTENT The review summarizes ATM-AVI characteristics and targets, examining how AVI restores ATM effectiveness against MBLs while protecting it from other β-lactamases. Key in vitro and in vivo studies on ATM-AVI efficacy are presented. IMPLICATIONS This review provides insights into the potential clinical management implications of ATM-AVI for treating carbapenem-resistant gram-negative infections, particularly those caused by MBL-producing organisms.
Collapse
Affiliation(s)
- G Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - M Calvo
- Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Catania, Italy.
| | - S Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Catania, Italy.
| |
Collapse
|
20
|
Cai H, Chen M, Li Y, Wang N, Ni H, Zhang P, Hua X, Yu Y. In vivo divergent evolution of cross-resistance to new β-lactam/β-lactamase inhibitor combinations in Pseudomonas aeruginosa following ceftazidime/avibactam treatment. Infection 2024:10.1007/s15010-024-02432-5. [PMID: 39514175 DOI: 10.1007/s15010-024-02432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To describe and characterize the evolutionary process of cross-resistance to ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam of a carbapenem-resistant Pseudomonas aeruginosa (CRPA) lineage isolated from a patient receiving two courses of ceftazidime/avibactam treatment. METHODS The minimum inhibitory concentrations (MICs) of strains were determined by broth microdilution methods. The mutant genes were identified by the whole genome sequencing results. Cloning, knockout and complementation experiments were used to evaluate the impact of the resistance relative genes on the MICs. Reverse transcription-quantitative PCR was used to evaluate the relative expression of ampC and mexA. The fitness cost was measured by growth curve tests. RESULTS A total of 24 CRPA strains were isolated encompassing the whole ceftazidime/avibactam treatment. The CRPA strains developed high-level resistance to ceftazidime/avibactam and cross-resistance to ceftolozane/tazobactam or imipenem/relebactam, clustering into clade A and clade B, respectively. In both clades, the overexpression of AmpC was crucial to ceftazidime/avibactam resistance, which was driven by AmpD deficiency in clade A and dacB mutation in clade B, respectively. In clade A, mraY mutation and a new allele of AmpC (blaPDC-575) elevated resistance to ceftazidime/avibactam, with blaPDC-575 also conferring resistance to ceftolozane/tazobactam. In clade B, mexB mutation was associated with the resistance to both ceftazidime/avibactam and imipenem/relebactam. Moreover, the fitness costs of P. aeruginosa strains typically increased with the higher MICs of ceftazidime/avibactam. CONCLUSION Divergent resistance evolution resulted in a complex phenotype in the CRPA lineage, posing significant challenge to clinical treatment. The resistance surveillance needs to be prioritized, and new therapeutic strategies are urgently required.
Collapse
Affiliation(s)
- Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Minhua Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yue Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Nanfei Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Hanming Ni
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Piaopiao Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
21
|
Forstner P, Fuchs L, Luxner J, Grisold A, Steinmetz I, Dichtl K. Colistin, Meropenem-Vaborbactam, Imipenem-Relebactam, and Eravacycline Testing in Carbapenem-Resistant Gram-Negative Rods: A Comparative Evaluation of Broth Microdilution, Gradient Test, and VITEK 2. Antibiotics (Basel) 2024; 13:1062. [PMID: 39596756 PMCID: PMC11591322 DOI: 10.3390/antibiotics13111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate and compare the performance of different assays for antimicrobial susceptibility testing (AST) and minimum inhibitory concentration (MIC) determination for reserve antibiotics in carbapenem-resistant Enterobacterales (CREs), Pseudomonas aeruginosa (CRPAs), and Acinetobacter baumannii (CRABs). METHODS An analysis was conducted on 100 consecutive isolates: 50 CREs, 35 CRPAs, and 15 CRABs. Sensititre broth microdilution was used as a reference standard to evaluate the performance of VITEK 2 card AST-XN24 (bioMérieux), the respective gradient tests (bioMérieux), and UMIC colistin broth microdilution test strips (Bruker Daltonics). Errors, essential agreement (EA), and categorical agreement of MICs for colistin (COL), meropenem-vaborbactam (MVB), imipenem-relebactam (IRL), and eravacycline (ERV) were assessed. RESULTS The agreement between both of the COL broth microdilution (BMD) methods was perfect (100/100). The gradient test and VITEK 2 analysis yielded comparable EA rates (92/100 and 72/79, respectively), with the latter not registering any very major errors (VMEs). The MVB gradient test achieved EA in 66 of 85 isolates and VITEK 2 in 70/85. For IRL, EA was reached in 69 and 64 of 85 cases by gradient test and VITEK 2 analysis, respectively. The ERV gradient test yielded false results in nearly all (12/15) CRABs but achieved EA in 46 of 50 CREs. The VITEK system recorded EA for ERV in 60 of 65 isolates. CONCLUSIONS We observed substantial variability in the measured MICs between BMD and the alternative methods. In only a few constellations, VITEK 2 or gradient tests could substitute the reference method. BMD is the method of choice for COL analysis, with VITEK 2 representing an alternative method for CRPA testing. Alternative methods for MVB did not provide reliable results, except for Enterobacterales, when tested with the gradient test. However, resistant results need to be confirmed by BMD. Only BMD can be used for IRL MIC determination. VITEK 2 was mostly accurate in measuring ERV MICs, while the corresponding gradient test yielded reliable results exclusively in CREs. It is essential that laboratories are aware of which testing method provides reliable results for each combination of microorganisms and reserve antibiotics.
Collapse
Affiliation(s)
| | | | | | | | | | - Karl Dichtl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (P.F.)
| |
Collapse
|
22
|
Herrera C, Gomis-Font MA, López-Causapé C, Díez-Aguilar M, Fraile-Ribot PA, Cardeñoso LM, Oliver A. Mechanisms leading to in vivo ceftazidime/avibactam resistance development during treatment of GES-5-producing Pseudomonas aeruginosa infections. Antimicrob Agents Chemother 2024; 68:e0116424. [PMID: 39431817 PMCID: PMC11539206 DOI: 10.1128/aac.01164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
The mechanisms underlying ceftazidime/avibactam resistance development in four ceftazidime/avibactam susceptible/resistant pairs of GES-5-producing ST235 Pseudomonas aeruginosa clinical isolates were investigated. In three of the cases, ceftazidime/avibactam resistance was driven by a single mutation leading to GES-27 (P162Q), GES-29 (P162A), or the novel GES-60 (N136S), as confirmed through cloning experiments. Moreover, these mutations were associated with increased cefiderocol MICs but reduced carbapenem, particularly imipenem/relebactam, resistance. Understanding the complexity of resistance mechanisms to the growing repertoire of antipseudomonal β-lactams is crucial to guide optimized treatments and antimicrobial stewardship measures.
Collapse
Affiliation(s)
- Cristhian Herrera
- Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Maria A. Gomis-Font
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - Carla López-Causapé
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Pablo A. Fraile-Ribot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| | - Laura M. Cardeñoso
- Servicio de Microbiología, Hospital Universitario La Princesa, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma de Mallorca, Spain
| |
Collapse
|
23
|
Le Terrier C, Mlynarcik P, Sadek M, Nordmann P, Poirel L. Relative inhibitory activities of newly developed diazabicyclooctanes, boronic acid derivatives, and penicillin-based sulfone β-lactamase inhibitors against broad-spectrum AmpC β-lactamases. Antimicrob Agents Chemother 2024; 68:e0077524. [PMID: 39365068 PMCID: PMC11539244 DOI: 10.1128/aac.00775-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
The relative inhibitory activities of diazabicyclooctanes (avibactam, relebactam, zidebactam, nacubactam, durlobactam), boronic acid derivatives (vaborbactam, taniborbactam, xeruborbactam), and penicillin-based sulfone derivative enmetazobactam were evaluated against several intrinsic and acquired class C β-lactamases. By contrast to vaborbactam and enmetazobactam, taniborbactam, xeruborbactam, and all diazabicyclooctanes demonstrated effective activities against most AmpC enzymes. Notably, durlobactam exhibited the most pronounced inhibitory effect. Interstingly, the chromosomal AmpC of Acinetobacter baumannii was the least sensitive enzyme to the newly developed β-lactamase inhibitors.
