1
|
Ganesan S, Acosta H, Brigolin C, Orange K, Trabbic K, Chen C, Lien CE, Lin YJ, Lin MY, Chuang YS, Fattom A, Bitko V. Intranasal nanoemulsion adjuvanted S-2P vaccine demonstrates protection in hamsters and induces systemic, cell-mediated and mucosal immunity in mice. PLoS One 2022; 17:e0272594. [PMID: 36322572 PMCID: PMC9629544 DOI: 10.1371/journal.pone.0272594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/21/2022] [Indexed: 12/01/2022] Open
Abstract
With the rapid progress made in the development of vaccines to fight the SARS-CoV-2 pandemic, almost >90% of vaccine candidates under development and a 100% of the licensed vaccines are delivered intramuscularly (IM). While these vaccines are highly efficacious against COVID-19 disease, their efficacy against SARS-CoV-2 infection of upper respiratory tract and transmission is at best temporary. Development of safe and efficacious vaccines that are able to induce robust mucosal and systemic immune responses are needed to control new variants. In this study, we have used our nanoemulsion adjuvant (NE01) to intranasally (IN) deliver stabilized spike protein (S-2P) to induce immunogenicity in mouse and hamster models. Data presented demonstrate the induction of robust immunity in mice resulting in 100% seroconversion and protection against SARS-CoV-2 in a hamster challenge model. There was a significant induction of mucosal immune responses as demonstrated by IgA- and IgG-producing memory B cells in the lungs of animals that received intranasal immunizations compared to an alum adjuvanted intramuscular vaccine. The efficacy of the S-2P/NE01 vaccine was also demonstrated in an intranasal hamster challenge model with SARS-CoV-2 and conferred significant protection against weight loss, lung pathology, and viral clearance from both upper and lower respiratory tract. Our findings demonstrate that intranasal NE01-adjuvanted vaccine promotes protective immunity against SARS-CoV-2 infection and disease through activation of three arms of immune system: humoral, cellular, and mucosal, suggesting that an intranasal SARS-CoV-2 vaccine may play a role in addressing a unique public health problem and unmet medical need.
Collapse
Affiliation(s)
- Shyamala Ganesan
- BlueWillow Biologics, Ann Arbor, Michigan, United States of America
| | - Hugo Acosta
- BlueWillow Biologics, Ann Arbor, Michigan, United States of America
| | - Chris Brigolin
- BlueWillow Biologics, Ann Arbor, Michigan, United States of America
| | - Kallista Orange
- BlueWillow Biologics, Ann Arbor, Michigan, United States of America
| | - Kevin Trabbic
- BlueWillow Biologics, Ann Arbor, Michigan, United States of America
| | - Charles Chen
- Medigen Vaccine Biologics Corporation, Taipei, Taiwan
- Temple University, Philadelphia, Pennsylvania, United States of America
| | - Chia-En Lien
- Medigen Vaccine Biologics Corporation, Taipei, Taiwan
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- * E-mail: (C-EL); (VB)
| | - Yi-Jiun Lin
- Medigen Vaccine Biologics Corporation, Taipei, Taiwan
| | - Meei-Yun Lin
- Medigen Vaccine Biologics Corporation, Taipei, Taiwan
| | | | - Ali Fattom
- BlueWillow Biologics, Ann Arbor, Michigan, United States of America
| | - Vira Bitko
- BlueWillow Biologics, Ann Arbor, Michigan, United States of America
- * E-mail: (C-EL); (VB)
| |
Collapse
|
2
|
Nian X, Zhang J, Huang S, Duan K, Li X, Yang X. Development of Nasal Vaccines and the Associated Challenges. Pharmaceutics 2022; 14:1983. [PMID: 36297419 PMCID: PMC9609876 DOI: 10.3390/pharmaceutics14101983] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2024] Open
Abstract
Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal and systemic immunity to combat these infections. The intranasal route of vaccination offers the advantage of easy accessibility over the injection administration. Therefore, nasal immunization is considered a promising strategy for disease prevention, particularly in the case of infectious diseases of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant and antigens design and optimization, enabling rapid induction of protective mucosal and systemic responses against the disease. In recent times, the development of efficacious nasal vaccines with an adequate safety profile has progressed rapidly, with effective handling and overcoming of the challenges encountered during the process. In this context, the present report summarizes the most recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative to conventional vaccines.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
3
|
Lin YJ, Lin MY, Chuang YS, Liu LTC, Kuo TY, Chen C, Ganesan S, Fattom A, Bitko V, Lien CE. Protection of hamsters challenged with SARS-CoV-2 after two doses of MVC-COV1901 vaccine followed by a single intranasal booster with nanoemulsion adjuvanted S-2P vaccine. Sci Rep 2022; 12:11369. [PMID: 35790783 PMCID: PMC9255510 DOI: 10.1038/s41598-022-15238-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2022] [Indexed: 11/09/2022] Open
Abstract
Intramuscular vaccines have greatly reduced hospitalization and death due to severe COVID-19. However, most countries are experiencing a resurgence of infection driven predominantly by the Delta and Omicron variants of SARS-CoV-2. In response, booster dosing of COVID-19 vaccines has been implemented in many countries to address waning immunity and reduced protection against the variants. However, intramuscular boosting fails to elicit mucosal immunity and therefore does not solve the problem of persistent viral carriage and transmission, even in patients protected from severe disease. In this study, two doses of stabilized prefusion SARS-CoV-2 spike (S-2P)-based intramuscular vaccine adjuvanted with Alum/CpG1018, MVC-COV1901, were used as a primary vaccination series, followed by an intranasal booster vaccination with nanoemulsion (NE01)-adjuvanted S-2P vaccine in a hamster model to demonstrate immunogenicity and protection from viral challenge. Here we report that this vaccination regimen resulted not only in the induction of robust immunity and protection against weight loss and lung pathology following challenge with SARS-CoV-2, but also led to increased viral clearance from both upper and lower respiratory tracts. Our findings showed that intramuscular MVC-COV1901 vaccine followed by a booster with intranasal NE01-adjuvanted vaccine promotes protective immunity against both viral infection and disease, suggesting that this immunization protocol may offer a solution in addressing a significant, unmet medical need for both the COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Yi-Jiun Lin
- Medigen Vaccine Biologics Corporation, Taipei City, Taiwan
| | - Meei-Yun Lin
- Medigen Vaccine Biologics Corporation, Taipei City, Taiwan
| | - Ya-Shan Chuang
- Medigen Vaccine Biologics Corporation, Taipei City, Taiwan
| | | | - Tsun-Yung Kuo
- Department of Biotechnology and Animal Science, National Ilan University, Yilan County, Taiwan
| | - Charles Chen
- Medigen Vaccine Biologics Corporation, Taipei City, Taiwan
- Temple University, Philadelphia, PA, 19122, USA
| | | | - Ali Fattom
- BlueWillow Biologics, Ann Arbor, MI, 48105, USA
- LLC, Ann Arbor, MI, 48105, USA
| | - Vira Bitko
- BlueWillow Biologics, Ann Arbor, MI, 48105, USA.
