1
|
Junqueira-Kipnis AP, Leite LCDC, Croda J, Chimara E, Carvalho ACC, Arcêncio RA. Advances in the development of new vaccines for tuberculosis and Brazil's role in the effort forward the end TB strategy. Mem Inst Oswaldo Cruz 2024; 119:e240093. [PMID: 39383403 PMCID: PMC11452070 DOI: 10.1590/0074-02760240093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024] Open
Abstract
Tuberculosis (TB) continues to be the world's leading killer of infectious diseases. Despite global efforts to gradually reduce the number of annual deaths and the incidence of this disease, the coronavirus disease 19 (COVID-19) pandemic caused decreased in TB detection and affected the prompt treatment TB which led to a setback to the 2019 rates. However, the development and testing of new TB vaccines has not stopped and now presents the possibility of implanting in the next five years a new vaccine that is affordable and might be used in the various key vulnerable populations affected by TB. Then, this assay aimed to discuss the main vaccines developed against TB that shortly could be selected and used worldwide, and additionally, evidence the Brazilian potential candidates' vaccines in developing in Brazil that could be considered among those in level advanced to TB end.
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Rede Goiana de Pesquisa em Tuberculose, Goiânia, GO, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Luciana Cesar de Cerqueira Leite
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Júlio Croda
- Universidade Federal do Mato Grosso do Sul, Faculdade de Medicina, Mato Grosso do Sul, MS, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Mato Grosso do Sul, MS, Brasil
- Yale School of Public Health, New Haven, CT, USA
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Erica Chimara
- Instituto Adolfo Lutz, Núcleo de Tuberculose e Micobacterioses, São Paulo, SP, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Anna Cristina C Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ricardo Alexandre Arcêncio
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
2
|
Singh M, Mehendale S, Guleria R, Sarin R, Tripathy S, Gangakhedkar RR, Katoch K, Pandey RM, Panda S, Pati S, Mohapatra PR, Joshi S, Narasimhaiah S, Kodan P, Bhaskar S, Rani R, Khan AM, Swaminathan S. PreVenTB trial: protocol for evaluation of efficacy and safety of two vaccines VPM1002 and Immuvac (Mw) in preventing tuberculosis (TB) in healthy household contacts of newly diagnosed sputum smear-positive pulmonary TB patients: phase III, randomised, double-blind, three-arm placebo-controlled trial. BMJ Open 2024; 14:e082916. [PMID: 39645271 DOI: 10.1136/bmjopen-2023-082916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Tuberculosis (TB) continues to be one of the deadliest infectious diseases over the centuries, killing more people worldwide than any other single infectious disease. There is an urgent need for additional strategies which can expedite efforts to combat TB including a preventive vaccine. In this endeavour, we have developed a protocol for a multisite, double-blind, placebo-controlled clinical trial in India that aims to evaluate the efficacy and safety of two TB vaccines; namely, VPM1002 and Immuvac (M.w) (Mycobacterium Indicus Pranii) (MIP) among healthy household contacts (HHCs) of sputum smear-positive pulmonary TB (PTB) patients. METHODS AND ANALYSIS In the three-arm randomised double-blind placebo-controlled trial study protocol, a total of 12 000 HHCs (aged 6-99 years) of sputum smear-positive PTB patients will be randomised to receive either of the two vaccine candidates VPM1002 and MIP or placebo. The primary efficacy endpoint is the prevention of microbiologically confirmed TB. Secondary endpoints will include (1) prevention against Latent TB infection, (2) incidence of adverse events and serious adverse events in study participants, (3) efficacy of vaccine in prevention of PTB/extra PTB in different age groups (6-18 years, 19-35 years, 36-60 years and above 60 years) and (4) immunogenicity of VPM1002 and MIP at month 2 and month 6 after first vaccination in terms of flow cytometric analysis of M.Tb specific CD4+ and CD8+ T cells secreting cytokines and Luminex assays for the presence of different cytokines in the sera and supernatants of peripheral blood mononuclear cells cultures stimulated with whole cell lysates of M.Tb and subsequently similar analysis for the cases who develop TB postvaccination during the follow-up period. ETHICS AND DISSEMINATION Ethics committees' approvals have been granted by the Institutional Human Ethics Committees of all participating centres in this study and the names of the ethics committees and approvals are as follows: (1) National Institute for Research in Tuberculosis (NIRT)-Chennai (including subsites): ECR/135/Inst/TN/2013/RR-19, Approval No. 390/NIRT-Institutional Ethics Committee (IEC)/2018 dated 5 December 2018 (NIRT-Madurai-ECR/1365/Inst/TN/2020; approval dated 8 June 2020; NIRT, Vellore: ECR/1215/Inst/TN/2019; approval dated 26 