Collapse
Affiliation(s)
- Christophe Le Terrier
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Division of Intensive Care Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Patrik Mlynarcik
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czechia
| | - Mustafa Sadek
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, Fribourg, Switzerland
| |
Collapse
|
24
|
Werner J, Umstätter F, Böhmann MB, Müller H, Beijer B, Hertlein T, Kaschnitz L, Bram V, Kleist C, Klika KD, Mühlberg E, Braune G, Wohlfart S, Gärtner M, Peter S, Zimmermann S, Haberkorn U, Ohlsen K, Brötz-Oesterhelt H, Mier W, Uhl P. Conjugation of Polycationic Peptides Extends the Efficacy Spectrum of β-Lactam Antibiotics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411406. [PMID: 39499737 DOI: 10.1002/advs.202411406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/28/2024] [Indexed: 11/07/2024]
Abstract
Antibiotic-resistant enterococci represent a significant global health challenge. Unfortunately, most β-lactam antibiotics are not applicable for enterococcal infections due to intrinsic resistance. To extend their antimicrobial spectrum, polycationic peptides are conjugated to examples from each of the four classes of β-lactam antibiotics. Remarkably, the β-lactam-peptide conjugates gained an up to 1000-fold increase in antimicrobial activity against vancomycin-susceptible and vancomycin-resistant enterococci. Even against β-lactam-resistant Gram-negative strains, the conjugates are found to be effective despite their size exceeding the exclusion volume of porins. The extraordinary gain of activity can be explained by an altered mode of killing. Of note, the conjugates showed a concentration-dependent activity in contrast to the parent β-lactam antibiotics that exhibited a time-dependent mode of action. In comparison to the parent β-lactams, the conjugates showed altered affinities to the penicillin-binding proteins. Furthermore, it is found that peptide conjugation also resulted in a different elimination route of the compounds when administered to rodents. In mice systemically infected with vancomycin-resistant enterococci, treatment with a β-lactam-peptide conjugate reduced bacterial burden in the liver compared to its originator. Therefore, peptide modification of β-lactam antibiotics represents a promising platform strategy to broaden their efficacy spectrum, particularly against enterococci.
Collapse
Affiliation(s)
- Julia Werner
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Florian Umstätter
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Manuel B Böhmann
- Department of Pharmaceutical Technology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120, Heidelberg, Germany
| | - Hannah Müller
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Barbro Beijer
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Tobias Hertlein
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Laura Kaschnitz
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Veronika Bram
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Christian Kleist
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Karel D Klika
- NMR Spectroscopy Analysis Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Eric Mühlberg
- Department of Pharmaceutical Technology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120, Heidelberg, Germany
| | - Gabriel Braune
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Sabrina Wohlfart
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Martin Gärtner
- Department of Pharmaceutical and Bioorganic Chemistry, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120, Heidelberg, Germany
| | - Silke Peter
- Medical Microbiology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Stefan Zimmermann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Knut Ohlsen
- Institute of Molecular Infection Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Heike Brötz-Oesterhelt
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Philipp Uhl
- Department of Pharmaceutical Technology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
25
|
Bassetti M, Larosa B, Vena A, Giacobbe DR. Novel agents in development for the treatment of resistant Gram-negative infections. Expert Rev Anti Infect Ther 2024; 22:965-976. [PMID: 39292619 DOI: 10.1080/14787210.2024.2407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Several novel agents are in advanced stages of clinical development, potentially expanding our treatment options against third- and fourth-generation cephalosporin-resistant and carbapenem-resistant Gram-negative bacteria (GNB), including those pathogens for which the current number of effective treatments is limited. AREAS COVERED This review focuses on agents that have completed or ongoing phase-3 studies. A PubMed search was conducted up to 31 May 2024. EXPERT OPINION Novel agents in late-stage clinical development belong to the β-lactam or β-lactam/β-lactamase inhibitor combinations class and display variable antimicrobial activity depending on the specific β-lactamases expressed by GNB, particularly carbapenemases. While many of these novel agents demonstrate in vitro activity against carbapenem-resistant GNB, their efficacy has mainly been evaluated in phase-3 randomized controlled trials (RCT) for infections caused by carbapenem-susceptible GNB. Although evidence from real-world observational studies is generally less robust than that from RCT, it could be crucial for updating clinical guidelines on treating carbapenem-resistant GNB with these new agents in the absence of dedicated RCT.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
26
|
O'Jeanson A, Nielsen EI, Friberg LE. Therapeutic drug monitoring (TDM) of β-lactam/β-lactamase inhibitor (BL/BLI) drug combinations: insights from a pharmacometric simulation study. J Antimicrob Chemother 2024:dkae375. [PMID: 39436757 DOI: 10.1093/jac/dkae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The emergence of β-lactamase-producing bacteria has led to the use of β-lactam (BL) antibiotic and β-lactamase inhibitor (BLI) drug combinations. Despite therapeutic drug monitoring (TDM) being endorsed for BLs, the impact of TDM on BLIs remains unclear. OBJECTIVES Evaluate whether BLIs are available in effective exposures at the site of infection and assess if TDM of BLIs could be of interest. METHODS Population pharmacokinetic models for 9 BL and BLI compounds were used to simulate drug concentrations at infection sites following EMA-approved dose regimens, considering plasma protein binding and tissue penetration. Predicted target site concentrations were used for probability of target attainment (PTA) analysis. RESULTS Using EUCAST targets, satisfactory (≥90%) PTA was observed for BLs in patients with typical renal clearance (CrCL of 80 mL/min) across various sites of infection. However, results varied for BLIs. Avibactam achieved satisfactory PTA only in plasma, with reduced PTAs in abdomen (78%), lung (73%) and prostate (23%). Similarly, tazobactam resulted in unsatisfactory PTAs in intra-abdominal infections (79%), urinary tract infections (64%) and prostatitis (34%). Imipenem-relebactam and meropenem-vaborbactam achieved overall satisfactory PTAs, except in prostatitis and high-MIC infections for the latter combination. CONCLUSIONS This study highlights the risk of solely relying on TDM of BLs, as this can indicate acceptable exposures of the BL while the BLI concentration, and consequently the combination, can result in suboptimal performance in terms of bacterial killing. Thus, dose adjustments also based on plasma concentration measurements of BLIs, in particular for avibactam and tazobactam, can be valuable in clinical practice to obtain effective exposures at the target site.
Collapse
Affiliation(s)
| | | | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Lawrence J, O'Hare D, van Batenburg-Sherwood J, Sutton M, Holmes A, Rawson TM. Innovative approaches in phenotypic beta-lactamase detection for personalised infection management. Nat Commun 2024; 15:9070. [PMID: 39433753 PMCID: PMC11494114 DOI: 10.1038/s41467-024-53192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Beta-lactamase-producing Enterobacteriaceae present a significant therapeutic challenge. Current developments in phenotypic diagnostics focus primarily on rapid minimum inhibitory concentration (MIC) determination. There is a requirement for rapid phenotypic diagnostics to improve antimicrobial susceptibility tests (AST) and aid prescribing decisions. Phenotypic AST are limited in their ability to characterise beta-lactamase-producing Enterobacteriaceae in detail. Despite advances in rapid AST, gaps and opportunities remain for developing additional diagnostic approaches that facilitate personalised antimicrobial prescribing. In this perspective, we highlight the state-of-the-art in beta-lactamase detection, identify gaps in current practice, and discuss barriers for innovation within this field.
Collapse
Affiliation(s)
- Jennifer Lawrence
- The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, United Kingdom.
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom.
