1
|
Vijayan K. K. V, De Paris K. Nonhuman primate models of pediatric viral diseases. Front Cell Infect Microbiol 2024; 14:1493885. [PMID: 39691699 PMCID: PMC11649651 DOI: 10.3389/fcimb.2024.1493885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024] Open
Abstract
Infectious diseases are the leading cause of death in infants and children under 5 years of age. In utero exposure to viruses can lead to spontaneous abortion, preterm birth, congenital abnormalities or other developmental defects, often resulting in lifelong health sequalae. The underlying biological mechanisms are difficult to study in humans due to ethical concerns and limited sample access. Nonhuman primates (NHP) are closely related to humans, and pregnancy and immune ontogeny in infants are very similar to humans. Therefore, NHP are a highly relevant model for understanding fetal and postnatal virus-host interactions and to define immune mechanisms associated with increased morbidity and mortality in infants. We will discuss NHP models of viruses causing congenital infections, respiratory diseases in early life, and HIV. Cytomegalovirus (CMV) remains the most common cause of congenital defects worldwide. Measles is a vaccine-preventable disease, yet measles cases are resurging. Zika is an example of an emerging arbovirus with devastating consequences for the developing fetus and the surviving infant. Among the respiratory viruses, we will discuss influenza and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We will finish with HIV as an example of a lifelong infection without a cure or vaccine. The review will highlight (i) the impact of viral infections on fetal and infant immune development, (ii) how differences in infant and adult immune responses to infection alter disease outcome, and emphasize the invaluable contribution of pediatric NHP infection models to the design of effective treatment and prevention strategies, including vaccines, for human infants.
Collapse
Affiliation(s)
- Vidya Vijayan K. K.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
- Center for AIDS Research, University of North Carolina, Chapel Hill, NC, United States
- Children’s Research Institute, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Jiang D, Goswami R, Dennis M, Heimsath H, Kozlowski PA, Ardeshir A, Van Rompay KKA, De Paris K, Permar SR, Surana NK. Sutterella and its metabolic pathways positively correlate with vaccine-elicited antibody responses in infant rhesus macaques. Front Immunol 2023; 14:1283343. [PMID: 38124733 PMCID: PMC10731017 DOI: 10.3389/fimmu.2023.1283343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction It is becoming clearer that the microbiota helps drive responses to vaccines; however, little is known about the underlying mechanism. In this study, we aimed to identify microbial features that are associated with vaccine immunogenicity in infant rhesus macaques. Methods We analyzed 16S rRNA gene sequencing data of 215 fecal samples collected at multiple timepoints from 64 nursery-reared infant macaques that received various HIV vaccine regimens. PERMANOVA tests were performed to determine factors affecting composition of the gut microbiota throughout the first eight months of life in these monkeys. We used DESeq2 to identify differentially abundant bacterial taxa, PICRUSt2 to impute metagenomic information, and mass spectrophotometry to determine levels of fecal short-chain fatty acids and bile acids. Results Composition of the early-life gut microbial communities in nursery-reared rhesus macaques from the same animal care facility was driven by age, birth year, and vaccination status. We identified a Sutterella and a Rodentibacter species that positively correlated with vaccine-elicited antibody responses, with the Sutterella species exhibiting more robust findings. Analysis of Sutterella-related metagenomic data revealed five metabolic pathways that significantly correlated with improved antibody responses following HIV vaccination. Given these pathways have been associated with short-chain fatty acids and bile acids, we quantified the fecal concentration of these metabolites and found several that correlated with higher levels of HIV immunogen-elicited plasma IgG. Discussion Our findings highlight an intricate bidirectional relationship between the microbiota and vaccines, where multiple aspects of the vaccination regimen modulate the microbiota and specific microbial features facilitate vaccine responses. An improved understanding of this microbiota-vaccine interplay will help develop more effective vaccines, particularly those that are tailored for early life.
Collapse
Affiliation(s)
- Danting Jiang
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Program in Computational Biology and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Maria Dennis
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Holly Heimsath
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Neeraj K. Surana
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
3
|
Bollimpelli VS, Reddy PBJ, Gangadhara S, Charles TP, Burton SL, Tharp GK, Styles TM, Labranche CC, Smith JC, Upadhyay AA, Sahoo A, Legere T, Shiferaw A, Velu V, Yu T, Tomai M, Vasilakos J, Kasturi SP, Shaw GM, Montefiori D, Bosinger SE, Kozlowski PA, Pulendran B, Derdeyn CA, Hunter E, Amara RR. Intradermal but not intramuscular modified vaccinia Ankara immunizations protect against intravaginal tier2 simian-human immunodeficiency virus challenges in female macaques. Nat Commun 2023; 14:4789. [PMID: 37553348 PMCID: PMC10409804 DOI: 10.1038/s41467-023-40430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Route of immunization can markedly influence the quality of immune response. Here, we show that intradermal (ID) but not intramuscular (IM) modified vaccinia Ankara (MVA) vaccinations provide protection from acquisition of intravaginal tier2 simian-human immunodeficiency virus (SHIV) challenges in female macaques. Both routes of vaccination induce comparable levels of serum IgG with neutralizing and non-neutralizing activities. The protection in MVA-ID group correlates positively with serum neutralizing and antibody-dependent phagocytic activities, and envelope-specific vaginal IgA; while the limited protection in MVA-IM group correlates only with serum neutralizing activity. MVA-ID immunizations induce greater germinal center Tfh and B cell responses, reduced the ratio of Th1 to Tfh cells in blood and showed lower activation of intermediate monocytes and inflammasome compared to MVA-IM immunizations. This lower innate activation correlates negatively with induction of Tfh responses. These data demonstrate that the MVA-ID vaccinations protect against intravaginal SHIV challenges by modulating the innate and T helper responses.
Collapse
Affiliation(s)
- Venkata S Bollimpelli
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Pradeep B J Reddy
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Tysheena P Charles
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Samantha L Burton
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Gregory K Tharp
- NHP Genomics Core Laboratory, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Tiffany M Styles
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Celia C Labranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Justin C Smith
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Amit A Upadhyay
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Anusmita Sahoo
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Traci Legere
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Ayalnesh Shiferaw
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Vijayakumar Velu
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Tianwei Yu
- Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Mark Tomai
- 3M Corporate Research and Materials Lab, Saint Paul, MN, USA
| | | | - Sudhir P Kasturi
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Steven E Bosinger
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA, USA
| | - Rama R Amara
- Emory Vaccine Center, Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Vaccine-Induced, High-Magnitude HIV Env-Specific Antibodies with Fc-Mediated Effector Functions Are Insufficient to Protect Infant Rhesus Macaques against Oral SHIV Infection. mSphere 2022; 7:e0083921. [PMID: 35196125 PMCID: PMC8865927 DOI: 10.1128/msphere.00839-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improved access to antiretroviral therapy (ART) and antenatal care has significantly reduced in utero and peripartum mother-to-child human immunodeficiency virus (HIV) transmission. However, as breast milk transmission of HIV still occurs at an unacceptable rate, there remains a need to develop an effective vaccine for the pediatric population. Previously, we compared different HIV vaccine strategies, intervals, and adjuvants in infant rhesus macaques to optimize the induction of HIV envelope (Env)-specific antibodies with Fc-mediated effector function. In this study, we tested the efficacy of an optimized vaccine regimen against oral simian-human immunodeficiency virus (SHIV) acquisition in infant macaques. Twelve animals were immunized with 1086.c gp120 protein adjuvanted with 3M-052 in stable emulsion and modified vaccinia Ankara (MVA) virus expressing 1086.c HIV Env. Twelve control animals were immunized with empty MVA. The vaccine prime was given within 10 days of birth, with booster doses being administered at weeks 6 and 12. The vaccine regimen induced Env-specific plasma IgG antibodies capable of antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Beginning at week 15, infants were exposed orally to escalating doses of heterologous SHIV-1157(QNE)Y173H once a week until infected. Despite the induction of strong Fc-mediated antibody responses, the vaccine regimen did not reduce the risk of infection or time to acquisition compared to controls. However, among vaccinated animals, ADCC postvaccination and postinfection was associated with reduced peak viremia. Thus, nonneutralizing Env-specific antibodies with Fc effector function elicited by this vaccine regimen were insufficient for protection against heterologous oral SHIV infection shortly after the final immunization but may have contributed to control of viremia. IMPORTANCE Women of childbearing age are three times more likely to contract HIV infection than their male counterparts. Poor HIV testing rates coupled with low adherence to antiretroviral therapy (ART) result in a high risk of mother-to-infant HIV transmission, especially during the breastfeeding period. A preventative vaccine could curb pediatric HIV infections, reduce potential health sequalae, and prevent the need for lifelong ART in this population. The results of the current study imply that the HIV Env-specific IgG antibodies elicited by this candidate vaccine regimen, despite a high magnitude of Fc-mediated effector function but a lack of neutralizing antibodies and polyfunctional T cell responses, were insufficient to protect infant rhesus macaques against oral virus acquisition.
