1
|
Wątor E, Wilk P, Kochanowski P, Grudnik P. Structural characterization of the (deoxy)hypusination in Trichomonas vaginalis questions the bifunctionality of deoxyhypusine synthase. FEBS J 2024; 291:3856-3869. [PMID: 38923395 DOI: 10.1111/febs.17207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/14/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Trichomonas vaginalis, the causative agent of trichomoniasis, is a prevalent anaerobic protozoan parasite responsible for the most common nonviral sexually transmitted infection globally. While metronidazole and its derivatives are approved drugs for this infection, rising resistance necessitates the exploration of new antiparasitic therapies. Protein posttranslational modifications (PTMs) play crucial roles in cellular processes, and among them, hypusination, involving eukaryotic translation factor 5A (eIF5A), has profound implications. Despite extensive studies in various organisms, the role of hypusination in T. vaginalis and its potential impact on parasite biology and pathogenicity remain poorly understood. This study aims to unravel the structural basis of the hypusination pathway in T. vaginalis using X-ray crystallography and cryo-electron microscopy. The results reveal high structural homology between T. vaginalis and human orthologs, providing insights into the molecular architecture of eIF5A and deoxyhypusine synthase (DHS) and their interaction. Contrary to previous suggestions of bifunctionality, our analyses indicate that the putative hydroxylation site in tvDHS is nonfunctional, and biochemical assays demonstrate exclusive deoxyhypusination capability. These findings challenge the notion of tvDHS functioning as both deoxyhypusine synthase and hydroxylase. The study enhances understanding of the hypusination pathway in T. vaginalis, shedding light on its functional relevance and potential as a drug target, and contributing to the development of novel therapeutic strategies against trichomoniasis.
Collapse
Affiliation(s)
- Elżbieta Wątor
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Piotr Wilk
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paweł Kochanowski
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Przemysław Grudnik
- Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Gutiérrez-Cardona JY, Calderón-Jaimes E, Ortega-Cuellar D, Sánchez-Carrillo A, Castillo-Rodríguez RA, Canseco-Ávila LM, Rocha-Ramírez LM, Martínez-Rosas V, Gómez-Manzo S, Hernández-Ochoa B. Effect of Trichomonacide 6-Nitro-1 H-benzimidazole Derivative Compounds on Expression Level of Metabolic Genes in Trichomonas vaginalis. Int J Mol Sci 2024; 25:4568. [PMID: 38674152 PMCID: PMC11050703 DOI: 10.3390/ijms25084568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The parasite Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease worldwide. This infection often remains asymptomatic and is related to several health complications. The traditional treatment for trichomoniasis is the use of drugs of the 5-nitroimidazole family, such as metronidazole; however, scientific reports indicate an increasing number of drug-resistant strains. Benzimidazole derivatives could offer an alternative in the search for new anti-trichomonas drugs. In this sense, two attractive candidates are the compounds O2N-BZM7 and O2N-BZM9 (1H-benzimidazole derivatives), since, through in vitro tests, they have shown a higher trichomonacide activity. In this study, we determined the effect on the expression level of metabolic genes in T. vaginalis. The results show that genes involved in redox balance (NADHOX, G6PD::6PGL) are overexpressed, as well as the gene that participates in the first reaction of glycolysis (CK); on the other hand, structural genes such as ACT and TUB are decreased in expression in trophozoites treated with the compound O2N-BZM9, which would probably affect its morphology, motility and virulence. These results align with the trichomonacidal activity of the compounds, with benzimidazole O2N-BZM9 being the most potent, with an IC50 value of 4.8 μM. These results are promising for potential future therapeutic applications.
Collapse
Affiliation(s)
- Jocelyn Yamin Gutiérrez-Cardona
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico; (J.Y.G.-C.); (E.C.-J.); (A.S.-C.)
| | - Ernesto Calderón-Jaimes
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico; (J.Y.G.-C.); (E.C.-J.); (A.S.-C.)
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Adrián Sánchez-Carrillo
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico; (J.Y.G.-C.); (E.C.-J.); (A.S.-C.)
| | - Rosa Angélica Castillo-Rodríguez
- Centro de Investigacion en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya 62790, Mexico;
| | - Luis Miguel Canseco-Ávila
- Facultad de Ciencias Químicas, Campus IV, Universidad Autónoma de Chiapas, Tapachula City 30580, Mexico;
| | - Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Colonia Doctores, Mexico City 06720, Mexico;
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico; (J.Y.G.-C.); (E.C.-J.); (A.S.-C.)
| |
Collapse
|
3
|
Ibáñez-Escribano A, Nogal-Ruiz JJ. The Past, Present, and Future in the Diagnosis of a Neglected Sexually Transmitted Infection: Trichomoniasis. Pathogens 2024; 13:126. [PMID: 38392864 PMCID: PMC10891855 DOI: 10.3390/pathogens13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
More than one million curable sexually transmitted infections occur every day. Trichomonas vaginalis is one of the main infections responsible for these epidemiological data; however, the diagnosis of this protozoan is still mainly based on microscopic and culture identification. The commercialization of immunological tests and the development of molecular techniques have improved the sensitivity of classical methods. Nevertheless, the fact that trichomoniasis is a neglected parasitic infection hinders the development of novel techniques and their implementation in routine diagnosis. This review article shows the different methods developed to identify T. vaginalis in population and the difficulties in diagnosing male and asymptomatic patients. The importance of including this parasite in routine gynecological screening, especially in pregnant women, and the importance of considering T. vaginalis as an indicator of high-risk sexual behavior are also discussed.
Collapse
Affiliation(s)
- Alexandra Ibáñez-Escribano
- Research Group Antiparasitic Epidemiology, Diagnostics and Therapy, PARADET, Complutense University of Madrid, 28040 Madrid, Spain;
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juan José Nogal-Ruiz
- Research Group Antiparasitic Epidemiology, Diagnostics and Therapy, PARADET, Complutense University of Madrid, 28040 Madrid, Spain;
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
4
|
Xie Y, Zhong P, Guan W, Zhao Y, Yang S, Shao Y, Li J. Transcriptional profile of Trichomonas vaginalis in response to metronidazole. BMC Genomics 2023; 24:318. [PMID: 37308818 DOI: 10.1186/s12864-023-09339-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Trichomoniasis caused by Trichomonas vaginalis, combined with its complications, has long frequently damaged millions of human health. Metronidazole (MTZ) is the first choice for therapy. Therefore, a better understanding of its trichomonacidal process to ultimately reveal the global mechanism of action is indispensable. To take a step toward this goal, electron microscopy and RNA sequencing were performed to fully reveal the early changes in T. vaginalis at the cellular and transcriptome levels after treatment with MTZ in vitro. RESULTS The results showed that the morphology and subcellular structures of T. vaginalis underwent prominent alterations, characterized by a rough surface with bubbly protrusions, broken holes and deformed nuclei with decreased nuclear membranes, chromatin and organelles. The RNA-seq data revealed a total of 10,937 differentially expressed genes (DEGs), consisting of 4,978 upregulated and 5,959 downregulated genes. Most DEGs for the known MTZ activators, such as pyruvate:ferredoxin oxidoreductase (PFOR) and iron-sulfur binding domain, were significantly downregulated. However, genes for other possible alternative MTZ activators such as thioredoxin reductase, nitroreductase family proteins and flavodoxin-like fold family proteins, were dramatically stimulated. GO and KEGG analyses revealed that genes for basic vital activities, proteostasis, replication and repair were stimulated under MTZ stress, but those for DNA synthesis, more complicated life activities such as the cell cycle, motility, signaling and even virulence were significantly inhibited in T. vaginalis. Meanwhile, increased single nucleotide polymorphism (SNP) and insertions - deletions (indels) were stimulated by MTZ. CONCLUSIONS The current study reveals evident nuclear and cytomembrane damage and multiple variations in T. vaginalis at the transcriptional level. These data will offer a meaningful foundation for a deeper understanding of the MTZ trichomonacidal process and the transcriptional response of T. vaginalis to MTZ-induced stress or even cell death.
Collapse
Affiliation(s)
- Yiting Xie
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Ping Zhong
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Wei Guan
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Yanqing Zhao
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Shuguo Yang
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Shao
- Department of Outpatient, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Jian Li
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
5
|
Dubashynskaya NV, Petrova VA, Sgibnev AV, Elokhovskiy VY, Cherkasova YI, Skorik YA. Carrageenan/Chitin Nanowhiskers Cryogels for Vaginal Delivery of Metronidazole. Polymers (Basel) 2023; 15:polym15102362. [PMID: 37242937 DOI: 10.3390/polym15102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The development of polymeric carriers based on partially deacetylated chitin nanowhiskers (CNWs) and anionic sulfated polysaccharides is an attractive strategy for improved vaginal delivery with modified drug release profiles. This study focuses on the development of metronidazole (MET)-containing cryogels based on carrageenan (CRG) and CNWs. The desired cryogels were obtained by electrostatic interactions between the amino groups of CNWs and the sulfate groups of CRG and by the formation of additional hydrogen bonds, as well as by entanglement of carrageenan macrochains. It was shown that the introduction of 5% CNWs significantly increased the strength of the initial hydrogel and ensured the formation of a homogeneous cryogel structure, resulting in sustained MET release within 24 h. At the same time, when the CNW content was increased to 10%, the system collapsed with the formation of discrete cryogels, demonstrating MET release within 12 h. The mechanism of prolonged drug release was mediated by polymer swelling and chain relaxation in the polymer matrix and correlated well with the Korsmeyer-Peppas and Peppas-Sahlin models. In vitro tests showed that the developed cryogels had a prolonged (24 h) antiprotozoal effect against Trichomonas, including MET-resistant strains. Thus, the new cryogels with MET may be promising dosage forms for the treatment of vaginal infections.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia
| | - Valentina A Petrova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia
| | - Andrey V Sgibnev
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Pionerskaya st. 11, Orenburg 460000, Russia
| | - Vladimir Y Elokhovskiy
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia
| | - Yuliya I Cherkasova
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Pionerskaya st. 11, Orenburg 460000, Russia
| | - Yury A Skorik
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia
| |
Collapse
|
6
|
Fajtova P, Hurysz BM, Miyamoto Y, Serafim M, Jiang Z, Trujillo DF, Liu L, Somani U, Almaliti J, Myers SA, Caffrey CR, Gerwick WH, Kirk CJ, Boura E, Eckmann L, O'Donoghue AJ. Development of subunit selective substrates for Trichomonas vaginalis proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535794. [PMID: 37066163 PMCID: PMC10104049 DOI: 10.1101/2023.04.05.535794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The protozoan parasite, Trichomonas vaginalis (Tv) causes trichomoniasis, the most common, non-viral, sexually transmitted infection in the world. Only two closely related drugs are approved for its treatment. The accelerating emergence of resistance to these drugs and lack of alternative treatment options poses an increasing threat to public health. There is an urgent need for novel effective anti-parasitic compounds. The proteasome is a critical enzyme for T. vaginalis survival and was validated as a drug target to treat trichomoniasis. However, to develop potent inhibitors of the T. vaginalis proteasome, it is essential that we understand which subunits should be targeted. Previously, we identified two fluorogenic substrates that were cleaved by T. vaginalis proteasome, however after isolating the enzyme complex and performing an in-depth substrate specificity study, we have now designed three fluorogenic reporter substrates that are each specific for one catalytic subunit. We screened a library of peptide epoxyketone inhibitors against the live parasite and evaluated which subunits are targeted by the top hits. Together we show that targeting of the β5 subunit of T. vaginalis is sufficient to kill the parasite, however, targeting of β5 plus either β1 or β2 results in improved potency.