| | - Chia-En Lien
- Medigen Vaccine Biologics Corporation, Taipei City, Taiwan.
- Institute of Public Health, National Yang-Ming Chiao Tung University, Taipei City, Taiwan.
| |
Collapse
|
4
|
Tayeb HH, Felimban R, Almaghrabi S, Hasaballah N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 45:100533. [PMID: 34692429 PMCID: PMC8526445 DOI: 10.1016/j.colcom.2021.100533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 05/08/2023]
Abstract
Viral diseases are emerging as global threats. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), that causes coronavirus disease (COVID-19), has severe global impacts. Safety, dosage, and potency of vaccines recently approved for emergency use against SARS-CoV-2 need further evaluation. There is still no effective treatment against COVID-19; therefore, safe, and effective vaccines or therapeutics against SARS-CoV-2 are urgently needed. Oil-in-water nanoemulsions (O/W NEs) are emerging as sophisticated, protective, and therapeutic platforms. Encapsulation capacity, which offers better drug pharmacokinetics, coupled with the tunable surfaces present NEs as promising tools for pharmaceutical applications. The challenges facing drug discovery, and the advancements of NEs in drug delivery demonstrate the potential of NEs against evolving diseases, like COVID-19. Here we summarize current COVID-19 knowledge and discuss the composition, stability, preparation, characterization, and biological fate of O/W NEs. We also provide insights into NE structural-functional properties that may contribute to therapeutic or preventative solutions against COVID-19.
Collapse
Affiliation(s)
- Hossam H Tayeb
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Raed Felimban
- 3D Bioprinting Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sarah Almaghrabi
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Nojod Hasaballah
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Johnson-Weaver BT, Choi HW, Yang H, Granek JA, Chan C, Abraham SN, Staats HF. Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens. Front Immunol 2021; 12:730346. [PMID: 34566991 PMCID: PMC8461742 DOI: 10.3389/fimmu.2021.730346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.
Collapse
Affiliation(s)
| | - Hae Woong Choi
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
| | - Hang Yang
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Josh A. Granek
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Cliburn Chan
- Biostatistics and Bioinformatics Department, School of Medicine, Duke University, Durham, NC, United States
| | - Soman N. Abraham
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Herman F. Staats
- Pathology Department, School of Medicine, Duke University, Durham, NC, United States
- Department of Immunology, School of Medicine, Duke University, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| |
Collapse
|
6
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
7
|
Lamaisakul S, Tantituvanont A, Lipipun V, Ritthidej G. Development of novel cationic microemulsion as parenteral adjuvant for influenza vaccine. Asian J Pharm Sci 2020; 15:591-604. [PMID: 33193862 PMCID: PMC7610209 DOI: 10.1016/j.ajps.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 11/08/2022] Open
Abstract
Squalene-based oil-in-water (O/W) emulsions have been used as effective and safe adjuvants in approved influenza vaccines. However, there are concerns regarding the safety and side effects of increasing risk of narcolepsy. In present study, novel O/W microemulsions (MEs) containing wheat germ oil, D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) and Cremophor EL (CreEL) or Solutol HS15 were formulated with/without a cationic surfactant, cetyltrimethylammonium bromide (CTAB) and then sterilized by autoclaving. Their physical properties and biological efficacies were evaluated. The results demonstrated that autoclaving reduced the droplet size to ∼20 nm with narrow size distributions resulting in monodisperse systems with good stability up to 3 years. Hemolytic activity, viscosity, pH, and osmolality were appropriate for parenteral use. Bovine serum albumin (BSA), a model antigen, after mixing with MEs retained the protein integrity, assessed by SDS-PAGE and CD spectroscopy. Greater percentages of 28SC cell viability were observed from CreEL-based MEs. Uptake of FITC-BSA-MEs increased with the increasing concentration of CTAB confirmed by CLSM images. Furthermore, cationic CreEL-based MEs could induce Th1 cytokine synthesis with an increase in TNF-α and IL-12 levels and a decrease in IL-10 level. In vivo immunization study in mice of adjuvants admixed with influenza virus solution revealed that nonionic and selected cationic CreEL-MEs enhanced immune responses as measured by influenza-specific serum antibody titers and hemagglutination inhibition titers. Particularly, cationic CreEL-based ME showed better humoral and cellular immunity with higher IgG2a titer than nonionic CreEL-based ME and antigen alone. No differences in immune responses were observed between mice immunized with selected cationic CreEL-based ME and marketed adjuvant. In addition, the selected ME induced antigen-sparing while retained immune stimulating effects compared to antigen alone. No inflammatory change in muscle fiber structure was observed. Accordingly, the developed cationic CreEL-based ME had potential as novel adjuvant for parenteral influenza vaccine.