Collapse
|
5
|
Berendam SJ, Morgan-Asiedu PK, Mangan RJ, Li SH, Heimsath H, Luo K, Curtis AD, Eudailey JA, Fox CB, Tomai MA, Phillips B, Itell HL, Kunz E, Hudgens M, Cronin K, Wiehe K, Alam SM, Van Rompay KKA, De Paris K, Permar SR, Moody MA, Fouda GG. Different adjuvanted pediatric HIV envelope vaccines induced distinct plasma antibody responses despite similar B cell receptor repertoires in infant rhesus macaques. PLoS One 2022; 16:e0256885. [PMID: 34972105 PMCID: PMC8719683 DOI: 10.1371/journal.pone.0256885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Different HIV vaccine regimens elicit distinct plasma antibody responses in both human and nonhuman primate models. Previous studies in human and non-human primate infants showed that adjuvants influenced the quality of plasma antibody responses induced by pediatric HIV envelope vaccine regimens. We recently reported that use of the 3M052-SE adjuvant and longer intervals between vaccinations are associated with higher magnitude of antibody responses in infant rhesus macaques. However, the impact of different adjuvants in HIV vaccine regimens on the developing infant B cell receptor (BCR) repertoire has not been studied. This study evaluated whether pediatric HIV envelope vaccine regimens with different adjuvants induced distinct antigen-specific memory B cell repertoires and whether specific immunoglobulin (Ig) immunogenetic characteristics are associated with higher magnitude of plasma antibody responses in vaccinated infant rhesus macaques. We utilized archived preclinical pediatric HIV vaccine studies PBMCs and tissue samples from 19 infant rhesus macaques immunized either with (i) HIV Env protein with a squalene adjuvant, (ii) MVA-HIV and Env protein co-administered using a 3-week interval, (iii) MVA-HIV prime/ protein boost with an extended 6-week interval between immunizations, or (iv) with HIV Env administered with 3M-052-SE adjuvant. Frequencies of vaccine-elicited HIV Env-specific memory B cells from PBMCs and tissues were similar across vaccination groups (frequency range of 0.06–1.72%). There was no association between vaccine-elicited antigen-specific memory B cell frequencies and plasma antibody titer or avidity. Moreover, the epitope specificity and Ig immunogenetic features of vaccine-elicited monoclonal antibodies did not differ between the different vaccine regimens. These data suggest that pediatric HIV envelope vaccine candidates with different adjuvants that previously induced higher magnitude and quality of plasma antibody responses in infant rhesus macaques were not driven by distinct antigen-specific memory BCR repertoires.
Collapse
Affiliation(s)
- Stella J. Berendam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Papa K. Morgan-Asiedu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Riley J. Mangan
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shuk Hang Li
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Holly Heimsath
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kan Luo
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alan D. Curtis
- Department of Microbiology and Immunology, Children’s Research Institute and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joshua A. Eudailey
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Weill Cornell College of Medicine, New York City, New York, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute (IDRI), Seattle, Washington State, United States of America
- Department of Global Health, University of Washington, Seattle, Washington State, United States of America
| | - Mark A. Tomai
- 3M Center, 3 M Drug Delivery Systems, St. Paul, Minnesota, United States of America
| | - Bonnie Phillips
- Department of Microbiology and Immunology, Children’s Research Institute and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hannah L. Itell
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Erika Kunz
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California at Davis, Davis, California, United States of America
| | - Kristina De Paris
- Department of Microbiology and Immunology, Children’s Research Institute and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Weill Cornell College of Medicine, New York City, New York, United States of America
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lucier A, Fong Y, Li SH, Dennis M, Eudailey J, Nelson A, Saunders K, Cunningham CK, McFarland E, McKinney R, Moody MA, LaBranche C, Montefiori D, Permar SR, Fouda GG. Frequent Development of Broadly Neutralizing Antibodies in Early Life in a Large Cohort of Children With Human Immunodeficiency Virus. J Infect Dis 2021; 225:1731-1740. [PMID: 34962990 PMCID: PMC9113503 DOI: 10.1093/infdis/jiab629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent studies have indicated that broadly neutralizing antibodies (bnAbs) in children may develop earlier after human immunodeficiency virus (HIV) infection compared to adults. METHODS We evaluated plasma from 212 antiretroviral therapy-naive children with HIV (1-3 years old). Neutralization breadth and potency was assessed using a panel of 10 viruses and compared to adults with chronic HIV. The magnitude, epitope specificity, and immunoglobulin (Ig)G subclass distribution of Env-specific antibodies were assessed using a binding antibody multiplex assay. RESULTS One-year-old children demonstrated neutralization breadth comparable to chronically infected adults, whereas 2- and 3-year-olds exhibited significantly greater neutralization breadth (P = .014). Likewise, binding antibody responses increased with age, with levels in 2- and 3-year-old children comparable to adults. Overall, there was no significant difference in antibody specificities or IgG subclass distribution between the pediatric and adult cohorts. It is interesting to note that the neutralization activity was mapped to a single epitope (CD4 binding site, V2 or V3 glycans) in only 5 of 38 pediatric broadly neutralizing samples, which suggests that most children may develop a polyclonal neutralization response. CONCLUSIONS These results contribute to a growing body of evidence suggesting that initiating HIV immunization early in life may present advantages for the development of broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- Amanda Lucier
- Duke University Medical Center, Durham, North Carolina, USA
| | - Youyi Fong
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Shuk Hang Li
- Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Dennis
- Duke University Medical Center, Durham, North Carolina, USA
| | | | - Ashley Nelson
- Duke University Medical Center, Durham, North Carolina, USA
| | - Kevin Saunders
- Duke University Medical Center, Durham, North Carolina, USA
| | - Coleen K Cunningham
- Duke University Medical Center, Durham, North Carolina, USA,University of California, Irvine, California, USA
| | | | - Ross McKinney
- Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | - Sallie R Permar
- Duke University Medical Center, Durham, North Carolina, USA,Weill Cornell School of Medicine, New York, New York, USA
| | - Genevieve G Fouda
- Duke University Medical Center, Durham, North Carolina, USA,Correspondence: Genevieve G. Fouda, MD, PhD, Duke Human Vaccine Institute, 2 genome court MSRBII, DUMC 103020, Durham, NC 27710, USA ()
| |
Collapse
|
7
|
Fries CN, Chen JL, Dennis ML, Votaw NL, Eudailey J, Watts BE, Hainline KM, Cain DW, Barfield R, Chan C, Moody MA, Haynes BF, Saunders KO, Permar SR, Fouda GG, Collier JH. HIV envelope antigen valency on peptide nanofibers modulates antibody magnitude and binding breadth. Sci Rep 2021; 11:14494. [PMID: 34262096 PMCID: PMC8280189 DOI: 10.1038/s41598-021-93702-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
A major challenge in developing an effective vaccine against HIV-1 is the genetic diversity of its viral envelope. Because of the broad range of sequences exhibited by HIV-1 strains, protective antibodies must be able to bind and neutralize a widely mutated viral envelope protein. No vaccine has yet been designed which induces broadly neutralizing or protective immune responses against HIV in humans. Nanomaterial-based vaccines have shown the ability to generate antibody and cellular immune responses of increased breadth and neutralization potency. Thus, we have developed supramolecular nanofiber-based immunogens bearing the HIV gp120 envelope glycoprotein. These immunogens generated antibody responses that had increased magnitude and binding breadth compared to soluble gp120. By varying gp120 density on nanofibers, we determined that increased antigen valency was associated with increased antibody magnitude and germinal center responses. This study presents a proof-of-concept for a nanofiber vaccine platform generating broad, high binding antibody responses against the HIV-1 envelope glycoprotein.
