1
|
van Schaik EJ, Fratzke AP, Gregory AE, Dumaine JE, Samuel JE. Vaccine development: obligate intracellular bacteria new tools, old pathogens: the current state of vaccines against obligate intracellular bacteria. Front Cell Infect Microbiol 2024; 14:1282183. [PMID: 38567021 PMCID: PMC10985213 DOI: 10.3389/fcimb.2024.1282183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.
Collapse
Affiliation(s)
- E J van Schaik
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - A P Fratzke
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Charles River Laboratories, Reno, NV, United States
| | - A E Gregory
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jennifer E Dumaine
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - J E Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Texas A&M University (TAMU), College Station, TX, United States
| |
Collapse
|
2
|
Luo T, Patel JG, Zhang X, McBride JW. Antibody reactive immunomes of Ehrlichia chaffeensis and E. canis are diverse and defined by conformational antigenic determinants. Front Cell Infect Microbiol 2024; 13:1321291. [PMID: 38264730 PMCID: PMC10803646 DOI: 10.3389/fcimb.2023.1321291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
For decades, the defined antibody reactive proteins of Ehrlichia chaffeensis and E. canis were limited to a small group with linear antibody epitopes. Recently, our laboratory has utilized an immunomics-based approach to rapidly screen and identify undefined Ehrlichia chaffeensis and E. canis antigenic proteins and antibody epitopes. In this study, we analyzed the remaining portion (~50%) of the E. chaffeensis and E. canis proteomes (n = 444 and n = 405 proteins, respectively), that were not examined in previous studies, to define the complete immunomes of these important pathogens. Almost half of the E. chaffeensis proteins screened (196/444) reacted with antibodies in convalescent HME patient sera, while only 43 E. canis proteins reacted with CME dog sera. New major immunoreactive proteins were identified in E. chaffeensis (n = 7) and E. canis (n = 1), increasing the total number of E. chaffeensis (n = 14) and E. canis proteins (n = 18) that exhibited antibody reactivity comparable to well-defined major antigenic proteins (TRP120 and TRP19). All of the E. chaffeensis but only some E. canis major immunoreactive proteins contained major conformation-dependent antibody epitopes. The E. chaffeensis immunoreactive proteins were generally small (< 250 amino acids; ~27kDa) and the E. canis proteins were slightly larger (> 320 amino acids; ~35 kDa). The majority of these new Ehrlichia major immunoreactive proteins were predicted to be type I secreted effectors, some of which contained transmembrane domains. Characterization of the immunomes of E. chaffeensis and E. canis and understanding the host specific Ehrlichia immune responses will facilitate identification of protective antigens and define the biophysical epitope characteristics vital to effective vaccine development for the ehrlichioses.
Collapse
Affiliation(s)
- Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaofeng Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. Infect Immun 2023; 91:e0000223. [PMID: 37594275 PMCID: PMC10501217 DOI: 10.1128/iai.00002-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/07/2023] [Indexed: 08/19/2023] Open
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis tandem repeat protein (TRP)120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7, a negative regulator of Notch. The Notch intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined that E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting apoptosis through both the intrinsic and executioner pathways. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic and nuclear colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown (KD) of XIAP during infection significantly increased apoptosis and Caspase-3, -7, and -9 levels. Furthermore, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, RNAi KD of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to HeLa cells with functional HECT Ub ligase catalytic activity (TRP120-WT). This investigation reveals a mechanism whereby E. chaffeensis modulates Notch signaling to stabilize XIAP and inhibit apoptosis.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Bui DC, Luo T, McBride JW. Type 1 secretion system and effectors in Rickettsiales. Front Cell Infect Microbiol 2023; 13:1175688. [PMID: 37256108 PMCID: PMC10225607 DOI: 10.3389/fcimb.2023.1175688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Obligate intracellular bacteria in the order Rickettsiales are transmitted by arthropod vectors and cause life-threatening infections in humans and animals. While both type 1 and type 4 secretion systems (T1SS and T4SS) have been identified in this group, the most extensive studies of Rickettsiales T1SS and associated effectors have been performed in Ehrlichia. These studies have uncovered important roles for the T1SS effectors in pathobiology and immunity. To evade innate immune responses and promote intracellular survival, Ehrlichia and other related obligate pathogens secrete multiple T1SS effectors which interact with a diverse network of host targets associated with essential cellular processes. T1SS effectors have multiple functional activities during infection including acting as nucleomodulins and ligand mimetics that activate evolutionarily conserved cellular signaling pathways. In Ehrlichia, an array of newly defined major immunoreactive proteins have been identified that are predicted as T1SS substrates and have conformation-dependent antibody epitopes. These findings highlight the underappreciated and largely uncharacterized roles of T1SS effector proteins in pathobiology and immunity. This review summarizes current knowledge regarding roles of T1SS effectors in Rickettsiales members during infection and explores newly identified immunoreactive proteins as potential T1SS substrates and targets of a protective host immune response.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523066. [PMID: 36711597 PMCID: PMC9881962 DOI: 10.1101/2023.01.06.523066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis TRP120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7 (FBW7), a negative regulator of Notch. The Notch receptor intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting intrinsic apoptosis. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown of XIAP during infection significantly increased apoptosis and Caspase-3, -7 and -9 levels. Further, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, iRNA knockdown of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to WT. This investigation reveals a mechanism whereby E. chaffeensis repurposes Notch signaling to stabilize XIAP and inhibit apoptosis. Author Summary Ehrlichia chaffeensis is a tick-borne, obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes. E. chaffeensis survives by mobilizing various molecular strategies to promote cell survival, including modulation of apoptosis. This investigation reveals an E. chaffeensis initiated, Notch signaling regulated, antiapoptotic mechanism involving inhibitor of apoptosis proteins (IAPs). Herein, we demonstrate that E. chaffeensis induced Notch activation results in Notch intracellular domain stabilization of X-linked inhibitor of apoptosis protein (XIAP) to inhibit intrinsic apoptosis. This study highlights a novel mechanistic strategy whereby intracellular pathogens repurpose evolutionarily conserved eukaryotic signaling pathways to engage an antiapoptotic program for intracellular survival.
Collapse
|
6
|
Byerly CD, Mitra S, Patterson LL, Pittner NA, Velayutham TS, Paessler S, Veljkovic V, McBride JW. Ehrlichia SLiM ligand mimetic activates Hedgehog signaling to engage a BCL-2 anti-apoptotic cellular program. PLoS Pathog 2022; 18:e1010345. [PMID: 35576232 PMCID: PMC9135340 DOI: 10.1371/journal.ppat.1010345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
Ehrlichia chaffeensis (E. chaffeensis) has evolved eukaryotic ligand mimicry to repurpose multiple cellular signaling pathways for immune evasion. In this investigation, we demonstrate that TRP120 has a novel repetitive short linear motif (SLiM) that activates the evolutionarily conserved Hedgehog (Hh) signaling pathway to inhibit apoptosis. In silico analysis revealed that TRP120 has sequence and functional similarity with Hh ligands and a candidate Hh ligand SLiM was identified. siRNA knockdown of Hh signaling and transcriptional components significantly reduced infection. Co-immunoprecipitation and surface plasmon resonance demonstrated that rTRP120-TR interacted directly with Hh receptor Patched-2 (PTCH2). E. chaffeensis infection resulted in early upregulation of Hh transcription factor GLI-1 and regulation of Hh target genes. Moreover, soluble recombinant TRP120 (rTRP120) activated Hh and induced gene expression consistent with the eukaryotic Hh ligand. The TRP120-Hh-SLiM (NPEVLIKD) induced nuclear translocation of GLI-1 in THP-1 cells and primary human monocytes and induced a rapid and expansive activation of Hh pathway target genes. Furthermore, Hh activation was blocked by an α-TRP120-Hh-SLiM antibody. TRP120-Hh-SLiM significantly increased levels of Hh target, anti-apoptotic protein B-cell lymphoma 2 (BCL-2), and siRNA knockdown of BCL-2 dramatically inhibited infection. Blocking Hh signaling with the inhibitor Vismodegib, induced a pro-apoptotic cellular program defined by decreased mitochondria membrane potential, significant reductions in BCL-2, activation of caspase 3 and 9, and increased apoptotic cells. This study reveals a novel E. chaffeensis SLiM ligand mimetic that activates Hh signaling to maintain E. chaffeensis infection by engaging a BCL-2 anti-apoptotic cellular program.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shubhajit Mitra
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thangam S. Velayutham
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Biomed Protection, LLC, Galveston, Texas, United States of America
| | - Veljko Veljkovic
- Biomed Protection, LLC, Galveston, Texas, United States of America
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
7
|
Patterson LL, Velayutham TS, Byerly CD, Bui DC, Patel J, Veljkovic V, Paessler S, McBride JW. Ehrlichia SLiM Ligand Mimetic Activates Notch Signaling in Human Monocytes. mBio 2022; 13:e0007622. [PMID: 35357214 PMCID: PMC9040721 DOI: 10.1128/mbio.00076-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/noncanonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full-length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands. IMPORTANCE E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity. Herein, we identified and demonstrated that a SLiM present within each tandem repeat of TRP120 activated Notch signaling. Notch is an evolutionarily conserved signaling pathway responsible for many cell functions, including cell fate, development, and innate immunity. This study is significant because it revealed the first molecularly defined pathogen encoded SLiM that appears to have evolved de novo to mimic endogenous Notch ligands. Understanding Notch activation during E. chaffeensis infection provides a model to study pathogen exploitation of signaling pathways and will be useful in developing molecularly targeted countermeasures for inhibiting infection by a multitude of disease-causing pathogens that exploit cell signaling through molecular mimicry.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
8
|
Immunoreactive Protein Repertoires of Ehrlichia chaffeensis and E. canis Reveal the Dominance of Hypothetical Proteins and Conformation-dependent Antibody Epitopes. Infect Immun 2021; 89:e0022421. [PMID: 34370510 DOI: 10.1128/iai.00224-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunomes of Ehrlichia chaffeensis (E. ch.) and E. canis (E. ca.) have recently be revised to include immunodominant hypothetical proteins with conformational antibody epitopes. In this study, we examined 216 E. ch. and 190 E. ca. highly antigenic proteins according to ANTIGENpro and also performed a genome-wide hypothetical protein analysis (E. ch. n=104; E. ca. n=124) for immunoreactivity. Using cell-free protein expression and immunoanalysis, 118 E. ch. and 39 E. ca. proteins reacted with sera from naturally E. ch.-infected patients or E. ca.-infected dogs. Moreover, 22 E. ch. and 18 E. ca. proteins consistently and strongly reacted with a panel of patient or canine sera. A subset of E. ch. (n=18) and E. ca. (n=9) proteins were identified as immunodominant. Consistent with our previous study, most proteins were classified as hypothetical and the antibody epitopes exhibited complete or partial conformation-dependence. The majority (28/40; 70%) of E. ch. and E. ca. proteins contained transmembrane domains and 19 (48%) were predicted to be secreted effectors. The antigenic repertoires of E. ch. and E. ca. were mostly diverse and suggest that the immunomes of these closely related ehrlichiae are dominated by species-specific conformational antibody epitopes. This study reveals a significant group of previously undefined E. ch. and E. ca. antigens and reaffirms the importance of conformation-dependent epitopes as targets of anti-Ehrlichia immune responses. These findings substantially expand our understanding of host-Ehrlichia immune responses, advance efforts to define the molecular features of protective proteins and improve prospects for effective vaccines for the ehrlichioses.