Collapse
|
7
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
8
|
Beteck RM, Isaacs M, Legoabe LJ, Hoppe HC, Tam CC, Kim JH, Petzer JP, Cheng LW, Quiambao Q, Land KM, Khanye SD. Synthesis and in vitro antiprotozoal evaluation of novel metronidazole-Schiff base hybrids. Arch Pharm (Weinheim) 2023; 356:e2200409. [PMID: 36446720 DOI: 10.1002/ardp.202200409] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022]
Abstract
Herein we report the synthesis of 21 novel small molecules inspired by metronidazole and Schiff base compounds. The compounds were evaluated against Trichomonas vaginalis and cross-screened against other pathogenic protozoans of clinical relevance. Most of these compounds were potent against T. vaginalis, exhibiting IC50 values < 5 µM. Compound 20, the most active compound against T. vaginalis, exhibited an IC50 value of 3.4 µM. A few compounds also exhibited activity against Plasmodium falciparum and Trypanosomal brucei brucei, with compound 6 exhibiting an IC50 value of 0.7 µM against P. falciparum and compound 22 exhibiting an IC50 value of 1.4 µM against T.b. brucei. Compound 22 is a broad-spectrum antiprotozoal agent, showing activities against all three pathogenic protozoans under investigation.
Collapse
Affiliation(s)
- Richard M Beteck
- Department of Pharmaceutical Chemistry, Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, South Africa
| | - Michelle Isaacs
- Centre for Chemico- and Biomedical Research, Rhodes University, Makhanda, South Africa
| | - Lesetja J Legoabe
- Department of Pharmaceutical Chemistry, Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, South Africa
| | - Heinrich C Hoppe
- Centre for Chemico- and Biomedical Research, Rhodes University, Makhanda, South Africa.,Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
| | - Jong H Kim
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
| | - Jacobus P Petzer
- Department of Pharmaceutical Chemistry, Centre of Excellence for Pharmaceutical Sciences (Pharmacen), North-West University, Potchefstroom, South Africa
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, California, USA
| | - Quincel Quiambao
- Department of Biological Sciences, University of the Pacific, Stockton, California, USA
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, California, USA
| | - Setshaba D Khanye
- Centre for Chemico- and Biomedical Research, Rhodes University, Makhanda, South Africa.,Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
9
|
Batiha GES, Teibo JO, Wasef L, Shaheen HM, Akomolafe AP, Teibo TKA, Al-Kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadakis M. A review of the bioactive components and pharmacological properties of Lavandula species. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:877-900. [PMID: 36773055 PMCID: PMC10079719 DOI: 10.1007/s00210-023-02392-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023]
Abstract
Lavandula species is a flowering plant that is common in Europe and across the Mediterranean. Lavender has many health benefits for humans. In addition to its use in herbal medicine, it is widely used in the fields of cosmetics, perfumes, foods, and aromatherapy. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical ingredients, the pharmacologic effects of the ingredients, and the mechanism of action of the Lavandula species identified. These materials were reviewed in order to have access to important updates about the Lavandula species. Lavender as referred to in English contains essential oils, anthocyanins, phytosterols, sugars, minerals, coumaric acid, glycolic acid, valeric acid, ursolic acid, herniarins, coumarins, and tannins. It has been used to treat colic and chest ailments, worrisome headaches, and biliousness, and in cleaning wounds. It has antifungal, antibacterial, neurologic, antimicrobial, anti-parasitic, anti-diabetic, and analgesic effects among others. Lavandula species has prospects for various biological applications, especially with its dermatological application. Advances in drug development would enable characterization of various bioactive constituents; thus, its development and application can have a more positive impact on humanity. Here, we highlighted updated information on the history, distribution, traditional uses, phytochemical components, pharmacology, and various biological activities of Lavandula species.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Lamiaa Wasef
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Hazem M Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | | | - Titilade Kehinde Ayandeyi Teibo
- Department of Maternal-Infant and Public Health Nursing, College of Nursing, Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Garbeeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.,AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| |
Collapse
|
10
|
Drug susceptibility testing for oxygen-dependent and oxygen-independent resistance phenotypes in trichomonads. Int J Parasitol 2023; 53:247-252. [PMID: 36708914 DOI: 10.1016/j.ijpara.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 01/26/2023]
Abstract
Trichomonas vaginalis is the most prevalent, non-viral sexually transmitted human infection, causing 170 million cases of trichomoniasis annually. Since the 1950s, treatment has relied on 5-nitroimidazoles (5NIs), leading to increasing drug resistance. A similar drug resistance problem is present in the veterinary pathogen, Tritrichomonas foetus. There are currently no agreed standards for defining 5NI resistance, due in part to two distinct oxygen-dependent ("aerobic") and oxygen-independent ("anaerobic") resistance phenotypes. Diagnostic tools to detect 5NI resistance are lacking, and current assays used to phenotypically assess 5NI resistance in vitro are complicated by these two resistance phenotypes. We demonstrate that microaerophilic conditions support sufficient parasite growth to interrogate oxygen-dependent resistance of 5NIs against known resistant and susceptible isolates of T. vaginalis and T. foetus. We further demonstrate that microaerophilic conditions allow sufficient growth for compatibility with existing growth assays, including our TriTOX assay. Adopting microaerophilic conditions eliminates traditional 'by-eye' estimates of minimum inhibitory concentrations and opens up options for increased throughput and automation, scalable to higher-throughput analyses of 5NI resistance. This would further allow the development of quantitative phenotypic standards to benchmark oxygen-dependent or oxygen-independent trichomonad 5NI resistance towards standardised surveillance programs to combat drug resistance.
Collapse
|
11
|
Hsu HM, Yang YY, Huang YH, Chu CH, Tu TJ, Wu YT, Chiang CJ, Yang SB, Hsu DK, Liu FT, Tai JH. Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates. PLoS Negl Trop Dis 2023; 17:e0011016. [PMID: 36595499 PMCID: PMC9810166 DOI: 10.1371/journal.pntd.0011016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Cytoadherence of Trichomonas vaginalis to human vaginal epithelial cells (hVECs) was previously shown to involve surface lipoglycans and several reputed adhesins on the parasite. Herein, we report some new observations on the host-parasite interactions of adherent versus nonadherent T. vaginalis isolates to hVECs. The binding of the TH17 adherent isolate to hVECs exhibited an initial discrete phase followed by an aggregation phase inhibited by lactose. T. vaginalis infection immediately induced surface expression of galectin-1 and -3, with extracellular amounts in the spent medium initially decreasing and then increasing thereafter over the next 60 min. Extracellular galectin-1 and -3 were detected on the parasite surface but only the TH17 adherent isolate could uptake galectin-3 via the lysosomes. Only the adherent isolate could morphologically transform from the round-up flagellate with numerous transient protrusions into a flat amoeboid form on contact with the solid surface. Cytochalasin D challenge revealed that actin organization was essential to parasite morphogenesis and cytoadherence. Real-time microscopy showed that parasite exploring and anchoring on hVECs via the axostyle may be required for initial cytoadherence. Together, the parasite cytoskeleton behaviors may collaborate with cell surface adhesion molecules for cytoadherence. The nonadherent isolate migrated faster than the adherent isolate, with motility transiently increasing in the presence of hVECs. Meanwhile, differential histone acetylation was detected between the two isolates. Also, TH17 without Mycoplasma symbiosis suggests that symbiont might not determine TH17 innate cytoadherence. Our findings regarding distinctive host-parasite interactions of the isolates may provide novel insights into T. vaginalis infection.
Collapse
Affiliation(s)
- Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Yen-Yu Yang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsin Huang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsin Chu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Jui Tu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Ting Wu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Chu-Jen Chiang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Shi-Bing Yang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K. Hsu
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Fu-Tong Liu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Jung-Hsiang Tai
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Edwards RJ, Parboo M, Edwards J, Boyce G. Trichomoniasis refractory to 5-nitroimidazole therapy in Trinidad. Trop Doct 2023; 53:143-145. [PMID: 36214266 DOI: 10.1177/00494755221131370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Trichomoniasis is the most common non-viral sexually transmitted infection (STI) occurring worldwide and the majority of infected persons (70-85%) have mild or no genital symptoms. Symptoms in women may include a vaginal discharge which may be associated with vulval irritation and most infections can be effectively treated with metronidazole 500mg bd for seven days. Trichomoniasis unresponsive to 5-nitroimidazole therapy is uncommon but results in substantial therapeutic challenges, especially in resource limited countries. We present such a case which was eventually treated with a low-cost intravaginal combination of boric acid and clotrimazole cream.
