1
|
Roy A, Swetha RG, Basu S, Biswas R, Ramaiah S, Anbarasu A. Integrating pan-genome and reverse vaccinology to design multi-epitope vaccine against Herpes simplex virus type-1. 3 Biotech 2024; 14:176. [PMID: 38855144 PMCID: PMC11153438 DOI: 10.1007/s13205-024-04022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Herpes simplex virus type-1 (HSV-1), the etiological agent of sporadic encephalitis and recurring oral (sometimes genital) infections in humans, affects millions each year. The evolving viral genome reduces susceptibility to existing antivirals and, thus, necessitates new therapeutic strategies. Immunoinformatics strategies have shown promise in designing novel vaccine candidates in the absence of a clinically licensed vaccine to prevent HSV-1. However, to encourage clinical translation, the HSV-1 pan-genome was integrated with the reverse-vaccinology pipeline for rigorous screening of universal vaccine candidates. Viral targets were screened from 104 available complete genomes. Among 364 proteins, envelope glycoprotein D being an outer membrane protein with a high antigenicity score (> 0.4) and solubility (> 0.6) was selected for epitope screening. A total of 17 T-cell and 4 B-cell epitopes with highly antigenic, immunogenic, non-toxic properties and high global population coverage were identified. Furthermore, 8 vaccine constructs were designed using different combinations of epitopes and suitable linkers. VC-8 was identified as the most potential vaccine candidate regarding chemical and structural stability. Molecular docking revealed high interactive affinity (low binding energy: - 56.25 kcal/mol) of VC-8 with the target elicited by firm intermolecular H-bonds, salt-bridges, and hydrophobic interactions, which was validated with simulations. Compatibility of the vaccine candidate to be expressed in pET-29(a) + plasmid was established by in silico cloning studies. Immune simulations confirmed the potential of VC-8 to trigger robust B-cell, T-cell, cytokine, and antibody-mediated responses, thereby suggesting a promising candidate for the future of HSV-1 prevention. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04022-6.
Collapse
Affiliation(s)
- Aditi Roy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Rayapadi G. Swetha
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biosciences, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Soumya Basu
- Department of Biotechnology, NIST University, Berhampur, Odisha 761008 India
| | - Rhitam Biswas
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biosciences, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
2
|
Quadiri A, Prakash S, Dhanushkodi NR, Singer M, Zayou L, Shaik AM, Sun M, Suzer B, Lau LSL, Chilukurri A, Vahed H, Schaefer H, BenMohamed L. Therapeutic prime/pull vaccination of HSV-2-infected guinea pigs with the ribonucleotide reductase 2 (RR2) protein and CXCL11 chemokine boosts antiviral local tissue-resident and effector memory CD4 + and CD8 + T cells and protects against recurrent genital herpes. J Virol 2024; 98:e0159623. [PMID: 38587378 PMCID: PMC11092353 DOI: 10.1128/jvi.01596-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.
Collapse
Affiliation(s)
- Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Lauren Su Lin Lau
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Amruth Chilukurri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
| | - Hubert Schaefer
- Intracellular Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, California, USA
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
3
|
Rio P, Caldarelli M, Chiantore M, Ocarino F, Candelli M, Gasbarrini A, Gambassi G, Cianci R. Immune Cells, Gut Microbiota, and Vaccines: A Gender Perspective. Cells 2024; 13:526. [PMID: 38534370 PMCID: PMC10969451 DOI: 10.3390/cells13060526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The development of preventive and therapeutic vaccines has played a crucial role in preventing infections and treating chronic and non-communicable diseases, respectively. For a long time, the influence of sex differences on modifying health and disease has not been addressed in clinical and preclinical studies. The interaction of genetic, epigenetic, and hormonal factors plays a role in the sex-related differences in the epidemiology of diseases, clinical manifestations, and the response to treatment. Moreover, sex is one of the leading factors influencing the gut microbiota composition, which could further explain the different predisposition to diseases in men and women. In the same way, differences between sexes occur also in the immune response to vaccines. This narrative review aims to highlight these differences, focusing on the immune response to vaccines. Comparative data about immune responses, vaccine effectiveness, and side effects are reviewed. Hence, the intricate interplay between sex, immunity, and the gut microbiota will be discussed for its potential role in the response to vaccination. Embracing a sex-oriented perspective in research may improve the efficacy of the immune response and allow the design of tailored vaccine schedules.
Collapse
Affiliation(s)
- Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Monica Chiantore
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Francesca Ocarino
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Rome, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.); (F.O.); (A.G.); (G.G.)
| |
Collapse
|
4
|
Valdez-Cruz NA, Rosiles-Becerril D, Martínez-Olivares CE, García-Hernández E, Cobos-Marín L, Garzón D, López-Salas FE, Zavala G, Luviano A, Olvera A, Alagón A, Ramírez OT, Trujillo-Roldán MA. Oral administration of a recombinant modified RBD antigen of SARS-CoV-2 as a possible immunostimulant for the care of COVID-19. Microb Cell Fact 2024; 23:41. [PMID: 38321489 PMCID: PMC10848483 DOI: 10.1186/s12934-024-02320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Developing effective vaccines against SARS-CoV-2 that consider manufacturing limitations, equitable access, and acceptance is necessary for developing platforms to produce antigens that can be efficiently presented for generating neutralizing antibodies and as a model for new vaccines. RESULTS This work presents the development of an applicable technology through the oral administration of the SARS-CoV-2 RBD antigen fused with a peptide to improve its antigenic presentation. We focused on the development and production of the recombinant receptor binding domain (RBD) produced in E. coli modified with the addition of amino acids extension designed to improve antigen presentation. The production was carried out in shake flask and bioreactor cultures, obtaining around 200 mg/L of the antigen. The peptide-fused RBD and peptide-free RBD proteins were characterized and compared using SDS-PAGE gel, high-performance chromatography, and circular dichroism. The peptide-fused RBD was formulated in an oil-in-water emulsion for oral mice immunization. The peptide-fused RBD, compared to RBD, induced robust IgG production in mice, capable of recognizing the recombinant RBD in Enzyme-linked immunosorbent assays. In addition, the peptide-fused RBD generated neutralizing antibodies in the sera of the dosed mice. The formulation showed no reactive episodes and no changes in temperature or vomiting. CONCLUSIONS Our study demonstrated the effectiveness of the designed peptide added to the RBD to improve antigen immunostimulation by oral administration.
Collapse
Affiliation(s)
- Norma A Valdez-Cruz
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, 22860, Tijuana-Ensenada, Baja California, Mexico.
| | - Diego Rosiles-Becerril
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Constanza E Martínez-Olivares
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Enrique García-Hernández
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Laura Cobos-Marín
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Daniel Garzón
- Unidad de Modelos Biológicos, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, Mexico. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Francisco E López-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico
| | - Guadalupe Zavala
- Unidad de Microscopia Electrónica, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Axel Luviano
- Departamento de Genética del Desarrollo y Fisiologia Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, Mexico
| | - Alejandro Olvera
- Departamento de Biología Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico
| | - Alejandro Alagón
- Departamento de Biología Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico
| | - Octavio T Ramírez
- Departamento de Biología Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Mor, Mexico
| | - Mauricio A Trujillo-Roldán
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, Ciudad de Mexico, México. AP. 70228, CP. 04510, México, D.F, Mexico.
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera, 22860, Tijuana-Ensenada, Baja California, Mexico.
| |
Collapse
|
5
|
Traidl S, Harries L, Kienlin P, Begemann G, Roesner LM, Werfel T. Dupilumab strengthens herpes simplex virus type 1-specific immune responses in atopic dermatitis. J Allergy Clin Immunol 2023; 152:1460-1469.e5. [PMID: 37660986 DOI: 10.1016/j.jaci.2023.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Impaired virus clearance in a subgroup of atopic dermatitis (AD) patients can lead to severe herpes simplex virus (HSV) infections called eczema herpeticum (EH). We recently identified a type 2 skewed viral immune response in EH patients. Clinical data suggest a reduced incidence of EH in AD patients treated with dupilumab, although immunologic investigations of this phenomenon are still lacking. OBJECTIVE We examined the impact of dupilumab on the HSV type 1 (HSV-1) specific immune response in AD, focusing on patients with (ADEH+) and without (ADEH-) a history of EH. METHODS Sera and peripheral blood mononuclear cells were collected from ADEH+ and ADEH- patients, a subgroup of whom was receiving dupilumab treatment, and healthy controls. Serum samples were tested for IgE against HSV-1 glycoprotein D (n = 85). Peripheral blood mononuclear cells were stimulated with HSV peptides, and activated CD4+ and CD8+ cells were characterized by flow cytometry after magnetic enrichment via CD154 or CD137 (n = 60). Cytokine production of HSV-1-reactive T-cell lines (n = 33) and MHC-I tetramer+ (HSV-1-UL25) CD8+ T cells was investigated by bead assay and intracellular cytokine staining (n = 21). RESULTS We confirmed that HSV-1-specific IgE is elevated in ADEH+ patients. During dupilumab treatment, the IgE levels were significantly decreased, reaching levels of healthy controls. HSV-1-specific TC1 frequencies were elevated in ADEH- patients treated with dupilumab compared to dupilumab-negative patients. There were no changes in the frequencies of HSV-1-specific TH cells while receiving dupilumab therapy. AD patients receiving dupilumab exhibited elevated IFN-γ and reduced IL-4 production in HSV-1-UL25-epitope-specific T cells compared to dupilumab-negative patients. CONCLUSION Dupilumab may improve the HSV-1-specific immune response in AD as a result of an increased type I immune response and a reduction of HSV-1-specific IgE.