Collapse
|
9
|
Rogan MR, Patterson LL, Byerly CD, Luo T, Paessler S, Veljkovic V, Quade B, McBride JW. Ehrlichia chaffeensis TRP120 Is a Wnt Ligand Mimetic That Interacts with Wnt Receptors and Contains a Novel Repetitive Short Linear Motif That Activates Wnt Signaling. mSphere 2021; 6:6/2/e00216-21. [PMID: 33883266 PMCID: PMC8546699 DOI: 10.1128/msphere.00216-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ehrlichia chaffeensis expresses the TRP120 multifunctional effector, which is known to play a role in phagocytic entry, on the surface of infectious dense-cored ehrlichiae, but a cognate host receptor has not been identified. We recently reported that E. chaffeensis activates canonical Wnt signaling in monocytes to promote bacterial uptake and intracellular survival and that TRP120 was involved in this activation event. To identify the specific mechanism of pathway activation, we hypothesized that TRP120 is a Wnt signaling ligand mimetic that initiates Wnt pathway activity through direct interaction with the Wnt pathway Frizzled family of receptors. In this study, we used confocal immunofluorescence microscopy to demonstrate very strong colocalization between E. chaffeensis and Fzd2, 4, 5, 7, and 9 as well as coreceptor LRP5 at 1 to 3 h postinfection. Direct binding between TRP120 and multiple Fzd receptors was further confirmed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). Interfering RNA knockdown of Wnt receptors, coreceptors, and signaling pathway components significantly reduced E. chaffeensis infection, demonstrating that complex and redundant interactions are involved in Wnt pathway exploitation. We utilized in silico approaches to identify a repetitive short linear motif (SLiM) in TRP120 that is homologous to Wnt ligands and used mutant SLiM peptides and an α-TRP120-Wnt-SLiM antibody to demonstrate that the TRP120 Wnt SLiM activates the canonical Wnt pathway and promotes E. chaffeensis infection. This study reports the first example of bacterial mimicry of Wnt pathway ligands and highlights a pathogenic mechanism with potential for targeting by antimicrobial therapeutics.IMPORTANCE Upon infecting mammalian hosts, Ehrlichia chaffeensis establishes a replicative niche in microbe-eating immune system cells where it expertly orchestrates infection and spread. One of the ways Ehrlichia survives within these phagocytes is by activating evolutionarily conserved signaling pathways including the Wnt pathway; however, the molecular details of pathway hijacking have not been defined. This study is significant because it identifies an ehrlichial protein that directly interacts with components of the Wnt receptor complex, influencing pathway activity and promoting infection. Consequentially, Ehrlichia serves as a unique tool to investigate the intricacies of how pathogens repurpose human immune cell signaling and provides an opportunity to better understand many cellular processes in health and disease. Furthermore, understanding how this bacterium utilizes its small genome to survive within cells that evolved to destroy pathogens will facilitate the development of antibacterial therapeutics that could target Ehrlichia as well as other intracellular agents of human disease.
Collapse
Affiliation(s)
- Madison R Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Caitlan D Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- BiomedProtection, LLC, Galveston, Texas, USA
| | | | - Bethany Quade
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Patterson LL, Byerly CD, McBride JW. Anaplasmataceae: Dichotomous Autophagic Interplay for Infection. Front Immunol 2021; 12:642771. [PMID: 33912170 PMCID: PMC8075259 DOI: 10.3389/fimmu.2021.642771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a vital conserved degradative process that maintains cellular homeostasis by recycling or eliminating dysfunctional cellular organelles and proteins. More recently, autophagy has become a well-recognized host defense mechanism against intracellular pathogens through a process known as xenophagy. On the host-microbe battlefield many intracellular bacterial pathogens have developed the ability to subvert xenophagy to establish infection. Obligately intracellular bacterial pathogens of the Anaplasmataceae family, including Ehrlichia chaffeensis, Anaplasma phaogocytophilium and Orientia tsutsugamushi have developed a dichotomous strategy to exploit the host autophagic pathway to obtain nutrients while escaping lysosomal destruction for intracellular survival within the host cell. In this review, the recent findings regarding how these master manipulators engage and inhibit autophagy for infection are explored. Future investigation to understand mechanisms used by Anaplasmataceae to exploit autophagy may advance novel antimicrobial therapies and provide new insights into how intracellular microbes exploit autophagy to survive.
Collapse
Affiliation(s)
- LaNisha L Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Caitlan D Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Forero-Becerra E, Patel J, Martínez-Díaz HC, Betancourt-Ruiz P, Benavides E, Durán S, Olaya-Másmela LA, Bolaños E, Hidalgo M, McBride JW. Seroprevalence and Genotypic Analysis of Ehrlichia canis Infection in Dogs and Humans in Cauca, Colombia. Am J Trop Med Hyg 2021; 104:1771-1776. [PMID: 33755584 PMCID: PMC8103471 DOI: 10.4269/ajtmh.20-0965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Ehrlichia canis infections have been reported in humans in Venezuela and Costa Rica. In this study, 506 healthy residents and 114 dogs from four municipalities (Cauca, Colombia) were surveyed and blood samples collected. Antibodies to E. canis in human and canine sera were evaluated using the Tandem repeat protein 19 (TRP19) peptide ELISA and indirect immunofluorescence assay (IFA). Ehrlichia canis TRP19 antibodies were detected in only 1/506 human sera, but the single positive sample was negative by IFA. The majority (75/114; 66%) of dogs surveyed had antibodies to the E. canis TRP19 peptide by ELISA, and eight randomly selected sera were further confirmed by E. canis IFA. Genomic DNA samples obtained from 73 E. canis TRP19 ELISA-positive dog blood samples were examined by PCR targeting the 16S ribosomal ribonucleic acid (rRNA) gene. Ehrlichia canis 16S rRNA was amplified in 30 (41%) of the dogs, and 16 amplicons were selected for DNA sequencing, which confirmed that all were E. canis. A second PCR was performed on the 16 confirmed E. canis 16S rRNA PCR-positive samples to determine the TRP36 genotype by amplifying the trp36 gene. TRP36 PCR amplicon sequencing identified nine dogs infected with the U.S. E. canis TRP36 genotype (56%), one dog with the Brazilian genotype (6%), and six dogs with the Costa Rican genotype (38%). Moreover, these molecular genotype signatures were consistent with serologic analysis using TRP36 genotype-specific peptides. Notably, there was no serologic evidence of E. canis infection in humans, suggesting that E. canis infection in dogs in Cauca is not associated with zoonotic human infection.