Collapse
Affiliation(s)
- Robert Jeffrey Edwards
- 199168Medical Research Foundation of Trinidad and Tobago, Port of Spain, Trinidad.,Department of Paraclinical Sciences, University of the West Indies, St Augustine, Trinidad
| | - Miriam Parboo
- 199168Medical Research Foundation of Trinidad and Tobago, Port of Spain, Trinidad
| | - Jonathan Edwards
- 199168Medical Research Foundation of Trinidad and Tobago, Port of Spain, Trinidad
| | - Gregory Boyce
- 199168Medical Research Foundation of Trinidad and Tobago, Port of Spain, Trinidad
| |
Collapse
|
13
|
Serrano-Contreras JI, Meléndez-Camargo ME, Márquez-Flores YK, Soria-Serrano MP, Campos-Aldrete ME. Exploratory toxicology studies of 2,3-substituted imidazo[1,2- a]pyridines with antiparasitic and anti-inflammatory properties. Toxicol Res (Camb) 2022; 11:730-742. [PMID: 36337253 PMCID: PMC9618103 DOI: 10.1093/toxres/tfac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 09/08/2024] Open
Abstract
Background Trichomoniasis and amoebiasis are neglected diseases and still remain as a global health burden not only for developing countries, from where are endemic, but also for the developed world. Previously, we tested the antiparasitic activity of a number of imidazo[1,2-a]pyridine derivatives (IMPYs) on metronidazole-resistant strains of Entamoeba Hystolitica (HM1:IMSS), and Trichomonas Vaginalis (GT3). Their anti-inflammatory activity was also evaluated. Objective The present work is a part of a project whose aim is to find new alternatives to standard treatments for these maladies, and to address the current concern of emerging resistant parasite strains. Here we report a non-clinical study focused on exploratory toxicology assays of seven IMPYs that showed the best antiparasitic and/or anti-inflammatory properties. Methods Acute, and subacute toxicity tests were carried out. After 14-day oral treatment, liver and kidney functionality assays in combination with chemometric methods were implemented to detect hepatic and/or kidney damage. Results Some compounds produced off-target effects. Vehicle effects were also detected. However, no signs of hepatic or renal toxicity were observed for any IMPY. Conclusion These compounds can continue non-clinical evaluations, and if possible, clinical trials as new candidates to treat trichomoniasis and amoebiasis, and inflammatory diseases. Further studies are also needed to fully elucidate a proposed dual effect that may exert these molecules against trichomoniasis and amoebiasis, which may also signify a novel mechanism of action to treat these infections.
Collapse
Affiliation(s)
- José Iván Serrano-Contreras
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Delegación Miguel Hidalgo, Ciudad de México, México
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - María Estela Meléndez-Camargo
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - Yazmín Karina Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - Martha Patricia Soria-Serrano
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Unidad Profesional Adolfo López Mateos, Col. Nueva Industrial Vallejo, C.P. 07738, Delegación Gustavo A. Madero, Ciudad de México, México
| | - María Elena Campos-Aldrete
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, C.P. 11340, Delegación Miguel Hidalgo, Ciudad de México, México
| |
Collapse
|
14
|
Yu CC, Chiang YT, Cham TM. Identification of the Constituents in Cnidii Fructus Active Against Trichomonas vaginalis Parasites. Dose Response 2022; 20:15593258221131646. [PMID: 36387775 PMCID: PMC9661559 DOI: 10.1177/15593258221131646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 10/25/2023] Open
Abstract
Ethanol extracts of Cnidii Fructus, the dried fruits of Cnidium monnieri (L.) Cusson, have been externally applied in the treatment of Trichomonas vaginalis. However, the precise identity of the major constituents responsible for activity against T. vaginalis is unknown, but there is probability they are coumarin derivatives. In this study, the anti-Trichomonas activity of 4 major coumarin derivative constituents of Cnidii Fructus, namely, osthole, xanthotoxin, isopimpinellin, and bergapten, was characterized in terms of the resulting kinetics of growth and morphology of T. vaginalis upon treatment. The results demonstrated that osthole and xanthotoxol had significant trichomonacidal ability, while isopimpinellin and bergapten displayed low or no inhibitory efficacy toward T. vaginalis parasites. Our study suggests that the coumarin derivatives osthole and xanthotoxol can be potentially used as a basis for the development and design of new drugs for application in alternative or synergistic therapy against T. vaginalis.
Collapse
Affiliation(s)
- Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yi-Ting Chiang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Pharmacy Department, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Thau-Ming Cham
- Graduate Institute of Pharmaceutical Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Mtshali A, Ngcapu S, Govender K, Sturm AW, Moodley P, Joubert BC. In Vitro Effect of 5-Nitroimidazole Drugs against Trichomonas vaginalis Clinical Isolates. Microbiol Spectr 2022; 10:e0091222. [PMID: 35863010 PMCID: PMC9430554 DOI: 10.1128/spectrum.00912-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Infections with the sexually transmitted parasite Trichomonas vaginalis are normally treated with metronidazole, but cure rates are suboptimal and recurrence rates following treatment are high. Therefore, our objective was to assess the in vitro antitrichomonas activities of three other 5-nitroimidazole drugs and compare them with metronidazole. T. vaginalis isolates (n = 94) isolated from South African women presenting with vaginal discharge syndrome at two sexually transmitted disease clinics in KwaZulu-Natal were grown from frozen stock. Twofold serial dilutions (16 to 0.25 mg/L) of metronidazole, tinidazole, ornidazole, and secnidazole were prepared in Diamond's broth. The MICs were read after 48 h of anaerobic incubation at 37°C. An MIC of <2 mg/L was defined as susceptible, an MIC of 2 mg/L was defined as intermediate, and an MIC of >2 mg/L was defined as resistant. Sixty-one percent (57/94) of the T. vaginalis isolates were susceptible to metronidazole, 80% (75/94) were susceptible to tinidazole, 75% (71/94) were susceptible to secnidazole, and 89% (84/94) were susceptible to ornidazole. Resistance levels were 11%, 2%, and 1% for metronidazole, tinidazole, and secnidazole, respectively, while no resistance was observed for ornidazole. Intermediate scores were 28% for metronidazole, 18% for tinidazole, 24% for secnidazole, and 11% for ornidazole. Isolates from a proportion of women with bacterial vaginosis (BV) had higher MICs, and no isolates from women coinfected with another sexually transmitted infectious organism were resistant to any of the antimicrobials tested. This study showed that among T. vaginalis isolates in KwaZulu-Natal, there is no in vitro resistance to ornidazole. Of the 5-nitroimidazoles, metronidazole showed the highest level of resistance. The very low levels of resistance for the other three antimicrobials indicate that all three are viable options as a replacement for metronidazole if these in vitro findings are found to correlate with clinical outcomes. IMPORTANCE Trichomonas vaginalis is the most common nonviral sexually transmitted infection associated with reproductive sequelae and HIV acquisition risk worldwide. Despite its role in reproductive health, a high prevalence in South Africa, and the reported metronidazole resistance worldwide, no alternative regimens have been tested against T. vaginalis in our setting. This study compared the susceptibility patterns of three other 5-nitroiminazoles (secnidazole, tinidazole, and ornidazole), which are active against T. vaginalis with metronidazole in vitro. Metronidazole, the drug of choice for the treatment of trichomoniasis, showed the highest level of resistance, while the three regimens showed very low levels of resistance. These data indicate that all three are viable options as a replacement for metronidazole if these in vitro findings are found to correlate with clinical outcomes.
Collapse
Affiliation(s)
- Andile Mtshali
- School of Laboratory Medicine and Medical Science, Department of Medical Microbiology, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Sinaye Ngcapu
- School of Laboratory Medicine and Medical Science, Department of Medical Microbiology, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Kavitha Govender
- School of Laboratory Medicine and Medical Science, Department of Medical Microbiology, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - A. Willem Sturm
- School of Laboratory Medicine and Medical Science, Department of Medical Microbiology, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Prashini Moodley
- School of Laboratory Medicine and Medical Science, Department of Medical Microbiology, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Bronwyn C. Joubert
- School of Laboratory Medicine and Medical Science, Department of Medical Microbiology, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| |
Collapse
|
16
|
Reyes-López M, Ramírez-Rico G, Serrano-Luna J, de la Garza M. Activity of Apo-Lactoferrin on Pathogenic Protozoa. Pharmaceutics 2022; 14:pharmaceutics14081702. [PMID: 36015327 PMCID: PMC9414845 DOI: 10.3390/pharmaceutics14081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Parasites and other eventually pathogenic organisms require the ability to adapt to different environmental conditions inside the host to assure survival. Some host proteins have evolved as defense constituents, such as lactoferrin (Lf), which is part of the innate immune system. Lf in its iron-free form (apo-Lf) and its peptides obtained by cleavage with pepsin are microbicides. Parasites confront Lf in mucosae and blood. In this work, the activity of Lf against pathogenic and opportunistic parasites such as Cryptosporidium spp., Eimeria spp., Entamoeba histolytica, Giardia duodenalis, Leishmania spp., Trypanosoma spp., Plasmodium spp., Babesia spp., Toxoplasma gondii, Trichomonas spp., and the free-living but opportunistic pathogens Naegleria fowleri and Acanthamoeba castellani were reviewed. The major effects of Lf could be the inhibition produced by sequestering the iron needed for their survival and the production of oxygen-free radicals to more complicated mechanisms, such as the activation of macrophages to phagocytes with the posterior death of those parasites. Due to the great interest in Lf in the fight against pathogens, it is necessary to understand the exact mechanisms used by this protein to affect their virulence factors and to kill them.
