1
|
Swietnicki W, Czarny A, Urbanska N, Drab M. Identification of small molecule compounds active against Staphylococcus aureus and Proteus mirabilis. Biochem Biophys Res Commun 2018; 506:1047-1051. [PMID: 30409430 DOI: 10.1016/j.bbrc.2018.10.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 11/27/2022]
Abstract
Staphylococcus aureus is a human pathogen rapidly becoming a serious health problem due to ease of acquiring antibiotic resistance. To help identify potential new drug candidates effective against the pathogen, a small focused library was screened for inhibition of bacterial growth against several pathogens, including S. aureus. At least one of the compounds, Compound 10, was capable of blocking bacterial growth of S. aureus in a test tube with IC50 = 140 ± 30 μM. Another inhibitor, Compound 7, was bacteriostatic against S. aureus with IC50 ranging from 33 to 150 μM against 3 different strains. However, only Compound 7 was bactericidal against P. mirabilis as examined by electron microscopy. Human cell line toxicity studies suggested that both compounds had small effect on cell growth at 100 μM concentration as examined by MTT assay. Analysis of compounds' structures showed lack of similarity to any known antibiotics and bacteriostatics, potentially offering the inhibitors as an alternative to existing solutions in controlling bacterial infections for selected pathogens.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland.
| | - Anna Czarny
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland
| | - Natalia Urbanska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland; University of Wroclaw, Department of Biological Science, Institute of Experimental Biology, ul. Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Marek Drab
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
2
|
Sharma P, Kranz DM. Subtle changes at the variable domain interface of the T-cell receptor can strongly increase affinity. J Biol Chem 2017; 293:1820-1834. [PMID: 29229779 DOI: 10.1074/jbc.m117.814152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/03/2017] [Indexed: 11/06/2022] Open
Abstract
Most affinity-maturation campaigns for antibodies and T-cell receptors (TCRs) operate on the residues at the binding site, located within the loops known as complementarity-determining regions (CDRs). Accordingly, mutations in contact residues, or so-called "second shell" residues, that increase affinity are typically identified by directed evolution involving combinatorial libraries. To determine the impact of residues located at a distance from the binding site, here we used single-codon libraries of both CDR and non-CDR residues to generate a deep mutational scan of a human TCR against the cancer antigen MART-1·HLA-A2. Non-CDR residues included those at the interface of the TCR variable domains (Vα and Vβ) and surface-exposed framework residues. Mutational analyses showed that both Vα/Vβ interface and CDR residues were important in maintaining binding to MART-1·HLA-A2, probably due to either structural requirements for proper Vα/Vβ association or direct contact with the ligand. More surprisingly, many Vα/Vβ interface substitutions yielded improved binding to MART-1·HLA-A2. To further explore this finding, we constructed interface libraries and selected them for improved stability or affinity. Among the variants identified, one conservative substitution (F45βY) was most prevalent. Further analysis of F45βY showed that it enhanced thermostability and increased affinity by 60-fold. Thus, introducing a single hydroxyl group at the Vα/Vβ interface, at a significant distance from the TCR·peptide·MHC-binding site, remarkably affected ligand binding. The variant retained a high degree of specificity for MART-1·HLA-A2, indicating that our approach provides a general strategy for engineering improvements in either soluble or cell-based TCRs for therapeutic purposes.
Collapse
Affiliation(s)
- Preeti Sharma
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| | - David M Kranz
- From the Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
3
|
Crystallization and Structure Determination of Superantigens and Immune Receptor Complexes. Methods Mol Biol 2015. [PMID: 26676036 DOI: 10.1007/978-1-4939-3344-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Structure determination of superantigens and the complexes they form with immune receptors have over the years provided insight in their modes of action. This technique requires growing large and highly ordered crystals of the superantigen or receptor-superantigen complex, followed by exposure to X-ray radiation and data collection. Here, we describe methods for crystallizing superantigens and superantigen-receptor complexes using the vapor diffusion technique, how the crystals may be optimized, and lastly data collection and structure determination.