Collapse
Affiliation(s)
- Chelsea N Fries
- Department of Biomedical Engineering, Duke University, 101 Science Dr., Campus, Box 90281, Durham, NC, 27708, USA
| | - Jui-Lin Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maria L Dennis
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Nicole L Votaw
- Department of Biomedical Engineering, Duke University, 101 Science Dr., Campus, Box 90281, Durham, NC, 27708, USA
| | - Joshua Eudailey
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brian E Watts
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kelly M Hainline
- Department of Biomedical Engineering, Duke University, 101 Science Dr., Campus, Box 90281, Durham, NC, 27708, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pediatrics, Duke University Medical Center, Duke University School of Medicine, Box 103020, Durham, NC, 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin O Saunders
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sallie R Permar
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pediatrics, Duke University Medical Center, Duke University School of Medicine, Box 103020, Durham, NC, 27710, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pediatrics, New York-Presbyterian/Weill Cornell Medicine, New York, NY, 10065, USA
| | - Genevieve G Fouda
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pediatrics, Duke University Medical Center, Duke University School of Medicine, Box 103020, Durham, NC, 27710, USA.
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, 101 Science Dr., Campus, Box 90281, Durham, NC, 27708, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Garrido C, Curtis AD, Dennis M, Pathak SH, Gao H, Montefiori D, Tomai M, Fox CB, Kozlowski PA, Scobey T, Munt JE, Mallory ML, Saha PT, Hudgens MG, Lindesmith LC, Baric RS, Abiona OM, Graham B, Corbett KS, Edwards D, Carfi A, Fouda G, Van Rompay KKA, De Paris K, Permar SR. SARS-CoV-2 vaccines elicit durable immune responses in infant rhesus macaques. Sci Immunol 2021; 6:6/60/eabj3684. [PMID: 34131024 PMCID: PMC8774290 DOI: 10.1126/sciimmunol.abj3684] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
The inclusion of infants in the SARS-CoV-2 vaccine roll-out is important to prevent severe complications of pediatric SARS-CoV-2 infections and to limit transmission and could possibly be implemented via the global pediatric vaccine schedule. However, age-dependent differences in immune function require careful evaluation of novel vaccines in the pediatric population. Toward this goal, we assessed the safety and immunogenicity of two SARS-CoV-2 vaccines. Two groups of 8 infant rhesus macaques (RMs) were immunized intramuscularly at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. Both vaccines elicited high magnitude IgG binding to RBD, N terminus domain, S1, and S2, ACE2 blocking activity, and high neutralizing antibody titers, all peaking at week 6. S-specific memory B cells were detected by week 4 and S-specific T cell responses were dominated by the production of IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. The immune responses for the mRNA-LNP vaccine were of a similar magnitude to those elicited by the Moderna mRNA-1273 vaccine in adults. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines were well-tolerated and highly immunogenic in infant RMs, providing proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity that might decrease the transmission of SARS-CoV-2 and mitigate the ongoing health and socioeconomic impacts of COVID-19.
Collapse
Affiliation(s)
- Carolina Garrido
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Alan D Curtis
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maria Dennis
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Sachi H Pathak
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongmei Gao
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - David Montefiori
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Mark Tomai
- 3M Corporate Research Materials Laboratory, Saint Paul, MN, USA
| | | | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer E Munt
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael L Mallory
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pooja T Saha
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa C Lindesmith
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Olubukola M Abiona
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Barney Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | | | | | - Genevieve Fouda
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, Center for AIDS Research, and Children's Research Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
9
|
Garrido C, Curtis AD, Dennis M, Pathak SH, Gao H, Montefiori D, Tomai M, Fox CB, Kozlowski PA, Scobey T, Munt JE, Mallroy ML, Saha PT, Hudgens MG, Lindesmith LC, Baric RS, Abiona OM, Graham B, Corbett KS, Edwards D, Carfi A, Fouda G, Van Rompay KKA, De Paris K, Permar SR. SARS-CoV-2 Vaccines Elicit Durable Immune Responses in Infant Rhesus Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33851156 DOI: 10.1101/2021.04.05.438479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Early life SARS-CoV-2 vaccination has the potential to provide lifelong protection and achieve herd immunity. To evaluate SARS-CoV-2 infant vaccination, we immunized two groups of 8 infant rhesus macaques (RMs) at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein, either encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or mixed with 3M-052-SE, a TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. High magnitude S-binding IgG and neutralizing infectious dose 50 (ID 50 ) >10 3 were elicited by both vaccines. S-specific T cell responses were dominated by IL-17, IFN- γ , or TNF- α . Antibody and cellular responses were stable through week 22. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines are promising pediatric SARS-CoV-2 vaccine candidates to achieve durable protective immunity. One-Sentence Summary SARS-CoV-2 vaccines are well-tolerated and highly immunogenic in infant rhesus macaques.
Collapse
|
10
|
Harnessing early life immunity to develop a pediatric HIV vaccine that can protect through adolescence. PLoS Pathog 2020; 16:e1008983. [PMID: 33180867 PMCID: PMC7660516 DOI: 10.1371/journal.ppat.1008983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Yao L, Wang JY, Bao LN, Fan MX, Bai Y, Chen WJ, Yuan C, Yuan L, Wang J, Li Y, Zhuang M, Ling H. DNA adjuvant Amiloride conjunct long immunization interval promote higher antibody responses to HIV-1 gp41 and gp140 immunogens. Vaccine 2020; 38:7445-7454. [PMID: 33041100 DOI: 10.1016/j.vaccine.2020.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/22/2020] [Accepted: 09/27/2020] [Indexed: 11/26/2022]
Abstract
Recent studies have revealed that the interface of gp120 and gp41 and some parts of gp41 are also critical epitopes for elicitation of broadly neutralizing antibodies. Therefore, potential trimeric gp41 or gp140 immunogen candidates are needed. Previously, we developed a trimer motif MTQ and demonstrated that it could help formation of trimeric gp120 and gp140 proteins. In the present study, we immunized Balb/c mice using trimeric gp41-expressing plasmid for prime and monomeric gp41 or trimeric gp140 protein as well as a mutant (Q577A) for boost. The antibody responses in the context of regimens with various immunization intervals and DNA adjuvants including praziquantel (PZQ), cimetidine (CIM), and amiloride (AML) were evaluated. We found that these three adjuvants were not enough to elicit remarkable specific Abs after gp41 DNA immunization, while AML could significantly promote humoral immune responses after protein boosts. Long immunization interval could induce the specific binding Abs earlier and higher and maintain a high level of Abs in the following 27 weeks after final protein boost. Moreover, two times of protein boosts with DNA adjuvant and a longer time interval achieved a higher titer of specific Abs than three times of protein boosts with a shorter time interval. Q577A mutant was benefit for trimeric gp140 boost in the production of binding Abs but harmful to inducing neutralizing Abs, while this mutant in monomeric gp41 presented the opposite trend which may be associated with the immunogen structures. This study highlights the significance of DNA adjuvant Amiloride and long immunization interval in promoting antibody responses and provides new insights into effective HIV immunization regimen design in the future.
Collapse
Affiliation(s)
- Lan Yao
- Department of Parasitology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Li-Na Bao
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Meng-Xuan Fan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Yang Bai
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Wen-Jiang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Chen Yuan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Li Yuan
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Jing Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China.