Collapse
|
17
|
Alves MSD, Sena-Lopes Â, das Neves RN, Casaril AM, Domingues M, Birmann PT, da Silva ET, de Souza MVN, Savegnago L, Borsuk S. In vitro and in silico trichomonacidal activity of 2,8-bis(trifluoromethyl) quinoline analogs against Trichomonas vaginalis. Parasitol Res 2022; 121:2697-2711. [PMID: 35857093 DOI: 10.1007/s00436-022-07598-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
Trichomoniasis is a great public health burden worldwide and the increase in treatment failures has led to a need for finding alternative molecules to treat this disease. In this study, we present in vitro and in silico analyses of two 2,8-bis(trifluoromethyl) quinolines (QDA-1 and QDA-2) against Trichomonas vaginalis. For in vitro trichomonacidal activity, up to seven different concentrations of these drugs were tested. Molecular docking, biochemical, and cytotoxicity analyses were performed to evaluate the selectivity profile. QDA-1 displayed a significant effect, completely reducing trophozoites viability at 160 µM, with an IC50 of 113.8 µM, while QDA-2 at the highest concentration reduced viability by 76.9%. QDA-1 completely inhibited T. vaginalis growth and increased reactive oxygen species production and lipid peroxidation after 24 h of treatment, but nitric oxide accumulation was not observed. In addition, molecular docking studies showed that QDA-1 has a favorable binding mode in the active site of the T. vaginalis enzymes purine nucleoside phosphorylase, lactate dehydrogenase, triosephosphate isomerase, and thioredoxin reductase. Moreover, QDA-1 presented a level of cytotoxicity by reducing 36.7% of Vero cells' viability at 200 µM with a CC50 of 247.4 µM and a modest selectivity index. In summary, the results revealed that QDA-1 had a significant anti-T. vaginalis activity. Although QDA-1 had detectable cytotoxicity, the concentration needed to eliminate T. vaginalis trophozoites is lower than the CC50 encouraging further studies of this compound as a trichomonacidal agent.
Collapse
Affiliation(s)
- Mirna Samara Dié Alves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Ângela Sena-Lopes
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Raquel Nascimento das Neves
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Angela Maria Casaril
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Micaela Domingues
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Paloma Taborda Birmann
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Emerson Teixeira da Silva
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil
| | - Marcus Vinicius Nora de Souza
- Instituto de Tecnologia em Fármacos - Far-Manguinhos, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, 21041-250, Brazil.,Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21945-970, Brazil
| | - Lucielli Savegnago
- Laboratório de Neurobiotecnologia, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil
| | - Sibele Borsuk
- Laboratório de Biotecnologia Infecto-Parasitária, Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
18
|
Iqbal A, Sher AA, Muhammad N, Badshah SL, Emwas AH, Jaremko M. Extraction and Fractionation of Prokinetic Phytochemicals from Chrozophora tinctoria and Their Bioactivities. Molecules 2022; 27:molecules27134321. [PMID: 35807565 PMCID: PMC9268473 DOI: 10.3390/molecules27134321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Chrozophora tinctoria is an annual plant of the family Euphorbiaceae, traditionally used as a laxative, a cathartic and an emetic. A methanolic extract of Chrozophora tinctoria (MEC) whole plant and an n-butanol fraction of Chrozophora tinctoria (NBFC) were analyzed by gas chromatography–mass spectrometry (GC-MS) to detect the phytochemicals. MEC and NBFC were tested for in vitro anti acetylcholinesterase (AChE) potential. The effect of both samples on intestinal propulsive movement and spasmolytic activity in the gastrointestinal tract (GIT) was also studied. About twelve compounds in MEC and three compounds in NBFC were tentatively identified through GC-MS. Some of them are compounds with known therapeutic activity, such as toluene; imipramine; undecane; 14-methyl-pentadecanoic acid methyl ester; and hexadecanoic acid. Both NBFC and MEC samples were checked for acute toxicity and were found to be highly toxic in a dose-dependent manner, causing diarrhea and emesis at 1 g/kg concentration in pigeons, with the highest lethargy and mortality above 3 g/kg. Both the samples of Chrozophora tinctoria revealed significant (p ≤ 0.01) laxative activity against metronidazole (7 mg/kg) and loperamide hydrochloride (4 mg/kg)-induced constipation. NBFC (81.18 ± 2.5%) and MEC (68.28 ± 2.4%) significantly increased charcoal meal intestinal transit compared to distal water (41.15 ± 4.3%). NBFC exhibited a significant relaxant effect (EC50 = 3.40 ± 0.20 mg/mL) in spontaneous rabbit jejunum as compared to MEC (EC50 = 4.34 ± 0.68 mg/kg). Similarly, the impact of NBFC on KCl-induced contraction was more significant than that of MEC (EC50 values of 7.22 ± 0.06 mg/mL and 7.47 ± 0.57 mg/mL, respectively). The present study scientifically validates the folk use of Chrozophora tinctoria in the management of gastrointestinal diseases such as constipation. Further work is needed to isolate the phytochemicals that act as diarrheal agents in Chrozophora tinctoria.
Collapse
Affiliation(s)
- Arshad Iqbal
- Department of Botany, Islamia College University, Peshawar 25120, Pakistan;
- Correspondence: (A.I.); (S.L.B.); (M.J.)
| | - Ayaz Ali Sher
- Department of Botany, Islamia College University, Peshawar 25120, Pakistan;
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
- Correspondence: (A.I.); (S.L.B.); (M.J.)
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Correspondence: (A.I.); (S.L.B.); (M.J.)
| |
Collapse
|
19
|
Fang L, Lu X, Cui C, Shi Q, Wang H. Metronidazole-loaded nanoparticulate thermoreversible gel for gynecologic infection of Trichomonas vaginalis. Am J Transl Res 2022; 14:4015-4023. [PMID: 35836901 PMCID: PMC9274572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Trichomoniasis is a common sexually-transmitted disease that is associated with increased perinatal morbidity and human immunodeficiency virus (HIV) transmission. This study aimed to develop a Metronidazole-loaded nanoparticulate thermoreversible gel for gynecological infection of Trichomonas vaginalis (T. vaginalis). METHODS The optimized nanoparticulate formulation was used in thermoreversible gel and characterized for physico-chemical properties, antiparasitic activity, and in vivo efficacy in the BALB/c mouse model. RESULT A nearly threefold rise in antiparasitic activity of the optimized formulation was observed as compared to that of regular gel. Formulation F5 successfully cured the trichomoniasis within 3 days, while regular gel and pure Metronidazole (MTDZ) failed to cure this infection (P<0.05). CONCLUSION The present investigation confirms the ability of thermoreversible gel containing nanoparticulate metronidazole againstthe infection by T. vaginalis. The developed gel could be an alternative to the existing drug delivery system for the treatment of trichomoniasis.
Collapse
Affiliation(s)
- Ling Fang
- Department of Dermatology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Chengjun Cui
- Department of Dermatology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Qifeng Shi
- Department of Pathology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| | - Haojue Wang
- Department of Obstetrics and Gynecology, Xishan People’s Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Southeast UniversityWuxi 214105, Jiangsu, China
| |
Collapse
|
20
|
Abstract
With the overmining of actinomycetes for compounds acting against Gram-negative pathogens, recent efforts to discover novel antibiotics have been focused on other groups of bacteria. Teixobactin, the first antibiotic without detectable resistance that binds lipid II, comes from an uncultured Eleftheria terra, a betaproteobacterium; odilorhabdins, from Xenorhabdus, are broad-spectrum inhibitors of protein synthesis, and darobactins from Photorhabdus target BamA, the essential chaperone of the outer membrane of Gram-negative bacteria. Xenorhabdus and Photorhabdus are symbionts of the nematode gut microbiome and attractive producers of secondary metabolites. Only small portions of their biosynthetic gene clusters (BGC) are expressed in vitro. To access their silent operons, we first separated extracts from a small library of isolates into fractions, resulting in 200-fold concentrated material, and then screened them for antimicrobial activity. This resulted in a hit with selective activity against Escherichia coli, which we identified as a novel natural product antibiotic, 3′-amino 3′-deoxyguanosine (ADG). Mutants resistant to ADG mapped to gsk and gmk, kinases of guanosine. Biochemical analysis shows that ADG is a prodrug that is converted into an active ADG triphosphate (ADG-TP), a mimic of GTP. ADG incorporates into a growing RNA chain, interrupting transcription, and inhibits cell division, apparently by interfering with the GTPase activity of FtsZ. Gsk of the purine salvage pathway, which is the first kinase in the sequential phosphorylation of ADG, is restricted to E. coli and closely related species, explaining the selectivity of the compound. There are probably numerous targets of ADG-TP among GTP-dependent proteins. The discovery of ADG expands our knowledge of prodrugs, which are rare among natural compounds.
Collapse
|
21
|
Fatima F, Kumar S, Das A. Vaccines against sexually transmitted infections: an update. Clin Exp Dermatol 2022; 47:1454-1463. [DOI: 10.1111/ced.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Farhat Fatima
- Department of Dermatology, Venereology, and Leprosy; Medical College & Hospital Kolkata India
| | - Satarupa Kumar
- Department of Dermatology, Venereology, and Leprosy; Medical College & Hospital Kolkata India
| | - Anupam Das
- Department of Dermatology, Venereology, and Leprosy; KPC Medical College & Hospital Kolkata India
| |
Collapse
|
22
|
Benítez-Cardoza CG, Brieba LG, Arroyo R, Rojo-Domínguez A, Vique-Sánchez JL. Synergistic effect of compounds directed to triosephosphate isomerase, a combination to develop drug against trichomoniasis. Arch Pharm (Weinheim) 2022; 355:e2200046. [PMID: 35332589 DOI: 10.1002/ardp.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
The development of new drugs is continuous in the world; currently, saving resources (both economic ones and time) and preventing secondary effects have become a necessity for drug developers. Trichomoniasis is the most common nonviral sexually transmitted infection affecting more than 270 million people around the world. In our research group, we focussed on developing a selective and more effective drug against Trichomonas vaginalis, and we previously reported on a compound, called A4, which had a trichomonacidal effect. Later, we determined another compound, called D4, which also had a trichomonacidal effect together with favorable toxicity results. Both A4 and D4 are directed at the enzyme triosephosphate isomerase. Thus, we made combinations between the two compounds, in which we determined a synergistic effect against T. vaginalis, determining the IC50 and the toxicity of the best relationship to obtain the trichomonacidal effect. With these results, we can propose a combination of compounds that represents a promising alternative for the development of a new therapeutic strategy against trichomoniasis.