Collapse
|
4
|
Mattis DM, Chervin AS, Ranoa DR, Kelley SL, Tapping RI, Kranz DM. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses. Mol Immunol 2015; 68:203-12. [PMID: 26320630 DOI: 10.1016/j.molimm.2015.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022]
Abstract
Bacterial lipopolysaccharide (LPS) activates the innate immune system by forming a complex with myeloid differentiation factor 2 (MD-2) and Toll-like receptor 4 (TLR4), which is present on antigen presenting cells. MD-2 plays an essential role in this activation of the innate immune system as a member of the ternary complex, TLR4:MD-2:LPS. With the goal of further understanding the molecular details of the interaction of MD-2 with LPS and TLR4, and possibly toward engineering dominant negative regulators of the MD-2 protein, here we subjected MD-2 to a mutational analysis using yeast display. The approach included generation of site-directed alanine mutants, and ligand-driven selections of MD-2 mutant libraries. Our findings showed that: (1) proline mutations in the F119-K132 loop that binds LPS were strongly selected for enhanced yeast surface stability, (2) there was a preference for positive-charged side chains (R/K) at residue 120 for LPS binding, and negative-charged side chains (D/E) for TLR4 binding, (3) aromatic residues were strongly preferred at F119 and F121 for LPS binding, and (4) an MD-2 mutant (T84N/D101A/S118A/S120D/K122P) exhibited increased binding to TLR4 but decreased binding to LPS. These studies revealed the impact of specific residues and regions of MD-2 on the binding of LPS and TLR4, and they provide a framework for further directed evolution of the MD-2 protein.
Collapse
Affiliation(s)
- Daiva M Mattis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Adam S Chervin
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - Diana R Ranoa
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Stacy L Kelley
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Richard I Tapping
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Sharma P, Wang N, Chervin AS, Quinn CL, Stone JD, Kranz DM. A Multiplex Assay for Detection of Staphylococcal and Streptococcal Exotoxins. PLoS One 2015; 10:e0135986. [PMID: 26305471 PMCID: PMC4549143 DOI: 10.1371/journal.pone.0135986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022] Open
Abstract
Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1) and streptococcal (SpeA and SpeC) toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA), 3 pg/ml (SEB), 25 pg/ml (TSST-1), 6 ng/ml (SpeA), and 100 pg/ml (SpeC). These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - Ningyan Wang
- ImmuVen, Inc., University of Illinois Research Park, Champaign, Illinois, United States of America
| | - Adam S. Chervin
- ImmuVen, Inc., University of Illinois Research Park, Champaign, Illinois, United States of America
| | - Cheryl L. Quinn
- ImmuVen, Inc., University of Illinois Research Park, Champaign, Illinois, United States of America
| | - Jennifer D. Stone
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
| | - David M. Kranz
- Department of Biochemistry, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
6
|
Sharma P, Wang N, Kranz DM. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens. Toxins (Basel) 2014; 6:556-74. [PMID: 24476714 PMCID: PMC3942751 DOI: 10.3390/toxins6020556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus and group A Streptococcus secrete a collection of toxins called superantigens (SAgs), so-called because they stimulate a large fraction of an individual’s T cells. One consequence of this hyperactivity is massive cytokine release leading to severe tissue inflammation and, in some cases, systemic organ failure and death. The molecular basis of action involves the binding of the SAg to both a T cell receptor (TCR) on a T cell and a class II product of the major histocompatibility complex (MHC) on an antigen presenting cell. This cross-linking leads to aggregation of the TCR complex and signaling. A common feature of SAgs is that they bind with relatively low affinity to the variable region (V) of the beta chain of the TCR. Despite this low affinity binding, SAgs are very potent, as each T cell requires only a small fraction of their receptors to be bound in order to trigger cytokine release. To develop high-affinity agents that could neutralize the activity of SAgs, and facilitate the development of detection assays, soluble forms of the Vβ regions have been engineered to affinities that are up to 3 million-fold higher for the SAg. Over the past decade, six different Vβ regions against SAgs from S. aureus (SEA, SEB, SEC3, TSST-1) or S. pyogenes (SpeA and SpeC) have been engineered for high-affinity using yeast display and directed evolution. Here we review the engineering of these high-affinity Vβ proteins, structural features of the six different SAgs and the Vβ proteins, and the specific properties of the engineered Vβ regions that confer high-affinity and specificity for their SAg ligands.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| | - Ningyan Wang
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Abstract
SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies.