Collapse
Affiliation(s)
- Elkin Forero-Becerra
- Research Training Program, Fogarty International Center (Code 1 D43), University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Heidy-C Martínez-Díaz
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Paola Betancourt-Ruiz
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Efraín Benavides
- Grupo de Investigación Epidemiología y Salud Pública, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, D.C., Colombia
| | - Steven Durán
- Grupo de Investigación Epidemiología y Salud Pública, Facultad de Ciencias Agropecuarias, Universidad de La Salle, Bogotá, D.C., Colombia
| | - Luz-A Olaya-Másmela
- Programa de Medicina, Facultad de Ciencias de La Salud, Universidad Libre - Cali, Sede Valle del Lili, Santiago de Cali, Colombia
| | - Eliana Bolaños
- Secretaría de Salud del Departamento del Cauca, Popayán, Colombia
| | - Marylin Hidalgo
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
12
|
Ehrlichia chaffeensis and E. canis hypothetical protein immunoanalysis reveals small secreted immunodominant proteins and conformation-dependent antibody epitopes. NPJ Vaccines 2020; 5:85. [PMID: 32963815 PMCID: PMC7486380 DOI: 10.1038/s41541-020-00231-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
Immunomolecular characterization of Ehrlichia chaffeensis (E. ch.) and E. canis (E. ca.) has defined protein orthologs, including tandem repeat proteins (TRPs) that have immunodominant linear antibody epitopes. In this study, we combined bioinformatic analysis and cell-free protein expression to identify undiscovered immunoreactive E. ch. and E. ca. hypothetical proteins. Antigenicity of the E. ch. and E. ca. ORFeomes (n = 1105 and n = 925, respectively) was analyzed by the sequence-based prediction model ANTIGENpro, and we identified ~250 ORFs in each respective ORFeome as highly antigenic. The hypothetical proteins (E. ch. n = 93 and E. ca. n = 98) present in the top 250 antigenic ORFs were further investigated in this study. By ELISA, 46 E. ch. and 30 E. ca. IVTT-expressed hypothetical proteins reacted with antibodies in sera from naturally E. ch.-infected patients or E. ca.-infected dogs. Moreover, 15 E. ch. and 16 E. ca. proteins consistently reacted with a panel of sera from patients or dogs, including many that revealed the immunoreactivity of “gold standard” TRPs. Antibody epitopes in most (>70%) of these proteins exhibited partial or complete conformation-dependence. The majority (23/31; 74%) of the major immunoreactive proteins identified were small (≤250 aa), and 20/31 (65%) were predicted to be secreted effectors. Unlike the strong linear antibody epitopes previously identified in TRP and OMP orthologs, there were contrasting differences in the E. ch. and E. ca. antigenic repertoires, epitopes and ortholog immunoreactivity. This study reveals numerous previously undefined immunodominant and subdominant antigens, and illustrates the breadth, complexity, and diversity of immunoreactive proteins/epitopes in Ehrlichia.
Collapse
|
13
|
Tominello TR, Oliveira ERA, Hussain SS, Elfert A, Wells J, Golden B, Ismail N. Emerging Roles of Autophagy and Inflammasome in Ehrlichiosis. Front Immunol 2019; 10:1011. [PMID: 31134081 PMCID: PMC6517498 DOI: 10.3389/fimmu.2019.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Human monocytic ehrlichiosis (HME) is a potentially life-threatening tick-borne rickettsial disease (TBRD) caused by the obligate intracellular Gram-negative bacteria, Ehrlichia. Fatal HME presents with acute ailments of sepsis and toxic shock-like symptoms that can evolve to multi-organ failure and death. Early clinical and laboratory diagnosis of HME are problematic due to non-specific flu-like symptoms and limitations in the current diagnostic testing. Several studies in murine models showed that cell-mediated immunity acts as a “double-edged sword” in fatal ehrlichiosis. Protective components are mainly formed by CD4 Th1 and NKT cells, in contrast to deleterious effects originated from neutrophils and TNF-α-producing CD8 T cells. Recent research has highlighted the central role of the inflammasome and autophagy as part of innate immune responses also leading to protective or pathogenic scenarios. Recognition of pathogen-associated molecular patterns (PAMPS) or damage-associated molecular patterns (DAMPS) triggers the assembly of the inflammasome complex that leads to multiple outcomes. Recognition of PAMPs or DAMPs by such complexes can result in activation of caspase-1 and -11, secretion of the pro-inflammatory cytokines IL-1β and IL-18 culminating into dysregulated inflammation, and inflammatory cell death known as pyroptosis. The precise functions of inflammasomes and autophagy remain unexplored in infections with obligate intracellular rickettsial pathogens, such as Ehrlichia. In this review, we discuss the intracellular innate immune surveillance in ehrlichiosis involving the regulation of inflammasome and autophagy, and how this response influences the innate and adaptive immune responses against Ehrlichia. Understanding such mechanisms would pave the way in research for novel diagnostic, preventative and therapeutic approaches against Ehrlichia and other rickettsial diseases.
Collapse
Affiliation(s)
- Tyler R Tominello
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edson R A Oliveira
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shah S Hussain
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Amr Elfert
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jakob Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon Golden
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Ehrlichia chaffeensis TRP75 Interacts with Host Cell Targets Involved in Homeostasis, Cytoskeleton Organization, and Apoptosis Regulation To Promote Infection. mSphere 2018; 3:3/2/e00147-18. [PMID: 29643078 PMCID: PMC5909120 DOI: 10.1128/msphere.00147-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/06/2023] Open
Abstract
Human monocytic ehrlichiosis (HME) is caused by an obligatory intracellular bacterium, E. chaffeensis, and is one of the most prevalent, life-threatening emerging infectious zoonoses in the United States. The mechanisms through which E. chaffeensis invades and establishes an intracellular niche are not well understood but are dependent on secreted ehrlichial effector proteins. The significance of this study is in addressing how intracellular pathogens, particularly those with small genomes such as Ehrlichia, exploit a limited number of secreted effector proteins such as tandem repeat proteins (TRPs) to manipulate complex eukaryotes and to regulate host cell processes through molecular pathogen-host interplay. The results of our studies highlight the broader role of ehrlichial TRPs in promoting infection and help define the mechanisms through which obligately intracellular bacteria modulate host cell function for survival. Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes. The mechanisms involved in E. chaffeensis infection of the host cell and evasion of host defenses are not fully defined, but a subset of type 1 secreted tandem repeat protein (TRP) effectors play important roles. Recently, we determined molecular interactions of TRP120, TRP47, and TRP32 with the eukaryotic host cell. In this investigation, we used yeast two-hybrid analysis to reveal that another E. chaffeensis tandem repeat protein, TRP75, interacts with a diverse group of human proteins associated with organismal and tissue homeostasis, multiple metabolic processes and regulation, response to reactive oxygen species, signal transduction, and protein modifications. Thirteen identified host target proteins associated with actin cytoskeleton reorganization or apoptosis were examined in detail and confirmed to interact with TRP75 at different levels as determined by coimmunoprecipitation assays. These protein interactions were visualized by immunofluorescence confocal microscopy during infection and colocalized with Ehrlichia morulae with different intensities. Moreover, small interfering RNAs (siRNAs) (n = 86) were used to knock down identified TRP75-interacting host proteins separately, and their influence on ehrlichial infection was investigated by real-time quantitative PCR (qPCR). Knockdown of 74/86 (86%) TRP75 target proteins had a significant negative effect on ehrlichial infection. The results of this study further support the idea of a role of Ehrlichia TRPs as effectors that interact with a complex array of host proteins to promote ehrlichial infection. IMPORTANCE Human monocytic ehrlichiosis (HME) is caused by an obligatory intracellular bacterium, E. chaffeensis, and is one of the most prevalent, life-threatening emerging infectious zoonoses in the United States. The mechanisms through which E. chaffeensis invades and establishes an intracellular niche are not well understood but are dependent on secreted ehrlichial effector proteins. The significance of this study is in addressing how intracellular pathogens, particularly those with small genomes such as Ehrlichia, exploit a limited number of secreted effector proteins such as tandem repeat proteins (TRPs) to manipulate complex eukaryotes and to regulate host cell processes through molecular pathogen-host interplay. The results of our studies highlight the broader role of ehrlichial TRPs in promoting infection and help define the mechanisms through which obligately intracellular bacteria modulate host cell function for survival.
Collapse
|
15
|
Ehrlichia chaffeensis TRP120 Effector Targets and Recruits Host Polycomb Group Proteins for Degradation To Promote Intracellular Infection. Infect Immun 2018; 86:IAI.00845-17. [PMID: 29358333 DOI: 10.1128/iai.00845-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Ehrlichia chaffeensis has a group of well-characterized type I secreted tandem repeat protein (TRP) effectors that have moonlighting capabilities. TRPs modulate various cellular processes, reprogram host gene transcription as nucleomodulins, function as ubiquitin ligases, and directly activate conserved host cell signaling pathways to promote E. chaffeensis infection. One TRP-interacting host target is polycomb group ring finger protein 5 (PCGF5), a member of the polycomb group (PcG) protein family and a component of the polycomb repressive complex 1 (PRC1). The current study demonstrates that during early infection, PCGF5 strongly colocalizes with TRP120 in the nucleus and later dramatically redistributes to the ehrlichial vacuole along with other PCGF isoforms. Ectopic expression and immunoprecipitation of TRP120 confirmed the interaction of TRP120 with multiple different PCGF isoforms. At 48 h postinfection, a dramatic redistribution of PCGF isoforms from the nucleus to the ehrlichial vacuole was observed, which also temporally coincided with proteasomal degradation of PCGF isoforms and TRP120 expression on the vacuole. A decrease in PRC1-mediated repressive chromatin mark and an altered transcriptional activity in PRC1-associated Hox genes primarily from HOXB and HOXC clusters were observed along with the degradation of PCGF isoforms, suggesting disruption of the PRC1 in E. chaffeensis-infected cells. Notably, small interfering RNA (siRNA)-mediated knockdown of PCGF isoforms resulted in significantly increased E. chaffeensis infection. This study demonstrates a novel strategy in which E. chaffeensis manipulates PRC complexes through interactions between TRP120 and PCGF isoforms to promote infection.