| | - Danny O'Hare
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Joseph van Batenburg-Sherwood
- Department of Bioengineering, Sir Michael Uren Hub, Imperial College London, White City Campus, London, United Kingdom
| | - Mark Sutton
- Antimicrobial Discovery, Development and Diagnostics (AD3) UK Health Security Agency, Porton Down, Salisbury, Wiltshire, United Kingdom
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Alison Holmes
- The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, United Kingdom
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom
- David Price Evans Infectious Diseases and Global Health Group, University of Liverpool, Liverpool, United Kingdom
| | - Timothy Miles Rawson
- The NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, London, United Kingdom
- Centre for Antimicrobial Optimisation, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Albac S, Anzala N, Bonnot D, Djama C, Chavanet P, Croisier D. Development of a new Acinetobacter baumannii pneumonia rabbit model for the preclinical evaluation of future anti-infective strategies. Microbiol Spectr 2024; 12:e0157024. [PMID: 39422502 PMCID: PMC11619384 DOI: 10.1128/spectrum.01570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is an emerging cause of hospital-acquired pneumonia (HAP). Preclinical large models are warranted to predict the efficacy and the resistance profile of anti-infectives and mimic how they will be used in the human treatment of CRAB-HAP. Here we reported on the development of an Acinetobacter baumannii experimental pneumonia model in immunocompromised rabbits, receiving a 48-h human-simulated regimen. The efficacy of meropenem (2 g/q8h i.v. over prolonged 3-h perfusion), rifampin (25 mg/kg/q8h, i.v.), or the combination of meropenem and rifampin was assessed in rabbits infected with the carbapenem-susceptible ATCC 17978 reference strain or the CRAB Turc 2 clinical strain. The emergence of rifampin mutants was also investigated. Meropenem demonstrated a strong pulmonary bacterial reduction in animals infected with the ATCC 17978 strain (unlike the CRAB strain). The high rifampin dosage was associated with a 1.3 Log10 bacterial killing on average but induced the emergence of high-level resistant mutants in 80%-100% of animals, depending on the strain. The adjunction of rifampin to meropenem did not improve the bioburden in the lungs but partially reduced the number of animals exhibiting resistant mutants, whatever the tested strain. However, this adjunctive treatment was insufficient to overcome the emergence of resistance since mutation prevention concentration-related pharmacodynamic indices were unattainable at this dose. This CRAB pneumonia rabbit model represents an innovative tool to evaluate the efficacy of new or existing therapies and will provide informative data on how they can meet the resistance pharmacodynamic targets, which now need to be investigated before deciding on clinical therapeutic regimens.IMPORTANCEWithin intensive care unit settings, carbapenem-resistant Acinetobacter baumannii (CRAB) has emerged as a frequent cause of hospital-acquired pneumonia (HAP) with poor clinical outcomes. This multidrug-resistant pathogen remains very challenging to study in clinical trials, and the U.S. Food and Drug Administration highlighted the limitations of existing small animal models for evaluating antibacterial or prophylactic strategies against such critical infections. These limitations include the difficulty in anticipating the risk of the emergence of resistance during treatment. Here we developed a new Acinetobacter baumannii pneumonia rabbit model using high inoculum. We demonstrated the emergence of resistance with rifampin, an existing antibiotic debated as a rescuing option to treat CRAB infections; and even intensified rifampin doses failed to close the mutant selection window. This CRAB pneumonia rabbit model represents a valuable tool to evaluate the efficacy of new or existing therapies and provides supportive data in antimicrobial resistance pharmacodynamics.
Collapse
Affiliation(s)
| | | | | | | | - P. Chavanet
- Vivexia, Dijon, France
- Département d’Infectiologie, Centre Hospitalier Universitaire, Dijon, France
| | | |
Collapse
|
29
|
Carmeli Y, Cisneros JM, Paul M, Daikos GL, Wang M, Torre-Cisneros J, Singer G, Titov I, Gumenchuk I, Zhao Y, Jiménez-Rodríguez RM, Liang L, Chen G, Pyptiuk O, Aksoy F, Rogers H, Wible M, Arhin FF, Luckey A, Leaney JL, Pypstra R, Chow JW. Aztreonam-avibactam versus meropenem for the treatment of serious infections caused by Gram-negative bacteria (REVISIT): a descriptive, multinational, open-label, phase 3, randomised trial. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00499-7. [PMID: 39389071 DOI: 10.1016/s1473-3099(24)00499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND There is a need for additional therapeutic options for serious infections caused by Gram-negative pathogens. In the phase 3, descriptive REVISIT study, we investigated the safety and efficacy of aztreonam-avibactam in the treatment of complicated intra-abdominal infections or hospital-acquired pneumonia or ventilator-associated pneumonia (HAP-VAP) caused, or suspected to be caused, by Gram-negative bacteria. METHODS This prospective, multinational, open-label, central assessor-masked study enrolled adults who were hospitalised with a complicated intra-abdominal infection or HAP-VAP. Patients were randomly allocated via block randomisation using interactive response technology stratified by infection type in a 2:1 ratio to aztreonam-avibactam (with metronidazole for complicated intra-abdominal infection) or meropenem with or without colistin for 5-14 days for complicated intra-abdominal infection or 7-14 days for HAP-VAP. The primary endpoint was clinical cure at the test-of-cure visit (within 3 days before or after day 28) in the intention-to-treat (ITT) population. Secondary endpoints included 28-day mortality in the ITT population and safety in patients in the ITT population who received study drug (safety analysis set). No formal hypothesis testing was planned. The study was registered with ClinicalTrials.gov (NCT03329092) and EudraCT (2017-002742-68) and is complete. FINDINGS Between April 5, 2018, and Feb 23, 2023, we screened 461 patients. 422 patients were enrolled and randomly allocated (282 in the aztreonam-avibactam group and 140 in the meropenem group, forming the ITT analysis set), of whom ten patients (seven in the aztreonam-avibactam group and three in the meropenem group) were randomly allocated but did not receive study treatment. 271 (64%) of 422 patients had at least one Gram-negative pathogen from an adequate specimen identified at baseline. The most frequent baseline pathogens were Enterobacterales (252 [93%] of 271). Overall, 19 (24%) of 80 isolates tested for carbapenemases were carbapenemase-positive (serine, metallo-β-lactamase, or both). 193 (68·4%) of 282 patients in the aztreonam-avibactam group and 92 (65·7%) of 140 in the meropenem group had clinical cure at the test-of-cure visit (treatment difference 2·7% [95% CI -6·6 to 12·4]). For patients with complicated intra-abdominal infection, the adjudicated clinical cure rate was 76·4% (159 of 208) for the aztreonam-avibactam group and 74·0% (77 of 104) for the meropenem group. Cure rates in patients with HAP-VAP were 45·9% (34 of 74) for aztreonam-avibactam and 41·7% (15 of 36) for meropenem. 28-day all-cause mortality rates were 4% (12 of 282) for aztreonam-avibactam and 7% (ten of 140) for meropenem; in patients with complicated intra-abdominal infection, mortality was 2% (four of 208) and 3% (three of 104) for aztreonam-avibactam and meropenem, respectively, and in patients with HAP-VAP, mortality was 11% (eight of 74) and 19% (seven of 36), respectively. Aztreonam-avibactam was generally well tolerated, and safety findings were consistent with the known safety profile of aztreonam monotherapy. There were no treatment-related serious adverse events in the aztreonam-avibactam group. INTERPRETATION These phase 3 efficacy and safety data provide support for aztreonam-avibactam as a potential therapeutic option for complicated intra-abdominal infection or HAP-VAP caused by Gram-negative bacteria. FUNDING Pfizer.
Collapse
Affiliation(s)
- Yehuda Carmeli
- The National Center for Antibiotic Resistance and Infection Control, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - José Miguel Cisneros
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Hospital Universitario Virgen del Rocío, IBiS/CSIC, Universidad de Sevilla. CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Technion - Israel Institute of Technology, Haifa, Israel; Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - George L Daikos
- National and Kapodistrian University of Athens, Athens, Greece
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of People's Republic of China, Shanghai, China
| | | | - George Singer
- Department of Surgery, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ivan Titov
- Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Illia Gumenchuk
- Communal Non-Profit Enterprise Vinnytsia Regional Clinical Hospital Named after M I Pyrogov Vinnytsia Regional Council, Vinnytsia, Ukraine
| | | | - Rosa-María Jiménez-Rodríguez
- Unidad Clínica de Cirugía General, Hospital Universitario Virgen del Rocío, IBiS/CSIC, Universidad de Sevilla, Spain
| | - Lu Liang
- Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Gang Chen
- First People's Hospital of Kunming, Kunming, China
| | - Oleksandr Pyptiuk
- Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Firdevs Aksoy
- Karadeniz Technical University, School of Medicine, Trabzon, Turkey
| | | | | | | | - Alison Luckey
- Global Antibiotic R&D Partnership, Geneva, Switzerland
| | | | | | | |
Collapse
|
30
|
Medrano FJ, Hernando-Amado S, Martínez JL, Romero A. A new type of Class C β-lactamases defined by PIB-1. A metal-dependent carbapenem-hydrolyzing β-lactamase, from Pseudomonas aeruginosa: Structural and functional analysis. Int J Biol Macromol 2024; 277:134298. [PMID: 39097051 DOI: 10.1016/j.ijbiomac.2024.134298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
Antibiotic resistance is one of most important health concerns nowadays, and β-lactamases are the most important resistance determinants. These enzymes, based on their structural and functional characteristics, are grouped in four categories (A, B, C and D). We have solved the structure of PIB-1, a Pseudomonas aeruginosa chromosomally-encoded β-lactamase, in its apo form and in complex with meropenem and zinc. These crystal structures show that it belongs to the Class C β-lactamase group, although it shows notable differences, especially in the Ω- and P2-loops, which are important for the enzymatic activity. Functional analysis showed that PIB-1 is able to degrade carbapenems but not cephalosporins, the typical substrate of Class C β-lactamases, and that its catalytic activity increases in the presence of metal ions, especially zinc. They do not bind to the active-site but they induce the formation of trimers that show an increased capacity for the degradation of the antibiotics, suggesting that this oligomer is more active than the other oligomeric species. While PIB-1 is structurally a Class C β-lactamase, the low sequence conservation, substrate profile and its metal-dependence, prompts us to position this enzyme as the founder of a new group inside the Class C β-lactamases. Consequently, its diversity might be wider than expected.