Collapse
Affiliation(s)
- Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| | - Leonard Harries
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Petra Kienlin
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Gabriele Begemann
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Limoges MA, Quenum AJI, Chowdhury MMH, Rexhepi F, Namvarpour M, Akbari SA, Rioux-Perreault C, Nandi M, Lucier JF, Lemaire-Paquette S, Premkumar L, Durocher Y, Cantin A, Lévesque S, Dionne IJ, Menendez A, Ilangumaran S, Allard-Chamard H, Piché A, Ramanathan S. SARS-CoV-2 spike antigen-specific B cell and antibody responses in pre-vaccination period COVID-19 convalescent males and females with or without post-covid condition. Front Immunol 2023; 14:1223936. [PMID: 37809081 PMCID: PMC10551145 DOI: 10.3389/fimmu.2023.1223936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Background Following SARS-CoV-2 infection a significant proportion of convalescent individuals develop the post-COVID condition (PCC) that is characterized by wide spectrum of symptoms encompassing various organs. Even though the underlying pathophysiology of PCC is not known, detection of viral transcripts and antigens in tissues other than lungs raise the possibility that PCC may be a consequence of aberrant immune response to the viral antigens. To test this hypothesis, we evaluated B cell and antibody responses to the SARS-CoV-2 antigens in PCC patients who experienced mild COVID-19 disease during the pre-vaccination period of COVID-19 pandemic. Methods The study subjects included unvaccinated male and female subjects who developed PCC or not (No-PCC) after clearing RT-PCR confirmed mild COVID-19 infection. SARS-CoV-2 D614G and omicron RBD specific B cell subsets in peripheral circulation were assessed by flow cytometry. IgG, IgG3 and IgA antibody titers toward RBD, spike and nucleocapsid antigens in the plasma were evaluated by ELISA. Results The frequency of the B cells specific to D614G-RBD were comparable in convalescent groups with and without PCC in both males and females. Notably, in females with PCC, the anti-D614G RBD specific double negative (IgD-CD27-) B cells showed significant correlation with the number of symptoms at acute of infection. Anti-spike antibody responses were also higher at 3 months post-infection in females who developed PCC, but not in the male PCC group. On the other hand, the male PCC group also showed consistently high anti-RBD IgG responses compared to all other groups. Conclusions The antibody responses to the spike protein, but not the anti-RBD B cell responses diverge between convalescent males and females who develop PCC. Our findings also suggest that sex-related factors may also be involved in the development of PCC via modulating antibody responses to the SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Marc-André Limoges
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | | | | | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Mozhdeh Namvarpour
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Sara Ali Akbari
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Christine Rioux-Perreault
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Jean-François Lucier
- Department of Biology, Faculty of Science, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Samuel Lemaire-Paquette
- Unité de Recherche Clinique et épidémiologique, Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - André Cantin
- Departments of Medicine, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Simon Lévesque
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
- Laboratoire de Microbiologie, CIUSSS de l’Estrie – CHUS, Sherbrooke, QC, Canada
| | - Isabelle J. Dionne
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging, Affiliated with CIUSSS de l’Estrie-CHUS, Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Hugues Allard-Chamard
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alain Piché
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Sherbrooke, QC, Canada
| |
Collapse
|
7
|
Quadiri A, Prakash S, Dhanushkodi NR, Singer M, Zayou L, Shaik AM, Sun M, Suzer B, Lau L, Chilukurri A, Vahed H, Schaefer H, BenMohamed L. Therapeutic Prime/Pull Vaccination of HSV-2 Infected Guinea Pigs with the Ribonucleotide Reductase 2 (RR2) Protein and CXCL11 Chemokine Boosts Antiviral Local Tissue-Resident and Effector Memory CD4 + and CD8 + T Cells and Protects Against Recurrent Genital Herpes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552454. [PMID: 37609157 PMCID: PMC10441333 DOI: 10.1101/2023.08.08.552454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes latency in sensory neurons of the dorsal root ganglia (DRG). Intermittent virus reactivation from latency and shedding in the vaginal mucosa (VM) causes recurrent genital herpes. While T-cells appear to play a role in controlling virus reactivation and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T-cells into DRG and VM tissues remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-1 RR2 protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 (AAV-8) expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus shedding in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ TRM and TEM cells in reducing virus reactivation shedding and the severity of recurrent genital herpes and propose the novel prime/pull vaccine strategy to protect against recurrent genital herpes.
Collapse
Affiliation(s)
- Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Lauren Lau
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Amruth Chilukurri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Hubert Schaefer
- Intracellular Pathogens, Robert Koch-Institute, Berlin 13353, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, 92697
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CaA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
8
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Srivastava R, Tran J, Dang V, Shaik AM, Chilukurri A, Suzer B, De Vera P, Sun M, Nguyen P, Lee A, Salem A, Loi J, Singer M, Nakayama T, Vahed H, Nesburn AB, BenMohamed L. Mucosal CCL28 Chemokine Improves Protection against Genital Herpes through Mobilization of Antiviral Effector Memory CCR10+CD44+ CD62L-CD8+ T Cells and Memory CCR10+B220+CD27+ B Cells into the Infected Vaginal Mucosa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:118-129. [PMID: 37222480 PMCID: PMC10330291 DOI: 10.4049/jimmunol.2300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023]
Abstract
Four major mucosal-associated chemokines, CCL25, CCL28, CXCL14, and CXCL17, play an important role in protecting mucosal surfaces from infectious pathogens. However, their role in protection against genital herpes remains to be fully explored. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). In this study, we investigated the role of the CCL28/CCR10 chemokine axis in mobilizing protective antiviral B and T cell subsets into the VM site of herpes infection. We report a significant increase in the frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10, in herpes-infected asymptomatic (ASYMP) women compared with symptomatic women. Similarly, a significant increase in the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP C57BL/6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected ASYMP mice. Inversely, compared with wild-type C57BL/6 mice, the CCL28 knockout (CCL28-/-) mice (1) appeared to be more susceptible to intravaginal infection and reinfection with HSV type 2, and (2) exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+CD62L-CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. These findings suggest a critical role of the CCL28/CCR10 chemokine axis in the mobilization of antiviral memory B and T cells within the VM to protect against genital herpes infection and disease.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Jennifer Tran
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Vivian Dang
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amruth Chilukurri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Phil De Vera
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Pauline Nguyen
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Ashley Lee
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Amirah Salem
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Joyce Loi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
9
|
Kolb AW, Ferguson SA, Larsen IV, Brandt CR. Disease parameters following ocular herpes simplex virus type 1 infection are similar in male and female BALB/C mice. PLoS One 2023; 18:e0287194. [PMID: 37319284 PMCID: PMC10270577 DOI: 10.1371/journal.pone.0287194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Sex related differences in the incidence or severity of infection have been described for multiple viruses. With herpes simplex viruses, the best example is HSV-2 genital infection where women have a higher incidence of infection and can have more severe infections than men. HSV-1 causes several types of infections including skin and mucosal ulcers, keratitis, and encephalitis in humans that do not appear to have a strong biological sex component. Given that mouse strains differ in their MHC loci it is important to determine if sex differences occur in multiple strains of mice. Our goal was to answer two questions: Are virus related sex differences present in BALB/C mice and does virulence of the viral strain have an effect? We generated a panel of recombinant HSV-1 viruses with differing virulence phenotypes and characterized multiple clinical correlates of ocular infection in BALB/c mice. We found no sex-specific differences in blepharitis, corneal clouding, neurovirulence, and viral titers in eye washes. Sex differences in neovascularization, weight loss and eyewash titers were observed for some recombinants, but these were not consistent across the phenotypes tested for any recombinant virus. Considering these findings, we conclude that there are no significant sex specific ocular pathologies in the parameters measured, regardless of the virulence phenotype following ocular infection in BALB/c mice, suggesting that the use of both sexes is not necessary for the bulk of ocular infection studies.
Collapse
Affiliation(s)
- Aaron W. Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Sarah A. Ferguson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Inna V. Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Curtis R. Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
10
|
Dhanushkodi NR, Prakash S, Quadiri A, Zayou L, Singer M, Takashi N, Vahed H, BenMohamed L. High Frequencies of Antiviral Effector Memory T EM Cells and Memory B Cells Mobilized into Herpes Infected Vaginal Mucosa Associated With Protection Against Genital Herpes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542021. [PMID: 37292784 PMCID: PMC10245907 DOI: 10.1101/2023.05.23.542021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vaginal mucosa-resident anti-viral effector memory B- and T cells appeared to play a crucial role in protection against genital herpes. However, how to mobilize such protective immune cells into the vaginal tissue close to infected epithelial cells remains to be determined. In the present study, we investigate whether and how, CCL28, a major mucosal-associated chemokine, mobilizes effector memory B- and T cells in leading to protecting mucosal surfaces from herpes infection and disease. The CCL28 is a chemoattractant for the CCR10 receptor-expressing immune cells and is produced homeostatically in the human vaginal mucosa (VM). We found the presence of significant frequencies of HSV-specific memory CCR10+CD44+CD8+ T cells, expressing high levels of CCR10 receptor, in herpes-infected asymptomatic (ASYMP) women compared to symptomatic (SYMP) women. A significant amount of the CCL28 chemokine (a ligand of CCR10), was detected in the VM of herpes-infected ASYMP B6 mice, associated with the mobilization of high frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and memory CCR10+B220+CD27+ B cells in the VM of HSV-infected asymptomatic mice. In contrast, compared to wild-type (WT) B6 mice, the CCL28 knockout (CCL28(-/-)) mice: (i) Appeared more susceptible to intravaginal infection and re-infection with HSV-2; (ii) Exhibited a significant decrease in the frequencies of HSV-specific effector memory CCR10+CD44+ CD62L- CD8+ TEM cells and of memory CD27+B220+ B cells in the infected VM. The results imply a critical role of the CCL28/CCR10 chemokine axis in the mobilization of anti-viral memory B and T cells within the VM to protect against genital herpes infection and disease.