Collapse
|
16
|
Ehrlichia Activation of Wnt-PI3K-mTOR Signaling Inhibits Autolysosome Generation and Autophagic Destruction by the Mononuclear Phagocyte. Infect Immun 2017; 85:IAI.00690-17. [PMID: 28993455 DOI: 10.1128/iai.00690-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023] Open
Abstract
In multicellular organisms, autophagy is induced as an innate defense mechanism. Notably, the obligate intracellular bacterium Ehrlichia chaffeensis resides in early endosome-like vacuoles and circumvents lysosomal fusion through an unknown mechanism, thereby avoiding destruction in the autophagolysosome. In this report, we reveal that Wnt signaling plays a crucial role in inhibition of lysosomal fusion and autolysosomal destruction of ehrlichiae. During early infection, autophagosomes fuse with ehrlichial vacuoles to form an amphisome indicated by the presence of autophagy markers such as LC3 (microtubule-associated protein 1 light chain 3), Beclin-1, and p62. LC3 colocalized with ehrlichial morulae on days 1, 2, and 3 postinfection, and increased LC3II levels were detected during infection, reaching a maximal level on day 3. Ehrlichial vacuoles did not colocalize with the lysosomal marker LAMP2, and lysosomes were redistributed and dramatically reduced in level in the infected cells. An inhibitor specific for the Wnt receptor signaling component Dishevelled induced lysosomal fusion with ehrlichial inclusions corresponding to p62 degradation and promoted transcription factor EB (TFEB) nuclear localization. E. chaffeensis infection activated the phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR (mechanistic target of rapamycin) pathway, and activation was induced by three ehrlichial tandem repeat protein (TRP) effectors, with TRP120 inducing the strongest activation. Moreover, induction of glycogen synthase kinase-3 (GSK3) performed using a Wnt inhibitor and small interfering RNA (siRNA) knockdown of critical components of PI3K-GSK3-mTOR signaling decreased ehrlichial survival. This report reveals Ehrlichia exploitation of the evolutionarily conserved Wnt pathway to inhibit autolysosome generation, thereby leading to evasion of this important innate immune defense mechanism.
Collapse
|
17
|
Ehrlichia chaffeensis TRP120 Moonlights as a HECT E3 Ligase Involved in Self- and Host Ubiquitination To Influence Protein Interactions and Stability for Intracellular Survival. Infect Immun 2017. [PMID: 28630068 DOI: 10.1128/iai.00290-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ehrlichia chaffeensis secretes tandem repeat protein (TRP) effectors that are involved in a diverse array of host cell interactions, some of which directly activate cell signaling pathways and reprogram host gene transcription to promote survival in the mononuclear phagocyte. However, the molecular details of these effector-host interactions and roles in pathobiology are incompletely understood. In this study, we determined that the E. chaffeensis effector TRP120 is posttranslationally modified by ubiquitin (Ub) and that ubiquitination occurs through intrinsic and host-mediated HECT ligase activity. A functional HECT E3 ligase domain with a conserved catalytic site was identified in the C-terminal region of TRP120, and TRP120 autoubiquitination occurred in vitro in the presence of host UbcH5b/c E2 enzymes. TRP120 ubiquitination sites were mapped using a high-density microfluidic peptide array and confirmed by ectopic expression of TRP120 lysine mutants in cells. Moreover, we determined that the HECT E3 ubiquitin ligase, Nedd4L, interacts with TRP120 during infection and also mediates TRP120 ubiquitination. Nedd4L knockdown resulted in the reduction of TRP120-Ub, decreased ehrlichial infection, and reduced recruitment of a known TRP120-interacting host protein, PCGF5, to ehrlichial inclusions. TRP120-mediated PCGF5 polyubiquitination was associated with a reduction in PCGF5 levels. Inhibition of ubiquitination with small molecules also significantly decreased ehrlichial infection, indicating that the Ub pathway is critical for ehrlichial intracellular replication and survival. The current study identified a novel E. chaffeensis ubiquitin ligase and revealed an important role for the ubiquitin pathway in effector-host interactions and pathogen-mediated host protein stability in order to promote intracellular survival.
Collapse
|
18
|
Luo T, Dunphy PS, McBride JW. Ehrlichia chaffeensis Tandem Repeat Effector Targets Differentially Influence Infection. Front Cell Infect Microbiol 2017; 7:178. [PMID: 28553621 PMCID: PMC5427065 DOI: 10.3389/fcimb.2017.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/24/2017] [Indexed: 01/11/2023] Open
Abstract
Ehrlichia chaffeensis infects mononuclear phagocytes and survives intracellularly by exploiting host cell processes to evade host defenses. The mechanisms involved are not fully defined, but appear to rely largely on a subset of tandem repeat proteins (TRP) effectors. E. chaffeensis TRPs are type 1 secreted effectors that interact with a functionally diverse group of host cell targets associated with various biological processes. In this study, we investigated the influence of TRP host target proteins on ehrlichial infection by RNA interference. In total, 138 TRP-interacting host proteins identified by yeast two-hybrid were targeted by siRNA and the infection level determined by real-time qPCR. Knockdown of 124 (89%) TRP target proteins had significant influence on infection either by inhibiting (85%) or promoting (15%) ehrlichial infection. Notably, knockdown of 18 host proteins which interacted with TRP120 promoted the infection, suggesting that these targets may be degraded to promote infection. Host proteins that interact with TRPs are involved in cellular processes, including cell signaling, vesicle trafficking and intracellular transport, transcriptional regulation, metabolism, protein posttranslational modification, and apoptosis. Selected host targets were examined by immunofluorescent microscopy during infection and were found to localize with the morulae, or in the host cell cytoplasm adjacent to morulae. This study confirms that the majority of host proteins known to interact with TRP effectors influence infection and further extends the current knowledge that E. chaffeensis TRPs participate in a complex array of host protein interactions in order to reprogram the host cell and promote intracellular survival.
Collapse
Affiliation(s)
- Tian Luo
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA
| | - Paige S Dunphy
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA
| | - Jere W McBride
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA.,Sealy Center for Vaccine Development, University of Texas Medical BranchGalveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
19
|
Ehrlichia chaffeensis TRP120 Activates Canonical Notch Signaling To Downregulate TLR2/4 Expression and Promote Intracellular Survival. mBio 2016; 7:mBio.00672-16. [PMID: 27381289 PMCID: PMC4958247 DOI: 10.1128/mbio.00672-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Ehrlichia chaffeensis preferentially targets mononuclear phagocytes and survives through a strategy of subverting innate immune defenses, but the mechanisms are unknown. We have shown E. chaffeensis type 1 secreted tandem repeat protein (TRP) effectors are involved in diverse molecular pathogen-host interactions, such as the TRP120 interaction with the Notch receptor-cleaving metalloprotease ADAM17. In the present study, we demonstrate E. chaffeensis, via the TRP120 effector, activates the canonical Notch signaling pathway to promote intracellular survival. We found that nuclear translocation of the transcriptionally active Notch intracellular domain (NICD) occurs in response to E. chaffeensis or recombinant TRP120, resulting in upregulation of Notch signaling pathway components and target genes notch1, adam17, hes, and hey Significant differences in canonical Notch signaling gene expression levels (>40%) were observed during early and late stages of infection, indicating activation of the Notch pathway. We linked Notch pathway activation specifically to the TRP120 effector, which directly interacts with the Notch metalloprotease ADAM17. Using pharmacological inhibitors and small interfering RNAs (siRNAs) against γ-secretase enzyme, Notch transcription factor complex, Notch1, and ADAM17, we demonstrated that Notch signaling is required for ehrlichial survival. We studied the downstream effects and found that E. chaffeensis TRP120-mediated activation of the Notch pathway causes inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways required for PU.1 and subsequent Toll-like receptor 2/4 (TLR2/4) expression. This investigation reveals a novel mechanism whereby E. chaffeensis exploits the Notch pathway to evade the host innate immune response for intracellular survival. IMPORTANCE E. chaffeensis is an obligately intracellular bacterium and the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection and avoids innate host defenses are not understood, but functionally relevant host-pathogen interactions with type 1 secreted TRP effectors are essential for the ehrlichial cellular reprogramming strategy. This study provides further insight into the molecular strategies used by obligately intracellular pathogens such as E. chaffeensis, which have small genomes and a limited number of effector proteins and exploit evolutionarily conserved host cell programs such as Notch signaling to promote infection and intracellular survival.