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China; Heilongjiang Provincial Key Laboratory of Pathogen Biology, Harbin, China; Wu Lien-Teh Institute, Harbin, China; Department of Parasitology, Harbin Medical University, Harbin, China.
| |
Collapse
|
12
|
Arunachalam PS, Charles TP, Joag V, Bollimpelli VS, Scott MKD, Wimmers F, Burton SL, Labranche CC, Petitdemange C, Gangadhara S, Styles TM, Quarnstrom CF, Walter KA, Ketas TJ, Legere T, Jagadeesh Reddy PB, Kasturi SP, Tsai A, Yeung BZ, Gupta S, Tomai M, Vasilakos J, Shaw GM, Kang CY, Moore JP, Subramaniam S, Khatri P, Montefiori D, Kozlowski PA, Derdeyn CA, Hunter E, Masopust D, Amara RR, Pulendran B. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat Med 2020; 26:932-940. [PMID: 32393800 PMCID: PMC7303014 DOI: 10.1038/s41591-020-0858-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 01/05/2023]
Abstract
Recent efforts toward an HIV vaccine focus on inducing broadly neutralizing antibodies, but eliciting both neutralizing antibodies (nAbs) and cellular responses may be superior. Here, we immunized macaques with an HIV envelope trimer, either alone to induce nAbs, or together with a heterologous viral vector regimen to elicit nAbs and cellular immunity, including CD8+ tissue-resident memory T cells. After ten vaginal challenges with autologous virus, protection was observed in both vaccine groups at 53.3% and 66.7%, respectively. A nAb titer >300 was generally associated with protection but in the heterologous viral vector + nAb group, titers <300 were sufficient. In this group, protection was durable as the animals resisted six more challenges 5 months later. Antigen stimulation of T cells in ex vivo vaginal tissue cultures triggered antiviral responses in myeloid and CD4+ T cells. We propose that cellular immune responses reduce the threshold of nAbs required to confer superior and durable protection.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/drug effects
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/drug effects
- Antibodies, Viral/immunology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genetic Vectors
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunity, Heterologous
- Immunogenicity, Vaccine
- Immunologic Memory/immunology
- Macaca mulatta
- Mucous Membrane
- SAIDS Vaccines/pharmacology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/immunology
- Vagina
Collapse
Affiliation(s)
- Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Tysheena P Charles
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Vineet Joag
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Venkata S Bollimpelli
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Samantha L Burton
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Celia C Labranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Caroline Petitdemange
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
- HIV Inflammation and Persistence Unit, Institut Pasteur, Paris, France
| | - Sailaja Gangadhara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Tiffany M Styles
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Korey A Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Traci Legere
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | - Pradeep Babu Jagadeesh Reddy
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
- Pfizer, Andover, MA, USA
| | - Sudhir Pai Kasturi
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA
| | | | | | - Shakti Gupta
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mark Tomai
- 3M Corporate Research and Materials Lab, Saint Paul, MN, USA
| | | | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chil-Yong Kang
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Cynthia A Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA.
| | - Eric Hunter
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, USA.
| | - David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, GA, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
HIV Env-Specific IgG Antibodies Induced by Vaccination of Neonatal Rhesus Macaques Persist and Can Be Augmented by a Late Booster Immunization in Infancy. mSphere 2020; 5:5/2/e00162-20. [PMID: 32213623 PMCID: PMC7096624 DOI: 10.1128/msphere.00162-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The HIV epidemics in infants and adolescent women are linked. Young women of childbearing age are at high risk for HIV infection and, due to poor HIV testing rates and low adherence to antiretroviral therapy, are at high risk for mother-to-infant transmission. We hypothesize that HIV vaccine regimens initiated in early life would provide the necessary time frame to induce mature and highly functional Env-specific antibody responses that could potentially also protect against HIV acquisition later in life. The present study was designed to test two vaccine regimens, a clade C HIV Env protein vaccine (Env only) alone or combined with a modified vaccinia Ankara (MVA) vector expressing HIV Env (MVA/Env) for the induction and persistence of Env-specific antibody responses in an infant nonhuman primate model. Vaccination was initiated within the first week of life, with booster immunizations at weeks 6, 12, and 32. We demonstrate that both vaccine strategies were able to elicit durable Env-specific antibody responses that were enhanced by a late boost in infancy. Furthermore, we confirmed earlier data that intramuscular administration of the Env protein with the Toll-like receptor 7/8 (TLR7/8)-based adjuvant 3M-052 in stable emulsion (3M-052-SE) induced higher Env-specific antibody responses than vaccination with Env adjuvanted in Span85-Tween 80-squalene (STS) tested in a previous study. These results support the concept of early vaccination as a means to induce durable immune responses that may prevent HIV infection in adolescence at the onset of sexual debut.IMPORTANCE The majority of new HIV-1 infections occur in young adults, with adolescent women being 3 times more likely to acquire HIV than young men. Implementation of HIV prevention strategies has been less successful in this age group; thus, a vaccine given prior to adolescence remains a high priority. We propose that instead of starting HIV vaccination during adolescence, an HIV vaccine regimen initiated in early infancy, aligned with the well-accepted pediatric vaccine schedule and followed with booster immunizations, will provide an alternative means to reduce HIV acquisition in adolescence. Importantly, the long window of time between the first infant vaccine dose and the adolescence vaccine dose will allow for the maturation of highly functional HIV Env-specific antibody responses. Our study provides evidence that early life vaccination induces durable Env-specific plasma IgG responses that can be boosted to further improve the quality of the antibody response.
Collapse
|
14
|
Verma A, Schmidt BA, Elizaldi SR, Nguyen NK, Walter KA, Beck Z, Trinh HV, Dinasarapu AR, Lakshmanappa YS, Rane NN, Matyas GR, Rao M, Shen X, Tomaras GD, LaBranche CC, Reimann KA, Foehl DH, Gach JS, Forthal DN, Kozlowski PA, Amara RR, Iyer SS. Impact of T h1 CD4 Follicular Helper T Cell Skewing on Antibody Responses to an HIV-1 Vaccine in Rhesus Macaques. J Virol 2020; 94:e01737-19. [PMID: 31827000 PMCID: PMC7158739 DOI: 10.1128/jvi.01737-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Anil Verma
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Brian A Schmidt
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Sonny R Elizaldi
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
- Graduate Group in Immunology, UC Davis, Davis, California, USA
| | - Nancy K Nguyen
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Korey A Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zoltan Beck
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hung V Trinh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Ashok R Dinasarapu
- Emory Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | | | - Niharika N Rane
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Gary R Matyas
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Keith A Reimann
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - David H Foehl
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Smita S Iyer
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
- California National Primate Research Center, School of Veterinary Medicine, UC Davis, Davis, California, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
15
|
Hueber B, Curtis AD, Kroll K, Varner V, Jones R, Pathak S, Lifton M, Van Rompay KKA, De Paris K, Reeves RK. Functional Perturbation of Mucosal Group 3 Innate Lymphoid and Natural Killer Cells in Simian-Human Immunodeficiency Virus/Simian Immunodeficiency Virus-Infected Infant Rhesus Macaques. J Virol 2020; 94:e01644-19. [PMID: 31801861 PMCID: PMC7022363 DOI: 10.1128/jvi.01644-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) via breastfeeding is responsible for nearly half of new infections of children with HIV. Although innate lymphoid cells (ILC) and natural killer (NK) cells are found throughout the oral mucosae, the effects of HIV/simian-human immunodeficiency virus (SHIV) in these tissues are largely unknown. To better understand the mechanics of postnatal transmission, we performed a comprehensive study of simian immunodeficiency virus (SIV)/SHIV-infected infant rhesus macaques (RM) and tracked changes in frequency, trafficking, and function of group 3 ILC (ILC3) and NK cells using polychromatic flow cytometry and cell stimulation assays in colon, tonsil, and oral lymph node samples. Infection led to a 3-fold depletion of ILC3 in the colon and an increase in the levels of NK cells in tonsils and oral lymph nodes. ILC3 and NK cells exhibited alterations in their trafficking repertoires as a result of infection, with increased expression of CD103 in colon NK cells and curtailment of CXCR3, and a significant decrease in α4β7 expression in colon ILC3. SPICE analyses revealed that ILC3 and NK cells displayed distinct functional profiles by tissue in naive samples. Infection perturbed these profiles, with a nearly total loss of interleukin-22 (IL-22) production in the tonsil and colon; an increase in the levels of CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) from ILC3; and an increase in the levels of CD107a, macrophage inflammatory protein 1 beta (MIP-1β), and TNF-α from NK cells. Collectively, these data reveal that lentivirus infection alters the frequencies, receptor repertoires, and functions of innate cells in the oral and gut mucosa of infants. Further study will be required to delineate the full extent of the effect that these changes have on oral and gut homeostasis, SHIV/SIV pathogenesis, and oral opportunistic disease.IMPORTANCE Vertical transmission of HIV from mother to child accounts for many of the new cases seen worldwide. There is currently no vaccine to mitigate this transmission, and there has been limited research on the effects that lentiviral infection has on the innate immune system in oral tissues of infected children. To fill this knowledge gap, our laboratory studied infant rhesus macaques to evaluate how acute SIV/SHIV infections impacted ILC3 and NK cells, which are immune cells critical for mucosal homeostasis and antimicrobial defense. Our data revealed that SIV/SHIV infection led to a depletion of ILC3 and an increase of NK cells and to a functional shift from a homeostatic to a multifunctional proinflammatory state. Taking the results together, we describe how lentiviral infection perturbs the oral and gastrointestinal mucosae of infant macaques through alterations of resident innate immune cells giving rise to chronic inflammation and potentially exacerbating morbidity and mortality in children living with HIV.