Collapse
Affiliation(s)
- Francisco Javier Medrano
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | - Sara Hernando-Amado
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28043 Madrid, Spain
| | - José Luis Martínez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28043 Madrid, Spain
| | - Antonio Romero
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
31
|
Li W, Tao Z, Zhou M, Jiang H, Wang L, Ji B, Zhao Y. Antibiotic adjuvants against multidrug-resistant Gram-negative bacteria: important component of future antimicrobial therapy. Microbiol Res 2024; 287:127842. [PMID: 39032266 DOI: 10.1016/j.micres.2024.127842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
The swift emergence and propagation of multidrug-resistant (MDR) bacterial pathogens constitute a tremendous global health crisis. Among these pathogens, the challenge of antibiotic resistance in Gram-negative bacteria is particularly pressing due to their distinctive structure, such as highly impermeable outer membrane, overexpressed efflux pumps, and mutations. Several strategies have been documented to combat MDR Gram-negative bacteria, including the structural modification of existing antibiotics, the development of antimicrobial adjuvants, and research on novel targets that MDR bacteria are sensitive to. Drugs functioning as adjuvants to mitigate resistance to existing antibiotics may play a pivotal role in future antibacterial therapy strategies. In this review, we provide a brief overview of potential antibacterial adjuvants against Gram-negative bacteria and their mechanisms of action, and discuss the application prospects and potential for bacterial resistance to these adjuvants, along with strategies to reduce this risk.
Collapse
Affiliation(s)
- Wenwen Li
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Zhen Tao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Motan Zhou
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Huilin Jiang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Liudi Wang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Bingjie Ji
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Yongshan Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
32
|
Wang J, Mu M, Zhu J, Yang J, Tao Y, Chen Y, Hu Q, Zhou H, Zhao A, Niu T. Adult acute leukemia patients with gram-negative bacteria bloodstream infection: Risk factors and outcomes of antibiotic-resistant bacteria. Ann Hematol 2024; 103:4021-4031. [PMID: 38958702 PMCID: PMC11512823 DOI: 10.1007/s00277-024-05866-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
This study aims to analyze the risk factors for the development of multidrug-resistant (MDR) and carbapenem-resistant (CR) bacteria bloodstream infection (BSI) in a patient with acute leukemia (AL) and the mortality in gram-negative bacteria (GNB) BSI. This is a retrospective study conducted at West China Hospital of Sichuan University, which included patients diagnosed with AL and concomitant GNB BSI from 2016 to 2021. A total of 206 patients with GNB BSI in AL were included. The 30-day mortality rate for all patients was 26.2%, with rates of 25.8% for those with MDR GNB BSI and 59.1% for those with CR GNB BSI. Univariate and multivariate analyses revealed that exposure to quinolones (Odds ratio (OR) = 3.111, 95% confidence interval (95%CI): 1.623-5.964, p = 0.001) within the preceding 30 days was an independent risk factor for MDR GNB BSI, while placement of urinary catheter (OR = 6.311, 95%CI: 2.478-16.073, p < 0.001) and exposure to cephalosporins (OR = 2.340, 95%CI: 1.090-5.025, p = 0.029) and carbapenems (OR = 2.558, 95%CI: 1.190-5.497, p = 0.016) within the preceding 30 days were independently associated with CR GNB BSI. Additionally, CR GNB BSI (OR = 2.960, 95% CI: 1.016-8.624, p = 0.047), relapsed/refractory AL (OR = 3.035, 95% CI: 1.265-7.354, p = 0.013), septic shock (OR = 5.108, 95% CI: 1.794-14.547, p = 0.002), platelets < 30 × 109/L before BSI (OR = 7.785, 95% CI: 2.055-29.492, p = 0.003), and inappropriate empiric antibiotic therapy (OR = 3.140, 95% CI: 1.171-8.417, p = 0.023) were independent risk factors for 30-day mortality in AL patients with GNB BSI. Prior antibiotic exposure was a significant factor in the occurrence of MDR GNB BSI and CR GNB BSI. CR GNB BSI increased the risk of mortality in AL patients with GNB BSI.
Collapse
Affiliation(s)
- Jinjin Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingchun Mu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinbing Zhu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yali Tao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuhui Chen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Hu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Mehta D, Singh S. Nanozymes and their biomolecular conjugates as next-generation antibacterial agents: A comprehensive review. Int J Biol Macromol 2024; 278:134582. [PMID: 39122068 DOI: 10.1016/j.ijbiomac.2024.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Antimicrobial resistance (AMR), the ability of bacterial species to develop resistance against exposed antibiotics, has gained immense global attention in the past few years. Bacterial infections are serious health concerns affecting millions of people annually worldwide. Therefore, developing novel antibacterial agents that are highly effective and avoid resistance development is imperative. Among various strategies, recent developments in nanozyme technology have shown promising results as antibacterials in several antibiotic-sensitive and resistant bacterial species. Nanozymes offer several advantages over corresponding natural enzymes, such as inexpensive, stable, multifunctional, tunable catalytic properties, etc. Although the use of nanozymes as antibacterial agents has provided promising results, the specific biomolecule-conjugated nanozymes have shown further improvement in catalytic performance and associated antibacterial efficacy. The exclusive design of functional nanozymes with theranostic potential is found to simultaneously inhibit the growth and image of AMR bacterial species. This review comprehensively summarizes the history of nanozymes, their classification, biomolecules conjugated nanozyme, and their mechanism of enzyme-mimetic activity and associated antibacterial activity in antibiotic-sensitive and resistant species. The futureneeds to effectively engineer the existing or new nanozymes to curb AMR have also been discussed.
Collapse
Affiliation(s)
- Divya Mehta
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
34
|
Fan P, Fu P, Liu J, Wang C, Zhang X, Wang Y, Zhang Y, Zhu T, Zhang C, Lu G, Yan G. Monitoring of Klebsiella pneumoniae Infection and Drug Resistance in 17 Pediatric Intensive Care Units in China from 2016 to 2022. Infect Drug Resist 2024; 17:4125-4136. [PMID: 39351447 PMCID: PMC11440422 DOI: 10.2147/idr.s475720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Objective To investigate the characteristics and drug resistance patterns of Klebsiella pneumoniae (K. pneumoniae) infection in pediatric intensive care unit (PICU). Methods K. pneumoniae strains from 17 domestic PICUs were analyzed for overall condition and drug resistance using WHO-NET software. Results From 2016 to 2022, there was a linear increase in the detection rate of K. pneumoniae (P<0.05), with a total of 2591 (9.7%) strains detected. The primary sites of K. pneumoniae detection were the respiratory tract (71.1%), blood (8.6%), and urinary tract (7.1%). K. pneumoniae's resistance to penicillin drugs exceeded 90%, and are over 50% to cephalosporins. Resistance to cefoperazone-sulbactam decreased from 51.7% to 25.7%, and ranged from 9.1% to 20.8% for ceftolozane-tazobactam. Carbapenem-resistant K. pneumoniae strains constituted 32.3%. Resistance to imipenem and meropenem have decreased to 33.8% and 40.2%, while increased to 35.2% for ertapenem. Levofloxacin and amikacin resistance rates have decreased to 25.7% and 9.1%, but remain high at 63.8% for moxifloxacin and 44.6% for ciprofloxacin. K. pneumoniae demonstrated the lowest resistance rates to polymyxin B (0.9%), tigecycline (2.2%), and polymyxin E (3.1%). No strain of K. pneumoniae was resistant to both polymyxin B and meropenem. However, some strains showed co-resistance to meropenem with other antibiotics, including tigecycline (2%), imipenem (16%), amikacin (27%), colistin (37%), and levofloxacin (41%). Conclusion The rates of isolation and drug resistance of K. pneumoniae in PICU have significantly increased over 7 years. Careful antibiotic use, infection control strategies, and appropriate antibiotic combinations are crucial in addressing this problem.