Collapse
Affiliation(s)
- Sakalanunt Lamaisakul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vimolmas Lipipun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Huang CH, Huang CY, Ho HM, Lee CH, Lai PT, Wu SC, Liu SJ, Huang MH. Nanoemulsion adjuvantation strategy of tumor-associated antigen therapy rephrases mucosal and immunotherapeutic signatures following intranasal vaccination. J Immunother Cancer 2020; 8:jitc-2020-001022. [PMID: 33037116 PMCID: PMC7549439 DOI: 10.1136/jitc-2020-001022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Emulsion adjuvants are a potent tool for effective vaccination; however, the size matters on mucosal signatures and the mechanism of action following intranasal vaccination remains unclear. Here, we launch a mechanistic study to address how mucosal membrane interacts with nanoemulsion of a well-defined size at cellular level and to elucidate the impact of size on tumor-associated antigen therapy. METHODS The squalene-based emulsified particles at the submicron/nanoscale could be elaborated by homogenization/extrusion. The mucosal signatures following intranasal delivery in mice were evaluated by combining whole-mouse genome microarray and immunohistochemical analysis. The immunological signatures were tested by assessing their ability to influence the transportation of a model antigen ovalbumin (OVA) across nasal mucosal membranes and drive cellular immunity in vivo. Finally, the cancer immunotherapeutic efficacy is monitored by assessing tumor-associated antigen models consisting of OVA protein and tumor cells expressing OVA epitope. RESULTS Uniform structures with ~200 nm in size induce the emergence of membranous epithelial cells and natural killer cells in nasal mucosal tissues, facilitate the delivery of protein antigen across the nasal mucosal membrane and drive broad-spectrum antigen-specific T-cell immunity in nasal mucosal tissues as well as in the spleen. Further, intranasal vaccination of the nanoemulsion could assist the antigen to generate potent antigen-specific CD8+ cytotoxic T-lymphocyte response. When combined with immunotherapeutic models, such an effective antigen-specific cytotoxic activity allowed the tumor-bearing mice to reach up to 50% survival 40 days after tumor inoculation; moreover, the optimal formulation significantly attenuated lung metastasis. CONCLUSIONS In the absence of any immunostimulator, only 0.1% content of squalene-based nanoemulsion could rephrase the mucosal signatures following intranasal vaccination and induce broad-spectrum antigen-specific cellular immunity, thereby improving the efficacy of tumor-associated antigen therapy against in situ and metastatic tumors. These results provide critical mechanistic insights into the adjuvant activity of nanoemulsion and give directions for the design and optimization of mucosal delivery for vaccine and immunotherapy.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Chiung-Yi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hui-Min Ho
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Hung Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Pang-Ti Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Wong PT, Goff PH, Sun RJ, Ruge MJ, Ermler ME, Sebring A, O'Konek JJ, Landers JJ, Janczak KW, Sun W, Baker JR. Combined Intranasal Nanoemulsion and RIG-I Activating RNA Adjuvants Enhance Mucosal, Humoral, and Cellular Immunity to Influenza Virus. Mol Pharm 2020; 18:679-698. [PMID: 32491861 DOI: 10.1021/acs.molpharmaceut.0c00315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current influenza virus vaccines are focused on humoral immunity and are limited by the short duration of protection, narrow cross-strain efficacy, and suboptimal immunogenicity. Here, we combined two chemically and biologically distinct adjuvants, an oil-in-water nanoemulsion (NE) and RNA-based agonists of RIG-I, to determine whether the diverse mechanisms of these adjuvants could lead to improved immunogenicity and breadth of protection against the influenza virus. NE activates TLRs, stimulates immunogenic apoptosis, and enhances cellular antigen uptake, leading to a balanced TH1/TH2/TH17 response when administered intranasally. RIG-I agonists included RNAs derived from Sendai and influenza viral defective interfering RNAs (IVT DI, 3php, respectively) and RIG-I/TLR3 agonist, poly(I:C) (pIC), which induce IFN-Is and TH1-polarized responses. NE/RNA combined adjuvants potentially allow for costimulation of multiple innate immune receptor pathways, more closely mimicking patterns of activation occurring during natural viral infection. Mice intranasally immunized with inactivated A/Puerto Rico/8/1934 (H1N1) (PR/8) adjuvanted with NE/IVT DI or NE/3php (but not NE/pIC) showed synergistic enhancement of systemic PR/8-specific IgG with significantly greater avidity and virus neutralization activity than the individual adjuvants. Notably, NE/IVT DI induced protective neutralizing titers after a single immunization. Hemagglutinin stem-specific antibodies were also improved, allowing recognition of heterologous and heterosubtypic hemagglutinins. All NE/RNAs elicited substantial PR/8-specific sIgA. Finally, a unique cellular response with enhanced TH1/TH17 immunity was induced with the NE/RNAs. These results demonstrate that the enhanced immunogenicity of the adjuvant combinations was synergistic and not simply additive, highlighting the potential value of a combined adjuvant approach for improving the efficacy of vaccination against the influenza virus.
Collapse
Affiliation(s)
- Pamela T Wong
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Peter H Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Rachel J Sun
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Matthew J Ruge
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Megan E Ermler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Alyssa Sebring
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jessica J O'Konek
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Jeffrey J Landers
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Katarzyna W Janczak
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - James R Baker
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Mary H. Weiser Food Allergy Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
El-Sayed A, Kamel M. Advanced applications of nanotechnology in veterinary medicine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19073-19086. [PMID: 30547342 DOI: 10.1007/s11356-018-3913-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The invention of new techniques to manipulate materials at their nanoscale had an evolutionary effect on various medical sciences. At the time, there are thousands of nanomaterials which can be divided according to their shape, origin, or their application. The nanotechnology provided new solutions for old problems. In medical sciences, they are used for diagnostic or therapeutic purposes. They can also be applied in the preparation of nanovaccines and nanoadjuvants. Their use in the treatment of cancer and in gene therapy opened the door for a new era in medicine. Recently, various applications of nanotechnology started to find their way in the veterinary sector. They increasingly invade animal therapeutics, diagnostics, production of veterinary vaccines, farm disinfectants, for animal breeding and reproduction, and even the field of animal nutrition. Their replacement of commonly used antibiotics directly reflects on the public health. By so doing, they minimize the problem of drug resistance in both human and veterinary medicine, and the problem of drug residues in milk and meat. In addition, they have a great economic impact, by minimizing the amounts of discarded milk and the number of culled calves in dairy herds. Nanotechnology was also applied to develop pet care products and hygienic articles. The present review discusses the advantage of using nanomaterials compared to their counterparts, the various classes of nanoparticles, and illustrates the applications and the role of nanotechnology in the field of veterinary medicine.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| |
Collapse
|
11
|
O’Konek JJ, Baker JR. Treatment of allergic disease with nanoemulsion adjuvant vaccines. Allergy 2020; 75:246-249. [PMID: 31298741 DOI: 10.1111/all.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jessica J. O’Konek
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - James R. Baker
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| |
Collapse
|
12
|
Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7:78-93. [PMID: 32010725 PMCID: PMC6968591 DOI: 10.1080/23144599.2019.1691379] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology is a fast-growing technology that plays an important great impact on various fields of therapeutic applications. It is capable for solving several problems related to animal health and production. There are different nano-systems such as liposomes, metallic nanoparticles, polymeric micelles, polymeric nanospheres, functionalized fullerenes, carbon nanotubes, dendrimers, polymer-coated nanocrystals and nanoshells. In this review, we mentioned different methods for the preparation and characterization of nanoparticles. This review is concerned mainly on nanoparticle systems for antibiotic delivery which suffer from poor bioavailability and many side effects. Nanoparticles are characterized by many features include their minimal size, colossal surface zone to mass extent. The development of antimicrobials in nanoparticle systems is considered an excellent alternative delivery system for antimicrobials for the treatment of microbial diseases by increasing therapeutic effect and overcoming the side effects. In this paper, we reviewed some antimicrobial nanoparticle preparations and we focused on florfenicol and neomycin nanoparticle preparations as well as chitosan and silver nanoparticles preparations to prepare, characterize and compare their different pharmacological effects.