Collapse
Affiliation(s)
- Nisha Rajeswari Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; the University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660; USA
| |
Collapse
|
11
|
St Clair LA, Chaulagain S, Klein SL, Benn CS, Flanagan KL. Sex-Differential and Non-specific Effects of Vaccines Over the Life Course. Curr Top Microbiol Immunol 2023; 441:225-251. [PMID: 37695431 PMCID: PMC10917449 DOI: 10.1007/978-3-031-35139-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Biological sex and age have profound effects on immune responses throughout the lifespan and impact vaccine acceptance, responses, and outcomes. Mounting evidence from epidemiological, clinical, and animal model studies show that males and females respond differentially to vaccination throughout the lifespan. Within age groups, females tend to produce greater vaccine-induced immune responses than males, with sex differences apparent across all age groups, but are most pronounced among reproductive aged individuals. Females report more adverse effects following vaccination than males. Females, especially among children under 5 years of age, also experience more non-specific effects of vaccination. Despite these known sex- and age-specific differences in vaccine-induced immune responses and outcomes, sex and age are often ignored in vaccine research. Herein, we review the known sex differences in the immunogenicity, effectiveness, reactogenicity, and non-specific effects of vaccination over the lifespan. Ways in which these data can be leveraged to improve vaccine research are described.
Collapse
Affiliation(s)
- Laura A St Clair
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabal Chaulagain
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Stabell Benn
- Institute of Clinical Research and Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Katie L Flanagan
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia.
| |
Collapse
|
12
|
Mazzara PG, Criscuolo E, Rasponi M, Massimino L, Muggeo S, Palma C, Castelli M, Clementi M, Burioni R, Mancini N, Broccoli V, Clementi N. A Human Stem Cell-Derived Neurosensory–Epithelial Circuitry on a Chip to Model Herpes Simplex Virus Reactivation. Biomedicines 2022; 10:biomedicines10092068. [PMID: 36140168 PMCID: PMC9495731 DOI: 10.3390/biomedicines10092068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Both emerging viruses and well-known viral pathogens endowed with neurotropism can either directly impair neuronal functions or induce physio-pathological changes by diffusing from the periphery through neurosensory–epithelial connections. However, developing a reliable and reproducible in vitro system modeling the connectivity between the different human sensory neurons and peripheral tissues is still a challenge and precludes the deepest comprehension of viral latency and reactivation at the cellular and molecular levels. This study shows a stable topographic neurosensory–epithelial connection on a chip using human stem cell-derived dorsal root ganglia (DRG) organoids. Bulk and single-cell transcriptomics showed that different combinations of key receptors for herpes simplex virus 1 (HSV-1) are expressed by each sensory neuronal cell type. This neuronal–epithelial circuitry enabled a detailed analysis of HSV infectivity, faithfully modeling its dynamics and cell type specificity. The reconstitution of an organized connectivity between human sensory neurons and keratinocytes into microfluidic chips provides a powerful in vitro platform for modeling viral latency and reactivation of human viral pathogens.
Collapse
Affiliation(s)
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cecilia Palma
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy
- Correspondence: (V.B.); (N.C.); Tel.: +39-022-643-4616 (V.B.); +39-022-643-3144 (N.C.)
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Correspondence: (V.B.); (N.C.); Tel.: +39-022-643-4616 (V.B.); +39-022-643-3144 (N.C.)
| |
Collapse
|
13
|
Yang W, Zhang D, Li Z, Zhang K. Predictors of poor serologic response to COVID-19 vaccine in patients with cancer: a systematic review and meta-analysis. Eur J Cancer 2022; 172:41-50. [PMID: 35752155 PMCID: PMC9160160 DOI: 10.1016/j.ejca.2022.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Backgrounds Patients with cancer presented a lower probability to obtain seroconversion after a complete course of COVID-19 vaccination. However, little was known on the factors that predict poor seroconversion in this frail population. Methods We searched the PubMed, EMBASE, and China National Knowledge Infrastructure databases for all articles within a range of published years from 2019 to 2022 on the predictors of response to COVID-19 vaccine in patients with cancer (last search was updated on 2st March 2022). The odds ratio corresponding to the 95% confidence interval was used to assess the outcome. The statistical heterogeneity among studies was assessed with the Q-test and I2 statistics. The review was registered with PROSPERO (CRD42022315687) and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results Twenty cohort studies met the inclusion criteria for this study, with 5,499 patients with cancer. We found that advanced age, male patients, and metastatic disease increased negative seropositivity to COVID-19 vaccine. Immunoglobulin heavy chain variable mutation status, high concentration of Ig G, Ig M, and Ig A were correlated with seropositivity. Relating to cancer treatment strategy, anti-CD20 therapy within recent 12 months and chemotherapy were negatively correlated with seroconversion. Meta-analysis found no significant difference associated with targeted treatment, immunotherapy, and endocrine treatment. Conclusions Our meta-analysis assessed the factors that predict poor seroconversion in order to plan better prevention strategies in this frail population. The results proposed that enhanced vaccination strategies would be beneficial for the special patients such as advanced male, or patients receiving active chemotherapy, and carefully prevention should be emphasised even after a complete course of vaccination.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Physiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Dongxue Zhang
- Equipment and Material Department, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhuo Li
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Kui Zhang
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
14
|
Abstract
Biological sex affects the outcome of diverse respiratory viral infections. The pathogenesis of respiratory infections caused by viruses ranging from respiratory syncytial virus to influenza viruses and severe acute respiratory syndrome coronavirus 2 differs between the sexes across the life course. Generally, males are more susceptible to severe outcomes from respiratory viral infections at younger and older ages. During reproductive years (i.e., after puberty and prior to menopause), females are often at greater risk than males for severe outcomes. Pregnancy and biological sex affect the pathogenesis of respiratory viral infections. In addition to sex differences in the pathogenesis of disease, there are consistent sex differences in responses to treatments, with females often developing greater immune responses but experiencing more adverse reactions than males. Animal models provide mechanistic insights into the causes of sex differences in respiratory virus pathogenesis and treatment outcomes, where available. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rebecca L Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205;
| | - Sabra L Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205; .,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Maryland, USA 21205
| |
Collapse
|
15
|
Fathi A, Addo MM, Dahlke C. Sex Differences in Immunity: Implications for the Development of Novel Vaccines Against Emerging Pathogens. Front Immunol 2021; 11:601170. [PMID: 33488596 PMCID: PMC7820860 DOI: 10.3389/fimmu.2020.601170] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines are one of the greatest public health achievements and have saved millions of lives. They represent a key countermeasure to limit epidemics caused by emerging infectious diseases. The Ebola virus disease crisis in West Africa dramatically revealed the need for a rapid and strategic development of vaccines to effectively control outbreaks. Seven years later, in light of the SARS-CoV-2 pandemic, this need has never been as urgent as it is today. Vaccine development and implementation of clinical trials have been greatly accelerated, but still lack strategic design and evaluation. Responses to vaccination can vary widely across individuals based on factors like age, microbiome, co-morbidities and sex. The latter aspect has received more and more attention in recent years and a growing body of data provide evidence that sex-specific effects may lead to different outcomes of vaccine safety and efficacy. As these differences might have a significant impact on the resulting optimal vaccine regimen, sex-based differences should already be considered and investigated in pre-clinical and clinical trials. In this Review, we will highlight the clinical observations of sex-specific differences in response to vaccination, delineate sex differences in immune mechanisms, and will discuss the possible resulting implications for development of vaccine candidates against emerging infections. As multiple vaccine candidates against COVID-19 that target the same antigen are tested, vaccine development may undergo a decisive change, since we now have the opportunity to better understand mechanisms that influence vaccine-induced reactogenicity and effectiveness of different vaccines.
Collapse
Affiliation(s)
- Anahita Fathi
- University Medical Center Hamburg-Eppendorf, 1st Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M. Addo
- University Medical Center Hamburg-Eppendorf, 1st Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christine Dahlke
- University Medical Center Hamburg-Eppendorf, 1st Department of Medicine, Division of Infectious Diseases, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
16
|
Gebhard C, Regitz-Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID-19 outcomes in Europe. Biol Sex Differ 2020; 11:29. [PMID: 32450906 PMCID: PMC7247289 DOI: 10.1186/s13293-020-00304-9] [Citation(s) in RCA: 693] [Impact Index Per Article: 138.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence from China suggests that coronavirus disease 2019 (COVID-19) is deadlier for infected men than women with a 2.8% fatality rate being reported in Chinese men versus 1.7% in women. Further, sex-disaggregated data for COVID-19 in several European countries show a similar number of cases between the sexes, but more severe outcomes in aged men. Case fatality is highest in men with pre-existing cardiovascular conditions. The mechanisms accounting for the reduced case fatality rate in women are currently unclear but may offer potential to develop novel risk stratification tools and therapeutic options for women and men. CONTENT The present review summarizes latest clinical and epidemiological evidence for gender and sex differences in COVID-19 from Europe and China. We discuss potential sex-specific mechanisms modulating the course of disease, such as hormone-regulated expression of genes encoding for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) entry receptors angiotensin converting enzyme (ACE) 2 receptor and TMPRSS2 as well as sex hormone-driven innate and adaptive immune responses and immunoaging. Finally, we elucidate the impact of gender-specific lifestyle, health behavior, psychological stress, and socioeconomic conditions on COVID-19 and discuss sex specific aspects of antiviral therapies. CONCLUSION The sex and gender disparities observed in COVID-19 vulnerability emphasize the need to better understand the impact of sex and gender on incidence and case fatality of the disease and to tailor treatment according to sex and gender. The ongoing and planned prophylactic and therapeutic treatment studies must include prospective sex- and gender-sensitive analyses.