Collapse
Affiliation(s)
- Panpan Fan
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Pan Fu
- Lab of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
- Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Jing Liu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Chuanqing Wang
- Lab of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
- Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Xiaolei Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Yixue Wang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Yingying Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Ting Zhu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Caiyan Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Guoping Lu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| | - Gangfeng Yan
- Department of Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Tebano G, Zaghi I, Cricca M, Cristini F. Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales. PHARMACY 2024; 12:142. [PMID: 39311133 PMCID: PMC11417830 DOI: 10.3390/pharmacy12050142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
AmpC enzymes are a class of beta-lactamases produced by Gram-negative bacteria, including several Enterobacterales. When produced in sufficient amounts, AmpCs can hydrolyze third-generation cephalosporins (3GCs) and piperacillin/tazobactam, causing resistance. In Enterobacterales, the AmpC gene can be chromosomal- or plasmid-encoded. Some species, particularly Enterobacter cloacae complex, Klebsiella aerogenes, and Citrobacter freundii, harbor an inducible chromosomal AmpC gene. The expression of this gene can be derepressed during treatment with a beta-lactam, leading to AmpC overproduction and the consequent emergence of resistance to 3GCs and piperacillin/tazobactam during treatment. Because of this phenomenon, the use of carbapenems or cefepime is considered a safer option when treating these pathogens. However, many areas of uncertainty persist, including the risk of derepression related to each beta-lactam; the role of piperacillin/tazobactam compared to cefepime; the best option for severe or difficult-to-treat cases, such as high-inoculum infections (e.g., ventilator-associated pneumonia and undrainable abscesses); the role of de-escalation once clinical stability is obtained; and the best treatment for species with a lower risk of derepression during treatment (e.g., Serratia marcescens and Morganella morganii). The aim of this review is to collate the most relevant information about the microbiological properties of and therapeutic approach to AmpC-producing Enterobacterales in order to inform daily clinical practice.
Collapse
Affiliation(s)
- Gianpiero Tebano
- Infectious Diseases Unit, Ravenna Hospital, AUSL Romagna, 48100 Ravenna, Italy
| | - Irene Zaghi
- Department of Infectious Diseases, University Hospital of Galway, H91 Galway, Ireland;
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Francesco Cristini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
- Infectious Diseases Unit, Forlì and Cesena Hospitals, AUSL Romagna, 47121 Forlì and Cesena, Italy
| |
Collapse
|
36
|
Jacobs MR, Abdelhamed AM, Good CE, Mack AR, Bethel CR, Marshall S, Hujer AM, Hujer KM, Patel R, van Duin D, Fowler VG, Rhoads DD, Six DA, Moeck G, Uehara T, Papp-Wallace KM, Bonomo RA. ARGONAUT-III and -V: susceptibility of carbapenem-resistant Klebsiella pneumoniae and multidrug-resistant Pseudomonas aeruginosa to the bicyclic boronate β-lactamase inhibitor taniborbactam combined with cefepime. Antimicrob Agents Chemother 2024; 68:e0075124. [PMID: 39133021 PMCID: PMC11373228 DOI: 10.1128/aac.00751-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024] Open
Abstract
Taniborbactam, a bicyclic boronate β-lactamase inhibitor with activity against Klebsiella pneumoniae carbapenemase (KPC), Verona integron-encoded metallo-β-lactamase (VIM), New Delhi metallo-β-lactamase (NDM), extended-spectrum beta-lactamases (ESBLs), OXA-48, and AmpC β-lactamases, is under clinical development in combination with cefepime. Susceptibility of 200 previously characterized carbapenem-resistant K. pneumoniae and 197 multidrug-resistant (MDR) Pseudomonas aeruginosa to cefepime-taniborbactam and comparators was determined by broth microdilution. For K. pneumoniae (192 KPC; 7 OXA-48-related), MIC90 values of β-lactam components for cefepime-taniborbactam, ceftazidime-avibactam, and meropenem-vaborbactam were 2, 2, and 1 mg/L, respectively. For cefepime-taniborbactam, 100% and 99.5% of isolates of K. pneumoniae were inhibited at ≤16 mg/L and ≤8 mg/L, respectively, while 98.0% and 95.5% of isolates were susceptible to ceftazidime-avibactam and meropenem-vaborbactam, respectively. For P. aeruginosa, MIC90 values of β-lactam components of cefepime-taniborbactam, ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam were 16, >8, >8, and >4 mg/L, respectively. Of 89 carbapenem-susceptible isolates, 100% were susceptible to ceftolozane-tazobactam, ceftazidime-avibactam, and cefepime-taniborbactam at ≤8 mg/L. Of 73 carbapenem-intermediate/resistant P. aeruginosa isolates without carbapenemases, 87.7% were susceptible to ceftolozane-tazobactam, 79.5% to ceftazidime-avibactam, and 95.9% and 83.6% to cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively. Cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively, was active against 73.3% and 46.7% of 15 VIM- and 60.0% and 35.0% of 20 KPC-producing P. aeruginosa isolates. Of all 108 carbapenem-intermediate/resistant P. aeruginosa isolates, cefepime-taniborbactam was active against 86.1% and 69.4% at ≤16 mg/L and ≤8 mg/L, respectively, compared to 59.3% for ceftolozane-tazobactam and 63.0% for ceftazidime-avibactam. Cefepime-taniborbactam had in vitro activity comparable to ceftazidime-avibactam and greater than meropenem-vaborbactam against carbapenem-resistant K. pneumoniae and carbapenem-intermediate/resistant MDR P. aeruginosa.
Collapse
Affiliation(s)
- Michael R Jacobs
- Case Western Reserve University, Cleveland, Ohio, USA
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Caryn E Good
- University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Andrew R Mack
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio, USA
| | - Christopher R Bethel
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio, USA
| | - Steven Marshall
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio, USA
| | - Andrea M Hujer
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristine M Hujer
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vance G Fowler
- Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Daniel D Rhoads
- Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - David A Six
- Venatorx Pharmaceuticals Inc., Malvern, Pennsylvania, USA
| | - Greg Moeck
- Venatorx Pharmaceuticals Inc., Malvern, Pennsylvania, USA
| | | | - Krisztina M Papp-Wallace
- Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio, USA
| | - Robert A Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Biochemistry, Pharmacology, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
37
|
Fu Y, Zhu Y, Zhao F, Yao B, Yu Y, Zhang J, Chen Q. In vitro Synergistic and Bactericidal Effects of Aztreonam in Combination with Ceftazidime/ Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam Against Dual-Carbapenemase-Producing Enterobacterales. Infect Drug Resist 2024; 17:3851-3861. [PMID: 39247757 PMCID: PMC11380864 DOI: 10.2147/idr.s474150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Objective Our aim was to elucidate the resistance mechanisms and assess the combined synergistic and bactericidal activities of aztreonam in combination with ceftazidime/avibactam (CZA), meropenem/vaborbactam (MEV), and imipenem/relebactam (IMR) against Enterobacterales strains producing dual carbapenemases. Methods Species identification, antimicrobial susceptibility testing and determination of carbapenemase type were performed for these strains. Plasmid sizes, plasmid conjugation abilities and the localization of carbapenemase genes were investigated. Whole-genome sequencing was performed for all strains and their molecular characteristics were analyzed. In vitro synergistic and bactericidal activities of the combination of aztreonam with CZA, MEV and IMR against these strains were determined using checkerboard assay and time-kill curve assay. Results A total of 12 Enterobacterales strains producing dual-carbapenemases were collected, including nine K. pneumoniae, two P. rettgeri, and one E. hormaechei. The most common dual-carbapenemase gene pattern observed was bla (KPC-2+NDM-5) (n=4), followed by bla KPC-2+IMP-26 (n=3), bla (KPC-2+NDM-1) (n=2), bla (KPC-2+IMP-4) (n=1), bla (NDM-1+IMP-4) (n=1) and bla (KPC-2+KPC-2) (n=1). In each strain, the carbapenemase genes were found to be located on two distinct plasmids which were capable of conjugating from the original strain to the receipt strain E. coli J53. The results of the checkerboard synergy analysis consistently revealed good synergistic effects of the combination of ATM with CZA, MEV and IMR. Except for one strain, all strains exhibited significant synergistic activity and bactericidal activity between 2 and 8 hours. Conclusion Dual-carbapenemase-producing Enterobacterales posed a significant threat to clinical anti-infection treatment. However, the combination of ATM with innovative β-lactam/β-lactamase inhibitor compounds had proven to be an effective treatment option.