Collapse
Affiliation(s)
- Brady Hueber
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan D Curtis
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kyle Kroll
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie Varner
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rhianna Jones
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sachi Pathak
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michelle Lifton
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, California, USA
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology and Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Han Q, Bradley T, Williams WB, Cain DW, Montefiori DC, Saunders KO, Parks RJ, Edwards RW, Ferrari G, Mueller O, Shen X, Wiehe KJ, Reed S, Fox CB, Rountree W, Vandergrift NA, Wang Y, Sutherland LL, Santra S, Moody MA, Permar SR, Tomaras GD, Lewis MG, Van Rompay KKA, Haynes BF. Neonatal Rhesus Macaques Have Distinct Immune Cell Transcriptional Profiles following HIV Envelope Immunization. Cell Rep 2020; 30:1553-1569.e6. [PMID: 32023469 PMCID: PMC7243677 DOI: 10.1016/j.celrep.2019.12.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/16/2019] [Accepted: 12/24/2019] [Indexed: 12/30/2022] Open
Abstract
HIV-1-infected infants develop broadly neutralizing antibodies (bnAbs) more rapidly than adults, suggesting differences in the neonatal versus adult responses to the HIV-1 envelope (Env). Here, trimeric forms of HIV-1 Env immunogens elicit increased gp120- and gp41-specific antibodies more rapidly in neonatal macaques than adult macaques. Transcriptome analyses of neonatal versus adult immune cells after Env vaccination reveal that neonatal macaques have higher levels of the apoptosis regulator BCL2 in T cells and lower levels of the immunosuppressive interleukin-10 (IL-10) receptor alpha (IL10RA) mRNA transcripts in T cells, B cells, natural killer (NK) cells, and monocytes. In addition, immunized neonatal macaques exhibit increased frequencies of activated blood T follicular helper-like (Tfh) cells compared to adults. Thus, neonatal macaques have transcriptome signatures of decreased immunosuppression and apoptosis compared with adult macaques, providing an immune landscape conducive to early-life immunization prior to sexual debut.
Collapse
Affiliation(s)
- Qifeng Han
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Wilton B Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Regina W Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Olaf Mueller
- Center for Genomics of Microbial Systems, Duke University Medical Center, Durham, NC, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Kevin J Wiehe
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | | | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nathan A Vandergrift
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Yunfei Wang
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
17
|
Nelson AN, Goswami R, Dennis M, Tu J, Mangan RJ, Saha PT, Cain DW, Curtis AD, Shen X, Shaw GM, Bar K, Hudgens M, Pollara J, De Paris K, Van Rompay KKA, Permar SR. Simian-Human Immunodeficiency Virus SHIV.CH505-Infected Infant and Adult Rhesus Macaques Exhibit Similar Env-Specific Antibody Kinetics, despite Distinct T-Follicular Helper and Germinal Center B Cell Landscapes. J Virol 2019; 93:e00168-19. [PMID: 31092583 PMCID: PMC6639294 DOI: 10.1128/jvi.00168-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
Global elimination of pediatric human immunodeficiency virus (HIV) infections will require the development of novel immune-based approaches, and understanding infant immunity to HIV is critical to guide the rational design of these intervention strategies. Despite their immunological immaturity, chronically HIV-infected children develop broadly neutralizing antibodies (bnAbs) more frequently and earlier than adults do. However, the ontogeny of humoral responses during acute HIV infection is poorly defined in infants and challenging to study in human cohorts due to the presence of maternal antibodies. To further our understanding of age-related differences in the development of HIV-specific immunity during acute infection, we evaluated the generation of virus-specific humoral immune responses in infant (n = 6) and adult (n = 12) rhesus macaques (RMs) infected with a transmitted/founder (T/F) simian-human immunodeficiency virus (SHIV) (SHIV.C.CH505 [CH505]). The plasma HIV envelope-specific IgG antibody kinetics were similar in SHIV-infected infant and adult RMs, with no significant differences in the magnitude or breadth of these responses. Interestingly, autologous tier 2 virus neutralization responses also developed with similar frequencies and kinetics in infant and adult RMs, despite infants exhibiting significantly higher follicular T helper cell (Tfh) and germinal center B cell frequencies than adults. Finally, we show that plasma viral load was the strongest predictor of the development of autologous virus neutralization in both age groups. Our results indicate that the humoral immune response to SHIV infection develops with similar kinetics among infant and adult RMs, suggesting that the early-life immune system is equipped to respond to HIV-1 and promote the production of neutralizing HIV antibodies.IMPORTANCE There is a lack of understanding of how the maturation of the infant immune system influences immunity to HIV infection or how these responses differ from those of adults. Improving our knowledge of infant HIV immunity will help guide antiviral intervention strategies that take advantage of the unique infant immune environment to successfully elicit protective immune responses. We utilized a rhesus macaque model of SHIV infection as a tool to distinguish the differences in HIV humoral immunity in infants versus adults. Here, we demonstrate that the kinetics and quality of the infant humoral immune response to HIV are highly comparable to those of adults during the early phase of infection, despite distinct differences in their Tfh responses, indicating that slightly different mechanisms may drive infant and adult humoral immunity.
Collapse
Affiliation(s)
- Ashley N Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ria Goswami
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria Dennis
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Joshua Tu
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Riley J Mangan
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Pooja T Saha
- Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Derek W Cain
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Alan D Curtis
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xiaoying Shen
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Hudgens
- Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin Pollara
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Kristina De Paris
- Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, California, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
18
|
AIDS Vaccine Research Subcommittee (AVRS) Consultation: Early-Life Immunization Strategies against HIV Acquisition. mSphere 2019; 4:4/4/e00320-19. [PMID: 31315966 PMCID: PMC6637046 DOI: 10.1128/msphere.00320-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This report summarizes a consultation meeting convened by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), on 12 September 2017 to discuss the scientific rationale for selectively testing relevant HIV vaccine candidates in early life that are designed to initiate immune responses for lifelong protective immunity. The urgent need to develop interventions providing durable protective immunity to HIV before sexual debut coupled with the practicality of infant vaccine schedules supports optimizing infant HIV vaccines as a high priority. The panelists discussed the unique opportunities and challenges of testing candidate HIV vaccines in the context of distinct early-life immunity. Key developments providing rationale and grounds for cautious optimism regarding evaluation of early-life HIV vaccines include recent studies of early-life immune ontogeny, studies of HIV-infected infants demonstrating relatively rapid generation of broadly neutralizing antibodies (bNAbs), discovery of novel adjuvants active in early life, and cutting-edge sample-sparing systems biology and immunologic assays promising deep insight into vaccine action in infants. Multidisciplinary efforts toward the goal of an infant HIV vaccine are under way and should be nurtured and amplified.IMPORTANCE Young adults represent one of the highest-risk groups for new HIV infections and the only group in which morbidity continues to increase. Therefore, an HIV vaccine to prevent HIV acquisition in adolescence is a top priority. The introduction of any vaccine during adolescence is challenging. This meeting discussed the opportunities and challenges of testing HIV vaccine candidates in the context of the infant immune system given recent advances in our knowledge of immune ontogeny and adjuvant design and studies demonstrating that HIV-infected infants generate broadly neutralizing antibodies, a main target of HIV vaccines, more rapidly than adults. Considering the global success of pediatric vaccines, the concept of an HIV vaccine introduced in early life holds merit and warrants testing.