Collapse
|
20
|
Abstract
Ehrlichia chaffeensis is an obligatory intracellular and cholesterol-dependent bacterium that has evolved special proteins and functions to proliferate inside leukocytes and cause disease. E. chaffeensis has a multigene family of major outer membrane proteins with porin activity and induces infectious entry using its entry-triggering protein to bind the human cell surface protein DNase X. During intracellular replication, three functional pairs of two-component systems are sequentially expressed to regulate metabolism, aggregation, and the development of stress-resistance traits for transmission. A type IV secretion effector of E. chaffeensis blocks mitochondrion-mediated host cell apoptosis. Several type I secretion proteins are secreted at the Ehrlichia-host interface. E. chaffeensis strains induce strikingly variable inflammation in mice. The central role of MyD88, but not Toll-like receptors, suggests that Ehrlichia species have unique inflammatory molecules. A recent report about transient targeted mutagenesis and random transposon mutagenesis suggests that stable targeted knockouts may become feasible in Ehrlichia.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
21
|
Lina TT, Farris T, Luo T, Mitra S, Zhu B, McBride JW. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy. Front Cell Infect Microbiol 2016; 6:58. [PMID: 27303657 PMCID: PMC4885862 DOI: 10.3389/fcimb.2016.00058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023] Open
Abstract
Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.
Collapse
Affiliation(s)
- Taslima T Lina
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Tierra Farris
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Shubhajit Mitra
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Bing Zhu
- Department of Pathology, University of Texas Medical Branch Galveston, TX, USA
| | - Jere W McBride
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
22
|
Ehrlichia chaffeensis Exploits Canonical and Noncanonical Host Wnt Signaling Pathways To Stimulate Phagocytosis and Promote Intracellular Survival. Infect Immun 2015; 84:686-700. [PMID: 26712203 DOI: 10.1128/iai.01289-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis invades and survives in phagocytes by modulating host cell processes and evading innate defenses, but the mechanisms are not fully defined. Recently we have determined that E. chaffeensis tandem repeat proteins (TRPs) are type 1 secreted effectors involved in functionally diverse interactions with host targets, including components of the evolutionarily conserved Wnt signaling pathways. In this study, we demonstrated that induction of host canonical and noncanonical Wnt pathways by E. chaffeensis TRP effectors stimulates phagocytosis and promotes intracellular survival. After E. chaffeensis infection, canonical and noncanonical Wnt signalings were significantly stimulated during early stages of infection (1 to 3 h) which coincided with dephosphorylation and nuclear translocation of β-catenin, a major canonical Wnt signal transducer, and NFATC1, a noncanonical Wnt transcription factor. In total, the expression of ∼44% of Wnt signaling target genes was altered during infection. Knockdown of TRP120-interacting Wnt pathway components/regulators and other critical components, such as Wnt5a ligand, Frizzled 5 receptor, β-catenin, nuclear factor of activated T cells (NFAT), and major signaling molecules, resulted in significant reductions in the ehrlichial load. Moreover, small-molecule inhibitors specific for components of canonical and noncanonical (Ca(2+) and planar cell polarity [PCP]) Wnt pathways, including IWP-2, which blocks Wnt secretion, significantly decreased ehrlichial infection. TRPs directly activated Wnt signaling, as TRP-coated microspheres triggered phagocytosis which was blocked by Wnt pathway inhibitors, demonstrating a key role of TRP activation of Wnt pathways to induce ehrlichial phagocytosis. These novel findings reveal that E. chaffeensis exploits canonical and noncanonical Wnt pathways through TRP effectors to facilitate host cell entry and promote intracellular survival.
Collapse
|
23
|
Moumène A, Meyer DF. Ehrlichia's molecular tricks to manipulate their host cells. Microbes Infect 2015; 18:172-9. [PMID: 26617397 DOI: 10.1016/j.micinf.2015.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/09/2015] [Accepted: 11/04/2015] [Indexed: 01/27/2023]
Abstract
Ehrlichia is a large genus of obligate intracellular Gram-negative bacteria transmitted by ticks that cause several emerging infectious diseases in humans and are pathogenic on rodents, ruminants, and dogs. Ehrlichia spp. invade and replicate either in endothelial cells, white blood cells, or within midgut cells and salivary glands of their vector ticks. In this review, we discuss the insights that functional studies are providing on how this group of bacteria exploits their host by subverting host innate immunity and hijacking cellular processes.
Collapse
Affiliation(s)
- Amal Moumène
- CIRAD, UMR CMAEE, Site de Duclos, Prise d'eau, F-97170 Petit-Bourg, Guadeloupe, France; INRA, UMR1309 CMAEE, F-34398 Montpellier, France; Université des Antilles et de la Guyane, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Damien F Meyer
- CIRAD, UMR CMAEE, Site de Duclos, Prise d'eau, F-97170 Petit-Bourg, Guadeloupe, France; INRA, UMR1309 CMAEE, F-34398 Montpellier, France.
| |
Collapse
|
24
|
Guy AJ, Irani V, MacRaild CA, Anders RF, Norton RS, Beeson JG, Richards JS, Ramsland PA. Insights into the Immunological Properties of Intrinsically Disordered Malaria Proteins Using Proteome Scale Predictions. PLoS One 2015; 10:e0141729. [PMID: 26513658 PMCID: PMC4626106 DOI: 10.1371/journal.pone.0141729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
Malaria remains a significant global health burden. The development of an effective malaria vaccine remains as a major challenge with the potential to significantly reduce morbidity and mortality. While Plasmodium spp. have been shown to contain a large number of intrinsically disordered proteins (IDPs) or disordered protein regions, the relationship of protein structure to subcellular localisation and adaptive immune responses remains unclear. In this study, we employed several computational prediction algorithms to identify IDPs at the proteome level of six Plasmodium spp. and to investigate the potential impact of protein disorder on adaptive immunity against P. falciparum parasites. IDPs were shown to be particularly enriched within nuclear proteins, apical proteins, exported proteins and proteins localised to the parasitophorous vacuole. Furthermore, several leading vaccine candidates, and proteins with known roles in host-cell invasion, have extensive regions of disorder. Presentation of peptides by MHC molecules plays an important role in adaptive immune responses, and we show that IDP regions are predicted to contain relatively few MHC class I and II binding peptides owing to inherent differences in amino acid composition compared to structured domains. In contrast, linear B-cell epitopes were predicted to be enriched in IDPs. Tandem repeat regions and non-synonymous single nucleotide polymorphisms were found to be strongly associated with regions of disorder. In summary, immune responses against IDPs appear to have characteristics distinct from those against structured protein domains, with increased antibody recognition of linear epitopes but some constraints for MHC presentation and issues of polymorphisms. These findings have major implications for vaccine design, and understanding immunity to malaria.
Collapse
Affiliation(s)
- Andrew J. Guy
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
| | - Vashti Irani
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Robin F. Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - James G. Beeson
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Jack S. Richards
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia
- * E-mail: (JSR); (PAR)
| | - Paul A. Ramsland
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Surgery Austin Health, University of Melbourne, Heidelberg, Australia
- School of Biomedical Sciences, CHIRI Biosciences, Faculty of Health Sciences, Curtin University, Perth, Australia
- * E-mail: (JSR); (PAR)
| |
Collapse
|
25
|
Litvinov J, Hagström AEV, Lopez Y, Adhikari M, Kourentzi K, Strych U, Monzon FA, Foster W, Cagle PT, Willson RC. Ultrasensitive immuno-detection using viral nanoparticles with modular assembly using genetically-directed biotinylation. Biotechnol Lett 2014; 36:1863-1868. [PMID: 24930095 DOI: 10.1007/sl0529-014-1555-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/09/2014] [Indexed: 05/27/2023]
Abstract
We report a novel, modular approach to immuno-detection based on antibody recognition and PCR read-out that employs antibody-conjugated bacteriophage and easily-manipulated non-pathogenic viruses as affinity agents. Our platform employs phage genetically tagged for in vivo biotinylation during phage maturation that can easily be linked, through avidin, to any biotinylated affinity agent, including full-length antibodies, peptides, lectins or aptamers. The presence of analyte is reported with high sensitivity through real-time PCR. This approach avoids the need to clone antibody-encoding DNA fragments, allows the use of full-length, high affinity antibodies and, by having DNA reporters naturally encapsulated inside the bacteriophage, greatly reduces nonspecific binding of DNA. We validate the efficacy of this new approach through the detection of Vascular Endothelial Growth Factor, a known angiogenic cancer biomarker protein, at attomolar concentrations in bronchoalveolar lavage fluid.
Collapse
Affiliation(s)
- Julia Litvinov
- Department of Biomedical Engineering, University of Houston, 4800 Calhoun Rd., Houston, TX, 77204, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect Immun 2014; 82:4154-68. [PMID: 25047847 DOI: 10.1128/iai.01984-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular Gram-negative bacterium that selectively infects mononuclear phagocytes. We recently reported that E. chaffeensis utilizes a type 1 secretion (T1S) system to export tandem repeat protein (TRP) effectors and demonstrated that these effectors interact with a functionally diverse array of host proteins. By way of these interactions, TRP effectors modulate host cell functions; however, the molecular basis of these interactions and their roles in ehrlichial pathobiology are not well defined. In this study, we describe the first bacterial protein posttranslational modification (PTM) by the small ubiquitin-like modifier (SUMO). The E. chaffeensis T1S effector TRP120 is conjugated to SUMO at a carboxy-terminal canonical consensus SUMO conjugation motif in vitro and in human cells. In human cells, TRP120 was selectively conjugated with SUMO2/3 isoforms. Disruption of TRP120 SUMOylation perturbed interactions with known host proteins, through predicted SUMO interaction motif-dependent and -independent mechanisms. E. chaffeensis infection did not result in dramatic changes in the global host SUMOylated protein profile, but a robust colocalization of predominately SUMO1 with ehrlichial inclusions was observed. Inhibiting the SUMO pathway with a small-molecule inhibitor had a significant impact on E. chaffeensis replication and recruitment of the TRP120-interacting protein polycomb group ring finger protein 5 (PCGF5) to the inclusion, indicating that the SUMO pathway is critical for intracellular survival. This study reveals the novel exploitation of the SUMO pathway by Ehrlichia, which facilitates effector-eukaryote interactions necessary to usurp the host and create a permissive intracellular niche.