Collapse
Affiliation(s)
- Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yufeng Zhu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Clinical Laboratory, Hangzhou Xixi Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Feng Zhao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
- Department of Clinical Laboratory, Zhejiang University Sir Run Run Shaw Alar Hospital, Alar, Xinjiang province, People's Republic of China
| | - Bingyan Yao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Qiong Chen
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
38
|
Gao N, Zhou J, Li G, Liu R, Lu G, Shen J. Methodological Evaluation of Carbapenemase Detection by Different Methods. Pol J Microbiol 2024; 73:383-394. [PMID: 39268952 PMCID: PMC11395418 DOI: 10.33073/pjm-2024-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
The global proliferation of carbapenemase-producing bacteria (CPB) has garnered significant attention worldwide. Early diagnosis of CPB and accurate identification of carbapenemases are crucial for preventing the spread of CPB and ensuring targeted antibiotic therapy. Therefore, efficient and accurate identification of carbapenemases is paramount in clinically treating diseases associated with CPB. In this study, 58 CPB strains were collected and detected using the DNA endonuclease-targeted CRISPR trans reporter (DETECTR) method, a rapid detection platform based on CRISPR-Cas12a gene editing and isothermal amplification. Additionally, four conventional methods (the APB/EDTA method, PCR, NG-test Carba 5, and GeneXpert Carba-R) were employed and compared against whole genome sequencing (WGS) results, considered the gold standard, to evaluate their efficacy in detecting carbapenemases. Detection by the APB/EDTA method revealed that 29 strains were positive for Class A serine endopeptidases, while 29 strains were positive for Class B metalloenzymes. The classification of these zymotypes was consistent with the sequencing result. All target carbapenemases for KPC were identified with 100% sensitivity using NG-test Carba 5, PCR, DETECTR, and GeneXpert Carba-R. In the case of NDM, both Xpert Carba-R and DETECTR showed a sensitivity of 100%. In contrast, NG-test Carba 5 and PCR had a slightly lower sensitivity of 96.7%, each missing one target carbapenemase. n this study, the APB/EDTA method is capable of identifying the zymotype classification but not the specific resistant genes, while Xpert Carba-R and DETECTR are able to detect all target carbapenemases.
Collapse
Affiliation(s)
- Nana Gao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Jing Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Ge Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Runde Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Guoping Lu
- Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
39
|
Pfennigwerth N, Gatermann S. [Importance and prevalence of multidrug-resistant gram-negative bacteria in Germany]. Dtsch Med Wochenschr 2024; 149:1143-1150. [PMID: 39250952 DOI: 10.1055/a-2283-6807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Infections with multidrug-resistant gram-negative bacterial species are a great concern in clinics in Germany. By limiting therapeutic options dramatically, these bacteria pose a significant threat to patient health and cause extensive pressure on hygiene systems and patient management. In Germany, the recommendations on how to deal with these bacteria are called MRGN classification, using the terms 3MRGN and 4MRGN for bacteria resistant to three or four major classes of antibiotics. To be resistant to this large number of antibiotics and become classified as 3MRGN or 4MRGN, bacterial strains need to acquire multiple resistance mechanisms with beta-lactamases, especially carbapenemases, being the most important ones. According to established surveillance systems like national reporting systems, KISS or the National Reference Centre, multidrug-resistant bacteria are constantly on the rise in Germany. Although several novel therapeutic options have been approved recently, these bacteria represent a constant challenge and it may be necessary to discuss if the present hygiene recommendations need an update for an efficient and targeted prevention of transmission.
Collapse
|
40
|
Dos Anjos C, Wang Y, Truong-Bolduc QC, Bolduc PK, Liu M, Hooper DC, Anderson RR, Dai T, Leanse LG. Blue Light Compromises Bacterial β-Lactamases Activity to Overcome β-Lactam Resistance. Lasers Surg Med 2024; 56:673-681. [PMID: 39039622 DOI: 10.1002/lsm.23819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/03/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE In this study, we evaluated the effectiveness of antimicrobial blue light (aBL; 410 nm wavelength) against β-lactamase-carrying bacteria and the effect of aBL on the activity of β-lactamases. METHODS Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae strains carrying β-lactamases as well as a purified β-lactamase enzymes were studied. β-lactamase activity was assessed using a chromogenic cephalosporin hydrolysis assay. Additionally, we evaluated the role of porphyrins in the photoreaction, as well as protein degradation by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Finally, we investigated the bactericidal effect of combined aBL-ceftazidime exposure against a metallo-β-lactamase expressing P. aeruginosa strain. RESULTS Our study demonstrated that aBL effectively killed β-lactamase-producing bacteria and reduced β-lactamase activity. After an aBL exposure of 1.52 J/cm2, a 50% reduction in enzymatic activity was observed in P. aeruginosa. Additionally, we found a 40% decrease in the photoreaction activity of porphyrins following an aBL exposure of 64.8 J/cm2. We also revealed that aBL reduced β-lactamase activity via protein degradation (after 136.4 J/cm2). Additionally, aBL markedly improved the bactericidal effect of ceftazidime (by >4-log10) in the metallo-β-lactamase P. aeruginosa strain. CONCLUSION Our results provide evidence that aBL compromises bacterial β-lactamase activity, offering a potential approach to overcome β-lactam resistance in bacteria.
Collapse
Affiliation(s)
- Carolina Dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yin Wang
- Division of Infectious Diseases and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Que Chi Truong-Bolduc
- Division of Infectious Diseases and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul K Bolduc
- College of Engineering, University of Massachusetts, Amherst, Massachusetts, USA
| | - Matthew Liu
- Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - David C Hooper
- Division of Infectious Diseases and Medical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - R Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Europa Point Campus, University of Gibraltar, Gibraltar, Gibraltar
| |
Collapse
|
41
|
Morecchiato F, Coppi M, Chilleri C, Antonelli A, Giani T, Rossolini GM. Evaluation of Quantamatrix dRAST TM system for rapid antimicrobial susceptibility testing of bacterial isolates from positive blood cultures, in comparison with commercial Micronaut broth microdilution system. Diagn Microbiol Infect Dis 2024; 110:116436. [PMID: 39003931 DOI: 10.1016/j.diagmicrobio.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Antimicrobial susceptibility testing (AST) from blood culture (BC) may take several days, limiting the eventual impact on antimicrobial stewardship. Hence, rapid AST systems represent a valuable support in shorting the time-to-response. In this work, the Quantamatrix dRASTTM system (dRAST) was evaluated for rapid AST on 100 monomicrobial BCs (50 Gram-negatives and 50 Gram-positives), including several isolates with clinically relevant resistance mechanisms. AST results were provided in 6-hours, on average. Compared to Micronaut (Merlin) system based on broth microdilution, dRAST exhibited an overall categorical agreement of 92.5 %, essential agreement of 89.0 %, and mean bias of 15.9 %. Category overestimation (potentially leading to unnecessary high-dosage treatment or to exclude active agents) and category underestimation (potentially leading to underdosing or using ineffective agents) were observed in 4.3 % and 3.1 % of cases, respectively. Even though several issues were reported, results confirmed the potential contribution of dRAST to shorten the BCs clinical microbiology workflow and management.
Collapse
Affiliation(s)
- Fabio Morecchiato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Chiara Chilleri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
42
|
Tellapragada C, Razavi M, Peris PS, Jonsson P, Vondracek M, Giske CG. Resistance to aztreonam-avibactam among clinical isolates of Escherichia coli is primarily mediated by altered penicillin-binding protein 3 and impermeability. Int J Antimicrob Agents 2024; 64:107256. [PMID: 38925228 DOI: 10.1016/j.ijantimicag.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
This study was conducted to investigate decreased susceptibility (minimum inhibitory concentrations [MICs] 0.25-4 mg/L) and resistance (MICs > 4 mg/L) to aztreonam-avibactam (ATM-AVI). Contemporary non-replicate clinical isolates of carbapenemase-producing Escherichia coli (CP-EC) (n=90) and ESBL-producing E. coli (EP-EC) (n=12) were used. CP-EC belonged to 25 distinct sequence types (STs) and all EP-EC belonged to ST405. All strains were isolated from 2019 to 2022 at the Karolinska University Laboratory, Stockholm, Sweden. ATM-AVI MICs were determined using broth microdilution. The EUCAST epidemiological cut-off value of 0.125 mg/L was used to define the wild type (WT). Whole-genome sequences (Illumina) were analysed for detecting resistance determinants among WT vs. non-WT isolates. Among 102 isolates, 40 (39%) and 62 (61%) were WT and non-WT, respectively. Among non-WT isolates, resistance was noted for 20 and decreased susceptibility for 42. Resistance was observed among 14/47 New Delhi metallo-β-lactamase (NDM)-producers, 5/43 OXA-48 group producers, and 1/12 EP-EC. Decreased susceptibility was observed among 29/47 NDM, 13/43 OXA-48 group, and 3/12 EP-EC. Resistant isolates predominantly belonged to ST405, followed by STs 410, 361, 167, 617, and 1284. Penicillin-binding protein 3 (PBP3) inserts (YRIK/YRIN) were observed in 20/20 and CMY-42 in 5/20 resistant isolates. Several mutations in the ftsI (encoding PBP3) and regulatory genes of outer membrane proteins (OmpC and OmpF) and efflux pumps (AcrAB-TolC) were detected. A ≥ 2-fold reduction in MICs was observed among 20/20 vs. 7/20 isolates tested in the presence of the membrane permeabiliser, polymyxin B nanopeptide (PMBN) and efflux inhibitor, phenylalanine arginine β-naphthylamide (PAβN), respectively. In conclusion, resistance to ATM-AVI is a result of interplay of various determinants, including target alterations, deactivating enzymes, and decreased permeability.