Collapse
|
19
|
Optimized Mucosal Modified Vaccinia Virus Ankara Prime/Soluble gp120 Boost HIV Vaccination Regimen Induces Antibody Responses Similar to Those of an Intramuscular Regimen. J Virol 2019; 93:JVI.00475-19. [PMID: 31068425 DOI: 10.1128/jvi.00475-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/01/2019] [Indexed: 12/29/2022] Open
Abstract
The benefits of mucosal vaccines over injected vaccines are difficult to ascertain, since mucosally administered vaccines often induce serum antibody responses of lower magnitude than those induced by injected vaccines. This study aimed to determine if mucosal vaccination using a modified vaccinia virus Ankara expressing human immunodeficiency virus type 1 (HIV-1) gp120 (MVAgp120) prime and a HIV-1 gp120 protein boost could be optimized to induce serum antibody responses similar to those induced by an intramuscularly (i.m.) administered MVAgp120 prime/gp120 boost to allow comparison of an i.m. immunization regimen to a mucosal vaccination regimen for the ability to protect against a low-dose rectal simian-human immunodeficiency virus (SHIV) challenge. A 3-fold higher antigen dose was required for intranasal (i.n.) immunization with gp120 to induce serum anti-gp120 IgG responses not significantly different than those induced by i.m. immunization. gp120 fused to the adenovirus type 2 fiber binding domain (gp120-Ad2F), a mucosal targeting ligand, exhibited enhanced i.n. immunogenicity compared to gp120. MVAgp120 was more immunogenic after i.n. delivery than after gastric or rectal delivery. Using these optimized vaccines, an i.n. MVAgp120 prime/combined i.m. (gp120) and i.n. (gp120-Ad2F) boost regimen (i.n./i.m.-plus-i.n.) induced serum anti-gp120 antibody titers similar to those induced by the intramuscular prime/boost regimen (i.m./i.m.) in rabbits and nonhuman primates. Despite the induction of similar systemic anti-HIV-1 antibody responses, neither the i.m./i.m. nor the i.n./i.m.-plus-i.n. regimen protected against a repeated low-dose rectal SHIV challenge. These results demonstrate that immunization regimens utilizing the i.n. route are able to induce serum antigen-specific antibody responses similar to those induced by systemic immunization.IMPORTANCE Mucosal vaccination is proposed as a method of immunization able to induce protection against mucosal pathogens that is superior to protection provided by parenteral immunization. However, mucosal vaccination often induces serum antigen-specific immune responses of lower magnitude than those induced by parenteral immunization, making the comparison of mucosal and parenteral immunization difficult. We identified vaccine parameters that allowed an immunization regimen consisting of an i.n. prime followed by boosters administered by both i.n. and i.m. routes to induce serum antibody responses similar to those induced by i.m. prime/boost vaccination. Additional studies are needed to determine the potential benefit of mucosal immunization for HIV-1 and other mucosally transmitted pathogens.
Collapse
|
20
|
Bridging Vaccine-Induced HIV-1 Neutralizing and Effector Antibody Responses in Rabbit and Rhesus Macaque Animal Models. J Virol 2019; 93:JVI.02119-18. [PMID: 30842326 PMCID: PMC6498063 DOI: 10.1128/jvi.02119-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Nonneutralizing antibody functions have been associated with reduced infection risk, or control of virus replication, for HIV-1 and related viruses. It is therefore critical to evaluate development of these responses throughout all stages of preclinical testing. Rabbits are conventionally used to evaluate the ability of vaccine candidates to safely elicit antibodies that bind and neutralize HIV-1. However, it remained unexplored how effectively rabbits model the development of nonneutralizing antibody responses in primates. We administered identical HIV-1 vaccine regimens to rabbits and rhesus macaques and performed detailed comparisons of vaccine-induced antibody responses. We demonstrated that nonneutralizing HIV-specific antibody responses can be studied in the rabbit model and have identified aspects of these responses that are common, and those that are unique, to rabbits and rhesus macaques. Our findings will help determine how to best utilize preclinical rabbit and rhesus macaque models to accelerate HIV vaccine candidate testing in human trials. Studies in animal models are essential prerequisites for clinical trials of candidate HIV vaccines. Small animals, such as rabbits, are used to evaluate promising strategies prior to further immunogenicity and efficacy testing in nonhuman primates. Our goal was to determine how HIV-specific vaccine-elicited antibody responses, epitope specificity, and Fc-mediated functions in the rabbit model can predict those in the rhesus macaque (RM) model. Detailed comparisons of the HIV-1-specific IgG response were performed on serum from rabbits and RM given identical modified vaccinia virus Ankara-prime/gp120-boost immunization regimens. We found that vaccine-induced neutralizing antibody, gp120-binding antibody levels and immunodominant specificities, antibody-dependent cellular phagocytosis of HIV-1 virions, and antibody-dependent cellular cytotoxicity (ADCC) responses against gp120-coated target cells were similar in rabbits and RM. However, we also identified characteristics of humoral immunity that differed across species. ADCC against HIV-infected target cells was elicited in rabbits but not in RM, and we observed differences among subdominantly targeted epitopes. Human Fc receptor binding assays and analysis of antibody-cell interactions indicated that rabbit vaccine-induced antibodies effectively recruited and activated human natural killer cells, while vaccine-elicited RM antibodies were unable to activate either human or RM NK cells. Thus, our data demonstrate that both Fc-independent and Fc-dependent functions of rabbit antibodies can be measured with commonly used in vitro assays; however, the ability of immunogenicity studies performed in rabbits to predict responses in RM will vary depending on the particular immune parameter of interest. IMPORTANCE Nonneutralizing antibody functions have been associated with reduced infection risk, or control of virus replication, for HIV-1 and related viruses. It is therefore critical to evaluate development of these responses throughout all stages of preclinical testing. Rabbits are conventionally used to evaluate the ability of vaccine candidates to safely elicit antibodies that bind and neutralize HIV-1. However, it remained unexplored how effectively rabbits model the development of nonneutralizing antibody responses in primates. We administered identical HIV-1 vaccine regimens to rabbits and rhesus macaques and performed detailed comparisons of vaccine-induced antibody responses. We demonstrated that nonneutralizing HIV-specific antibody responses can be studied in the rabbit model and have identified aspects of these responses that are common, and those that are unique, to rabbits and rhesus macaques. Our findings will help determine how to best utilize preclinical rabbit and rhesus macaque models to accelerate HIV vaccine candidate testing in human trials.
Collapse
|
21
|
Clade C HIV-1 Envelope Vaccination Regimens Differ in Their Ability To Elicit Antibodies with Moderate Neutralization Breadth against Genetically Diverse Tier 2 HIV-1 Envelope Variants. J Virol 2019; 93:JVI.01846-18. [PMID: 30651354 DOI: 10.1128/jvi.01846-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/03/2019] [Indexed: 01/09/2023] Open
Abstract
The goals of preclinical HIV vaccine studies in nonhuman primates are to develop and test different approaches for their ability to generate protective immunity. Here, we compared the impact of 7 different vaccine modalities, all expressing the HIV-1 1086.C clade C envelope (Env), on (i) the magnitude and durability of antigen-specific serum antibody responses and (ii) autologous and heterologous neutralizing antibody capacity. These vaccination regimens included immunization with different combinations of DNA, modified vaccinia virus Ankara (MVA), soluble gp140 protein, and different adjuvants. Serum samples collected from 130 immunized monkeys at two key time points were analyzed using the TZM-bl cell assay: at 2 weeks after the final immunization (week 40/41) and on the day of challenge (week 58). Key initial findings were that inclusion of a gp140 protein boost had a significant impact on the magnitude and durability of Env-specific IgG antibodies, and addition of 3M-052 adjuvant was associated with better neutralizing activity against the SHIV1157ipd3N4 challenge virus and a heterologous HIV-1 CRF01 Env, CNE8. We measured neutralization against a panel of 12 tier 2 Envs using a newly described computational tool to quantify serum neutralization potency by factoring in the predetermined neutralization tier of each reference Env. This analysis revealed modest neutralization breadth, with DNA/MVA immunization followed by gp140 protein boosts in 3M-052 adjuvant producing the best scores. This study highlights that protein-containing regimens provide a solid foundation for the further development of novel adjuvants and inclusion of trimeric Env immunogens that could eventually elicit a higher level of neutralizing antibody breadth.IMPORTANCE Despite much progress, we still do not have a clear understanding of how to elicit a protective neutralizing antibody response against HIV-1 through vaccination. There have been great strides in the development of envelope immunogens that mimic the virus particle, but less is known about how different vaccination modalities and adjuvants contribute to shaping the antibody response. We compared seven different vaccines that were administered to rhesus macaques and that delivered the same envelope protein through various modalities and with different adjuvants. The results demonstrate that some vaccine components are better than others at eliciting neutralizing antibodies with breadth.