Collapse
Affiliation(s)
- Fady Sayed Youssef
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossny Awad El-Banna
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Ahmed Mohamed Galal
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Smith D, Streatfield SJ, Acosta H, Ganesan S, Fattom A. A nanoemulsion-adjuvanted intranasal H5N1 influenza vaccine protects ferrets against homologous and heterologous H5N1 lethal challenge. Vaccine 2019; 37:6162-6170. [PMID: 31495593 DOI: 10.1016/j.vaccine.2019.08.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Flu vaccines administered intramuscularly (IM) have shown seasonally fluctuating efficacy, 20-60%, throughout the last 15 years. We formulated a recombinant H5 (rH5) in our Nanovax® (NE01) (rH5/NE01) adjuvant for intranasal vaccination in ferrets. We evaluated the regimen, one vs two immunization, and cross clade protection a ferret challenge model. METHODS Plant derived recombinant H5 (rH5) antigen was formulated with NE01 and administered intranasally to ferrets. Immunogenicity (IgG), hemagglutination inhibition (HI), and protection against lethal challenge, were measured following one or two immunizations. Protection against homologous (strain A/Indo) and heterologous (strain A/Vn) was evaluated in ferrets following two immunizations. RESULTS IN immunization with rH5/NE01 induced significant IgG levels after one and two immunizations. One vaccination did not induce any HI while low HI was measured after two immunizations. Homologous challenge with H5N1 A/ Indonesia showed 100% survival, with minimal weight loss in animals vaccinated twice compared to the unvaccinated controls. Analysis of nasal wash from these challenged ferrets vaccinated twice showed decreased viral shedding compared to unvaccinated controls. Interestingly, animals that received one vaccination showed 88% survival with moderate weight loss. Cross clade protection was evaluated using an increased antigen dose (45 µg rH5). Vaccinated animals demonstrated increased IgG and HAI antibody responses. Both homologous (A/Indo) and heterologous challenge (A/Vietnam) following two immunizations showed 100% survival with no loss of body weight. However viral clearance was more rapid against the homologous (day 3) compared to the heterologous (day 5) post challenge. CONCLUSION Intranasal administration of NE01 adjuvant-formulated rH5 vaccine elicited systemic and probably mucosal immunity that conferred protection against lethal challenge with homologous or heterologous viral strains. It also enhanced viral clearance with decreased shedding. These outcomes strongly suggest that intranasal immunization using NE01 against flu infections warrants clinical testing.
Collapse
Affiliation(s)
| | - Stephen J Streatfield
- Fraunhofer USA Center for Molecular Biotechnology (FhCMB), Newark, DE, United States
| | - Hugo Acosta
- BlueWillow Biologics, Ann Arbor, MI, United States
| | | | - Ali Fattom
- BlueWillow Biologics, Ann Arbor, MI, United States.
| |
Collapse
|
14
|
Calzas C, Chevalier C. Innovative Mucosal Vaccine Formulations Against Influenza A Virus Infections. Front Immunol 2019; 10:1605. [PMID: 31379823 PMCID: PMC6650573 DOI: 10.3389/fimmu.2019.01605] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite efforts made to develop efficient preventive strategies, infections with influenza A viruses (IAV) continue to cause serious clinical and economic problems. Current licensed human vaccines are mainly inactivated whole virus particles or split-virion administered via the parenteral route. These vaccines provide incomplete protection against IAV in high-risk groups and are poorly/not effective against the constant antigenic drift/shift occurring in circulating strains. Advances in mucosal vaccinology and in the understanding of the protective anti-influenza immune mechanisms suggest that intranasal immunization is a promising strategy to fight against IAV. To date, human mucosal anti-influenza vaccines consist of live attenuated strains administered intranasally, which elicit higher local humoral and cellular immune responses than conventional parenteral vaccines. However, because of inconsistent protective efficacy and safety concerns regarding the use of live viral strains, new vaccine candidates are urgently needed. To prime and induce potent and long-lived protective immune responses, mucosal vaccine formulations need to ensure the immunoavailability and the immunostimulating capacity of the vaccine antigen(s) at the mucosal surfaces, while being minimally reactogenic/toxic. The purpose of this review is to compile innovative delivery/adjuvant systems tested for intranasal administration of inactivated influenza vaccines, including micro/nanosized particulate carriers such as lipid-based particles, virus-like particles and polymers associated or not with immunopotentiatory molecules including microorganism-derived toxins, Toll-like receptor ligands and cytokines. The capacity of these vaccines to trigger specific mucosal and systemic humoral and cellular responses against IAV and their (cross)-protective potential are considered.