Collapse
|
8
|
Sharma P, Postel S, Sundberg EJ, Kranz DM. Characterization of the Staphylococcal enterotoxin A: Vβ receptor interaction using human receptor fragments engineered for high affinity. Protein Eng Des Sel 2013; 26:781-9. [PMID: 24167300 DOI: 10.1093/protein/gzt054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.
Collapse
Affiliation(s)
- P Sharma
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
9
|
Krakauer T. Update on staphylococcal superantigen-induced signaling pathways and therapeutic interventions. Toxins (Basel) 2013; 5:1629-54. [PMID: 24064719 PMCID: PMC3798877 DOI: 10.3390/toxins5091629] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) and related bacterial toxins cause diseases in humans and laboratory animals ranging from food poisoning, acute lung injury to toxic shock. These superantigens bind directly to the major histocompatibility complex class II molecules on antigen-presenting cells and specific Vβ regions of T-cell receptors (TCR), resulting in rapid hyper-activation of the host immune system. In addition to TCR and co-stimulatory signals, proinflammatory mediators activate signaling pathways culminating in cell-stress response, activation of NFκB and mammalian target of rapamycin (mTOR). This article presents a concise review of superantigen-activated signaling pathways and focuses on the therapeutic challenges against bacterial superantigens.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702 5011, USA.
| |
Collapse
|
10
|
Abstract
Staphylococcus aureus plays an important role in numerous human cases of food poisoning, soft tissue, and bone infections, as well as potentially lethal toxic shock. This common bacterium synthesizes various virulence factors that include staphylococcal enterotoxins (SEs). These protein toxins bind directly to major histocompatibility complex class II on antigen-presenting cells and specific Vβ regions of T-cell receptors, resulting in potentially life-threatening stimulation of the immune system. Picomolar concentrations of SEs ultimately elicit proinflammatory cytokines that can induce fever, hypotension, multi-organ failure, and lethal shock. Various in vitro and in vivo models have provided important tools for studying the biological effects of, as well as potential vaccines/therapeutics against, the SEs. This review succinctly presents known physical and biological properties of the SEs, including various intervention strategies. In particular, SEB will often be portrayed as per biodefense concerns dating back to the 1960s.
Collapse
Affiliation(s)
- Teresa Krakauer
- Integrated Toxicology Division; United States Army Medical Research Institute of Infectious Diseases; Fort Detrick, MD USA
| | | |
Collapse
|
11
|
Ramachandran G, Tulapurkar ME, Harris KM, Arad G, Shirvan A, Shemesh R, Detolla LJ, Benazzi C, Opal SM, Kaempfer R, Cross AS. A peptide antagonist of CD28 signaling attenuates toxic shock and necrotizing soft-tissue infection induced by Streptococcus pyogenes. J Infect Dis 2013; 207:1869-77. [PMID: 23493729 DOI: 10.1093/infdis/jit104] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus and group A Streptococcus pyogenes (GAS) express superantigen (SAg) exotoxin proteins capable of inducing lethal shock. To induce toxicity, SAgs must bind not only to the major histocompatibility complex II molecule of antigen-presenting cells and the variable β chain of the T-cell receptor but also to the dimer interface of the T-cell costimulatory receptor CD28. Here, we show that the CD28-mimetic peptide AB103 (originally designated "p2TA") protects mice from lethal challenge with streptococcal exotoxin A, as well as from lethal GAS bacterial infection in a murine model of necrotizing soft-tissue infection. Administration of a single dose of AB103 increased survival when given up to 5 hours after infection, reduced inflammatory cytokine expression and bacterial burden at the site of infection, and improved muscle inflammation in a dose-dependent manner, without compromising cellular and humoral immunity. Thus, AB103 merits further investigation as a potential therapeutic in SAg-mediated necrotizing soft-tissue infection.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development, University of Maryland Medical School, Baltimore, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mattis D, Spaulding A, Chuang-Smith O, Sundberg E, Schlievert P, Kranz D. Engineering a soluble high-affinity receptor domain that neutralizes staphylococcal enterotoxin C in rabbit models of disease. Protein Eng Des Sel 2013; 26:133-42. [PMID: 23161916 PMCID: PMC3542526 DOI: 10.1093/protein/gzs094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 08/31/2012] [Accepted: 10/17/2012] [Indexed: 11/13/2022] Open