Collapse
|
22
|
Curtis AD, Walter KA, Nabi R, Jensen K, Dwivedi A, Pollara J, Ferrari G, Van Rompay KK, Amara RR, Kozlowski PA, De Paris K. Oral Coadministration of an Intramuscular DNA/Modified Vaccinia Ankara Vaccine for Simian Immunodeficiency Virus Is Associated with Better Control of Infection in Orally Exposed Infant Macaques. AIDS Res Hum Retroviruses 2019; 35:310-325. [PMID: 30303405 PMCID: PMC6434602 DOI: 10.1089/aid.2018.0180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The majority of human immunodeficiency virus (HIV) type 1 infections in infants are acquired orally through breastfeeding. Toward development of a pediatric HIV vaccine to prevent breastmilk transmission, we tested the efficacy of a simultaneous oral and intramuscular (IM) vaccination regimen for preventing oral simian immunodeficiency virus (SIV) transmission in infant rhesus macaques. Two groups of neonatal macaques were immunized with DNA encoding SIV virus-like particles (DNA-SIV) on weeks 0 and 3, then boosted with modified vaccinia Ankara (MVA) virus expressing SIV antigens (MVA-SIV) on weeks 6 and 9. One group was prime/boosted by the IM route only. Another group was immunized with DNA by both the IM and topical oral (O) buccal routes, and boosted with MVA-SIV by both the IM and sublingual (SL) routes. A third group of control animals received saline by O + IM routes on weeks 0 and 3, and empty MVA by SL + IM routes on weeks 6 and 9. On week 12, infants were orally challenged once weekly with SIVmac251 until infected. The vaccine regimen that included oral routes resulted in reduced peak viremia. The rate of infection acquisition in vaccinated infants was found to be associated with prechallenge intestinal immunoglobulin G (IgG) responses to SIV gp120 and V1V2. Peak viremia was inversely correlated with postinfection intestinal IgG responses to gp120, gp41, and V1V2. These results suggest that codelivery of a pediatric HIV vaccine by an oral route may be superior to IM-only regimens for generating mucosal antibodies and preventing HIV breastmilk transmission in neonates.
Collapse
Affiliation(s)
- Alan D. Curtis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Korey A. Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University, New Orleans, Louisiana
| | - Rafiq Nabi
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University, New Orleans, Louisiana
| | - Kara Jensen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aanini Dwivedi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Justin Pollara
- Duke University Medical Center, Human Vaccine Institute, Durham, North Carolina
| | - Guido Ferrari
- Duke University Medical Center, Human Vaccine Institute, Durham, North Carolina
| | | | - Rama R. Amara
- Emory University and Yerkes National Primate Research Center, Atlanta, Georgia
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University, New Orleans, Louisiana
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Coadministration of CH31 Broadly Neutralizing Antibody Does Not Affect Development of Vaccine-Induced Anti-HIV-1 Envelope Antibody Responses in Infant Rhesus Macaques. J Virol 2019; 93:JVI.01783-18. [PMID: 30541851 DOI: 10.1128/jvi.01783-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Prevention of mother-to-child transmission (MTCT) is an indispensable component in combatting the global AIDS epidemic. A combination of passive broadly neutralizing antibody (bnAb) infusion and active vaccination promises to provide protection of infants against MTCT from birth through the breastfeeding period and could prime the immune system for lifelong immunity. In this study, we investigate the impact of a single infusion of CD4 binding site (CD4bs) bnAb administered at birth on de novo antibody responses elicited by concurrent active HIV envelope vaccination. Four groups of infant macaques received active immunizations with subunit Env protein or modified vaccinia Ankara (MVA)-vectored Env and subunit Env protein, with or without a single intravenous coadministration of CH31 bnAb at birth. Vaccinated animals were monitored to evaluate binding and functional antibody responses elicited by the active vaccinations. Despite achieving plasma concentrations that were able to neutralize tier 2 viruses, coadministration of CH31 did not have a large impact on the kinetics, magnitude, specificity, or avidity of vaccine-elicited binding or functional antibody responses, including epitope specificity, the development of CD4bs antibodies, neutralization, binding to infected cells, or antibody-dependent cell-mediated cytotoxicity (ADCC). We conclude that infusion of CD4bs bnAb CH31 at birth does not interfere with de novo antibody responses to active vaccination and that a combination of passive bnAb infusion and active HIV-1 Env vaccination is a viable strategy for immediate and prolonged protection against MTCT.IMPORTANCE Our study is the first to evaluate the impact of passive infusion of a broadly neutralizing antibody in newborns on the de novo development of antibody responses following active vaccinations in infancy. We demonstrated the safety and the feasibility of bnAb administration to achieve biologically relevant levels of the antibody and showed that the passive infusion did not impair the de novo antibody production following HIV-1 Env vaccination. Our study paves the way for further investigations of the combination strategy using passive plus active immunization to provide protection of infants born to HIV-1-positive mothers over the entire period of risk for mother-to-child transmission.
Collapse
|
24
|
Adjuvant-Dependent Enhancement of HIV Env-Specific Antibody Responses in Infant Rhesus Macaques. J Virol 2018; 92:JVI.01051-18. [PMID: 30089691 DOI: 10.1128/jvi.01051-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Toward the goal of developing an effective HIV vaccine that can be administered in infancy to protect against postnatal and lifelong sexual HIV transmission risks, the current pilot study was designed to compare the effect of novel adjuvants on the induction of HIV Env-specific antibody responses in infant macaques. Aligning our studies with the adjuvanted proteins evaluated in a prime-boost schedule with ALVAC in the ongoing HVTN (HIV Vaccine Trials Network) 702 efficacy trial, we selected the bivalent clade C Env immunogens gp120 C.1086 and gp120 TV1 in combination with the MF59 adjuvant. However, we hypothesized that the adjuvant system AS01, that is included in the pediatric RTS,S malaria vaccine, would promote Env-specific antibody responses superior to those of the oil-in-water MF59 emulsion adjuvant. In a second study arm, we compared two emulsions, glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) and 3M-052-SE, containing Toll-like receptor 4 (TLR4) and TLR7/TLR8 (TLR7/8) ligand, respectively. The latter adjuvant had been previously demonstrated to be especially effective in activating neonatal antigen-presenting cells. Our results demonstrate that different adjuvants drive quantitatively or qualitatively distinct responses to the bivalent Env vaccine. AS01 induced higher Env-specific plasma IgG antibody levels than the antigen in MF59 and promoted improved antibody function in infants, and 3M-052-SE outperformed GLA-SE by inducing the highest breadth and functionality of antibody responses. Thus, distinct adjuvants are likely to be required for maximizing vaccine-elicited immune responses in infants, particularly when immunization in infancy aims to elicit both perinatal and lifelong immunity against challenging pathogens such as HIV.IMPORTANCE Alum remains the adjuvant of choice for pediatric vaccines. Yet the distinct nature of the developing immune system in infants likely requires novel adjuvants targeted specifically at the pediatric population to reach maximal vaccine efficacy with an acceptable safety profile. The current study supports the idea that additional adjuvants for pediatric vaccines should be, and need to be, tested in infants for their potential to enhance immune responses. Using an infant macaque model, our results suggest that both AS01 and 3M-052-SE can significantly improve and better sustain HIV Env-specific antibody responses than alum. Despite the limited number of animals, the results revealed interesting differences that warrant further testing of promising novel adjuvant candidates in larger preclinical and clinical studies to define the mechanisms leading to adjuvant-improved antibody responses and to identify targets for adjuvant and vaccine optimization.