Collapse
Affiliation(s)
- Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, ENMyH-Instituto Politécnico Nacional, Ciudad de México, México
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Guanajuato, México
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Arturo Rojo-Domínguez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Ciudad de México, México
| | - José L Vique-Sánchez
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| |
Collapse
|
23
|
Electrochemical Detection of Metronidazole Using Silver Nanoparticle-Modified Carbon Paste Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00722-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Ibáñez-Escribano A, Fonseca-Berzal C, Martínez-Montiel M, Álvarez-Márquez M, Gómez-Núñez M, Lacueva-Arnedo M, Espinosa-Buitrago T, Martín-Pérez T, Escario JA, Merino-Montiel P, Montiel-Smith S, Gómez-Barrio A, López Ó, Fernández-Bolaños JG. Thio- and selenosemicarbazones as antiprotozoal agents against Trypanosoma cruzi and Trichomonas vaginalis. J Enzyme Inhib Med Chem 2022; 37:781-791. [PMID: 35193444 PMCID: PMC8881069 DOI: 10.1080/14756366.2022.2041629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 μM (CL-B5 strain) and 33.65 μM (Y strain), IC50 (BZ)=25.31 μM (CL-B5) and 22.73 μM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.
Collapse
Affiliation(s)
- Alexandra Ibáñez-Escribano
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Cristina Fonseca-Berzal
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Mónica Martínez-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Manuel Álvarez-Márquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - María Gómez-Núñez
- Escuela Politécnica Superior, Universidad de Sevilla, Sevilla, Spain
| | - Manuel Lacueva-Arnedo
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Teresa Espinosa-Buitrago
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - José Antonio Escario
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Penélope Merino-Montiel
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Alicia Gómez-Barrio
- Unidad de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Madrid, Spain
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
25
|
Fleischer C, Hogans-Mathews S. Vulvovaginitis and Cervicitis. Fam Med 2022. [DOI: 10.1007/978-3-030-54441-6_157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Adeyemi OO, Alabi AS, Adeyemi OA, Talabi OT, Abidakun OM, Joel IY, Stonehouse NJ. Acute gastroenteritis and the usage pattern of antibiotics and traditional herbal medications for its management in a Nigerian community. PLoS One 2021; 16:e0257837. [PMID: 34607333 PMCID: PMC8490005 DOI: 10.1371/journal.pone.0257837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/12/2021] [Indexed: 11/23/2022] Open
Abstract
Acute gastroenteritis (AGE) is the highest cause of mortality worldwide in children under the age of 5 years, with the highest mortalities occurring in low-to-middle income countries. Treatment can involve use of unregulated herbal medication and antibiotics. A cross sectional study was carried out to investigate the use of antibiotics and traditional herbal medications in the management of AGE among Yòrùbá-speaking communities in Kwara State, Nigeria. Our findings suggest habitual use of antibiotics (54.6%) and herbal medication (42.5%) in the management of AGE with high levels of self-prescription of antibiotics (21.7%) and herbal medications (36.2%) within the community. Ethanolic extracts of selected herbal plants reported (i.e. Aristolochia ringens, Azadirachta indica, Chromolaena odorata, Etanda Africana, Ficus capensis, Ficus vogelii, Mangifera indica, Momordica charantia, Ocimum gratisimum, Senna alata, Sorghum bicolor and Vernonia amygdalina) were investigated for antibacterial properties, using bacteria known to be causative agents of AGE. Our findings showed that, with exception of Ficus vogelii, which enhanced bacterial growth, the plant extracts reported all showed some antibacterial activity. We further discuss our findings within a regulatory context, with the aim to guide the use of traditional and herbal medication in low-to medium income countries (LMICs) and reduce the potential risks associated with the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Oluwapelumi Olufemi Adeyemi
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (OOA); (NJS)
| | - Ade Stephen Alabi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Olaoluwa Temitope Talabi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, Lagos, Nigeria
| | | | | | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail: (OOA); (NJS)
| |
Collapse
|
27
|
Triosephosphate isomerase as a therapeutic target against trichomoniasis. Mol Biochem Parasitol 2021; 246:111413. [PMID: 34537286 DOI: 10.1016/j.molbiopara.2021.111413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Trichomoniasis is the most common non-viral sexually transmitted infection, caused by the protozoan parasite Trichomonas vaginalis, affecting millions of people worldwide. The main treatment against trichomoniasis is metronidazole and other nitroimidazole derivatives, but up to twenty percent of clinical cases of trichomoniasis are resistant to these drugs. In this study, we used high-performance virtual screening to search for molecules that specifically bind to the protein, triosephosphate isomerase from T. vaginalis (TvTIM). By in silico molecular docking analysis, we selected six compounds from a chemical library of almost 500,000 compounds. While none of the six inhibited the enzymatic activity of recombinant triosephosphate isomerase isoforms, one compound (A4; 3,3'-{[4-(4-morpholinyl)phenyl]methylene}bis(4- hydroxy-2H-chromen-2-one) altered their fluorescence emission spectra, suggesting that this chemical might interfere in an important non-glycolytic function of TvTIM. In vitro assays demonstrate that A4 is not cytotoxic but does have trichomonacidal impact on T. vaginalis cultures. With these results, we propose this compound as a potential drug with a new therapeutic target against Trichomonas vaginalis.
Collapse
|
28
|
Mabaso N, Abbai NS. A review on Trichomonas vaginalis infections in women from Africa. S Afr J Infect Dis 2021; 36:254. [PMID: 34485502 PMCID: PMC8377975 DOI: 10.4102/sajid.v36i1.254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Trichomoniasis is the most common sexually transmitted infection (STI) with an estimated annual incidence of 276.4 million cases globally and about 30 million cases in sub-Saharan Africa. Trichomoniasis has been found to be associated with various health complications including pelvic inflammatory disease (PID), significant pregnancy complications, cervical cancer, prostatitis, infertility and the acquisition of human immunodeficiency virus (HIV). Aim Despite being a highly prevalent infection in the African continent, there is no review article published that solely focusses on Trichomonas vaginalis (T. vaginalis) infections in women from Africa. This review aims to fill this gap in the literature. Method An electronic search of online databases was used to identify and extract relevant research articles related to the epidemiology, health complications and treatment associated with T. vaginalis in women from Africa. Results Within the African continent, South Africa has reported the highest prevalence rate for this infection. A combination of sociodemographic, behavioural and biological factors has been shown to be associated with infection. Trichomonas vaginalis infection is associated with the acquisition of HIV, cervical cancer and PIDs in various female populations across the continent. Emerging patterns of resistance to metronidazole have been reported in women from South Africa. Currently, there is no effective vaccine against this pathogen despite efforts at vaccine development. Conclusion Based on the high prevalence and health consequences associated with T. vaginalis, there is a need for improved screening programmes that will lead to early diagnosis, detection of asymptomatic infections and effective treatment regimens.
Collapse
Affiliation(s)
- Nonkululeko Mabaso
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nathlee S Abbai
- School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
29
|
Al-Ardi MH. Anti-parasitic activity of nano Citrullus colocynthis and nano Capparis spinose against Trichomonas vaginalis in vitro. J Parasit Dis 2021; 45:845-850. [PMID: 34475668 PMCID: PMC8368443 DOI: 10.1007/s12639-021-01371-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022] Open
Abstract
The use of plant extracts and the benefit of their unique properties in treating various pathogens is the return to mother nature, and an attempt to overcome the problems of side effects resulting from the use of chemical drugs and the ability of some pathogens to resist these drugs. Nanotechnology has strengthened the ability of drugs to reach the target and reduced the size and amount of dose needed for treatment. Nano-extracts of Citrullus colocynthis and Capparis spinosa at concentrations of (100, 250 and 500) ppm prepared to the treatment Trichomonas vaginalis in vitro at the time (12, 24, 72) h. Results compared with the use of 0.1% of metronidazole (500 mg). The results showed that the concentrations (100, 250, 500) ppm of C. colocynthis had an inhibitory activity for the growth rate (43.77, 69.15, 89.89) at the time (12, 24 and 72) h, respectively. The inhibitory activity of C. spinosa was (43.18, 67.41, 87.04) at the same time and concentration, compared with metronidazole (43.47, 70.40, 87.04) at the same time. Neither plants showed severe effects in hemolysis. From the results, it can be concluded that either plant can be used as an alternative to metronidazole after completing human and animal tests.
Collapse
Affiliation(s)
- Musafer H. Al-Ardi
- The General Directorate for Education\Al-Qadisiyah, Ministry of Education, Al-Qadisiyah, Iraq
| |
Collapse
|
30
|
Abstract
In this study, for the first time, molecular modeling and antiparasitic activity studies were carried out on some azo dyes containing uracil, 6-amino-5-[(4-nitrophenyl) diazenyl] pyrimidine-2,4 (1H, 3H)-dione (dye I) and 6-amino-5-[(4-bromophenyl) diazenyl] pyrimidin-2,4 (1H, 3H)-dione (dye II), which were resynthesized using the same method in the literature and whose molecular structures were confirmed using FTIR and 1H-NMR methods. In molecular modeling study, all calculations were performed using DFT/B3LYP/6-311++G(d,p) method. The molecular structures of the possible tautomeric forms of dyes I and II were optimized, and their molecular total energies were calculated in the gas phase and DMSO solvent. IR and 1H-NMR spectral data of the possible tautomeric forms of dyes were obtained, and theoretical spectral data were compared with experimental ones. The evaluations show that, for both dyes, the spectral data of the imine-diketo-hydrazone form, which has the lowest energy and is hence determined to be the most stable form, are in agreement with the experimental ones. In antiparasitic activity study, dyes I and II were tested for the first time against parasites Leishmania infantum, Leishmania major, Leishmania tropica promastigotes, and Trichomonas vaginalis trophozoites. In vitro antileishmanial activities against Leishmania promastigotes were tested by microdilution broth assay with Alamar Blue in RPMI 1640 medium, and in vitro trichomonacidal activities against Trichomonas vaginalis parasite were tested using TYM medium. In tests, antileishmanial and trichomonacidal effects were determined by comparing the obtained minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) values with those obtained for standard drugs (amphotericin B and metronidazole, respectively).