Collapse
Affiliation(s)
- Cynthia Calzas
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| | - Christophe Chevalier
- VIM, UR892, Equipe Virus Influenza, INRA, University PARIS-SACLAY, Jouy-en-Josas, France
| |
Collapse
|
15
|
Recombinant H5 hemagglutinin adjuvanted with nanoemulsion protects ferrets against pathogenic avian influenza virus challenge. Vaccine 2019; 37:1591-1600. [DOI: 10.1016/j.vaccine.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/29/2022]
|
16
|
Citron MP, Patel M, Purcell M, Lin SA, Rubins DJ, McQuade P, Callahan C, Gleason A, Petrescu I, Knapp W, Orekie C, Chamarthy S, Wen Z, Touch S, Pine M, Fontenot J, Douglas C, Liang X, Espeseth AS. A novel method for strict intranasal delivery of non-replicating RSV vaccines in cotton rats and non-human primates. Vaccine 2018; 36:2876-2885. [PMID: 29599087 DOI: 10.1016/j.vaccine.2018.02.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/26/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
Respiratory syncytial virus (RSV) is the most common viral cause of bronchiolitis and pneumonia in children twelve months of age or younger and a significant cause of lower respiratory disease in older adults. As various clinical and preclinical candidates advance, cotton rats (Sigmodon hispidus) and non-human primates (NHP) continue to play a valuable role in RSV vaccine development, since both animals are semi-permissive to human RSV (HRSV). However, appropriate utilization of the models is critical to avoid mis-interpretation of the preclinical findings. Using a multimodality imaging approach; a fluorescence based optical imaging technique for the cotton rat and a nuclear medicine based positron emission tomography (PET) imaging technique for monkeys, we demonstrate that many common practices for intranasal immunization in both species result in inoculum delivery to the lower respiratory tract, which can result in poor translation of outcomes from the preclinical to the clinical setting. Using these technologies we define a method to limit the distribution of intranasally administered vaccines solely to the upper airway of each species, which includes volume restrictions in combination with injectable anesthesia. We show using our newly defined methods for strict intranasal immunization that these methods impact the immune responses and efficacy observed when compared to vaccination methods resulting in distribution to both the upper and lower respiratory tracts. These data emphasize the importance of well-characterized immunization methods in the preclinical assessment of intranasally delivered vaccine candidates.
Collapse
Affiliation(s)
- Michael P Citron
- Infectious Disease/Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| | - Manishkumar Patel
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Mona Purcell
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Shu-An Lin
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Daniel J Rubins
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Paul McQuade
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Cheryl Callahan
- Infectious Disease/Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Alexa Gleason
- Translational Imaging Biomarkers, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Ioan Petrescu
- Safety Assessment and Laboratory Animal Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Walter Knapp
- Safety Assessment and Laboratory Animal Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Chinedu Orekie
- Biopharmaceutics & Specialty DF/Development, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Sai Chamarthy
- Biopharmaceutics & Specialty DF/Development, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Zhiyun Wen
- Infectious Disease/Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Sinoeun Touch
- Infectious Disease/Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Matthew Pine
- Infectious Disease/Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jane Fontenot
- The University of Louisiana New Iberia Research Center, New Iberia, LA 70560, United States
| | - Cameron Douglas
- Infectious Disease/Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xiaoping Liang
- Infectious Disease/Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Amy S Espeseth
- Infectious Disease/Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| |
Collapse
|
17
|
|
18
|
Modified Nanoemulsions with Iron Oxide for Magnetic Resonance Imaging. NANOMATERIALS 2016; 6:nano6120223. [PMID: 28335351 PMCID: PMC5302717 DOI: 10.3390/nano6120223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/10/2016] [Accepted: 11/16/2016] [Indexed: 11/17/2022]
Abstract
A nanoemulsion (NE) is a surfactant-based, oil-in-water, nanoscale, high-energy emulsion with a mean droplet diameter of 400–600 nm. When mixed with antigen and applied nasally, a NE acts as a mucosal adjuvant and induces mucosal immune responses. One possible mechanism for the adjuvant effect of this material is that it augments antigen uptake and distribution to lymphoid tissues, where the immune response is generated. Biocompatible iron oxide nanoparticles have been used as a unique imaging approach to study the dynamics of cells or molecular migration. To study the uptake of NEs and track them in vivo, iron oxide nanoparticles were synthesized and dispersed in soybean oil to make iron oxide-modified NEs. Our results show that iron oxide nanoparticles can be stabilized in the oil phase of the nanoemulsion at a concentration of 30 µg/μL and the iron oxide-modified NEs have a mean diameter of 521 nm. In vitro experiments demonstrated that iron oxide-modified NEs can affect uptake by TC-1 cells (a murine epithelial cell line) and reduce the intensity of magnetic resonance (MR) images by shortening the T2 time. Most importantly, in vivo studies demonstrated that iron oxide-modified NE could be detected in mouse nasal septum by both transmission electron microscopy and MR imaging. Altogether these experiments demonstrate that iron oxide-modified NE is a unique tool that can be used to study uptake and distribution of NEs after nasal application.
Collapse
|
19
|
Evaluation of a candidate live attenuated influenza vaccine prepared in Changchun BCHT (China) for safety and efficacy in ferrets. Vaccine 2016; 34:5953-5958. [PMID: 27997342 DOI: 10.1016/j.vaccine.2016.09.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/29/2016] [Accepted: 09/30/2016] [Indexed: 11/23/2022]
Abstract
We evaluated the safety and efficacy of a live attenuated influenza vaccine (LAIV) product in ferrets. The BCHT LAIV product was significantly less virulent than wild-type H1N1 virus, when evaluated by comparing virus shedding and histopathologic lesions. The data indicated strong evidence for an attenuated phenotype of LAIV. Furthermore, the vaccine induced robust humoral immune responses in seronegative ferrets, and protected ferrets against development of fever, weight loss and turbinate inflammatory lesions after challenging with H3N2 wide-type influenza virus. Thus, the BCHT LAIV product was safe in healthy seronegative ferrets and protected ferrets against infection of H3N2 influenza virus.