Collapse
|
27
|
Litvinov J, Hagström AEV, Lopez Y, Adhikari M, Kourentzi K, Strych U, Monzon FA, Foster W, Cagle PT, Willson RC. Ultrasensitive immuno-detection using viral nanoparticles with modular assembly using genetically-directed biotinylation. Biotechnol Lett 2014; 36:1863-8. [PMID: 24930095 DOI: 10.1007/s10529-014-1555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/09/2014] [Indexed: 01/19/2023]
Abstract
We report a novel, modular approach to immuno-detection based on antibody recognition and PCR read-out that employs antibody-conjugated bacteriophage and easily-manipulated non-pathogenic viruses as affinity agents. Our platform employs phage genetically tagged for in vivo biotinylation during phage maturation that can easily be linked, through avidin, to any biotinylated affinity agent, including full-length antibodies, peptides, lectins or aptamers. The presence of analyte is reported with high sensitivity through real-time PCR. This approach avoids the need to clone antibody-encoding DNA fragments, allows the use of full-length, high affinity antibodies and, by having DNA reporters naturally encapsulated inside the bacteriophage, greatly reduces nonspecific binding of DNA. We validate the efficacy of this new approach through the detection of Vascular Endothelial Growth Factor, a known angiogenic cancer biomarker protein, at attomolar concentrations in bronchoalveolar lavage fluid.
Collapse
Affiliation(s)
- Julia Litvinov
- Department of Biomedical Engineering, University of Houston, 4800 Calhoun Rd., Houston, TX, 77204, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dunphy PS, Luo T, McBride JW. Ehrlichia moonlighting effectors and interkingdom interactions with the mononuclear phagocyte. Microbes Infect 2013; 15:1005-16. [PMID: 24141087 PMCID: PMC3886233 DOI: 10.1016/j.micinf.2013.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 01/19/2023]
Abstract
Ehrlichia chaffeensis is an obligately intracellular gram negative bacterium with a small genome that thrives in mammalian mononuclear phagocytes by exploiting eukaryotic processes. Herein, we discuss the latest findings on moonlighting tandem repeat protein effectors and their secretion mechanisms, and novel molecular interkingdom interactions that provide insight into the intracellular pathobiology of ehrlichiae.
Collapse
Affiliation(s)
- Paige Selvy Dunphy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
29
|
Thirumalapura NR, Crocquet-Valdes PA, Saito TB, Thomas S, McBride JW, Walker DH. Recombinant Ehrlichia P29 protein induces a protective immune response in a mouse model of ehrlichiosis. Vaccine 2013; 31:5960-7. [PMID: 24144475 DOI: 10.1016/j.vaccine.2013.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 01/26/2023]
Abstract
Ehrlichioses are emerging tick-borne bacterial diseases of humans and animals for which no vaccines are available. The diseases are caused by obligately intracellular bacteria belonging to the genus Ehrlichia. Several immunoreactive proteins of ehrlichiae have been identified based on their reactivity with immune sera from human patients and animals. These include the major outer membrane proteins, ankyrin repeat proteins and tandem repeat proteins (TRP). Polyclonal antibodies directed against the tandem repeats (TRs) of Ehrlichia chaffeensis TRP32, TRP47 and TRP120 have been shown to provide protection in mice. In the present study, we evaluated E. muris P29, which is the ortholog of E. chaffeensis TRP47 and E. canis TRP36, as a subunit vaccine in a mouse model of ehrlichiosis. Our study indicated that unlike E. chaffeensis TRP47 and E. canis TRP36, orthologs of E. muris (P29) and E. muris-like agent (EMLA) do not contain tandem repeats. Immunization of mice with recombinant E. muris P29 induced significant protection against a challenge infection. The protection induced by E. muris P29 was associated with induction of strong antibody responses. In contrast to development of P29-specific IgG antibodies following immunization, development of P29-specific IgG antibodies, but not IgM antibodies, was impaired during persistent E. muris infection. Furthermore, our study indicated that CD4+ T cells target P29 during E. muris infection and differentiate into IFN-γ-producing Th1 effector/memory cells. In conclusion, our study indicated that orthologs of E. muris P29 showed considerable variation in the central tandem repeat region among different species, induction of P29-specific IgG antibody response was impaired during persistent E. muris infection, and rP29 induced protective immune responses.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- CD4-Positive T-Lymphocytes/immunology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Disease Models, Animal
- Ehrlichia/genetics
- Ehrlichia/immunology
- Ehrlichiosis/immunology
- Ehrlichiosis/prevention & control
- Female
- Immunologic Memory
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Sequence Analysis, DNA
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Nagaraja R Thirumalapura
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, United States; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-0609, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0609, United States.
| | | | | | | | | | | |
Collapse
|
30
|
Epitopes of the highly immunogenic Trichomonas vaginalis α-actinin are serodiagnostic targets for both women and men. J Clin Microbiol 2013; 51:2483-90. [PMID: 23616456 DOI: 10.1128/jcm.00582-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is a need for a point-of-care serodiagnostic test for women and men for sexually transmitted infections (STIs) caused by Trichomonas vaginalis. Sera from women with this STI and sera from men that were analyzed in studies showing a relationship between serostatus and prostate cancer are highly seropositive in response to trichomonad α-actinin and its truncated protein (ACT-P2) (positive control sera). Epitope mapping experiments showed that positive control sera from women had antibodies to 13 distinct epitopes, 5 of which were detected by positive control sera from men. Sera from women and men that were unreactive with α-actinin (negative control sera) failed to detect any of the epitopes or other α-actinin amino acid sequences. The T. vaginalis α-actinin amino acid sequence and the sequences of the epitopes showed little or no identity with those of other proteins of microbial pathogens or the human α-actinin 1 (HuACTN1) homolog. Immunoassays such as dot blot, immunoblot, and enzyme-linked immunosorbent assays were used. Positive control sera did not detect HuACTN1 in immunoassays, and the range of levels of identity of α-actinin epitopes with HuACTN1 was 0% to 50%. Comparison of the T. vaginalis α-actinin epitopes with proteins in data banks, such as Tritrichomonas suis, Candida albicans, and Saccharomyces cerevisiae proteins, gave a range of identity levels of 0% to 22%. Specific 15-mer peptide epitopes of α-actinin with low to no identity with other proteins were synthesized and were reactive with positive control sera only. These findings identify epitopes of α-actinin as candidate serodiagnostic targets and suggest strongly that a highly seropositive reaction to α-actinin suggests exposure to T. vaginalis.
Collapse
|
31
|
Kuriakose JA, Zhang X, Luo T, McBride JW. Molecular basis of antibody mediated immunity against Ehrlichia chaffeensis involves species-specific linear epitopes in tandem repeat proteins. Microbes Infect 2012; 14:1054-63. [PMID: 22658957 PMCID: PMC3445803 DOI: 10.1016/j.micinf.2012.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/10/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
Humoral immune mechanisms are an important component of protective immunity to Ehrlichia species. However, the molecular basis of antibody mediated immunity is not completely defined, and the role of most molecularly characterized major immunoreactive proteins is unknown. In previous studies, we mapped major species-specific continuous epitopes in three surface exposed and secreted tandem repeat proteins (TRP32, TRP47 and TRP120). In this study, we report that protection is provided by antibodies against these molecularly defined TRP epitopes using in vitro and in vivo models. Protection was demonstrated in vitro after prophylactic and therapeutic administration of epitope-specific anti-TRP antibodies, suggesting that the protective mechanisms involve extracellular and intracellular antibody-mediated effects. In vivo passive transfer of individual epitope-specific TRP sera significantly reduced the ehrlichial load and splenomegaly, and protected mice against lethal infection. Moreover, the combination of antibodies to all three TRPs provided enhanced reduction in ehrlichial load similar to that of Ehrlichia chaffeensis immune sera. IgG1 was the predominant antibody isotype in the epitope-specific TRP mouse sera. These results demonstrate that antibodies against linear epitopes in TRP32, TRP47 and TRP120 are protective during E. chaffeensis infection and involves extracellular and intracellular antibody-mediated mechanisms.