Collapse
|
31
|
Han Y, Liu Z, Chen T. Role of Vaginal Microbiota Dysbiosis in Gynecological Diseases and the Potential Interventions. Front Microbiol 2021; 12:643422. [PMID: 34220737 PMCID: PMC8249587 DOI: 10.3389/fmicb.2021.643422] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Vaginal microbiota dysbiosis, characterized by the loss of Lactobacillus dominance and increase of microbial diversity, is closely related to gynecological diseases; thus, intervention on microbiota composition is significant and promising in the treatment of gynecological diseases. Currently, antibiotics and/or probiotics are the mainstay of treatment, which show favorable therapeutic effects but also bring problems such as drug resistance and high recurrence. In this review, we discuss the role of vaginal microbiota dysbiosis in various gynecological infectious and non-infectious diseases, as well as the current and potential interventions.
Collapse
Affiliation(s)
- Yiwen Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Natto MJ, Hulpia F, Kalkman ER, Baillie S, Alhejeli A, Miyamoto Y, Eckmann L, Van Calenbergh S, de Koning HP. Deazapurine Nucleoside Analogues for the Treatment of Trichomonas vaginalis. ACS Infect Dis 2021; 7:1752-1764. [PMID: 33974405 DOI: 10.1021/acsinfecdis.1c00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trichomoniasis is the most common nonviral sexually transmitted disease in humans, but treatment options are limited. Here, we report a resorufin-based drug sensitivity assay for high-throughput microplate-based screening under hypoxic conditions. A 5203-compound enamine kinase library and several specialized compound series were tested for the inhibition of Trichomonas growth at 10 μM with Z' values of >0.5. Hits were rescreened in serial dilution to establish an IC50 concentration. A series of 7-substituted 7-deazaadenosine analogues emerged as highly potent anti-T. vaginalis agents, with EC50 values in the low double digit nanomolar range. These analogues exhibited excellent selectivity indices. Follow-up medicinal chemistry efforts identified an optimal ribofuranose and C7 substituent. Several nucleosides rapidly cleared cultures of T. vaginalis at a concentrations of just 2 × EC50. Preliminary in vivo evaluation in a murine trichomoniasis model (Tritrichomonas foetus) revealed promising activity upon topical administration, validating purine nucleoside analogues as a new class of antitrichomonal agents.
Collapse
Affiliation(s)
- Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Campus Heymans (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Eric R. Kalkman
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Susan Baillie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Amani Alhejeli
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | | | | | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Campus Heymans (FFW), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
33
|
Morais PAB, Francisco CS, de Paula H, Ribeiro R, Eloy MA, Javarini CL, Neto ÁC, Júnior VL. Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, medicinal chemistry has been concerned with the approach of organic
chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities,
the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new
and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since
the 19th century, notoriously applying isolated and characterized plant-derived compounds in
modern drug discovery and various stages of clinical development highlight its viability and
significance. Natural products influence a broad range of biological processes, covering transcription,
translation, and post-translational modification, being effective modulators of most
basic cellular processes. The research of new chemical entities through “click chemistry”
continuously opens up a map for the remarkable exploration of chemical space towards leading
natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a
broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Carla Santana Francisco
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Rayssa Ribeiro
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Mariana Alves Eloy
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Clara Lirian Javarini
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Álvaro Cunha Neto
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| |
Collapse
|
34
|
Synthetic strategies, crystal structures and biological activities of metal complexes with the members of azole family: A review. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Trichomonas vaginalis infection impairs anion secretion in vaginal epithelium. PLoS Negl Trop Dis 2021; 15:e0009319. [PMID: 33861752 PMCID: PMC8051796 DOI: 10.1371/journal.pntd.0009319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/22/2021] [Indexed: 12/04/2022] Open
Abstract
Trichomonas vaginalis is a common protozoan parasite, which causes trichomoniasis associated with severe adverse reproductive outcomes. However, the underlying pathogenesis has not been fully understood. As the first line of defense against invading pathogens, the vaginal epithelial cells are highly responsive to environmental stimuli and contribute to the formation of the optimal luminal fluid microenvironment. The cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel widely distributed at the apical membrane of epithelial cells, plays a crucial role in mediating the secretion of Cl− and HCO3−. In this study, we investigated the effect of T. vaginalis on vaginal epithelial ion transport elicited by prostaglandin E2 (PGE2), a major prostaglandin in the semen. Luminal administration of PGE2 triggered a remarkable and sustained increase of short-circuit current (ISC) in rat vaginal epithelium, which was mainly due to Cl− and HCO3− secretion mediated by the cAMP-activated CFTR. However, T. vaginalis infection significantly abrogated the ISC response evoked by PGE2, indicating impaired transepithelial anion transport via CFTR. Using a primary cell culture system of rat vaginal epithelium and a human vaginal epithelial cell line, we demonstrated that the expression of CFTR was significantly down-regulated after T. vaginalis infection. In addition, defective Cl− transport function of CFTR was observed in T. vaginalis-infected cells by measuring intracellular Cl− signals. Conclusively, T. vaginalis restrained exogenous PGE2-induced anion secretion through down-regulation of CFTR in vaginal epithelium. These results provide novel insights into the intervention of reproductive complications associated with T. vaginalis infection such as infertility and disequilibrium in vaginal fluid microenvironment. Trichomonas vaginalis is a common sexually transmitted parasite that colonized the urogenital mucosa and causes trichomoniasis, a neglected sexually transmitted infection associated with multiple adverse reproductive outcomes in humans. However, the underlying mechanisms remain largely unknown. The epithelial cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel conducting both Cl− and HCO3−, which participates in the regulation of luminal fluid microenvironment conducive to the success of reproductive events. Prostaglandin E2 (PGE2), a bioactive molecule abundant in human seminal fluid, has been demonstrated to exhibit a robust pro-secretory action by activating CFTR in the female genital tract epithelial cells such as endometrial epithelium. These discoveries motivated the authors to investigate the effect of T. vaginalis infection on exogenous PGE2-induced transepithelial transport of electrolytes in vagina. Here, we found that in rat vaginal epithelium, luminal administration of PGE2 elicited a response of Cl− and HCO3− secretion mediated by cAMP-activated CFTR. However, T. vaginalis infection impaired transepithelial anion transport evoked by PGE2, which is probably related to the defective expression and function of CFTR. These outcomes may complement and expand our knowledge of the complex interaction between T. vaginalis and the infected host, providing a novel therapeutic strategy for disequilibrium in vaginal fluid microenvironment and infertility induced by T. vaginalis infection.
Collapse
|
36
|
HIV susceptibility in women: The roles of genital inflammation, sexually transmitted infections and the genital microbiome. J Reprod Immunol 2021; 145:103291. [PMID: 33647576 DOI: 10.1016/j.jri.2021.103291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022]
Abstract
Given that heterosexual transmission of HIV across the genital mucosa is the most common route of infection in women, an in-depth understanding of the biological mechanisms associated with HIV risk in the female genital tract (FGT) is essential for effective control of the epidemic. Genital pro-inflammatory cytokines are well-described biological co-factors to HIV risk. Increased levels of pro-inflammatory cytokines in the FGT have been associated with a 3-fold higher-risk of acquiring HIV, presumably through involvement in barrier compromise and the recruitment of highly activated HIV target cells to the site of initial viral infection and replication. Sexually transmitted infections (STIs) and bacterial vaginosis (BV) are suggested possible contributors to genital inflammation in the FGT, and this, coupled with the relationship between genital inflammation and HIV risk, underscores the importance of effective treatment of STI and BV in the promotion of women's health. In most low- and middle-income countries, STIs are treated syndromically, a practice providing rapid treatment without identifying the infection source. However, this approach has been associated with over-diagnosis and the overuse of drugs. Further, because many women with STIs are asymptomatic, syndromic management also fails to treat a vast proportion of infected women. Although several studies have explored the role of STIs and the vaginal microbiome on genital inflammation and HIV risk, the impact of STI and BV management on genital inflammation remains poorly understood. This review aimed to collate the evidence on how BV and STI management efforts affect genital inflammation and the genital microbiome in women.