Collapse
Affiliation(s)
- Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Vera Regitz-Zagrosek
- University of Zurich, Zurich, Switzerland
- Charité, Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Hannelore K Neuhauser
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Robert Koch Institute, Berlin, Germany
| | - Rosemary Morgan
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Srivastava R, Roy S, Coulon PG, Vahed H, Prakash S, Dhanushkodi N, Kim GJ, Fouladi MA, Campo J, Teng AA, Liang X, Schaefer H, BenMohamed L. Therapeutic Mucosal Vaccination of Herpes Simplex Virus 2-Infected Guinea Pigs with Ribonucleotide Reductase 2 (RR2) Protein Boosts Antiviral Neutralizing Antibodies and Local Tissue-Resident CD4 + and CD8 + T RM Cells Associated with Protection against Recurrent Genital Herpes. J Virol 2019; 93:e02309-18. [PMID: 30787156 PMCID: PMC6475797 DOI: 10.1128/jvi.02309-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Reactivation of herpes simplex virus 2 (HSV-2) from latency causes viral shedding that develops into recurrent genital lesions. The immune mechanisms of protection against recurrent genital herpes remain to be fully elucidated. In this preclinical study, we investigated the protective therapeutic efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed HSV-2 envelope and tegument proteins. These viral protein antigens (Ags) were rationally selected for their ability to recall strong CD4+ and CD8+ T-cell responses from naturally "protected" asymptomatic individuals, who, despite being infected, never develop any recurrent herpetic disease. Out of the eight HSV-2 proteins, the envelope glycoprotein D (gD), the tegument protein VP22 (encoded by the UL49 gene), and ribonucleotide reductase subunit 2 protein (RR2; encoded by the UL40 gene) produced significant protection against recurrent genital herpes. The RR2 protein, delivered either intramuscularly or intravaginally with CpG and alum adjuvants, (i) boosted the highest neutralizing antibodies, which appear to cross-react with both gB and gD, and (ii) enhanced the numbers of functional gamma interferon (IFN-γ)-producing CRTAM+ CFSE+ CD4+ and CRTAM+ CFSE+ CD8+ TRM cells, which express low levels of PD-1 and TIM-3 exhaustion markers and were localized to healed sites of the vaginal mucocutaneous (VM) tissues. The strong B- and T-cell immunogenicity of the RR2 protein was associated with a significant decrease in virus shedding and a reduction in both the severity and frequency of recurrent genital herpes lesions. In vivo depletion of either CD4+ or CD8+ T cells significantly abrogated the protection. Taken together, these preclinical results provide new insights into the immune mechanisms of protection against recurrent genital herpes and promote the tegument RR2 protein as a viable candidate Ag to be incorporated in future genital herpes therapeutic mucosal vaccines.IMPORTANCE Recurrent genital herpes is one of the most common sexually transmitted diseases, with a global prevalence of HSV-2 infection predicted to be over 536 million worldwide. Despite the availability of many intervention strategies, such as sexual behavior education, barrier methods, and the costly antiviral drug treatments, eliminating or at least reducing recurrent genital herpes remains a challenge. Currently, no FDA-approved therapeutic vaccines are available. In this preclinical study, we investigated the immunogenicity and protective efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed herpes envelope and tegument proteins. We discovered that similar to the dl5-29 vaccine, based on a replication-defective HSV-2 mutant virus, which has been recently tested in clinical trials, the RR2 protein-based subunit vaccine elicited a significant reduction in virus shedding and a decrease in both the severity and frequency of recurrent genital herpes sores. This protection correlated with an increase in numbers of functional tissue-resident IFN-γ+ CRTAM+ CFSE+ CD4+ and IFN-γ+ CRTAM+ CFSE+ CD8+ TRM cells that infiltrate healed sites of the vaginal tissues. Our study sheds new light on the role of TRM cells in protection against recurrent genital herpes and promotes the RR2-based subunit therapeutic vaccine to be tested in the clinic.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Grace J Kim
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Mona A Fouladi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
| | - Joe Campo
- Antigen Discovery Inc., Irvine, California, USA
| | - Andy A Teng
- Antigen Discovery Inc., Irvine, California, USA
| | | | - Hubert Schaefer
- Intracellular Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine, School of Medicine, Irvine, California, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, School of Medicine, Irvine, California, USA
| |
Collapse
|
18
|
Riccio RE, Park SJ, Longnecker R, Kopp SJ. Characterization of Sex Differences in Ocular Herpes Simplex Virus 1 Infection and Herpes Stromal Keratitis Pathogenesis of Wild-Type and Herpesvirus Entry Mediator Knockout Mice. mSphere 2019; 4:e00073-19. [PMID: 30918059 PMCID: PMC6437272 DOI: 10.1128/msphere.00073-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 11/20/2022] Open
Abstract
Sex differences related to immune response and inflammation play a role in the susceptibility and pathogenesis of a variety of viral infections and disease (S. L. Klein, Bioessays 34:1050-1059, 2012, https://doi.org/10.1002/bies.201200099). Herpes simplex virus 1 (HSV-1) causes chronic inflammatory disease in the cornea, an immune-privileged tissue, resulting in irreversible damage and blindness in affected individuals (A. Rowe, A. St Leger, S. Jeon, D. K. Dhaliwal, et al., Prog Retin Eye Res 32:88-101, 2013, https://doi.org/10.1016/j.preteyeres.2012.08.002). Our research focuses on the role of herpesvirus entry mediator (HVEM) as an immune regulator during ocular HSV-1 infection. Mice lacking HVEM (HVEM knockout [KO] mice) exhibit lower levels of immune cell infiltrates and less severe ocular disease in the cornea than wild-type (WT) mice. As sex differences contribute to pathogenesis in many inflammatory diseases, we tested whether sex acts as a biological variable in the immune response to HSV-1 infection and herpes stromal keratitis (HSK) pathogenesis. Adult male and female WT and HVEM KO mice were inoculated with HSV-1 via corneal scarification and monitored daily for disease course. Viral titers were determined, and immune cell infiltrates were collected and analyzed. Our results indicated no significant differences in viral titers in tear film or affected tissues, in immune cell infiltration, or in clinical symptoms between males and females of either genotype. These results suggest that sex is not a significant biological variable in this experimental model and that male and female mice of the C57BL/6 background can be used similarly in studies of ocular HSV-1 pathogenesis.IMPORTANCE Sex hormones have come to be considered an important factor for the development of certain diseases only recently and as such should continue to be considered a biological variable. Ocular HSV-1, and the resulting HSK, is the leading cause of infectious blindness worldwide. We compared levels of ocular HSV-1 infection and pathogenesis in the two sexes and found no significance differences between male and female WT mice or HVEM KO mice.
Collapse
Affiliation(s)
- Rachel E Riccio
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Seo J Park
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarah J Kopp
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
19
|
Abstract
There is substantial variation between individuals in the immune response to vaccination. In this review, we provide an overview of the plethora of studies that have investigated factors that influence humoral and cellular vaccine responses in humans. These include intrinsic host factors (such as age, sex, genetics, and comorbidities), perinatal factors (such as gestational age, birth weight, feeding method, and maternal factors), and extrinsic factors (such as preexisting immunity, microbiota, infections, and antibiotics). Further, environmental factors (such as geographic location, season, family size, and toxins), behavioral factors (such as smoking, alcohol consumption, exercise, and sleep), and nutritional factors (such as body mass index, micronutrients, and enteropathy) also influence how individuals respond to vaccines. Moreover, vaccine factors (such as vaccine type, product, adjuvant, and dose) and administration factors (schedule, site, route, time of vaccination, and coadministered vaccines and other drugs) are also important. An understanding of all these factors and their impacts in the design of vaccine studies and decisions on vaccination schedules offers ways to improve vaccine immunogenicity and efficacy.
Collapse
|
20
|
Flanagan KL, Fink AL, Plebanski M, Klein SL. Sex and Gender Differences in the Outcomes of Vaccination over the Life Course. Annu Rev Cell Dev Biol 2018; 33:577-599. [PMID: 28992436 DOI: 10.1146/annurev-cellbio-100616-060718] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Both sex (i.e., biological differences) and gender (i.e., social or cultural influences) impact vaccine acceptance, responses, and outcomes. Clinical data illustrate that among children, young adults, and aged individuals, males and females differ in vaccine-induced immune responses, adverse events, and protection. Although males are more likely to receive vaccines, following vaccination, females typically develop higher antibody responses and report more adverse effects of vaccination than do males. Human, nonhuman animal, and in vitro studies reveal numerous immunological, genetic, hormonal, and environmental factors that differ between males and females and contribute to sex- and gender-specific vaccine responses and outcomes. Herein, we address the impact of sex and gender variables that should be considered in preclinical and clinical studies of vaccines.
Collapse
Affiliation(s)
- Katie L Flanagan
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia, 3800; ,
| | - Ashley L Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205; ,
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia, 3800; ,
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205; ,
| |
Collapse
|
21
|
Srivastava R, Hernández-Ruiz M, Khan AA, Fouladi MA, Kim GJ, Ly VT, Yamada T, Lam C, Sarain SAB, Boldbaatar U, Zlotnik A, Bahraoui E, BenMohamed L. CXCL17 Chemokine-Dependent Mobilization of CXCR8 +CD8 + Effector Memory and Tissue-Resident Memory T Cells in the Vaginal Mucosa Is Associated with Protection against Genital Herpes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:2915-2926. [PMID: 29549178 PMCID: PMC5893430 DOI: 10.4049/jimmunol.1701474] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
Circulating conventional memory CD8+ T cells (i.e., the CD8+ effector memory T [TEM] cell and CD8+ central memory T [TCM] cell subsets) and the noncirculating CD8+ tissue-resident memory T (TRM) cell subset play a critical role in mucosal immunity. Mucosal chemokines, including the recently discovered CXCL17, are also important in mucosal immunity because they are homeostatically expressed in mucosal tissues. However, whether the CXCL17 chemokine contributes to the mobilization of memory CD8+ T cell subsets to access infected mucosal tissues remains to be elucidated. In this study, we report that after intravaginal HSV type 1 infection of B6 mice, we detected high expression levels of CXCL17 and increased numbers of CD44highCD62LlowCD8+ TEM and CD103highCD8+ TRM cells expressing CXCR8, the cognate receptor of CXCL17, in the vaginal mucosa (VM) of mice with reduced genital herpes infection and disease. In contrast to wild-type B6 mice, the CXCL17-/- mice developed 1) fewer CXCR8+CD8+ TEM and TRM cells associated with more virus replication in the VM and more latency established in dorsal root ganglia, and 2) reduced numbers and frequencies of functional CD8+ T cells in the VM. These findings suggest that the CXCL17/CXCR8 chemokine pathway plays a crucial role in mucosal vaginal immunity by promoting the mobilization of functional protective CD8+ TEM and CD8+ TRM cells, within this site of acute and recurrent herpes infection.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Marcela Hernández-Ruiz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Arif A Khan
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Mona A Fouladi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Grace J Kim
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Vincent T Ly
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Taikun Yamada
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Cynthia Lam
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Sheilouise A B Sarain
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Undariya Boldbaatar
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Elmostafa Bahraoui
- INSERM, U1043, 31000 Toulouse, France
- CNRS, U5282, 31000 Toulouse, France
- Université Paul Sabatier Toulouse, 31000 Toulouse, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California, Irvine School of Medicine, Irvine, CA 92697;
- Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, Irvine, CA 92697; and
- Institute for Immunology, University of California, Irvine School of Medicine, Irvine, CA 92697
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This review will outline the multilevel effects of biological sex on HIV acquisition, pathogenesis, treatment response, and prospects for cure. Potential mechanisms will be discussed along with future research directions. RECENT FINDINGS HIV acquisition risk is modified by sex hormones and the vaginal microbiome, with the latter acting through both inflammation and local metabolism of pre-exposure prophylaxis drugs. Female sex associates with enhanced risk for non-AIDS morbidities including cardiovascular and cerebrovascular disease, suggesting different inflammatory profiles in men and women. Data from research on HIV cure points to sex differences in viral reservoir dynamics and a direct role for sex hormones in latency maintenance. Biological sex remains an important variable in determining the risk of HIV infection and subsequent viral pathogenesis, and emerging data suggest sex differences relevant to curative interventions. Recruitment of women in HIV clinical research is a pathway to both optimize care for women and to identify novel therapeutics for use in both men and women.