Abstract
Superantigens (SAgs) are a class of immunostimulatory exotoxins that activate large numbers of T cells, leading to overproduction of cytokines and subsequent inflammatory reactions and systemic toxicity. Staphylococcal enterotoxin C (SEC), a SAg secreted by Staphylococcus aureus, has been implicated in various illnesses including non-menstrual toxic shock syndrome (TSS) and necrotizing pneumonia. SEC has been shown to cause TSS illness in rabbits and the toxin contributes to lethality associated with methicillin-resistant S.aureus (MRSA) in a rabbit model of pneumonia. With the goal of reducing morbidity and mortality associated with SEC, a high-affinity variant of the extracellular variable domain of the T-cell receptor beta-chain for SEC (~14 kDa) was generated by directed evolution using yeast display. This protein was characterized biochemically and shown to cross-react with the homologous (65% identical) SAg staphylococcal enterotoxin B (SEB). The soluble, high-affinity T-cell receptor protein neutralized SEC and SEB in vitro and also significantly reduced the bacterial burden of an SEC-positive strain of MRSA (USA400 MW2) in an infective endocarditis model. The neutralizing agent also prevented lethality due to MW2 in a necrotizing pneumonia rabbit model. These studies characterize a soluble high-affinity neutralizing agent against SEC, which is cross-reactive with SEB, and that has potential to be used intravenously with antibiotics to manage staphylococcal diseases that involve these SAgs.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/administration & dosage
- Anti-Bacterial Agents/biosynthesis
- Anti-Bacterial Agents/chemistry
- Cell Line
- Cell Surface Display Techniques
- Directed Molecular Evolution
- Disease Models, Animal
- Endocarditis, Bacterial/drug therapy
- Endocarditis, Bacterial/immunology
- Endocarditis, Bacterial/microbiology
- Enterotoxins/antagonists & inhibitors
- Enterotoxins/metabolism
- Humans
- Interleukin-2/metabolism
- Lymphocyte Activation
- Methicillin-Resistant Staphylococcus aureus/immunology
- Methicillin-Resistant Staphylococcus aureus/metabolism
- Pneumonia, Staphylococcal/drug therapy
- Pneumonia, Staphylococcal/immunology
- Pneumonia, Staphylococcal/microbiology
- Protein Binding
- Protein Engineering
- Rabbits
- Receptors, Antigen, T-Cell, alpha-beta/administration & dosage
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Staphylococcal Infections/drug therapy
- Staphylococcal Infections/immunology
- Staphylococcal Infections/microbiology
- Superantigens/metabolism
- Superantigens/pharmacology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- D.M. Mattis
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | - A.R. Spaulding
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Present address: Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - O.N. Chuang-Smith
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - E.J. Sundberg
- Boston Biomedical Research Institute, Watertown, MA 02472, USA
- Present address: Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - P.M. Schlievert
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Present address: Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - D.M. Kranz
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Krakauer T. PI3K/Akt/mTOR, a pathway less recognized for staphylococcal superantigen-induced toxicity. Toxins (Basel) 2012; 4:1343-66. [PMID: 23202320 PMCID: PMC3509712 DOI: 10.3390/toxins4111343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 12/27/2022] Open
Abstract
Immunostimulating staphylococcal enterotoxin B (SEB) and related superantigenic toxins cause diseases in humans and laboratory animals by activating cells of the immune system. These toxins bind directly to the major histocompatibility complex (MHC) class II molecules on antigen-presenting cells and specific Vβ regions of T-cell receptors (TCR), resulting in hyperactivation of both T lymphocytes and monocytes/macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1), IL-2, interferon γ (IFNγ), and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. The well-explored signal transduction pathways for SEB-induced toxicity downstream from TCR/MHC ligation and interaction of cell surface co-stimulatory molecules include the mitogen-activated protein kinase cascades and cytokine receptor signaling, culminating in NFκB activation. Independently, IL-2, IFNγ, and chemokines from activated T cells signal via the phosphoinositide 3-kinase (PI3K), the serine/threonine kinases, Akt and mammalian target of rapamycin (mTOR) pathways. This article reviews the signaling molecules induced by superantigens in the activation of PI3K/Akt/mTOR pathways leading to staphylococcal superantigen-induced toxicity and updates potential therapeutics against superantigens.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Integrated Toxicology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