Collapse
|
37
|
Lam AYF, Vuong D, Jex AR, Piggott AM, Lacey E, Emery-Corbin SJ. TriTOX: A novel Trichomonas vaginalis assay platform for high-throughput screening of compound libraries. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 15:68-80. [PMID: 33601283 PMCID: PMC7897990 DOI: 10.1016/j.ijpddr.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 11/25/2022]
Abstract
Trichomonas vaginalis is a neglected urogenital parasitic protist that causes 170 million cases of trichomoniasis annually, making it the most prevalent non-viral, sexually transmitted disease. Trichomoniasis treatment relies on nitroheterocyclics, such as metronidazole. However, with increasing drug-resistance, there is an urgent need for novel anti-trichomonals. Little progress has been made to translate anti-trichomonal research into commercialised therapeutics, and the absence of a standardised compound-screening platform is the immediate stumbling block for drug-discovery. Herein, we describe a simple, cost-effective growth assay for T. vaginalis and the related Tritrichomonas foetus. Tracking changes in pH were a valid indicator of trichomonad growth (T. vaginalis and T. foetus), allowing development of a miniaturised, chromogenic growth assay based on the phenol red indicator in 96- and 384-well microtiter plate formats. The outputs of this assay can be quantitatively and qualitatively assessed, with consistent dynamic ranges based on Z' values of 0.741 and 0.870 across medium- and high-throughput formats, respectively. We applied this high-throughput format within the largest pure-compound microbial metabolite screen (812 compounds) for T. vaginalis and identified 43 hit compounds. We compared these identified compounds to mammalian cell lines, and highlighted extensive overlaps between anti-trichomonal and anti-tumour activity. Lastly, observing nanomolar inhibition of T. vaginalis by fumagillin, and noting this compound has reported activity in other protists, we performed in silico analyses of the interaction of fumagillin with its molecular target methionine aminopeptidase 2 for T. vaginalis, Giardia lamblia and Entamoeba histolytica, highlighting potential for fumagillin as a broad-spectrum anti-protistal against microaerophilic protists. Together, this new platform will accelerate drug-discovery efforts, underpin drug-resistance screening in trichomonads, and contributing to a growing body of evidence highlighting the potential of microbial natural products as novel anti-protistals.
Collapse
Affiliation(s)
- Alexander Y F Lam
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Piggott
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW, Australia; Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, NSW, Australia
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
38
|
Vulvovaginitis and Cervicitis. Fam Med 2021. [DOI: 10.1007/978-1-4939-0779-3_157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Baccega B, Wahast Islabão Y, Brauner de Mello A, Obelar Martins F, Caetano dos Santos C, Ferreira Ourique A, da Silva Gündel S, Raquel Pegoraro de Macedo M, Elena Silveira Vianna É, Amélia da Rosa Farias N, Belmonte Oliveira C. In vitro and in vivo activity of the essential oil and nanoemulsion of Cymbopogon flexuosus against Trichomonas gallinae. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:32-34. [PMID: 33628718 PMCID: PMC7885001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
OBJECTIVE This study was done to evaluate the in vitro and in vivo effects of the essential oil (OE-CL) and nanoemulsion (N-CL) of Cymbopogon flexuosus against Trichomonas gallinae. MATERIALS AND METHODS In vitro assays were done with 106 parasites and OE-CL and N-CL in the concentrations: 110, 220, 330, 440, 550, 660, 770 and 880 µg/ml and four controls: CN (culture medium and trophozoites), MTZ (trophozoites plus 800 µg/ml of metronidazole), TW (trophozoites plus vehicles used for solubilization of derivatives (0.01% Tween) and NB (blank nanoemulsion 880 µg/ml). The in vivo assay was done in 35 quails (Coturnix coturnix) infected experimentally 4x104 mg/kg, were divided in seven groups (n=5): A (control-healthy), B (control infected), C (control TW 0.01%), D (NB 0.88 mg/kg), E (drug MTZ 25 mg/kg, F (OE-CL at 0.55 mg/kg) and G (N-CL at 0.44 mg/kg), during 7 consecutive days. RESULTS The in vitro test showed that the OE-CL (550 μg/ml) and N-CL (440 μg/ml) concentrations reduced the trophozoites viability in 100%. In the in vivo test, the treatment with OE-CL was efficient on the 4th treatment day and the N-CL after the 3rd day, and the MTZ in the therapeutic concentration was efficient on the 7th day. CONCLUSION It can be observed in this study that the lemon grass has natural potential antitrichomonal activity against T. gallinae in vitro and in vivo.
Collapse
Affiliation(s)
- Bruna Baccega
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil,Corresponding Author: Tel: (+55) 053 3275-7618,
| | - Yan Wahast Islabão
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Alexia Brauner de Mello
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Filipe Obelar Martins
- Department of Microbiology and Parasitology, Federal University of Pelotas, Pelotas, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dawit M, Turbale M, Moges A, Amare M. Poly(alizarin red S) modified glassy carbon electrode for square wave adsorptive stripping voltammetric determination of metronidazole in tablet formulation. PLoS One 2020; 15:e0244115. [PMID: 33351825 PMCID: PMC7755201 DOI: 10.1371/journal.pone.0244115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/03/2020] [Indexed: 12/02/2022] Open
Abstract
Potentiodynamically fabricated poly(alizarin red s) modified GCE was characterized using CV and EIS techniques. In contrast to the cyclic voltammetric response of the unmodified GCE for metronidazole, an irreversible reduction peak with three-folds of current enhancement and reduced overpotential at the poly(alizarin red s) modified GCE showed the catalytic effect of the modifier towards reduction of metronidazole. While observed peak potential shift with increasing pH (4.0-10.0) indicated the involvement of protons during the reduction of metronidazole, peak potential shift with scan rate (20-300 mV s-1) confirmed the irreversibility of the reduction reaction of metronidazole at the modified GCE. A better correlation for the dependence of peak current on scan rate (r2 = 0.9883) than on square root of scan rate (r2 = 0.9740) supplemented by slope value of 0.38 for plot of log(current) versus log(scan rate) indicated the reduction reaction of metronidazole at the surface of the modified electrode was predominantly adsorption controlled. Under the optimized method and solution parameters, reductive current response of tablet sample showed linear dependence on spiked standard concentration in a wide range (0-125 μM) with excellent determination coefficient r2, LoD and LoQ of 0.9991, 0.38, and 1.25 μM, respectively. Spike recovery of 97.9% and interference recovery of 96.2-97.5% in the presence of 21.28 and 31.92 μM of uric acid and ascorbic acid validated the applicability of the present method for determination of metronidazole in tablet formulation. The metronidazole content of the tested tablet formulation using standard addition method was found to be 97.6% of what is claimed by the tablet manufacturer making the developed method an excellent potential candidate for its applicability to determine metronidazole in real samples with complex matrix.
Collapse
|
41
|
Anti-Trichomonas vaginalis Effect of Methanolic Extracts of Sambucus nigra in Comparison with Metronidazole. Jundishapur J Nat Pharm Prod 2020. [DOI: 10.5812/jjnpp.65872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background: Trichomoniasis is the most common non-viral sexually transmitted disease caused by a flagellated protozoan living in the genitourinary tract, which infects both men and women. Metronidazole is the treatment of choice for trichomoniasis. Researchers are seeking an alternative to metronidazole because of its inevitable side effects and toxicity. Objectives: This study aimed to evaluate the effect of the methanolic extract of Sambucus nigra against Trichomonas vaginalis in vitro. Methods: Plants were collected from different areas of Mazandaran Province, northern Iran. Fruits were separated, shade-dried, milled, and their methanolic extract was prepared in concentrations of 100, 200, 400, and 800 µg/mL. Parasites were obtained from patients referring to different health centers of Mazandaran province, cultured in Dorset medium, and incubated at 37°C. The effects were evaluated and compared to a control group. The data were analyzed by SPSS 18 using the ANOVA test. Results: The exposure time and concentration of the extracts had a direct effect on anti-parasitic activity so that increasing extract concentration and incubation time heightened the anti-trichomoniasis effects. The concentrations of 400 and 800 µg/ml of the plant had 100% efficacy after 72 and 48 hours, respectively. Conclusions: It can be concluded from our results that the methanolic extract of S. nigra has a remarkable ability to destroy T. vaginalis and it can be considered an effective drug against T. vaginalis with further studies in human and animal models.
Collapse
|
42
|
Ashour DS, Othman AA. Parasite-bacteria interrelationship. Parasitol Res 2020; 119:3145-3164. [PMID: 32748037 DOI: 10.1007/s00436-020-06804-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Parasites and bacteria have co-evolved with humankind, and they interact all the time in a myriad of ways. For example, some bacterial infections result from parasite-dwelling bacteria as in the case of Salmonella infection during schistosomiasis. Other bacteria synergize with parasites in the evolution of human disease as in the case of the interplay between Wolbachia endosymbiont bacteria and filarial nematodes as well as the interaction between Gram-negative bacteria and Schistosoma haematobium in the pathogenesis of urinary bladder cancer. Moreover, secondary bacterial infections may complicate several parasitic diseases such as visceral leishmaniasis and malaria, due to immunosuppression of the host during parasitic infections. Also, bacteria may colonize the parasitic lesions; for example, hydatid cysts and skin lesions of ectoparasites. Remarkably, some parasitic helminths and arthropods exhibit antibacterial activity usually by the release of specific antimicrobial products. Lastly, some parasite-bacteria interactions are induced as when using probiotic bacteria to modulate the outcome of a variety of parasitic infections. In sum, parasite-bacteria interactions involve intricate processes that never cease to intrigue the researchers. However, understanding and exploiting these interactions could have prophylactic and curative potential for infections by both types of pathogens.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
43
|
Chromosomal Resistance to Metronidazole in Clostridioides difficile Can Be Mediated by Epistasis between Iron Homeostasis and Oxidoreductases. Antimicrob Agents Chemother 2020; 64:AAC.00415-20. [PMID: 32457109 DOI: 10.1128/aac.00415-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Chromosomal resistance to metronidazole has emerged in clinical Clostridioides difficile isolates, but the genetic mechanisms remain unclear. This is further hindered by the inability to generate spontaneous metronidazole-resistant mutants in the lab to interpret genetic variations in clinical isolates. We therefore constructed a mismatch repair mutator in nontoxigenic ATCC 700057 to survey the mutational landscape for de novo resistance mechanisms. In separate experimental evolutions, the mutator adopted a deterministic path to resistance, with truncation of the ferrous iron transporter FeoB1 as a first-step mechanism of low-level resistance. Deletion of feoB1 in ATCC 700057 reduced the intracellular iron content, appearing to shift cells toward flavodoxin-mediated oxidoreductase reactions, which are less favorable for metronidazole's cellular action. Higher-level resistance evolved from sequential acquisition of mutations to catalytic domains of pyruvate-ferredoxin/flavodoxin oxidoreductase (PFOR; encoded by nifJ), a synonymous codon change to putative xdh (xanthine dehydrogenase; encoded by CD630_31770), likely affecting mRNA stability, and last, frameshift and point mutations that inactivated the iron-sulfur cluster regulator (IscR). Gene silencing of nifJ, xdh, or iscR with catalytically dead Cas9 revealed that resistance involving these genes occurred only when feoB1 was inactivated; i.e., resistance was seen only in the feoB1 deletion mutant and not in the isogenic wild-type (WT) parent. Interestingly, metronidazole resistance in C. difficile infection (CDI)-associated strains carrying mutations in nifJ was reduced upon gene complementation. This observation supports the idea that mutation in PFOR is one mechanism of metronidazole resistance in clinical strains. Our findings indicate that metronidazole resistance in C. difficile is complex, involving multigenetic mechanisms that could intersect with iron-dependent and oxidoreductive metabolic pathways.