Collapse
|
20
|
O'Konek JJ, Makidon PE, Landers JJ, Cao Z, Malinczak CA, Pannu J, Sun J, Bitko V, Ciotti S, Hamouda T, Wojcinski ZW, Lukacs NW, Fattom A, Baker JR. Intranasal nanoemulsion-based inactivated respiratory syncytial virus vaccines protect against viral challenge in cotton rats. Hum Vaccin Immunother 2016; 11:2904-12. [PMID: 26307915 DOI: 10.1080/21645515.2015.1075680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory Syncytial Virus is a leading cause of bronchiolitis and pneumonia in infants, the elderly and individuals with compromised immune systems. Despite decades of research, there is currently no available vaccine for RSV. Our group has previously demonstrated that intranasal immunization of mice with RSV inactivated by and adjuvanted with W805EC nanoemulsion elicits robust humoral and cellular immune responses, resulting in protection against RSV infection. This protection was achieved without the induction of airway hyper-reactivity or a Th2-skewed immune response. The cotton rat Sigmodon hispidus has been used for years as an excellent small animal model of RSV disease. Thus, we extended these rodent studies to the more permissive cotton rat model. Intranasal immunization of the nanoemulsion-adjuvanted RSV vaccines induced high antibody titers and a robust Th1-skewed cellular response. Importantly, vaccination provided sterilizing cross-protective immunity against a heterologous RSV challenge and did not induce marked or severe histological effects or eosinophilia in the lung after viral challenge. Overall, these data demonstrate that nanoemulsion-formulated whole RSV vaccines are both safe and effective for immunization in multiple animal models.
Collapse
Affiliation(s)
- Jessica J O'Konek
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| | - Paul E Makidon
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA.,b The Unit for Laboratory Animal Medicine; Medical School; University of Michigan ; Ann Arbor , MI USA
| | - Jeffrey J Landers
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| | - Zhengyi Cao
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| | | | | | | | - Vira Bitko
- c NanoBio Corporation ; Ann Arbor , MI USA
| | | | | | | | - Nicholas W Lukacs
- e Department of Pathology ; University of Michigan ; Ann Arbor , MI USA
| | - Ali Fattom
- c NanoBio Corporation ; Ann Arbor , MI USA
| | - James R Baker
- a Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School ; Ann Arbor , MI USA
| |
Collapse
|
21
|
Enhanced humoral response to influenza vaccine in aged mice with a novel adjuvant, rOv-ASP-1. Vaccine 2016; 34:887-92. [PMID: 26795365 PMCID: PMC4731280 DOI: 10.1016/j.vaccine.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Influenza-specific antibody levels were significantly increased after immunization with TIV + rOv-ASP-1 in aged mice. rOv-ASP-1 was superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice. Co-administration of rOv-ASP-1 induced cross-reactive antibody and enhanced cross-protection.
Immunization is the best way to prevent seasonal epidemics and pandemics of influenza. There are two kinds of influenza vaccines available in the United States: an inactivated vaccine (TIV) and an attenuated vaccine; however, only TIV is approved for immunization of the elderly population. While the aged population has the highest rate of influenza vaccination, the protective efficacy is low as evidenced by elderly individuals having the highest mortality associated with influenza. Recently, we reported that an adjuvant derived from the helminth parasite Onchocerca volvulus, named O. volvulus activation-associated secreted protein-1 (Ov-ASP-1), can significantly enhance the protective efficacy of an inactivated vaccine (TIV) in young adult mice. In the current study, we examined whether this recombinant Ov-ASP-1 (rOv-ASP-1) can enhance the efficacy of TIV in aged mice as well. While primary immunization with TIV alone produced only a low level of influenza-specific antibodies (total IgG, IgG1, and IgG2c) in aged mice, the antibody levels were significantly increased after immunization with TIV + rOv-ASP-1. More importantly, the level of the total IgG in aged mice administered TIV + rOv-ASP-1 was comparable to that of young adult mice immunized with TIV alone. Co-administration of rOv-ASP-1 induced a low level of cross-reactive antibody and enhanced the protective efficacy of TIV in aged mice, reflected by significantly increased survival after challenge with a heterologous influenza virus. rOv-ASP-1 was also superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice, and in conferring protection after challenge. These results demonstrate that rOv-ASP-1 may serve as a potential adjuvant for influenza vaccine to improve the efficacy of protection in the elderly.
Collapse
|
22
|
Analysis of genome integrity of influenza virus in formaldehyde-inactivated split vaccines. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Severity of clinical disease and pathology in ferrets experimentally infected with influenza viruses is influenced by inoculum volume. J Virol 2014; 88:13879-91. [PMID: 25187553 DOI: 10.1128/jvi.02341-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. However, the contributions of the volume of inoculum administered and the ferret's respiratory tract anatomy to disease outcome have not been explored. We noted variations in clinical disease outcomes and the volume of inoculum administered and investigated these differences by administering two influenza viruses (A/California/07/2009 [H1N1 pandemic] and A/Minnesota/11/2010 [H3N2 variant]) to ferrets intranasally at a dose of 10(6) 50% tissue culture infective doses in a range of inoculum volumes (0.2, 0.5, or 1.0 ml) and followed viral replication, clinical disease, and pathology over 6 days. Clinical illness and respiratory tract pathology were the most severe and most consistent when the viruses were administered in a volume of 1.0 ml. Using a modified micro-computed tomography imaging method and examining gross specimens, we found that the right main-stem bronchus was consistently larger in diameter than the left main-stem bronchus, though the latter was longer and straighter. These anatomic features likely influence the distribution of the inoculum in the lower respiratory tract. A 1.0-ml volume of inoculum is optimal for delivery of virus to the lower respiratory tract of ferrets, particularly when evaluation of clinical disease is desired. Furthermore, we highlight important anatomical features of the ferret lung that influence the kinetics of viral replication, clinical disease severity, and lung pathology. IMPORTANCE Ferrets are a valuable model for influenza virus pathogenesis, virus transmission, and antiviral therapy studies. Clinical disease in ferrets is an important parameter in evaluating the virulence of novel influenza viruses, and findings are extrapolated to virulence in humans. Therefore, it is highly desirable that the data from different laboratories be accurate and reproducible. We have found that, even when the same virus was administered at similar doses, different investigators reported a range of clinical disease outcomes, from asymptomatic infection to severe weight loss, ocular and nasal discharge, sneezing, and lethargy. We found that a wide range of inoculum volumes was used to experimentally infect ferrets, and we sought to determine whether the variations in disease outcome were the result of the volume of inoculum administered. These data highlight some less explored features of the model, methods of experimental infection, and clinical disease outcomes in a research setting.