Collapse
Affiliation(s)
- Jeeba A. Kuriakose
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaofeng Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
32
|
Ehrlichia chaffeensis TRP32 interacts with host cell targets that influence intracellular survival. Infect Immun 2012; 80:2297-306. [PMID: 22547548 DOI: 10.1128/iai.00154-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by evading host cell defense mechanisms. Recently, molecular interactions of E. chaffeensis tandem repeat proteins 47 and 120 (TRP47 and -120) and the eukaryotic host cell have been described. In this investigation, yeast two-hybrid analysis demonstrated that an E. chaffeensis type 1 secretion system substrate, TRP32, interacts with a diverse group of human proteins associated with major biological processes of the host cell, including protein synthesis, trafficking, degradation, immune signaling, cell signaling, iron metabolism, and apoptosis. Eight target proteins, including translation elongation factor 1 alpha 1 (EF1A1), deleted in azoospermia (DAZ)-associated protein 2 (DAZAP2), ferritin light polypeptide (FTL), CD63, CD14, proteasome subunit beta type 1 (PSMB1), ring finger and CCCH-type domain 1 (RC3H1), and tumor protein p53-inducible protein 11 (TP53I11) interacted with TRP32 as determined by coimmunoprecipitation assays, colocalization with TRP32 in HeLa and THP-1 cells, and/or RNA interference. Interactions between TRP32 and host targets localized to the E. chaffeensis morulae or in the host cell cytoplasm adjacent to morulae. Common or closely related interacting partners of E. chaffeensis TRP32, TRP47, and TRP120 demonstrate a molecular convergence on common cellular processes and molecular cross talk between Ehrlichia TRPs and host targets. These findings further support the role of TRPs as effectors that promote intracellular survival.
Collapse
|
33
|
Wakeel A, den Dulk-Ras A, Hooykaas PJJ, McBride JW. Ehrlichia chaffeensis tandem repeat proteins and Ank200 are type 1 secretion system substrates related to the repeats-in-toxin exoprotein family. Front Cell Infect Microbiol 2011; 1:22. [PMID: 22919588 PMCID: PMC3417381 DOI: 10.3389/fcimb.2011.00022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/14/2011] [Indexed: 12/27/2022] Open
Abstract
Ehrlichia chaffeensis has type 1 and 4 secretion systems (T1SS and T4SS), but the substrates have not been identified. Potential substrates include secreted tandem repeat protein (TRP) 47, TRP120, and TRP32, and the ankyrin repeat protein, Ank200, that are involved in molecular host–pathogen interactions including DNA binding and a network of protein–protein interactions with host targets associated with signaling, transcriptional regulation, vesicle trafficking, and apoptosis. In this study we report that E. chaffeensis TRP47, TRP32, TRP120, and Ank200 were not secreted in the Agrobacterium tumefaciens Cre recombinase reporter assay routinely used to identify T4SS substrates. In contrast, all TRPs and the Ank200 proteins were secreted by the Escherichia coli complemented with the hemolysin secretion system (T1SS), and secretion was reduced in a T1SS mutant (ΔTolC), demonstrating that these proteins are T1SS substrates. Moreover, T1SS secretion signals were identified in the C-terminal domains of the TRPs and Ank200, and a detailed bioinformatic analysis of E. chaffeensis TRPs and Ank200 revealed features consistent with those described in the repeats-in-toxins (RTX) family of exoproteins, including glycine- and aspartate-rich tandem repeats, homology with ATP-transporters, a non-cleavable C-terminal T1SS signal, acidic pIs, and functions consistent with other T1SS substrates. Using a heterologous E. coli T1SS, this investigation has identified the first Ehrlichia T1SS substrates supporting the conclusion that the T1SS and corresponding substrates are involved in molecular host–pathogen interactions that contribute to Ehrlichia pathobiology. Further investigation of the relationship between Ehrlichia TRPs, Ank200, and the RTX exoprotein family may lead to a greater understanding of the importance of T1SS substrates and specific functions of T1SS in the pathobiology of obligately intracellular bacteria.
Collapse
Affiliation(s)
- Abdul Wakeel
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | |
Collapse
|
34
|
Kuriakose JA, Miyashiro S, Luo T, Zhu B, McBride JW. Ehrlichia chaffeensis transcriptome in mammalian and arthropod hosts reveals differential gene expression and post transcriptional regulation. PLoS One 2011; 6:e24136. [PMID: 21915290 PMCID: PMC3167834 DOI: 10.1371/journal.pone.0024136] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/05/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human monocytotropic ehrlichiosis is an emerging life-threatening zoonosis caused by obligately intracellular bacterium, Ehrlichia chaffeensis. E. chaffeensis is transmitted by the lone star tick, Amblyomma americanum, and replicates in mononuclear phagocytes in mammalian hosts. Differences in the E. chaffeensis transcriptome in mammalian and arthropod hosts are unknown. Thus, we determined host-specific E. chaffeensis gene expression in human monocyte (THP-1) and in Amblyomma and Ixodes tick cell lines (AAE2 and ISE6) using a whole genome microarray. METHODOLOGY/PRINCIPAL FINDINGS The majority (∼80%) of E. chaffeensis genes were expressed during infection in human and tick cells. There were few differences observed in E. chaffeensis gene expression between the vector Amblyomma and non-vector Ixodes tick cells, but extensive host-specific and differential gene expression profiles were detected between human and tick cells, including higher transcriptional activity in tick cells and identification of gene subsets that were differentially expressed in the two hosts. Differentially and host-specifically expressed ehrlichial genes encoded major immunoreactive tandem repeat proteins (TRP), the outer membrane protein (OMP-1) family, and hypothetical proteins that were 30-80 amino acids in length. Consistent with previous observations, high expression of p28 and OMP-1B genes was detected in human and tick cells, respectively. Notably, E. chaffeensis genes encoding TRP32 and TRP47 were highly upregulated in the human monocytes and expressed as proteins; however, although TRP transcripts were expressed in tick cells, the proteins were not detected in whole cell lysates demonstrating that TRP expression was post transcriptionally regulated. CONCLUSIONS/SIGNIFICANCE Ehrlichia gene expression is highly active in tick cells, and differential gene expression among a wide variety of host-pathogen associated genes occurs. Furthermore, we demonstrate that genes associated with host-pathogen interactions are differentially expressed and regulated by post transcriptional mechanisms.
Collapse
Affiliation(s)
- Jeeba A. Kuriakose
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Simone Miyashiro
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tian Luo
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bing Zhu
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jere W. McBride
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ehrlichia chaffeensis TRP120 binds a G+C-rich motif in host cell DNA and exhibits eukaryotic transcriptional activator function. Infect Immun 2011; 79:4370-81. [PMID: 21859854 DOI: 10.1128/iai.05422-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that modulates host cell gene transcription in the mononuclear phagocyte, but the host gene targets and mechanisms involved in transcriptional modulation are not well-defined. In this study, we identified a novel tandem repeat DNA-binding domain in the E. chaffeensis 120-kDa tandem repeat protein (TRP120) that directly binds host cell DNA. TRP120 was observed by immunofluorescent microscopy in the nucleus of E. chaffeensis-infected host cells and was detected in nuclear extracts by Western immunoblotting with TRP120-specific antibody. The TRP120 binding sites and associated host cell target genes were identified using high-throughput deep sequencing (Illumina) of immunoprecipitated DNA (chromatin immunoprecipitation and high-throughput DNA sequencing). Multiple em motif elicitation (MEME) analysis of the most highly enriched TRP120-bound sequences revealed a G+C-rich DNA motif, and recombinant TRP120 specifically bound synthetic oligonucleotides containing the motif. TRP120 target gene binding sites were mapped most frequently to intersecting regions (intron/exon; 49%) but were also identified in upstream regulatory regions (25%) and downstream locations (26%). Genes targeted by TRP120 were most frequently associated with transcriptional regulation, signal transduction, and apoptosis. TRP120 targeted inflammatory chemokine genes, CCL2, CCL20, and CXCL11, which were strongly upregulated during E. chaffeensis infection and were also upregulated by direct transfection with recombinant TRP120. This study reveals that TRP120 is a novel DNA-binding protein that is involved in a host gene transcriptional regulation strategy.
Collapse
|
36
|
Ehrlichia chaffeensis TRP120 interacts with a diverse array of eukaryotic proteins involved in transcription, signaling, and cytoskeleton organization. Infect Immun 2011; 79:4382-91. [PMID: 21859857 DOI: 10.1128/iai.05608-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by evading host cell defense mechanisms. Recently, molecular interactions between E. chaffeensis 47-kDa tandem repeat (TR) protein (TRP47) and the eukaryotic host cell have been described. In this investigation, yeast (Saccharomyces cerevisiae) two-hybrid analysis demonstrated that E. chaffeensis-secreted tandem repeat protein 120 (TRP120) interacts with a diverse group of host cell proteins associated with major biological processes, including transcription and regulation, cell signaling, protein trafficking, and actin cytoskeleton organization. Twelve target proteins with the highest frequency of interaction with TRP120 were confirmed by cotransformation in yeast. Host targets, including human immunoglobulin lambda locus (IGL), cytochrome c oxidase subunit II (COX2), Golgi-associated gamma adaptin ear-containing ARF binding protein 1 (GGA1), polycomb group ring finger 5 (PCGF5), actin gamma 1 (ACTG1), and unc-13 homolog D (UNC13D; Caenorhabditis elegans), colocalized strongly with TRP120 in HeLa cells and with E. chaffeensis dense-cored morulae and areas adjacent to morulae in the host cytoplasm. The TR domain of TRP120 interacted only with PCGF5, indicating that distinct TRP120 domains contribute to specific host target interactions and that multiple domains are required to reconstitute TRP120 interactions with other host targets. Three previously defined molecular interactions between TRP47 and host proteins, PCGF5, IGLL1, and CAP1, were also associated with TRP120, demonstrating that molecular cross talk occurs between Ehrlichia TRPs and host targets. These findings further support the role of TRPs as effectors that reprogram the host cell.