Collapse
|
44
|
Almuqrin AH, Al-Otaibi JS, Mary YS, Mary YS, Thomas R. Structural study of letrozole and metronidazole and formation of self-assembly with graphene and fullerene with the enhancement of physical, chemical and biological activities. J Biomol Struct Dyn 2020; 39:5509-5515. [PMID: 32657232 DOI: 10.1080/07391102.2020.1790420] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Letrozole and metronidazole are two commonly used drugs for the management of breast cancer and parasitic infections, respectively. This manuscript attempts to study their structure, geometry, search for stable conformers using relaxed potential energy scan, spectral properties, quantum mechanical properties like energy and reactivity descriptors, intra molecular electron transfer properties, non-linear properties etc using various computational tools. It is found that these compounds will form a self-assembly with graphene sheets and fullerenes and exhibit a surface-enhanced Raman spectra and enhancement in non-linear optical properties when compared to the single molecule. The electronic absorption behavior of the compounds was studied using TD-DFT method. Global chemical reactivity descriptors and activity sites toward electrophilic and nucleophilic attack have been discussed. Studies of intra molecular electron transfer gave information about the relative stability of the compounds. Molecular docking studies indicate that the pure compounds and their self-assemblies with graphene have excellent biological activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aljawhara H Almuqrin
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Jamelah S Al-Otaibi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Y Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Y Shyma Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Renjith Thomas
- Department of Chemistry, St. Berchmans College (Autonomous), Changanacherry, Kerala, India
| |
Collapse
|
45
|
Donadu MG, Trong Le N, Viet Ho D, Quoc Doan T, Tuan Le A, Raal A, Usai M, Marchetti M, Sanna G, Madeddu S, Rappelli P, Diaz N, Molicotti P, Carta A, Piras S, Usai D, Thi Nguyen H, Cappuccinelli P, Zanetti S. Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics (Basel) 2020; 9:antibiotics9060334. [PMID: 32570731 PMCID: PMC7344524 DOI: 10.3390/antibiotics9060334] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/26/2022] Open
Abstract
The rapid emergence of drug-resistant strains and novel viruses have motivated the search for new anti-infectious agents. In this study, the chemical compositions and cytotoxicity, as well as the antibacterial, antifungal, antitrichomonas, and antiviral activities of essential oils from the leaves, rhizomes, and whole plant of Hornstedtia bella were investigated. The GC/MS analysis showed that β-pinene, E-β-caryophyllene, and α-humulene were found at high concentrations in the essential oils. The essential oils exhibited (i) inhibition against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis with minimum inhibitory concentrations (MIC) and minimum lethal concentration (MLC) values from 1 to 4% (v/v); (ii) MIC and MLC values from 2 to 16% (v/v) in Candida tropicalis and Candida parapsilosis; (iii) MIC and MLC values from 4 to 16% in Enterococcus faecalis; and (iv) MIC and MLC values from 8 to greater than or equal to 16% (v/v) in the remaining strains, including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Candida albicans, and Candida glabrata. In antitrichomonas activity, the leaves and whole-plant oils of Hornstedtia bella possessed IC50, IC90, and MLC values of 0.008%, 0.016%, and 0.03% (v/v), respectively, whilst those of rhizomes oil had in turn, 0.004%, 0.008%, and 0.016% (v/v).Besides, the leaf oil showed a weak cytotoxicity against Vero 76 and MRC-5; meanwhile, rhizomes and whole-plant oils did not exert any toxic effects on cell monolayers. Finally, these oils were not active against EV-A71.
Collapse
Affiliation(s)
- Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.G.D.); (P.R.); (N.D.); (P.M.); (P.C.); (S.Z.)
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.U.); (A.C.); (S.P.)
| | - Nhan Trong Le
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam; (N.T.L.); (D.V.H.); (T.Q.D.)
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam; (N.T.L.); (D.V.H.); (T.Q.D.)
| | - Tuan Quoc Doan
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam; (N.T.L.); (D.V.H.); (T.Q.D.)
| | - Anh Tuan Le
- Mientrung Institute for Scientific Research, VAST, Hue 49000, Vietnam;
| | - Ain Raal
- Institute of Pharmacy, Faculty of Medicine, University of Tartu, 50900 Tartu, Estonia;
| | - Marianna Usai
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.U.); (A.C.); (S.P.)
| | - Mauro Marchetti
- Institute of Biomolecular Chemistry (CNR), Li Punti, 07100 Sassari, Italy;
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (G.S.); (S.M.)
| | - Silvia Madeddu
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (G.S.); (S.M.)
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.G.D.); (P.R.); (N.D.); (P.M.); (P.C.); (S.Z.)
| | - Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.G.D.); (P.R.); (N.D.); (P.M.); (P.C.); (S.Z.)
| | - Paola Molicotti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.G.D.); (P.R.); (N.D.); (P.M.); (P.C.); (S.Z.)
| | - Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.U.); (A.C.); (S.P.)
| | - Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy; (M.U.); (A.C.); (S.P.)
| | - Donatella Usai
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.G.D.); (P.R.); (N.D.); (P.M.); (P.C.); (S.Z.)
- Correspondence: (D.U.); (H.T.N.)
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, Hue 49000, Vietnam; (N.T.L.); (D.V.H.); (T.Q.D.)
- Correspondence: (D.U.); (H.T.N.)
| | - Piero Cappuccinelli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.G.D.); (P.R.); (N.D.); (P.M.); (P.C.); (S.Z.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.G.D.); (P.R.); (N.D.); (P.M.); (P.C.); (S.Z.)
| |
Collapse
|
46
|
Developing a new drug against trichomoniasis, new inhibitory compounds of the protein triosephosphate isomerase. Parasitol Int 2020; 76:102086. [DOI: 10.1016/j.parint.2020.102086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 11/10/2019] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
|
47
|
Benítez‐Cardoza CG, Jiménez‐Pineda A, Angles‐Falconi SI, Fernández‐Velasco DA, Vique‐Sánchez JL. Potential Site to Direct Selective Compounds in the Triosephosphate Isomerase for the Development of New Drugs. ChemistrySelect 2020. [DOI: 10.1002/slct.202000820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Albertana Jiménez‐Pineda
- Laboratorio de Investigación BioquímicaENMyH-Instituto Politécnico Nacional Ciudad de México México
| | - Sergio I. Angles‐Falconi
- División Académica Multidisciplinaria de Jalpa de MéndezUniversidad Juárez Autónoma de Tabasco Jalpa de Méndez Tabasco, México
| | - Daniel A. Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de ProteínasDepartamento de BioquímicaFacultad de MedicinaUniversidad Nacional Autónoma de México México
| | - José L. Vique‐Sánchez
- Laboratorio de Investigación BioquímicaENMyH-Instituto Politécnico Nacional Ciudad de México México
- Facultad de MedicinaUniversidad Autónoma de Baja California Mexicali, BC, México
| |
Collapse
|
48
|
Soleimani Lashkenari M, Nikpay A, Soltani M, Gerayeli A. In vitro antiprotozoal activity of poly(rhodanine)-coated zinc oxide nanoparticles against Trichomonas gallinae. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1591972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Ali Nikpay
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Maryam Soltani
- Young Researchers and Elite club, Urmia Branch, Islamic Azad University, Urmia, Iran
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Gerayeli
- Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
| |
Collapse
|
49
|
In situ reactivity of electrochemically generated nitro radical anion on Ornidazole and its monomeric Cu(II) complex with nucleic acid bases and calf thymus DNA. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Probiotics in addition to metronidazole for treatment Trichomonas vaginalis in the presence of BV: a randomized, placebo-controlled, double-blind study. Eur J Clin Microbiol Infect Dis 2019; 39:345-351. [PMID: 31705339 DOI: 10.1007/s10096-019-03731-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/02/2019] [Indexed: 12/30/2022]
Abstract
The purpose was to evaluate whether probiotics can increase the effectiveness of antimicrobial therapy. Ninety women with Trichomonas vaginalis (TV) in the presence BV were included in the study of regimens for therapy combination with metronidazole and vaginal probiotics. For 7 days, the probiotics group patients received metronidazole at 500 mg twice a day and 1 capsule of probiotic Gynophilus® vaginally twice a day; the placebo group patients in addition to metronidazole received a placebo instead of a probiotic. For the next 7 days, patients in both groups in order restore normal microflora were given the probiotics vaginally. Before the treatment, on the 4th, 8th, and 15th day of therapy complaints, pH and redox potential of the vaginal fluid were recorded, TV detection culturally, microflora of the vagina with the qPCR-RT and microscopically. Adding probiotics to traditional therapy of TV in the presence of BV increased the likelihood of cure from TV (88.6 and 42.9% in the probiotic and placebo groups, respectively) and from BV (63.6 and 11.9%, respectively). We have found that the addition of probiotics to antimicrobial therapy causes the decrease in the inflammatory response and significant changes in the vagina's physicochemical parameters (decreased of the pH values, increased of the redox potential) already on the fourth day of the therapy. The changes in the metronidazole's antimicrobial action implementation when a probiotic is added are the reason of increasing the TV therapy's effectiveness in the BV presence.
Collapse
|