Collapse
|
25
|
Incomplete Downregulation of CD4 Expression Affects HIV-1 Env Conformation and Antibody-Dependent Cellular Cytotoxicity Responses. J Virol 2018; 92:JVI.00484-18. [PMID: 29669829 PMCID: PMC6002730 DOI: 10.1128/jvi.00484-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
HIV-1-infected cells expressing envelope glycoproteins (Env) in the CD4-bound conformation on their surfaces are targeted by antibody-dependent cellular cytotoxicity (ADCC) mediated by CD4-induced (CD4i) antibodies and sera from HIV-1-infected individuals (HIV+ sera). By downregulating the surface expression of CD4, Nef prevents Env-CD4 interaction, thus protecting HIV-1-infected cells from ADCC. HIV-1 infectious molecular clones (IMCs) are widely used to measure ADCC. In order to facilitate the identification of infected cells and high-throughput ADCC analysis, reporter genes (e.g., the Renilla luciferase [LucR] gene) are often introduced into IMC constructs. We evaluated the susceptibility of HIV-1-infected CD4+ T lymphocytes to ADCC using a panel of parental IMCs and derivatives that expressed the LucR reporter gene, utilizing different molecular strategies, including one specifically designed to retain Nef expression. We found that in some of these constructs, Nef expression in CD4+ T cells was suboptimal, and consequently, CD4 downregulation was incomplete. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Strikingly, protection from ADCC was observed when cells were infected with the parental IMC, which exhibited strong CD4 downregulation. This discrepancy between the parental and Nef-impaired viruses was independent of the strains of Env expressed, but rather, it was correlated with the levels of CD4 surface expression. Overall, our results indicate that caution should be taken when selecting IMCs for ADCC measurements and that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC. IMPORTANCE In-depth understanding of the susceptibility of HIV-1-infected cells to ADCC might help establish correlates of vaccine protection and guide the development of HIV-1 vaccine strategies. Different ADCC assays have been developed, including those using infectious molecular clones (IMCs) carrying a LucR reporter gene that greatly facilitates large-scale quantitative analysis. We previously reported different molecular strategies for introducing LucR while maintaining Nef expression and function and, consequently, CD4 surface downregulation. Here, we demonstrate that utilizing IMCs that exhibit impaired Nef expression can have undesirable consequences due to incomplete CD4 downregulation. CD4 molecules remaining on the cell surface resulted in the exposure of ADCC-mediating CD4i epitopes on Env and a dramatic increase in the susceptibility of the infected cells to ADCC. Overall, our results indicate that CD4 downregulation needs to be carefully monitored when drawing conclusions about the nature and magnitude of ADCC.
Collapse
|
26
|
Pollara J, Orlandi C, Beck C, Edwards RW, Hu Y, Liu S, Wang S, Koup RA, Denny TN, Lu S, Tomaras GD, DeVico A, Lewis GK, Ferrari G. Application of area scaling analysis to identify natural killer cell and monocyte involvement in the GranToxiLux antibody dependent cell-mediated cytotoxicity assay. Cytometry A 2018; 93:436-447. [PMID: 29498807 PMCID: PMC5969088 DOI: 10.1002/cyto.a.23348] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 01/14/2023]
Abstract
Several different assay methodologies have been described for the evaluation of HIV or SIV-specific antibody-dependent cell-mediated cytotoxicity (ADCC). Commonly used assays measure ADCC by evaluating effector cell functions, or by detecting elimination of target cells. Signaling through Fc receptors, cellular activation, cytotoxic granule exocytosis, or accumulation of cytolytic and immune signaling factors have been used to evaluate ADCC at the level of the effector cells. Alternatively, assays that measure killing or loss of target cells provide a direct assessment of the specific killing activity of antibodies capable of ADCC. Thus, each of these two distinct types of assays provides information on only one of the critical components of an ADCC event; either the effector cells involved, or the resulting effect on the target cell. We have developed a simple modification of our previously described high-throughput ADCC GranToxiLux (GTL) assay that uses area scaling analysis (ASA) to facilitate simultaneous quantification of ADCC activity at the target cell level, and assessment of the contribution of natural killer cells and monocytes to the total observed ADCC activity when whole human peripheral blood mononuclear cells are used as a source of effector cells. The modified analysis method requires no additional reagents and can, therefore, be easily included in prospective studies. Moreover, ASA can also often be applied to pre-existing ADCC-GTL datasets. Thus, incorporation of ASA to the ADCC-GTL assay provides an ancillary assessment of the ability of natural and vaccine-induced antibodies to recruit natural killer cells as well as monocytes against HIV or SIV; or to any other field of research for which this assay is applied. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- Justin Pollara
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - Chiara Orlandi
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Charles Beck
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - R. Whitney Edwards
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - Yi Hu
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Shuying Liu
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Shixia Wang
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Richard A. Koup
- Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesdaMaryland
| | - Thomas N. Denny
- Duke Human Vaccine Institute, Duke University School of MedicineDurhamNorth Carolina
| | - Shan Lu
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Georgia D. Tomaras
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| | - Anthony DeVico
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - George K. Lewis
- Institute of Human VirologyUniversity of Maryland School of MedicineBaltimoreMaryland
| | - Guido Ferrari
- Department of SurgeryDuke University School of MedicineDurhamNorth Carolina
| |
Collapse
|
27
|
Maternal HIV-1 Env Vaccination for Systemic and Breast Milk Immunity To Prevent Oral SHIV Acquisition in Infant Macaques. mSphere 2018; 3:mSphere00505-17. [PMID: 29359183 PMCID: PMC5760748 DOI: 10.1128/msphere.00505-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Without novel strategies to prevent mother-to-child HIV-1 transmission, more than 5% of HIV-1-exposed infants will continue to acquire HIV-1, most through breastfeeding. This study of rhesus macaque dam-and-infant pairs is the first preclinical study to investigate the protective role of transplacentally transferred HIV-1 vaccine-elicited antibodies and HIV-1 vaccine-elicited breast milk antibody responses in infant oral virus acquisition. It revealed highly variable placental transfer of potentially protective antibodies and emphasized the importance of pregnancy immunization timing to reach peak antibody levels prior to delivery. While there was no discernible impact of maternal immunization on late infant oral virus acquisition, we observed a strong correlation between the percentage of activated CD4+ T cells in infant peripheral blood and a reduced number of challenges to infection. This finding highlights an important consideration for future studies evaluating alternative strategies to further reduce the vertical HIV-1 transmission risk. Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) contributes to an estimated 150,000 new infections annually. Maternal vaccination has proven safe and effective at mitigating the impact of other neonatal pathogens and is one avenue toward generating the potentially protective immune responses necessary to inhibit HIV-1 infection of infants through breastfeeding. In the present study, we tested the efficacy of a maternal vaccine regimen consisting of a modified vaccinia virus Ankara (MVA) 1086.C gp120 prime-combined intramuscular-intranasal gp120 boost administered during pregnancy and postpartum to confer passive protection on infant rhesus macaques against weekly oral exposure to subtype C simian-human immunodeficiency virus 1157ipd3N4 (SHIV1157ipd3N4) starting 6 weeks after birth. Despite eliciting a robust systemic envelope (Env)-specific IgG response, as well as durable milk IgA responses, the maternal vaccine did not have a discernible impact on infant oral SHIV acquisition. This study revealed considerable variation in vaccine-elicited IgG placental transfer and a swift decline of both Env-specific antibodies (Abs) and functional Ab responses in the infants prior to the first challenge, illustrating the importance of pregnancy immunization timing to elicit optimal systemic Ab levels at birth. Interestingly, the strongest correlation to the number of challenges required to infect the infants was the percentage of activated CD4+ T cells in the infant peripheral blood at the time of the first challenge. These findings suggest that, in addition to maternal immunization, interventions that limit the activation of target cells that contribute to susceptibility to oral HIV-1 acquisition independently of vaccination may be required to reduce infant HIV-1 acquisition via breastfeeding. IMPORTANCE Without novel strategies to prevent mother-to-child HIV-1 transmission, more than 5% of HIV-1-exposed infants will continue to acquire HIV-1, most through breastfeeding. This study of rhesus macaque dam-and-infant pairs is the first preclinical study to investigate the protective role of transplacentally transferred HIV-1 vaccine-elicited antibodies and HIV-1 vaccine-elicited breast milk antibody responses in infant oral virus acquisition. It revealed highly variable placental transfer of potentially protective antibodies and emphasized the importance of pregnancy immunization timing to reach peak antibody levels prior to delivery. While there was no discernible impact of maternal immunization on late infant oral virus acquisition, we observed a strong correlation between the percentage of activated CD4+ T cells in infant peripheral blood and a reduced number of challenges to infection. This finding highlights an important consideration for future studies evaluating alternative strategies to further reduce the vertical HIV-1 transmission risk.
Collapse
|