Collapse
Affiliation(s)
- Chaitanya Tellapragada
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Mohammad Razavi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Pol Saludes Peris
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Patrik Jonsson
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Vondracek
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
43
|
Wilhelm CM, Antochevis LC, Magagnin CM, Arns B, Vieceli T, Pereira DC, Lutz L, de Souza ÂC, Dos Santos JN, Guerra RR, Medeiros GS, Santoro L, Falci DR, Rigatto MH, Barth AL, Martins AF, Zavascki AP. Susceptibility evaluation of novel beta-lactam/beta-lactamase inhibitor combinations against carbapenem-resistant Klebsiella pneumoniae from bloodstream infections in hospitalized patients in Brazil. J Glob Antimicrob Resist 2024; 38:247-251. [PMID: 38936472 DOI: 10.1016/j.jgar.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Novel beta-lactam/beta-lactamase inhibitor (BIBLI) combinations are commercially available and have been used for treating carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. Continuous surveillance of susceptibility profiles and resistance mechanism identification are necessary to monitor the evolution of resistance within these agents. OBJECTIVE The purpose of this study was to evaluate the susceptibility rates of ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam in CRKP isolated from patients with bloodstream infections who underwent screening for a randomized clinical trial in Brazil. METHODS Minimum inhibitory concentrations (MICs) were determined for meropenem, ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam using the gradient diffusion strip method. Carbapenemase genes were detected by multiplex real-time polymerase chain reaction. Klebsiella pneumoniae carbapenemase (KPC)-producing isolates showing resistance to any BLBLI and New Delhi Metallo-beta-lactamase (NDM)-producing isolates with susceptibility to any BLBLI isolates were further submitted for whole-genome sequencing. RESULTS From a total of 69 CRKP isolates, 39 were positive for blaKPC, 19 for blaNDM and 11 for blaKPC and blaNDM. KPC-producing isolates demonstrated susceptibility rates above 94 % for all BLBLIs. Two isolates with resistance to meropenem/vaborbactam demonstrated a Gly and Asp duplication at the porin OmpK36 as well as a truncated OmpK35. All NDM-producing isolates, including KPC and NDM coproducers, demonstrated susceptibility rates to ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam of 0 %, 9.1-21.1 % and 9.1-26.3 %, respectively. Five NDM-producing isolates that presented susceptibility to BLBLIs also had porin alterations CONCLUSIONS: This study showed that, although high susceptibility rates to BLBLIs were found, KPC-2 isolates were able to demonstrate resistance probably as a result of porin mutations. Additionally, NDM-1 isolates showed susceptibility to BLBLIs in vitro.
Collapse
Affiliation(s)
- Camila Mörschbächer Wilhelm
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Laura Czerkster Antochevis
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cibele Massotti Magagnin
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Beatriz Arns
- Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Tarsila Vieceli
- Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Dariane Castro Pereira
- Serviço de Diagnóstico Laboratorial - Unidade de Microbiologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil
| | - Larissa Lutz
- Serviço de Diagnóstico Laboratorial - Unidade de Microbiologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brasil
| | - Ândrea Celestino de Souza
- Pontifícia Universidade Católica do Rio Grande do Sul, Hospital São Lucas - Setor de Microbiologia, Porto Alegre, Brasil
| | - Jéssica Nesello Dos Santos
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rafaela Ramalho Guerra
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Lucas Santoro
- Department of Clinical Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego R Falci
- Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Clinical Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Helena Rigatto
- Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Afonso Luís Barth
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Andreza Francisco Martins
- Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Alexandre Prehn Zavascki
- Infectious Diseases Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
44
|
Dulanto Chiang A, Dekker JP. Efflux pump-mediated resistance to new beta lactam antibiotics in multidrug-resistant gram-negative bacteria. COMMUNICATIONS MEDICINE 2024; 4:170. [PMID: 39210044 PMCID: PMC11362173 DOI: 10.1038/s43856-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence and spread of bacteria resistant to commonly used antibiotics poses a critical threat to modern medical practice. Multiple classes of bacterial efflux pump systems play various roles in antibiotic resistance, and members of the resistance-nodulation-division (RND) transporter superfamily are among the most important determinants of efflux-mediated resistance in gram-negative bacteria. RND pumps demonstrate broad substrate specificities, facilitating extrusion of multiple chemical classes of antibiotics from the bacterial cell. Several newer beta-lactams and beta-lactam/beta-lactamase inhibitor combinations (BL/BLI) have been developed to treat infections caused by multidrug resistant bacteria. Here we review recent studies that suggest RND efflux pumps in clinically relevant gram-negative bacteria may play critical but underappreciated roles in the development of resistance to beta-lactams and novel BL/BLI combinations. Improved understanding of the genetic and structural basis of RND efflux pump-mediated resistance may identify new antibiotic targets as well as strategies to minimize the emergence of resistance.
Collapse
Affiliation(s)
- Augusto Dulanto Chiang
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
- Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - John P Dekker
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
45
|
Alfei S, Zuccari G, Bacchetti F, Torazza C, Milanese M, Siciliano C, Athanassopoulos CM, Piatti G, Schito AM. Synthesized Bis-Triphenyl Phosphonium-Based Nano Vesicles Have Potent and Selective Antibacterial Effects on Several Clinically Relevant Superbugs. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1351. [PMID: 39195389 DOI: 10.3390/nano14161351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens due to antibiotic misuse translates into obstinate infections with high morbidity and high-cost hospitalizations. To oppose these MDR superbugs, new antimicrobial options are necessary. Although both quaternary ammonium salts (QASs) and phosphonium salts (QPSs) possess antimicrobial effects, QPSs have been studied to a lesser extent. Recently, we successfully reported the bacteriostatic and cytotoxic effects of a triphenyl phosphonium salt against MDR isolates of the Enterococcus and Staphylococcus genera. Here, aiming at finding new antibacterial devices possibly active toward a broader spectrum of clinically relevant bacteria responsible for severe human infections, we synthesized a water-soluble, sterically hindered quaternary phosphonium salt (BPPB). It encompasses two triphenyl phosphonium groups linked by a C12 alkyl chain, thus embodying the characteristics of molecules known as bola-amphiphiles. BPPB was characterized by ATR-FTIR, NMR, and UV spectroscopy, FIA-MS (ESI), elemental analysis, and potentiometric titrations. Optical and DLS analyses evidenced BPPB tendency to self-forming spherical vesicles of 45 nm (DLS) in dilute solution, tending to form larger aggregates in concentrate solution (DLS and optical microscope), having a positive zeta potential (+18 mV). The antibacterial effects of BPPB were, for the first time, assessed against fifty clinical isolates of both Gram-positive and Gram-negative species. Excellent antibacterial effects were observed for all strains tested, involving all the most concerning species included in ESKAPE bacteria. The lowest MICs were 0.250 µg/mL, while the highest ones (32 µg/mL) were observed for MDR Gram-negative metallo-β-lactamase-producing bacteria and/or species resistant also to colistin, carbapenems, cefiderocol, and therefore intractable with currently available antibiotics. Moreover, when administered to HepG2 human hepatic and Cos-7 monkey kidney cell lines, BPPB showed selectivity indices > 10 for all Gram-positive isolates and for clinically relevant Gram-negative superbugs such as those of E. coli species, thus being very promising for clinical development.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | - Francesca Bacchetti
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | | | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| |
Collapse
|
46
|
Lewis RE, Palombo M, Diani E, Secci B, Gibellini D, Gaibani P. Synergistic Activity of Cefiderocol in Combination with Avibactam, Sulbactam or Tazobactam against Carbapenem-Resistant Gram-Negative Bacteria. Cells 2024; 13:1315. [PMID: 39195205 DOI: 10.3390/cells13161315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
We investigated the activity of cefiderocol/β-lactamase inhibitor combinations against clinical strains with different susceptibility profiles to cefiderocol to explore the potentiality of antibiotic combinations as a strategy to contain the major public health problem of multidrug-resistant (MDR) pathogens. Specifically, we evaluated the synergistic activity of cefiderocol with avibactam, sulbactam, or tazobactam on three of the most "Critical Priority" group of MDR bacteria (carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii). Clinical isolates were genomically characterized by Illumina iSeq 100. The synergy test was conducted with time-kill curve assays. Specifically, cefiderocol/avibactam, /sulbactam, or /tazobactam combinations were analyzed. Synergism was assigned if bacterial grow reduction reached 2 log10 CFU/mL. We reported the high antimicrobial activity of the cefiderocol/sulbactam combination against carbapenem-resistant Enterobacterales, P. aeruginosa, and A. baumannii; of the cefiderocol/avibactam combination against carbapenem-resistant Enterobacterales; and of the cefiderocol/tazobactam combination against carbapenem-resistant Enterobacterales and P. aeruginosa. Our results demonstrate that all β-lactamase inhibitors (BLIs) tested are able to enhance cefiderocol antimicrobial activity, also against cefiderocol-resistant isolates. The cefiderocol/sulbactam combination emerges as the most promising combination, proving to highly enhance cefiderocol activity in all the analyzed carbapenem-resistant Gram-negative isolates, whereas the Cefiderocol/tazobactam combination resulted in being active only against carbapenem-resistant Enterobacterales and P. aeruginosa, and cefiderocol/avibactam was only active against carbapenem-resistant Enterobacterales.