Collapse
|
24
|
Wong SS, Jeevan T, Kercher L, Yoon SW, Petkova AM, Crumpton JC, Franks J, Debeauchamp J, Rubrum A, Seiler P, Krauss S, Webster R, Webby RJ. A single dose of whole inactivated H7N9 influenza vaccine confers protection from severe disease but not infection in ferrets. Vaccine 2014; 32:4571-4577. [PMID: 24950355 DOI: 10.1016/j.vaccine.2014.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/07/2014] [Accepted: 06/06/2014] [Indexed: 12/09/2022]
Abstract
The H7N9 influenza virus caused significant mortality and morbidity in infected humans during an outbreak in China in 2013 stimulating vaccine development efforts. As previous H7-based vaccines have been poorly immunogenic in humans we sought to determine the immunogenic and protective properties of an inactivated whole virus vaccine derived from a 2013 H7N9 virus in ferrets. As whole virus vaccine preparations have been shown to be more immunogenic in humans, but less likely to be used, than split or surface antigen formulations, we vaccinated ferrets with a single dose of 15, 30, or 50 μg of the vaccine and subsequently challenged with wild-type A/Anhui/1/2013 (H7N9) either by direct instillation or by contact with infected animals. Although ferrets vaccinated with higher doses of vaccine had higher serum hemagglutinin inhibition (HI) titers, the titers were still low. During subsequent instillation challenge, however, ferrets vaccinated with 50 μg of vaccine showed no illness and shed significantly less virus than mock vaccinated controls. All vaccinated ferrets had lower virus loads in their lungs as compared to controls. In a separate study where unvaccinated-infected ferrets were placed in the same cage with vaccinated-uninfected ferrets, vaccination did not prevent infection in the contact ferrets, although they showed a trend of lower viral load. Overall, we conclude that inactivated whole-virus H7N9 vaccine was able to reduce the severity of infection and viral load, despite the lack of hemagglutinin-inhibiting antibodies.
Collapse
Affiliation(s)
- Sook-San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Lisa Kercher
- Animal Resource Center, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Sun-Woo Yoon
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA; Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Youseong-gu, Daejeon 305-806, South Korea
| | - Atanaska-Marinova Petkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jeri-Carol Crumpton
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - John Franks
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Jennifer Debeauchamp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Patrick Seiler
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Robert Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
25
|
Intranasally administered Endocine™ formulated 2009 pandemic influenza H1N1 vaccine induces broad specific antibody responses and confers protection in ferrets. Vaccine 2014; 32:3307-15. [DOI: 10.1016/j.vaccine.2014.03.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 01/13/2023]
|
26
|
Thangavel RR, Bouvier NM. Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 2014; 410:60-79. [PMID: 24709389 PMCID: PMC4163064 DOI: 10.1016/j.jim.2014.03.023] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/24/2022]
Abstract
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research - mice, ferrets, and guinea pigs - and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Rajagowthamee R Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
27
|
Jiang J, Fisher EM, Hensley SE, Lustigman S, Murasko DM, Shen H. Antigen sparing and enhanced protection using a novel rOv-ASP-1 adjuvant in aqueous formulation with influenza vaccines. Vaccine 2014; 32:2696-702. [PMID: 24681229 PMCID: PMC4080630 DOI: 10.1016/j.vaccine.2014.03.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/24/2014] [Accepted: 03/13/2014] [Indexed: 01/18/2023]
Abstract
rOv-ASP-1 enhances a stronger antibody response to influenza vaccine. rOv-ASP-1 enhances cross-reactive antibody responses to influenza vaccine. rOv-ASP-1 enhances the protection afforded by an inactivated influenza vaccine after challenge with a heterologous influenza virus.
Influenza is one of the most common infectious diseases endangering the health of humans, especially young children and the elderly. Although vaccination is the most effective means of protection against influenza, frequent mutations in viral surface antigens, low protective efficacy of the influenza vaccine in the elderly, slow production process and the potential of vaccine supply shortage during a pandemic are significant limitations of current vaccines. Adjuvants have been used to enhance the efficacy of a variety of vaccines; however, no adjuvant is included in current influenza vaccines approved in the United States. In this study, we found that a novel adjuvant, rOv-ASP-1, co-administrated with inactivated influenza vaccine using an aqueous formulation, substantially improved the influenza-specific antibody response and protection against lethal infection in a mouse model. rOv-ASP-1 enhanced the magnitude of the specific antibody response after immunization with low doses of influenza vaccine, allowing antigen-sparring by 10-fold. The rOv-ASP-1 formulated vaccine induced a more rapid response and a stronger Th1-associated antibody response compared to vaccine alone and to the vaccine formulated with the adjuvant alum. Importantly, rOv-ASP-1 significantly enhanced cross-reactive antibody responses and protection against challenge with an antigenically distinct strain. These results demonstrate that rOv-ASP-1 is an effective adjuvant that: (1) accelerates and enhances the specific antibody response induced by influenza vaccine; (2) allows for antigen sparing; and (3) augments a Th1-biased and cross-reactive antibody response that confers protection against an antigenically distinct strain.
Collapse
Affiliation(s)
- Jiu Jiang
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA; DMX Inc., West Chester, PA 19382, USA
| | - Erin M Fisher
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | | | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Donna M Murasko
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Fox CB, Haensler J. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev Vaccines 2014; 12:747-58. [PMID: 23885820 DOI: 10.1586/14760584.2013.811188] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03. The authors also present a summary of other emulsion adjuvants in clinical development and indicate promising avenues for future emulsion-based adjuvant development. Overall, emulsion adjuvants have demonstrated potent adjuvant activity across a number of disease indications along with acceptable safety profiles.