Collapse
Affiliation(s)
- Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Pre-Clinical Teaching Building, Suite 211, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
23
|
Laser Adjuvant-Assisted Peptide Vaccine Promotes Skin Mobilization of Dendritic Cells and Enhances Protective CD8 + T EM and T RM Cell Responses against Herpesvirus Infection and Disease. J Virol 2018; 92:JVI.02156-17. [PMID: 29437976 DOI: 10.1128/jvi.02156-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 02/01/2018] [Indexed: 01/14/2023] Open
Abstract
There is an urgent need for chemical-free and biological-free safe adjuvants to enhance the immunogenicity of vaccines against widespread viral pathogens, such as herpes simplex virus 2 (HSV-2), that infect a large proportion of the world human population. In the present study, we investigated the safety, immunogenicity, and protective efficacy of a laser adjuvant-assisted peptide (LAP) vaccine in the B6 mouse model of genital herpes. This LAP vaccine and its laser-free peptide (LFP) vaccine analog contain the immunodominant HSV-2 glycoprotein B CD8+ T cell epitope (HSV-gB498-505) covalently linked with the promiscuous glycoprotein D CD4+ T helper cell epitope (HSV-gD49-89). Prior to intradermal delivery of the LAP vaccine, the lower-flank shaved skin of B6 or CD11c/eYFP transgenic mice received a topical skin treatment with 5% imiquimod cream and then was exposed for 60 s to a laser, using the FDA-approved nonablative diode. Compared to the LFP vaccine, the LAP vaccine (i) triggered mobilization of dendritic cells (DCs) in the skin, which formed small spots along the laser-treated areas, (ii) induced phenotypic and functional maturation of DCs, (iii) stimulated long-lasting HSV-specific effector memory CD8+ T cells (TEM cells) and tissue-resident CD8+ T cells (TRM cells) locally in the vaginal mucocutaneous tissues (VM), and (iv) induced protective immunity against genital herpes infection and disease. As an alternative to currently used conventional adjuvants, the chemical- and biological-free laser adjuvant offers a well-tolerated, simple-to-produce method to enhance mass vaccination for widespread viral infections.IMPORTANCE Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world population. There is an urgent need for chemical-free and biological-free safe adjuvants that would advance mass vaccination against the widespread herpes infections. The present study demonstrates that immunization with a laser-assisted herpes peptide vaccine triggered skin mobilization of dendritic cells (DCs) that stimulated strong and long-lasting HSV-specific effector memory CD8+ T cells (TEM cells) and tissue-resident CD8+ T cells (TRM cells) locally in the vaginal mucocutaneous tissues. The induced local CD8+ T cell response was associated with protection against genital herpes infection and disease. These results draw attention to chemical- and biological-free laser adjuvants as alternatives to currently used conventional adjuvants to enhance mass vaccination for widespread viral infections, such as those caused by HSV-1 and HSV-2.
Collapse
|
24
|
Traidl S, Kienlin P, Begemann G, Jing L, Koelle DM, Werfel T, Roesner LM. Patients with atopic dermatitis and history of eczema herpeticum elicit herpes simplex virus-specific type 2 immune responses. J Allergy Clin Immunol 2017; 141:1144-1147.e5. [PMID: 29155096 DOI: 10.1016/j.jaci.2017.09.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Stephan Traidl
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Petra Kienlin
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Gabriele Begemann
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Wash
| | - David M Koelle
- Departments of Medicine, Global Health, and Laboratory Medicine, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, Wash; Benaroya Research Institute, Seattle, Wash
| | - Thomas Werfel
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
25
|
Dutton JL, Woo WP, Chandra J, Xu Y, Li B, Finlayson N, Griffin P, Frazer IH. An escalating dose study to assess the safety, tolerability and immunogenicity of a Herpes Simplex Virus DNA vaccine, COR-1. Hum Vaccin Immunother 2017; 12:3079-3088. [PMID: 27580249 PMCID: PMC5215501 DOI: 10.1080/21645515.2016.1221872] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This paper describes a single site, open-label Phase I clinical trial evaluating the safety, tolerability and immunogenicity in healthy volunteers of a herpes simplex polynucleotide vaccine that has previously been shown to enhance immunogenicity and protect against lethal herpes simplex virus type 2 (HSV-2) challenge in mice. Five escalating doses of the vaccine, COR-1, were given by intradermal injection to HSV-1 and 2 seronegative healthy individuals. COR-1 was found to be safe and well-tolerated; the only vaccine-related adverse events were mild. While vaccine-induced antibody responses were not detectable, cell-mediated immune responses to HSV-specific peptide groups were identified in 19 of the 20 subjects who completed the study, and local inflammation at the immunisation site was observed. This study indicates COR-1 has potential to be used as a therapeutic vaccine for HSV-2 infection.
Collapse
Affiliation(s)
- Julie L Dutton
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Wai-Ping Woo
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Janin Chandra
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Yan Xu
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Bo Li
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| | - Neil Finlayson
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia
| | - Paul Griffin
- c Q-Pharm Pty Ltd, Brisbane, Australia; Department of Medicine and Infectious Diseases, Mater Hospital and Mater Medical Research Institute, Brisbane, Australia; The University of Queensland , Brisbane , Australia
| | - Ian H Frazer
- a Admedus Vaccines Pty Ltd (formerly Coridon Pty Ltd) , Translational Research Institute , Woolloongabba , QLD , Australia.,b University of Queensland , Diamantina Institute, Translational Research Institute , Woolloongabba , QLD, Australia
| |
Collapse
|
26
|
Minaya MA, Korom M, Wang H, Belshe RB, Morrison LA. The herpevac trial for women: Sequence analysis of glycoproteins from viruses obtained from infected subjects. PLoS One 2017; 12:e0176687. [PMID: 28448558 PMCID: PMC5407825 DOI: 10.1371/journal.pone.0176687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/16/2017] [Indexed: 12/03/2022] Open
Abstract
The Herpevac Trial for Women revealed that three dose HSV-2 gD vaccine was 58% protective against culture-positive HSV-1 genital disease, but it was not protective against HSV-2 infection or disease. To determine whether vaccine-induced immune responses had selected for a particular gD sequence in strains infecting vaccine recipients compared with viruses infecting control subjects, genetic sequencing studies were carried out on viruses isolated from subjects infected with HSV-1 or HSV-2. We identified naturally occurring variants among the gD sequences obtained from 83 infected subjects. Unique or low frequency amino acid substitutions in the ectodomain of gD were found in 6 of 39 HSV-1-infected subjects and in 7 of 44 HSV-2-infected subjects. However, no consistent amino acid change was identified in isolates from gD-2 vaccine recipients compared with infected placebo recipients. gC and gE surround and partially shield gD from neutralizing antibody, and gB also participates closely in the viral entry process. Therefore, these genes were sequenced from a number of isolates to assess whether sequence variation may alter protein conformation and influence the virus strain’s capacity to be neutralized by vaccine-induced antibody. gC and gE genes sequenced from HSV-1-infected subjects showed more variability than their HSV-2 counterparts. The gB sequences of HSV-1 oral isolates resembled each other more than they did gB sequences rom genital isolates. Overall, however, comparison of glycoprotein sequences of viral isolates obtained from infected subjects did not reveal any singular selective pressure on the viral cell attachment protein or surrounding glycoproteins due to administration of gD-2 vaccine.
Collapse
Affiliation(s)
- Miguel A. Minaya
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Maria Korom
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Hong Wang
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert B. Belshe
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lynda A. Morrison
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
27
|
Nissen TN, Birk NM, Smits G, Jeppesen DL, Stensballe LG, Netea MG, van der Klis F, Benn CS, Pryds O, Andersen A, Kjærgaard J, Thøstesen LM, Pihl GT, Hoffmann T, Kofoed PE, Aaby P. Bacille Calmette-Guérin (BCG) vaccination at birth and antibody responses to childhood vaccines. A randomised clinical trial. Vaccine 2017; 35:2084-2091. [DOI: 10.1016/j.vaccine.2017.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 10/24/2022]
|
28
|
Klein SL, Marriott I, Fish EN. Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg 2015; 109:9-15. [PMID: 25573105 DOI: 10.1093/trstmh/tru167] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Females typically develop higher antibody responses and experience more adverse reactions following vaccination than males. These differences are observed in response to diverse vaccines, including the bacillus Calmette-Guerin vaccine, the measles, mumps and rubella vaccine, the yellow fever virus vaccine and influenza vaccines. Sex differences in the responses to vaccines are observed across diverse age groups, ranging from infants to aged individuals. Biological as well as behavioral differences between the sexes are likely to contribute to differences in the outcome of vaccination between the sexes. Immunological, hormonal, genetic and microbiota differences between males and females may also affect the outcome of vaccination. Identifying ways to reduce adverse reactions in females and increase immune responses in males will be necessary to adequately protect both sexes against infectious diseases.