Collapse
Affiliation(s)
- Russell E Lewis
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40135 Bologna, Italy
| | - Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| | - Benedetta Secci
- IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40135 Bologna, Italy
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| | - Paolo Gaibani
- Department of Diagnostic and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| |
Collapse
|
47
|
Gao W, Liu X, Zhang S, Wang J, Qiu B, Shao J, Huang W, Huang Y, Yao M, Tang LL. Alterations in gut microbiota and inflammatory cytokines after administration of antibiotics in mice. Microbiol Spectr 2024; 12:e0309523. [PMID: 38899904 PMCID: PMC11302321 DOI: 10.1128/spectrum.03095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/13/2024] [Indexed: 06/21/2024] Open
Abstract
Antibiotics are widely used to treat bacterial infection and reduce the mortality rate, while antibiotic overuse can cause gut microbiota dysbiosis. The impact of antibiotics on gut microbiota is not fully understood. In our study, four commonly used antibiotics (ceftazidime, cefoperazone-sulbactam, imipenem-cilastatin, and moxifloxacin) were given subcutaneously to mice, and their impacts on the gut microbiota composition and serum cytokine levels were evaluated through 16S rRNA analysis and a multiplex immunoassay. Antibiotic treatment markedly reduced gut microbiota diversity and changed gut microbiota composition. Antibiotic treatment significantly increased and decreased the abundance of Firmicutes and Bacteroidota, respectively. The antibiotic treatments increased the abundance of opportunistic pathogens such as Enterococcus and decreased that of Lachnospiraceae and Muribaculaceae. For moxifloxacin, the significantly high abundance of Enterococcus and Klebsiella was observed after 14 and 21 days of treatment. However, a relatively low abundance of opportunistic pathogens was found after 14 days of imipenem-cilastatin treatment. Additionally, the serum levels of various pro-inflammatory cytokines, such as IL-1β, IL-12 (p70), and IL-17, significantly increased after 21 days of antibiotic treatments. Overall, these results provide a guide for rational use of antibiotics in clinical settings: short-term use of moxifloxacin is recommended with regard to gut microbiota health, and the 14-day use of imipenem-cilastatin may have a less severe impact than other antibiotics.IMPORTANCEAntibiotic treatments are directly associated with changes in gut microbiota and are effective against both pathogens and beneficial bacteria. Gut microbiota dysbiosis induced by antibiotic treatment could increase the risk of some diseases. Therefore, an adequate understanding of gut microbiota changes after antibiotic use is crucial. In this study, we investigated the effects of continuous treatment with antibiotics on gut microbiota, serum cytokines, and intestinal inflammatory response. Our results suggest that short-term use of moxifloxacin is recommended, and the 14-day use of imipenem-cilastatin may have a less severe effect on gut microbiota health than cefoperazone-sulbactam. These results provide useful guidance on the rational use of antibiotics with regard to gut microbiota health.
Collapse
Affiliation(s)
- Wang Gao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xingyu Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuobo Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingxia Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junhua Shao
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Weixin Huang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Shaoxing Tongchuang Biotechnology Co., Ltd, Shaoxing, China
| | - Yilun Huang
- Alberta Institute, Wenzhou Medical University, Wenzhou, China
| | - Mingfei Yao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ling-Ling Tang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| |
Collapse
|
48
|
Niu W, Ti R, Li D, Dong R, Dong J, Ye Y, Xiao Y, Wang Z. Structural insight into the subclass B1 metallo-β-lactamase AFM-1. Biochem Biophys Res Commun 2024; 720:150102. [PMID: 38759302 DOI: 10.1016/j.bbrc.2024.150102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
The emergence of drug-resistant bacteria, facilitated by metallo-beta-lactamases (MBLs), presents a significant obstacle to the effective use of antibiotics in the management of clinical drug-resistant bacterial infections. AFM-1 is a MBL derived from Alcaligenes faecalis and shares 86% homology with the NDM-1 family. Both AFM-1 and NDM-1 demonstrate the ability to hydrolyze ampicillin and other β-lactam antibiotics, however, their substrate affinities vary, and the specific reason for this variation remains unknown. We present the high-resolution structure of AFM-1. The active center of AFM-1 binds two zinc ions, and the conformation of the key amino acid residues in the active center is in accordance with that of NDM-1. However, the substrate-binding pocket of AFM-1 is considerably smaller than that of NDM-1. Additionally, the mutation of amino acid residues in the Loop3 region, as compared to NDM-1, results in the formation of a dense hydrophobic patch comprised of hydrophobic amino acid residues in this area, which facilitates substrate binding. Our findings lay the foundation for understanding the molecular mechanism of AFM-1 with a high affinity for substrates and provide a novel theoretical foundation for addressing the issue of drug resistance caused by B1 MBLs.
Collapse
Affiliation(s)
- Wenqian Niu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Ruijiao Ti
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Dongxu Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Ruihan Dong
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jian Dong
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yiwen Ye
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Yunjie Xiao
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
49
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
50
|
Raro OHF, Bouvier M, Kerbol A, Poirel L, Nordmann P. MultiRapid ATB NP test for detecting concomitant susceptibility and resistance of last-resort novel antibiotics available to treat multidrug-resistant Enterobacterales infections. Int J Antimicrob Agents 2024; 64:107206. [PMID: 38754526 DOI: 10.1016/j.ijantimicag.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Recently developed therapeutics against Gram-negative bacteria include the β-lactam-β-lactamase inhibitor combinations ceftazidime-avibactam (CZA), meropenem-vaborbactam (MEV), and imipenem-relebatam (IPR), and the siderophore cephalosporin cefiderocol (FDC). The aim of this study was to develop a test for rapid identification of susceptibility/resistance to CZA, MEV, IPR, and FDC for Enterobacterales in a single test for rapid clinical decision making. METHODS The MultiRapid ATB NP test is based on the detection of glucose metabolism occurring after bacterial growth in the presence of defined concentrations of CZA, MEV, IPR, and FDC, followed by visual detection of colour change of the pH indicator red phenol (red to yellow) generated by the acidification of the medium upon bacterial growth. This test is performed in 96-well microplates. The MultiRapid ATB NP test was evaluated using 78 Enterobacterales isolates and compared to the reference method broth microdilution. RESULTS The MultiRapid ATB NP test displayed 97.0% (confidence interval [CI] 92.6-98.8) sensitivity, 97.7% (CI 94.3-99.1) specificity, and 97.4% (CI 95.0-98.7) accuracy. The results were obtained after 3 h of incubation at 35 °C ± 2 °C, representing at least a 15-h gain-of-time compared with currently used antimicrobial susceptibility testing methods. CONCLUSION The MultiRapid ATB NP test provided accurate results for the concomitant detection of susceptibility/resistance to CZA, MEV, IPR, and FDC in Enterobacterales, independent of the resistance mechanism. This test may be suitable for implementation in any microbiology routine laboratory.
Collapse
Affiliation(s)
- Otávio Hallal Ferreira Raro
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Maxime Bouvier
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Centre for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Auriane Kerbol
- Swiss National Reference Centre for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Centre for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland; Swiss National Reference Centre for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland; Institute for Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|