Collapse
|
29
|
Passmore C, Makidon PE, O'Konek JJ, Zahn JA, Pannu J, Hamouda T, Bitko V, Myc A, Lukacs NW, Fattom A, Baker JR. Intranasal immunization with W 80 5EC adjuvanted recombinant RSV rF-ptn enhances clearance of respiratory syncytial virus in a mouse model. Hum Vaccin Immunother 2013; 10:615-22. [PMID: 24326268 PMCID: PMC4130273 DOI: 10.4161/hv.27383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a ubiquitous virus that infects almost all people by age two and is a major source of respiratory illness in infants, the elderly and others with compromised immune systems. Currently there is no available vaccine. Prior efforts using formalin-inactivated RSV (FI-RSV) were associated with enhanced respiratory disease upon viral exposure following clinical vaccine trials. Several researchers and pharmaceutical companies have utilized vector-associated live attenuated RSV vaccines in pre-clinical and clinical studies. Another attractive approach, however, is a subunit vaccine which would be easier to produce and quality control. Our group has previously demonstrated in a murine model of infection that intranasal immunization with nanoemulsion-inactivated and adjuvanted RSV induces humoral and cellular immune responses, resulting in protection against RSV infection. The present studies characterize the immune responses elicited by intranasal RSV F protein adjuvanted with nanoemulsion. Intranasal application of nanoemulsion adjuvanted F protein induced a rapid and robust systemic and mucosal antibody response, as well as protection against subsequent RSV challenge. Importantly, RSV challenge in immunized animals did not elicit airway hyper-reactivity, a Th2-skewed immune response or immunopathology associated with hypersensitivity reactions with formalin-inactivated vaccine. These results suggest that RSV F protein adjuvanted with nanoemulsion may be a good mucosal vaccine candidate. Formulating RSV F protein in nanoemulsion creates a well-defined and well-controlled vaccine that can be delivered intranasally to induce T cell mediated immunity without inducing enhanced disease associated with the mouse model of FI-RSV vaccination and infection.
Collapse
Affiliation(s)
- Crystal Passmore
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA
| | - Paul E Makidon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA; The Unit for Laboratory Animal Medicine; Medical School; University of Michigan; Ann Arbor, MI USA
| | - Jessica J O'Konek
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA
| | - Joseph A Zahn
- University of Michigan Medical School; Ann Arbor, MI USA
| | | | | | | | - Andrzej Myc
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA; Department of Immunology of Infectious Diseases; Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Polish Academy of Sciences; Wroclaw, Poland
| | - Nicolas W Lukacs
- Department of Pathology; University of Michigan; Ann Arbor, MI USA
| | | | - James R Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences; University of Michigan Medical School; Ann Arbor, MI USA
| |
Collapse
|
30
|
Vaccine adjuvant formulations: a pharmaceutical perspective. Semin Immunol 2013; 25:130-45. [PMID: 23850011 DOI: 10.1016/j.smim.2013.05.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/17/2013] [Accepted: 05/31/2013] [Indexed: 01/08/2023]
Abstract
Formulation science is an unappreciated and often overlooked aspect in the field of vaccinology. In this review we highlight key attributes necessary to generate well characterized adjuvant formulations. The relationship between the adjuvant and the antigen impacts the immune responses generated by these complex biopharmaceutical formulations. We will use 5 well established vaccine adjuvant platforms; alum, emulsions, liposomes, PLG, and particulate systems such as ISCOMS in addition to immune stimulatory molecules such as MPL to illustrate that a vaccine formulation is more than a simple mixture of component A and component B. This review identifies the challenges and opportunities of these adjuvant platforms. As antigen and adjuvant formulations increase in complexity having a well characterized robust formulation will be critical to ensuring robust and reproducible results throughout preclinical and clinical studies.
Collapse
|
31
|
|
32
|
Yu S, Tang C, Shi X, Yang P, Xing L, Wang X. Novel Th1-biased adjuvant, SPO1, enhances mucosal and systemic immunogenicity of vaccines administered intranasally in mice. Vaccine 2012; 30:5425-36. [DOI: 10.1016/j.vaccine.2012.05.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 02/07/2023]
|
33
|
Giles BM, Crevar CJ, Carter DM, Bissel SJ, Schultz-Cherry S, Wiley CA, Ross TM. A computationally optimized hemagglutinin virus-like particle vaccine elicits broadly reactive antibodies that protect nonhuman primates from H5N1 infection. J Infect Dis 2012; 205:1562-70. [PMID: 22448011 DOI: 10.1093/infdis/jis232] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Highly pathogenic H5N1 avian influenza viruses continue to spread via waterfowl, causing lethal infections in humans. Vaccines can prevent the morbidity and mortality associated with pandemic influenza isolates. Predicting the specific isolate that may emerge from the 10 different H5N1 clades is a tremendous challenge for vaccine design. METHODS In this study, we generated a synthetic hemagglutinin (HA) on the basis of a new method, computationally optimized broadly reactive antigen (COBRA), which uses worldwide sequencing and surveillance efforts that are specifically focused on sequences from H5N1 clade 2 human isolates. RESULTS Cynomolgus macaques vaccinated with COBRA clade 2 HA H5N1 virus-like particles (VLPs) had hemagglutination-inhibition antibody titers that recognized a broader number of representative isolates from divergent clades as compared to nonhuman primates vaccinated with clade 2.2 HA VLPs. Furthermore, all vaccinated animals were protected from A/Whooper Swan/Mongolia/244/2005 (WS/05) clade 2.2 challenge, with no virus detected in the nasal or tracheal washes. However, COBRA VLP-vaccinated nonhuman primates had reduced lung inflammation and pathologic effects as compared to those that received WS/05 VLP vaccines. CONCLUSIONS The COBRA clade 2 HA H5N1 VLP elicits broad humoral immunity against multiple H5N1 isolates from different clades. In addition, the COBRA VLP vaccine is more effective than a homologous vaccine against a highly pathogenic avian influenza virus challenge.
Collapse
Affiliation(s)
- Brendan M Giles
- Center for Vaccine Research, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Alves RCB, New RRC, Andrade GR, Mendonça RMZ, Sant'Anna OABE, Mancini DAP, Silva-Junior SMD, Domingos MDO. Vaxcine(TM): an oil-based adjuvant for influenza vaccines. Mem Inst Oswaldo Cruz 2012; 106:1052-4. [PMID: 22241133 DOI: 10.1590/s0074-02762011000800026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 09/23/2011] [Indexed: 11/22/2022] Open
Abstract
Vaccination is the method of choice for the prevention of influenza infection. However, the quantity of the antigen available, especially in the case of pandemics, often fails to meet the global demand. However, improved adjuvants can overcome this problem. Preliminary results obtained in this study revealed that one year after a single subcutaneous immunisation with influenza A H3N2 virus in an oil-based carrier, Vaxcine(TM), outbreed mice produced a high immunoglobulin G response that lasted for up to one year and exhibited less variation in titre compared with the response of the control group treated with alum. The haemagglutination-inhibition titres induced by Vaxcine(TM) were also higher than those generated by alum. These data indicate that Vaxcine(TM) is a good adjuvant candidate for seasonal influenza vaccines.
Collapse
|