Collapse
Affiliation(s)
- Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ian Marriott
- Department of Biological Sciences, College of Liberal Arts & Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Eleanor N Fish
- Department of Immunology, University of Toronto, Canada Toronto General Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
29
|
Vase MØ, Maksten EF, Strandhave C, Søndergaard E, Bendix K, Hamilton-Dutoit S, Andersen C, Møller MB, Sørensen SS, Kampmann J, Eiskjær H, Iversen M, Weinreich ID, Møller B, Jespersen B, d'Amore F. HLA Associations and Risk of Posttransplant Lymphoproliferative Disorder in a Danish Population-Based Cohort. Transplant Direct 2015; 1:e25. [PMID: 27500227 PMCID: PMC4946472 DOI: 10.1097/txd.0000000000000534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Posttransplant lymphoproliferative disorder (PTLD) is a feared complication to organ transplantation, associated with substantial morbidity and inferior survival. Risk factors for PTLD include T cell-depleting induction therapy and primary infection or reactivation of Epstein-Barr virus. Possible associations between certain HLA types and the risk of developing PTLD have been reported by other investigators; however, results are conflicting. METHODS We conducted a retrospective, population-based study on 4295 Danish solid organ transplant patients from the Scandiatransplant database. Having identified 93 PTLD patients in the cohort, we investigated the association of HLA types with PTLD, Epstein-Barr virus status and time to PTLD onset. The outcomes survival and PTLD were evaluated using Cox regression; mismatching, and the PTLD-specific mortality were evaluated in a competing risk analysis. RESULTS Risk of PTLD was associated with male sex (odds ratio, 1.70; 95% confidence interval, 1.07-2.71), and, in women, HLA-DR13 conferred an increased risk (odds ratio, 3.22; 95% confidence interval, 1.41-7.31). In multivariate analysis, HLA-B45 and HLA-DR13 remained independent predictive factors of PTLD. Mismatching in the B locus was associated with a reduced risk of PTLD (P < 0.001). Overall survival was poor after a PTLD diagnosis and was significantly worse than that in the remaining transplant cohort (P < 0.001). CONCLUSIONS Our data indicate risk-modifying HLA associations, which can be clinically useful after transplantation in personalized monitoring schemes. Given the strong linkage disequilibrium in the HLA region, the associations must be interpreted carefully. The large size, virtually complete ascertainment of cases and no loss to follow-up remain important strengths of the study.
Collapse
Affiliation(s)
- Maja Ølholm Vase
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Esben Søndergaard
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Knud Bendix
- Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus Andersen
- Department of Pathology, Copenhagen University Hospital, København, Denmark
| | | | - Søren Schwartz Sørensen
- Department of Nephrology, Rigshospitalet, Copenhagen University Hospital, København, Denmark
| | - Jan Kampmann
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Iversen
- Division of Lung Transplantation, Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Bjarne Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - Francesco d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Sex-Based Differences in Multiple Sclerosis (Part I): Biology of Disease Incidence. Curr Top Behav Neurosci 2015; 26:29-56. [PMID: 25690593 DOI: 10.1007/7854_2015_371] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease that leads to neuron damage and progressive disability. One major feature of multiple sclerosis (MS) is that it affects women three times more often than men. In this chapter, we overview the evidence that the autoimmune component of MS, which predominates in the early stages of this disease, is more robust in women than in men and undergoes a sharp increase with the onset of puberty. In addition, we discuss the common rodent models of MS that have been used to study the sex-based differences in the development of central nervous system (CNS) autoimmunity. We then address the biological underpinnings of this enhanced MS risk in women by first reviewing the autoimmune mechanisms that are thought to lead to the initiation of this disease and then honing in on how these mechanisms differ between the sexes. Finally, we review what is known about the hormonal and genetic basis of these sex differences in CNS autoimmunity.
Collapse
|
31
|
Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 2014; 21:8-23. [PMID: 25388226 DOI: 10.1007/s13365-014-0302-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are ubiquitous human pathogens represented by two distinct serotypes: herpes simplex virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the general population, adult seropositivity rates approach 90% for HSV-1 and 20-25% for HSV-2. These viruses cause significant morbidity, primarily as mucosal membrane lesions in the form of facial cold sores and genital ulcers, with much less common but more severe manifestations causing death from encephalitis. HSV infections in humans are difficult to study in many cases because many primary infections are asymptomatic. Moreover, the neurotropic properties of HSV make it much more difficult to study the immune mechanisms controlling reactivation of latent infection within the corresponding sensory ganglia and crossover into the central nervous system of infected humans. This is because samples from the nervous system can only be routinely obtained at the time of autopsy. Thus, animal models have been developed whose use has led to a better understanding of multiple aspects of HSV biology, molecular biology, pathogenesis, disease, and immunity. The course of HSV infection in a spectrum of animal models depends on important experimental parameters including animal species, age, and genotype; route of infection; and viral serotype, strain, and dose. This review summarizes the animal models most commonly used to study HSV pathogenesis and its establishment, maintenance, and reactivation from latency. It focuses particularly on the immune response to HSV during acute primary infection and the initial invasion of the ganglion with comparisons to the events governing maintenance of viral latency.
Collapse
|
32
|
Furman D. Sexual dimorphism in immunity: improving our understanding of vaccine immune responses in men. Expert Rev Vaccines 2014; 14:461-71. [PMID: 25278153 DOI: 10.1586/14760584.2015.966694] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Weaker immune responses are often observed in males compared to females. Since female hormones have proinflammatory properties and androgens have potent immunomodulatory effects, this sexual dimorphism in the immune response seems to be hormone dependent. Despite our current knowledge about the effect of sex hormones on immune cells, definition of the factors driving the sex differences in immunoclinical outcomes, such as the diminished response to infection and vaccination observed in men or the higher rates of autoimmunity observed in females, remains elusive. Recently, systems approaches to immune function have started to suggest a way toward establishing this connection. Such studies promise to improve our understanding of the mechanisms underlying the sexual dimorphism observed in the human immune system.
Collapse
Affiliation(s)
- David Furman
- Institute for Immunity, Transplantation and Infection, Stanford University, 279 Campus Drive, B240 Beckman Center, Stanford, CA 94305-5124, USA
| |
Collapse
|
33
|
Klein SL, Pekosz A. Sex-based biology and the rational design of influenza vaccination strategies. J Infect Dis 2014; 209 Suppl 3:S114-9. [PMID: 24966191 DOI: 10.1093/infdis/jiu066] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Biological (ie, sex) differences as well as cultural (ie, gender) norms influence the acceptance and efficacy of vaccines for males and females. These differences are often overlooked in the design and implementation of vaccination strategies. Using seasonal and pandemic influenza vaccines, we document profound differences between the sexes in the acceptance, correlates of protection, and adverse reactions following vaccination in both young and older adults. Females develop higher antibody responses, experience more adverse reactions to influenza vaccines, and show greater vaccine efficacy than males. Despite greater vaccine efficacy in females, both young and older females are often less likely to accept influenza vaccines than their male counterparts. Identification of the biological mechanisms, including the hormones and genes, that underlie differential responses to vaccination is necessary. We propose that vaccines should be matched to an individual's biological sex, which could involve systematically tailoring diverse types of FDA-approved influenza vaccines separately for males and females. One goal for vaccines designed to protect against influenza and even other infectious diseases should be to increase the correlates of protection in males and reduce adverse reactions in females in an effort to increase acceptance and vaccine-induced protection in both sexes.
Collapse
Affiliation(s)
- Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
34
|
Samandary S, Kridane-Miledi H, Sandoval JS, Choudhury Z, Langa-Vives F, Spencer D, Chentoufi AA, Lemonnier FA, BenMohamed L. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine. Hum Immunol 2014; 75:715-29. [PMID: 24798939 DOI: 10.1016/j.humimm.2014.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 02/01/2023]
Abstract
A significant portion of the world's population is infected with herpes simplex virus type 1 and/or type 2 (HSV-1 and/or HSV-2), that cause a wide range of diseases including genital herpes, oro-facial herpes, and the potentially blinding ocular herpes. While the global prevalence and distribution of HSV-1 and HSV-2 infections cannot be exactly established, the general trends indicate that: (i) HSV-1 infections are much more prevalent globally than HSV-2; (ii) over a half billion people worldwide are infected with HSV-2; (iii) the sub-Saharan African populations account for a disproportionate burden of genital herpes infections and diseases; (iv) the dramatic differences in the prevalence of herpes infections between regions of the world appear to be associated with differences in the frequencies of human leukocyte antigen (HLA) alleles. The present report: (i) analyzes the prevalence of HSV-1 and HSV-2 infections across various regions of the world; (ii) analyzes potential associations of common HLA-A, HLA-B and HLA-C alleles with the prevalence of HSV-1 and HSV-2 infections in the Caucasoid, Oriental, Hispanic and Black major populations; and (iii) discusses how our recently developed HLA-A, HLA-B, and HLA-C transgenic/H-2 class I null mice will help validate HLA/herpes prevalence associations. Overall, high prevalence of herpes infection and disease appears to be associated with high frequency of HLA-A(∗)24, HLA-B(∗)27, HLA-B(∗)53 and HLA-B(∗)58 alleles. In contrast, low prevalence of herpes infection and disease appears to be associated with high frequency of HLA-B(∗)44 allele. The finding will aid in developing a T-cell epitope-based universal herpes vaccine and immunotherapy.