Collapse
|
37
|
Tyrosine-phosphorylated Ehrlichia chaffeensis and Ehrlichia canis tandem repeat orthologs contain a major continuous cross-reactive antibody epitope in lysine-rich repeats. Infect Immun 2011; 79:3178-87. [PMID: 21606187 DOI: 10.1128/iai.01347-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A small subset of major immunoreactive proteins have been identified in Ehrlichia chaffeensis and Ehrlichia canis, including three molecularly and immunologically characterized pairs of immunoreactive tandem repeat protein (TRP) orthologs with major continuous species-specific epitopes within acidic tandem repeats (TR) that stimulate strong antibody responses during infection. In this study, we identified a fourth major immunoreactive TR-containing ortholog pair and defined a major cross-reactive epitope in homologous nonidentical 24-amino-acid lysine-rich TRs. Antibodies from patients and dogs with ehrlichiosis reacted strongly with recombinant TR regions, and epitopes were mapped to the N-terminal TR region (18 amino acids) in E. chaffeensis and the complete TR (24 amino acids) in E. canis. Two less-dominant epitopes were mapped to adjacent glutamate/aspartate-rich and aspartate/tyrosine-rich regions in the acidic C terminus of E. canis TRP95 but not in E. chaffeensis TRP75. Major immunoreactive proteins in E. chaffeensis (75-kDa) and E. canis (95-kD) whole-cell lysates and supernatants were identified with TR-specific antibodies. Consistent with other ehrlichial TRPs, the TRPs identified in ehrlichial whole-cell lysates and the recombinant proteins migrated abnormally slow electrophoretically a characteristic that was demonstrated with the positively charged TR and negatively charged C-terminal domains. E. chaffeensis TRP75 and E. canis TRP95 were immunoprecipitated with anti-pTyr antibody, demonstrating that they are tyrosine phosphorylated during infection of the host cell.
Collapse
|
38
|
Molecular and cellular pathobiology of Ehrlichia infection: targets for new therapeutics and immunomodulation strategies. Expert Rev Mol Med 2011; 13:e3. [PMID: 21276277 DOI: 10.1017/s1462399410001730] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ehrlichia are small obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. New technologies for exploring host-pathogen interactions have yielded recent advances in understanding the molecular interactions between Ehrlichia and the eukaryotic host cell and identified new targets for therapeutic and vaccine development, including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathological mechanisms that contribute significantly to understanding severe disease manifestations, which should lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology of Ehrlichia infection. We identify new molecular host-pathogen interactions that can be targets of new therapeutics, and discuss prospects for treating the immunological dysregulation during acute infection that leads to life-threatening complications.
Collapse
|
39
|
McBride JW, Walker DH. Progress and obstacles in vaccine development for the ehrlichioses. Expert Rev Vaccines 2010; 9:1071-82. [PMID: 20822349 DOI: 10.1586/erv.10.93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ehrlichia are tick-borne obligately intracellular bacteria that cause significant diseases in veterinary natural hosts, including livestock and companion animals, and are now considered important zoonotic pathogens in humans. Vaccines are needed for these veterinary and zoonotic human pathogens, but many obstacles exist that have impeded their development. These obstacles include understanding genetic and antigenic variability, influence of the host on the pathogen phenotype and immunogenicity, identification of the ehrlichial antigens that stimulate protective immunity and those that elicit immunopathology, development of animal models that faithfully reflect the immune responses of the hosts and understanding molecular host-pathogen interactions involved in immune evasion or that may be blocked by the host immune response. We review the obstacles and progress in addressing barriers associated with vaccine development to protect livestock, companion animals and humans against these host defense-evasive and cell function-manipulative, vector-transmitted pathogens.
Collapse
Affiliation(s)
- Jere W McBride
- Department of Pathology, Center for Emerging Infectious Diseases and Biodefense, Sealy Center for Vaccine Development, and the Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | |
Collapse
|
40
|
Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat Rev Microbiol 2010; 8:328-39. [PMID: 20372158 DOI: 10.1038/nrmicro2318] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anaplasma spp. and Ehrlichia spp. cause several emerging human infectious diseases. Anaplasma phagocytophilum and Ehrlichia chaffeensis are transmitted between mammals by blood-sucking ticks and replicate inside mammalian white blood cells and tick salivary-gland and midgut cells. Adaptation to a life in eukaryotic cells and transmission between hosts has been assisted by the deletion of many genes that are present in the genomes of free-living bacteria (including genes required for the biosynthesis of lipopolysaccharide and peptidoglycan), by the acquisition of a cholesterol uptake pathway and by the expansion of the repertoire of genes encoding the outer-membrane porins and type IV secretion system. Here, I review the specialized properties and other adaptations of these intracellular bacteria.
Collapse
|
41
|
Mass spectrometric analysis of Ehrlichia chaffeensis tandem repeat proteins reveals evidence of phosphorylation and absence of glycosylation. PLoS One 2010; 5:e9552. [PMID: 20209062 PMCID: PMC2832021 DOI: 10.1371/journal.pone.0009552] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/12/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ehrlichia chaffeensis has a small subset of immunoreactive secreted, acidic (pI approximately 4), tandem repeat (TR)-containing proteins (TRPs), which exhibit abnormally large electrophoretic masses that have been associated with glycosylation of the TR domain. METHODOLOGY/PRINCIPAL FINDINGS In this study, we examined the extent and nature of posttranslational modifications on the native TRP47 and TRP32 using mass spectrometry. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) demonstrated that the mass of native TRP47 (33,104.5 Da) and TRP32 (22,736.8 Da) were slightly larger (179- and 288-Da, respectively) than their predicted masses. The anomalous migration of native and recombinant TRP47, and the recombinant TR domain (C-terminal region) were normalized by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) modification of negatively charged carboxylates to neutral amides. Exhaustive tandem mass spectrometric analysis (92% coverage) performed on trypsin and Asp-N digested native TRP47 identified peptides consistent with their predicted masses. Two TRP47 peptides not identified were located in the normally migrating amino (N)-terminal region of TRP47 and contained predicted phosphorylation sites (tyrosine and serine residues). Moreover, native TRP47 was immunoprecipitated from E. chaffeensis-infected cell lysate with anti-phosphotyrosine (anti-pTyr) antibody. CONCLUSIONS/SIGNIFICANCE TRP47 and TRP32 are not modified by glycans and the substantial net negative charge of the ehrlichial TRPs, and particularly the highly acidic TRs present within the ehrlichial TRPs, is responsible for larger-than-predicted masses. Furthermore, this study provides evidence that the N-terminal region of the TRP47 is tyrosine phosphorylated.
Collapse
|
42
|
New insights into molecular Ehrlichia chaffeensis-host interactions. Microbes Infect 2010; 12:337-45. [PMID: 20116446 DOI: 10.1016/j.micinf.2010.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 12/24/2022]
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by reprogramming the host cell. Here we review new information regarding the newly characterized effector molecules and the complex network of molecular host-pathogen interactions that the organism exploits enabling it to thrive and persist intracellularly.
Collapse
|
43
|
Molecular characterization of antibody epitopes of Ehrlichia chaffeensis ankyrin protein 200 and tandem repeat protein 47 and evaluation of synthetic immunodeterminants for serodiagnosis of human monocytotropic ehrlichiosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 17:87-97. [PMID: 19955322 DOI: 10.1128/cvi.00331-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Recently, major species-specific antibody epitopes in three immunoreactive tandem repeat proteins (TRPs) of Ehrlichia chaffeensis, TRP32, TRP47, and TRP120, have been identified and molecularly characterized within tandem repeat (TR) regions. In this study, we mapped the major immunodeterminants of the E. chaffeensis 200-kDa ankyrin protein (Ank200) and the minor immunodeterminants in the N- and C-terminal regions of E. chaffeensis TRP47. Major antibody epitopes of Ank200 were localized to four polypeptide regions (18-mer, 20-mer, 20-mer, and 21-mer, respectively) in terminal acidic domains, which reacted with antibodies in sera from human monocytotropic ehrlichiosis (HME) patients and an E. chaffeensis-infected dog. Two minor epitope-containing regions were identified in the N terminus and the C terminus of TRP47. The sensitivities and specificities of synthetic peptides representing these and other well-defined major immunodeterminants of E. chaffeensis were determined by enzyme-linked immunosorbent assay (ELISA). Thirty-one HME patient serum samples that had detectable E. chaffeensis antibodies (titers from 64 to 8,192) by indirect fluorescent-antibody assay (IFA) were tested. All 31 serum samples reacted with at least one E. chaffeensis peptide, 30 (96.8%) with TRP120 peptides, 27 (87.1%) with TRP32 peptides, 24 (77.4%) with TRP47 peptides, 19 (61.3%) with Ank200 peptides, and 28 (90.3%) with recombinant TRP120-TR protein. A mixture of the two most sensitive peptides from TRP120 and TRP32 did not provide enhanced analytical sensitivity compared to that provided by TRP120 alone. Our results demonstrate that the TRP120 peptide can be utilized for development of standardized sensitive point-of-care and reference laboratory immunodiagnostics for HME. This is the first study to compare analysis of molecularly defined major antibody epitopes with IFA for diagnosis of HME.
Collapse
|