14
|
Fritsche M, Pandey RB, Farmer BL, Heermann DW. Conformational temperature-dependent behavior of a histone H2AX: a coarse-grained Monte Carlo approach via knowledge-based interaction potentials. PLoS One 2012; 7:e32075. [PMID: 22442661 PMCID: PMC3307718 DOI: 10.1371/journal.pone.0032075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/22/2012] [Indexed: 11/19/2022] Open
Abstract
Histone proteins are not only important due to their vital role in cellular processes such as DNA compaction, replication and repair but also show intriguing structural properties that might be exploited for bioengineering purposes such as the development of nano-materials. Based on their biological and technological implications, it is interesting to investigate the structural properties of proteins as a function of temperature. In this work, we study the spatial response dynamics of the histone H2AX, consisting of 143 residues, by a coarse-grained bond fluctuating model for a broad range of normalized temperatures. A knowledge-based interaction matrix is used as input for the residue-residue Lennard-Jones potential.We find a variety of equilibrium structures including global globular configurations at low normalized temperature (T* = 0.014), combination of segmental globules and elongated chains (T* = 0.016,0.017), predominantly elongated chains (T* = 0.019,0.020), as well as universal SAW conformations at high normalized temperature (T* ≥ 0.023). The radius of gyration of the protein exhibits a non-monotonic temperature dependence with a maximum at a characteristic temperature (T(c)* = 0.019) where a crossover occurs from a positive (stretching at T* ≤ T(c)*) to negative (contraction at T* ≥ T(c)*) thermal response on increasing T*.
Collapse
Affiliation(s)
- Miriam Fritsche
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
15
|
Bonsor DA, Sundberg EJ. Dissecting protein-protein interactions using directed evolution. Biochemistry 2011; 50:2394-402. [PMID: 21332192 DOI: 10.1021/bi102019c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions are essential for life. They are responsible for most cellular functions and when they go awry often lead to disease. Proteins are inherently complex. They are flexible macromolecules whose constituent amino acid components act in combinatorial and networked ways when they engage one another in binding interactions. It is just this complexity that allows them to conduct such a broad array of biological functions. Despite decades of intense study of the molecular basis of protein-protein interactions, key gaps in our understanding remain, hindering our ability to accurately predict the specificities and affinities of their interactions. Until recently, most protein-protein investigations have been probed experimentally at the single-amino acid level, making them, by definition, incapable of capturing the combinatorial nature of, and networked communications between, the numerous residues within and outside of the protein-protein interface. This aspect of protein-protein interactions, however, is emerging as a major driving force for protein affinity and specificity. Understanding a combinatorial process necessarily requires a combinatorial experimental tool. Much like the organisms in which they reside, proteins naturally evolve over time, through a combinatorial process of mutagenesis and selection, to functionally associate. Elucidating the process by which proteins have evolved may be one of the keys to deciphering the molecular rules that govern their interactions with one another. Directed evolution is a technique performed in the laboratory that mimics natural evolution on a tractable time scale that has been utilized widely to engineer proteins with novel capabilities, including altered binding properties. In this review, we discuss directed evolution as an emerging tool for dissecting protein-protein interactions.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, Massachusetts 02472, United States
| | | |
Collapse
|