Collapse
Affiliation(s)
- Sarah Samandary
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Hédia Kridane-Miledi
- UNITE INSERM 1016, Institut Cochin, Hôpital Saint-Vincent-de-Paul, 82, Avenue Denfert-Rochereau, 75674 Paris Cedex 14, France
| | - Jacqueline S Sandoval
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Zareen Choudhury
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Francina Langa-Vives
- Plate-Forme Technologique, Centre d'Ingénierie Génétique Murine, Département de Biologie du Développement, Institut Pasteur, 75015 Paris, France
| | - Doran Spencer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Aziz A Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - François A Lemonnier
- UNITE INSERM 1016, Institut Cochin, Hôpital Saint-Vincent-de-Paul, 82, Avenue Denfert-Rochereau, 75674 Paris Cedex 14, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
35
|
Khan AA, Srivastava R, Lopes PP, Wang C, Pham TT, Cochrane J, Thai NTU, Gutierrez L, Benmohamed L. Asymptomatic memory CD8+ T cells: from development and regulation to consideration for human vaccines and immunotherapeutics. Hum Vaccin Immunother 2014; 10:945-63. [PMID: 24499824 DOI: 10.4161/hv.27762] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Generation and maintenance of high quantity and quality memory CD8(+) T cells determine the level of protection from viral, bacterial, and parasitic re-infections, and hence constitutes a primary goal for T cell epitope-based human vaccines and immunotherapeutics. Phenotypically and functionally characterizing memory CD8(+) T cells that provide protection against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections, which cause blinding ocular herpes, genital herpes, and oro-facial herpes, is critical for better vaccine design. We have recently categorized 2 new major sub-populations of memory symptomatic and asymptomatic CD8(+) T cells based on their phenotype, protective vs. pathogenic function, and anatomical locations. In this report we are discussing a new direction in developing T cell-based human herpes vaccines and immunotherapeutics based on the emerging new concept of "symptomatic and asymptomatic memory CD8(+) T cells."
Collapse
Affiliation(s)
- Arif Azam Khan
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Patricia Prado Lopes
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA; Department of Molecular Biology & Biochemistry; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Christine Wang
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Thanh T Pham
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Justin Cochrane
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Nhi Thi Uyen Thai
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Lucas Gutierrez
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA
| | - Lbachir Benmohamed
- Laboratory of Cellular and Molecular Immunology; Gavin Herbert Eye Institute; University of California Irvine; School of Medicine; Irvine, CA USA; Department of Molecular Biology & Biochemistry; University of California Irvine; School of Medicine; Irvine, CA USA; Institute for Immunology; University of California Irvine; School of Medicine; Irvine, CA USA
| |
Collapse
|
36
|
Zhu XP, Muhammad ZS, Wang JG, Lin W, Guo SK, Zhang W. HSV-2 vaccine: current status and insight into factors for developing an efficient vaccine. Viruses 2014; 6:371-90. [PMID: 24469503 PMCID: PMC3939461 DOI: 10.3390/v6020371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 01/08/2023] Open
Abstract
Herpes simplex virus type 2 (HSV-2), a globally sexually transmitted virus, and also one of the main causes of genital ulcer diseases, increases susceptibility to HIV-1. Effective vaccines to prevent HSV-2 infection are not yet available, but are currently being developed. To facilitate this process, the latest progress in development of these vaccines is reviewed in this paper. A summary of the most promising HSV-2 vaccines tested in animals in the last five years is presented, including the main factors, and new ideas for developing an effective vaccine from animal experiments and human clinical trials. Experimental results indicate that future HSV-2 vaccines may depend on a strategy that targets mucosal immunity. Furthermore, estradiol, which increases the effectiveness of vaccines, may be considered as an adjuvant. Therefore, this review is expected to provide possible strategies for development of future HSV-2 vaccines.
Collapse
Affiliation(s)
- Xiao-Peng Zhu
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Zaka S Muhammad
- School of International Studies, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Jian-Guang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Wu Lin
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Shi-Kun Guo
- The 2nd Clinical Medical College, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| | - Wei Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325025, Zhejiang, China.
| |
Collapse
|
37
|
Personalized vaccinology: one size and dose might not fit both sexes. Vaccine 2013; 31:2599-600. [PMID: 23579257 DOI: 10.1016/j.vaccine.2013.02.070] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 11/22/2022]
|
38
|
Sex differences in prophylaxis and therapeutic treatments for viral diseases. Handb Exp Pharmacol 2013:499-522. [PMID: 23027464 DOI: 10.1007/978-3-642-30726-3_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intensity and prevalence of viral infections are typically higher in males than in females. In contrast, disease outcome can be worse for females. Males and females also differ in their responses to prophylaxis and therapeutic treatments for viral diseases. In response to vaccines against herpes viruses, hepatitis viruses, influenza viruses, and others, females consistently mount higher humoral immune responses and experience more frequent and severe adverse reactions than males. Males and females also differ in the absorption, metabolism, and clearance of antiviral drugs. The pharmacological effects, including toxicity and adverse reactions, of antiviral drugs are typically greater in females than males. The efficacy of antiviral drugs at reducing viral load also differs between the sexes, with antiviral treatments being better at clearing HIV and hepatitis C virus in females, but showing greater reduction of herpes simplex virus and influenza A virus loads in males. Biological variables, including hormone and genes, as well as gender-specific factors related to access and compliance to drug regimens must be considered when evaluating male-female differences in responses to treatments for viral diseases. Clinicians, epidemiologists, and basic biomedical scientists should design experiments that include both males and females, develop a priori hypotheses that the sexes will differ in their responses to and the outcome of vaccines and antiviral treatments, and statistically analyze outcome data by sex. Knowledge that the sexes differ in response to prophylaxis and therapeutic treatments for viral diseases should influence the recommended course of treatment differently for males and females.
Collapse
|
39
|
Chentoufi AA, BenMohamed L. Mucosal herpes immunity and immunopathology to ocular and genital herpes simplex virus infections. Clin Dev Immunol 2012; 2012:149135. [PMID: 23320014 PMCID: PMC3540975 DOI: 10.1155/2012/149135] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 02/08/2023]
Abstract
Herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) are amongst the most common human infectious viral pathogens capable of causing serious clinical diseases at every stage of life, from fatal disseminated disease in newborns to cold sores genital ulcerations and blinding eye disease. Primary mucocutaneous infection with HSV-1 & HSV-2 is followed by a lifelong viral latency in the sensory ganglia. In the majority of cases, herpes infections are clinically asymptomatic. However, in symptomatic individuals, the latent HSV can spontaneously and frequently reactivate, reinfecting the muco-cutaneous surfaces and causing painful recurrent diseases. The innate and adaptive mucosal immunities to herpes infections and disease remain to be fully characterized. The understanding of innate and adaptive immune mechanisms operating at muco-cutaneous surfaces is fundamental to the design of next-generation herpes vaccines. In this paper, the phenotypic and functional properties of innate and adaptive mucosal immune cells, their role in antiherpes immunity, and immunopathology are reviewed. The progress and limitations in developing a safe and efficient mucosal herpes vaccine are discussed.
Collapse
Affiliation(s)
- Aziz Alami Chentoufi
- Pathology and Clinical Laboratory Medicine, Department of Immunology, King Fahad Medical City, P.O. Box 59046, Riyadh 11525, Saudi Arabia
- Faculty of Medicine, King Fahad Medical City and King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
- Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
40
|
Baynam G, Walters M, Claes P, Kung S, LeSouef P, Dawkins H, Gillett D, Goldblatt J. The facial evolution: looking backward and moving forward. Hum Mutat 2012; 34:14-22. [PMID: 23033261 DOI: 10.1002/humu.22219] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/30/2012] [Indexed: 01/16/2023]
Abstract
Three-dimensional (3D) facial analysis is ideal for high-resolution, nonionizing, noninvasive objective, high-throughput phenotypic, and phenomic studies. It is a natural complement to (epi)genetic technologies to facilitate advances in the understanding of rare and common diseases. The face is uniquely reflective of the primordial tissues, and there is evidence supporting the application of 3D facial analysis to the investigation of variation and disease including studies showing that the face can reflect systemic health, provides diagnostic clues to disorders, and that facial variation reflects biological pathways. In addition, facial variation has been related to evolutionary factors. The purpose of this review is to look backward to suggest that knowledge of human evolution supports, and may instruct, the application and interpretation of studies of facial morphology for documentation of human variation and investigation of its relationships with health and disease. Furthermore, in the context of advances of deep phenotyping and data integration, to look forward to suggest approaches to scalable implementation of facial analysis, and to suggest avenues for future research and clinical application of this technology.
Collapse
Affiliation(s)
- Gareth Baynam
- Genetic Services of Western Australia, Princess Margaret and King Edward Memorial Hospitals, Perth, Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Klein SL. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. Bioessays 2012; 34:1050-9. [PMID: 23012250 DOI: 10.1002/bies.201200099] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The intensity and prevalence of viral infections are typically higher in males, whereas disease outcome can be worse for females. Females mount higher innate and adaptive immune responses than males, which can result in faster clearance of viruses, but also contributes to increased development of immunopathology. In response to viral vaccines, females mount higher antibody responses and experience more adverse reactions than males. The efficacy of antiviral drugs at reducing viral load differs between the sexes, and the adverse reactions to antiviral drugs are typically greater in females than males. Several variables should be considered when evaluating male/female differences in responses to viral infection and treatment: these include hormones, genes, and gender-specific factors related to access to, and compliance with, treatment. Knowledge that the sexes differ in their responses to viruses and to treatments for viral diseases should influence the recommended course of action differently for males and females. Editor's suggested further reading in BioEssays X-chromosome-located microRNAs in immunity: Might they explain male/female differences Abstract.
Collapse
Affiliation(s)
- Sabra L Klein
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
42
|
3D facial analysis can investigate vaccine responses. Med Hypotheses 2012; 78:497-501. [DOI: 10.1016/j.mehy.2012.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/09/2012] [Indexed: 02/01/2023]
|
43
|
Dervillez X, Gottimukkala C, Kabbara KW, Nguyen C, Badakhshan T, Kim SM, Nesburn AB, Wechsler SL, Benmohamed L. Future of an "Asymptomatic" T-cell Epitope-Based Therapeutic Herpes Simplex Vaccine. Future Virol 2012; 7:371-378. [PMID: 22701511 DOI: 10.2217/fvl.12.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Considering the limited success of the recent herpes clinical vaccine trial [1], new vaccine strategies are needed. Infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) in the majority of men and women are usually asymptomatic and results in lifelong viral latency in neurons of sensory ganglia (SG). However, in a minority of men and women HSV spontaneous reactivation can cause recurrent disease (i.e., symptomatic individuals). Our recent findings show that T cells from symptomatic and asymptomatic men and women (i.e. those with and without recurrences, respectively) recognize different herpes epitopes. This finding breaks new ground and opens new doors to assess a new vaccine strategy: mucosal immunization with HSV-1 & HSV-2 epitopes that induce strong in vitro CD4 and CD8 T cell responses from PBMC derived from asymptomatic men and women (designated here as "asymptomatic" protective epitopes") could boost local and systemic "natural" protective immunity, induced by wild-type infection. Here we highlight the rationale and the future of our emerging "asymptomatic" T cell epitope-based mucosal vaccine strategy to decrease recurrent herpetic disease.
Collapse
Affiliation(s)
- Xavier Dervillez
- Laboratory of Cellular and Molecular Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Alami Chentoufi A, Kritzer E, Yu DM, Nesburn AB, BenMohamed L. Towards a rational design of an asymptomatic clinical herpes vaccine: the old, the new, and the unknown. Clin Dev Immunol 2012; 2012:187585. [PMID: 22548113 PMCID: PMC3324142 DOI: 10.1155/2012/187585] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/10/2012] [Indexed: 11/17/2022]
Abstract
The best hope of controlling the herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) pandemic is the development of an effective vaccine. However, in spite of several clinical trials, starting as early as 1920s, no vaccine has been proven sufficiently safe and efficient to warrant commercial development. In recent years, great strides in cellular and molecular immunology have stimulated creative efforts in controlling herpes infection and disease. However, before moving towards new vaccine strategy, it is necessary to answer two fundamental questions: (i) why past herpes vaccines have failed? (ii) Why the majority of HSV seropositive individuals (i.e., asymptomatic individuals) are naturally "protected" exhibiting few or no recurrent clinical disease, while other HSV seropositive individuals (i.e., symptomatic individuals) have frequent ocular, orofacial, and/or genital herpes clinical episodes? We recently discovered several discrete sets of HSV-1 symptomatic and asymptomatic epitopes recognized by CD4(+) and CD8(+) T cells from seropositive symptomatic versus asymptomatic individuals. These asymptomatic epitopes will provide a solid foundation for the development of novel herpes epitope-based vaccine strategy. Here we provide a brief overview of past clinical vaccine trials, outline current progress towards developing a new generation "asymptomatic" clinical herpes vaccines, and discuss future mucosal "asymptomatic" prime-boost vaccines that could optimize local protective immunity.
Collapse
Affiliation(s)
- Aziz Alami Chentoufi
- Laboratory of Cellular and Molecular Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4375, USA
- Department of Immunology, Pathology and Clinical Laboratory Medicine, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Elizabeth Kritzer
- Laboratory of Cellular and Molecular Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4375, USA
| | - David M. Yu
- Laboratory of Cellular and Molecular Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4375, USA
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4375, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4375, USA
- Institute for Immunology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4120, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine Medical Center, Irvine, CA 92868-3201, USA
| |
Collapse
|
45
|
Laing KJ, Dong L, Sidney J, Sette A, Koelle DM. Immunology in the Clinic Review Series; focus on host responses: T cell responses to herpes simplex viruses. Clin Exp Immunol 2012; 167:47-58. [PMID: 22132884 PMCID: PMC3248086 DOI: 10.1111/j.1365-2249.2011.04502.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2011] [Indexed: 01/04/2023] Open
Abstract
Herpes virus infections are chronic and co-exist with acquired immune responses that generally prevent severe damage to the host, while allowing periodic shedding of virus and maintenance of its transmission in the community. Herpes simplex viruses type 1 and 2 (HSV-1, HSV-2) are typical in this regard and are representative of the viral subfamily Alphaherpesvirinae, which has a tropism for neuronal and epithelial cells. This review will emphasize recent progress in decoding the physiologically important CD8(+) and CD4(+) T cell responses to HSV in humans. The expanding data set is discussed in the context of the search for an effective HSV vaccine as therapy for existing infections and to prevent new infections.
Collapse
Affiliation(s)
- K J Laing
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
46
|
HIV-1 infection impairs HSV-specific CD4(+) and CD8(+) T-cell response by reducing Th1 cytokines and CCR5 ligand secretion. J Acquir Immune Defic Syndr 2011; 58:9-17. [PMID: 21646911 DOI: 10.1097/qai.0b013e318224d0ad] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The concept of HIV-1/HSV-negative immunosynergy has recently come to light, which leads us to explore the impact of HIV-1 infection on HSV-specific T-cell immunity. METHODS : A combination of interferon (IFN)-γ ELISpot and Luminex-based multicytokine profiling assays was used to compare, in a cross-sectional study, the HSV-specific CD4 and CD8 T-cell responses between 20 HIV-1/HSV-coinfected and 12 HIV-1-uninfected/HSV-infected individuals after in vitro restimulation with HSV glycoprotein D (gD) peptide epitopes. RESULTS In response to CD4 and CD8 gD peptide epitopes, mean value (±standard errors of the mean) of the different IFN-γ-secreting T cells (ISC) means was significantly reduced in HIV-1/HSV-coinfected individuals (70 ISC ± 10 and 60 ISC ± 8/10 cells) compared with HIV-1-uninfected/HSV-infected individuals (280 ISC ± 25 and 234 ISC ± 23/10 cells, both P < 0.001). After stimulation with the immunodominant CD4 gD and CD8 gD peptide epitopes, the Th1 cytokine and CCR5 ligand secretions were decreased in the HIV-1-infected group although Th17 cytokines increased. The mean concentration of interleukin (IL)-2, IFN-γ, the IFN-γ-induced protein 10 kDa, and the monokine induced by IFN-γ was correlated to the mean concentration of macrophage inflammatory proteins (MIP-1α, MIP-1β), RANTES and Eotaxin (ρ = 0.56, P = 0.02 and ρ = 0.52, P = 0.03). CONCLUSIONS HIV-1 infection impairs both the number and function of HSV-specific T cells. The downregulation of Th1 cytokines and CCR5 ligands in HIV-1/HSV-coinfected individuals may further facilitate both HSV reactivations and HIV-1 replication.
Collapse
|
47
|
Bi J, Song R, Yang H, Li B, Fan J, Liu Z, Long C. Stepwise identification of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus type 1 genome boosted by a StepRank scheme. Biopolymers 2011; 96:328-39. [PMID: 21072852 DOI: 10.1002/bip.21564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Identification of immunodominant epitopes is the first step in the rational design of peptide vaccines aimed at T-cell immunity. To date, however, it is yet a great challenge for accurately predicting the potent epitope peptides from a pool of large-scale candidates with an efficient manner. In this study, a method that we named StepRank has been developed for the reliable and rapid prediction of binding capabilities/affinities between proteins and genome-wide peptides. In this procedure, instead of single strategy used in most traditional epitope identification algorithms, four steps with different purposes and thus different computational demands are employed in turn to screen the large-scale peptide candidates that are normally generated from, for example, pathogenic genome. The steps 1 and 2 aim at qualitative exclusion of typical nonbinders by using empirical rule and linear statistical approach, while the steps 3 and 4 focus on quantitative examination and prediction of the interaction energy profile and binding affinity of peptide to target protein via quantitative structure-activity relationship (QSAR) and structure-based free energy analysis. We exemplify this method through its application to binding predictions of the peptide segments derived from the 76 known open-reading frames (ORFs) of herpes simplex virus type 1 (HSV-1) genome with or without affinity to human major histocompatibility complex class I (MHC I) molecule HLA-A*0201, and find that the predictive results are well compatible with the classical anchor residue theory and perfectly match for the extended motif pattern of MHC I-binding peptides. The putative epitopes are further confirmed by comparisons with 11 experimentally measured HLA-A*0201-restrcited peptides from the HSV-1 glycoproteins D and K. We expect that this well-designed scheme can be applied in the computational screening of other viral genomes as well.
Collapse
Affiliation(s)
- Jianjun Bi
- Department of Dermatology, General Hospital of Guangzhou Military Command of PLA, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Of mice and not humans: how reliable are animal models for evaluation of herpes CD8(+)-T cell-epitopes-based immunotherapeutic vaccine candidates? Vaccine 2011; 29:5824-36. [PMID: 21718746 DOI: 10.1016/j.vaccine.2011.06.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2)-specific CD8(+) T cells that reside in sensory ganglia, appear to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8(+) T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical herpetic features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8(+) T cell responses specific to Human Leukocyte Antigen- (HLA-)restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel "humanized" HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8(+) T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models.
Collapse
|
49
|
Cunningham KA, Carey AJ, Timms P, Beagley KW. CD4+ T cells reduce the tissue burden of Chlamydia muridarum in male BALB/c mice. Vaccine 2010; 28:4861-3. [DOI: 10.1016/j.vaccine.2010.05.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Klein SL, Jedlicka A, Pekosz A. The Xs and Y of immune responses to viral vaccines. THE LANCET. INFECTIOUS DISEASES 2010; 10:338-49. [PMID: 20417416 DOI: 10.1016/s1473-3099(10)70049-9] [Citation(s) in RCA: 587] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The biological differences associated with the sex of an individual are a major source of variation, affecting immune responses to vaccination. Compelling clinical data illustrate that men and women differ in their innate, humoral, and cell-mediated responses to viral vaccines. Sex affects the frequency and severity of adverse effects of vaccination, including fever, pain, and inflammation. Pregnancy can also substantially alter immune responses to vaccines. Data from clinical trials and animal models of vaccine efficacy lay the groundwork for future studies aimed at identifying the biological mechanisms that underlie sex-specific responses to vaccines, including genetic and hormonal factors. An understanding and appreciation of the effect of sex and pregnancy on immune responses might change the strategies used by public health officials to start efficient vaccination programmes (optimising the timing and dose of the vaccine so that the maximum number of people are immunised), ensure sufficient levels of immune responses, minimise adverse effects, and allow for more efficient protection of populations that are high priority (eg, pregnant women and individuals with comorbid conditions).
Collapse
Affiliation(s)
- Sabra L Klein
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|