September 2020); (2) All India Institute of Medical Sciences (AIIMS), Delhi (including subsites)-Institute Ethics Committee, ECR/547/Inst/DL/2014/RR-17 ECR/538/Inst/DL/2014/RR-20; approval No.IEC-385/06-07-2018, approval OP-28/05.04.2019 and SFH- ECR/593/Inst/DL/2014/RR-20 IEC/VMMC/SJH/project/2019-05/25 ; 23 May 2019; (3) National Institute of Tuberculosis and Respiratory Diseases (NITRD), Delhi: ECR/315/Inst/DL/2013/RR-19; approval IEC-No-NITRD/EC/2019/9004; 8 January 2019; (4) Pune-National AIDS Research Institute (NARI) and subsite-ECR/23/Inst/MH/2013/RR-19; IEC-NARI/EC/approval/2018/196; 29 May 2018; (5) Regional Medical Research Centre-Bhubaneshwar-ECR/911/Inst/OR-2017/RR-21; approval, dated 25 April 2018; Subsites- AIIMS, Bhubaneshwar ECR/534/Inst/OD/2014/RR-17 and 20 approval No. T/EMF/Pulm. Med/19/01 dated 13 May 2019; SCB, Cuttack No. No.ECR/84/Inst/OR/2013/RR-20; approval no.186 dated 7 February 2020; (6) NTI-Bengaluru: Ethics Committee-No-ECR/1819/Inst/KA/2019; approval No NTI-IEC/1.2019/principal investigator, dated 31 January 2019; (7) BMMRC, Hyderabad- ECR/450/Inst/AP/2013/RR-16 approval No. 779/BMMRC/2018/IEC, dated 11 June 2018 (Subsite Share India- Mediciti Ethics Committee-ECR/283/Inst/AP/2013/RR-20; Approval no. EC/11/VII/2K20(1) dated 11 July 2020) and (8) SJMC-Bengaluru: ECR/238/Inst/KA/2013/RR-19; approval IEC/1/491/2020; 7 August 2020.The trial findings will be published in accordance with the Consolidated Standards of Reporting Trials guidance. The results of this clinical trial will be presented at scientific conferences and disseminated through publications in peer-reviewed journals, conference presentations and shared with Ministry of Health and Family Welfare, policy-makers and other stakeholders. TRIAL REGISTRATION NUMBER CTRI/2019/01/017026.
Collapse
Affiliation(s)
- Manjula Singh
- ECD, Indian Council of Medical Research, New Delhi, India
| | | | - Randeep Guleria
- Respiratory Medicine, All India Institute of Medical Sciences, New Delhi, India
- Medanta The Medicity, Gurgaon, Haryana, India
| | - Rohit Sarin
- National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Srikanth Tripathy
- ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- Dr D Y Patil Medical College Hospital and Research Centre, Pune, Maharashtra, India
| | | | - Kiran Katoch
- Indian Council of Medical Research, New Delhi, India
| | - Ravindra Mohan Pandey
- Indian Council of Medical Research, New Delhi, India
- Statistics, All India Institute of Medical Sciences, New Delhi, India
| | - Samiran Panda
- ECD, Indian Council of Medical Research, New Delhi, India
| | - Sanghamitra Pati
- Indian Council of Medical Research-Regional Medical Research Center, Chandrasekharpur, Bhubaneswar, Orissa, India
| | - Prasanta Raghab Mohapatra
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Sindhu Joshi
- Bhagwan Mahavir Medical Research Centre (BMMRC), Hyderabad, Telangana, India
| | | | - Parul Kodan
- Indian Council of Medical Research, New Delhi, India
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Rajni Rani
- Indian Council of Medical Research, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Abdul Mabood Khan
- Indian Council of Medical Research, New Delhi, India
- National JALMA Institute of Leprosy and other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Soumya Swaminathan
- Division of HIV/AIDS, World Health Organization, Geneva, Switzerland
- MS Swaminathan Research Foundation, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Renteria-Flores FI, García-Chagollán M, Jave-Suárez LF. Bactofection, Bacterial-Mediated Vaccination, and Cancer Therapy: Current Applications and Future Perspectives. Vaccines (Basel) 2024; 12:968. [PMID: 39340000 PMCID: PMC11435753 DOI: 10.3390/vaccines12090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
From the first report in 1891 by Dr. Coley of the effective treatment of tumors in 1000 patients with Streptococcus and the first successful use of bacterial vectors for transferring therapeutic genes in 1980 by Dr. Schnaffer, bactofection has been shown to be a promising strategy in the fields of vaccination, gene therapy, and cancer therapy. This review describes the general theory of bactofection and its advantages, disadvantages, challenges, and expectations, compiling the most notable advances in 14 vaccination studies, 27 cancer therapy studies, and 13 clinical trials. It also describes the current scope of bactofection and promising results. The extensive knowledge of Salmonella biology, as well as the multiple adequacies of the Ty21a vaccination platform, has allowed notable developments worldwide that have mainly been reflected in therapeutic efforts against cancer. In this regard, we strongly recommend the creation of a recombinant Ty21a model that constitutively expresses the GtgE protease from S. typhimurium, allowing this vector to be used in animal trials, thus enhancing the likelihood of favorable results that could quickly transition to clinical trials. From the current perspective, it is necessary to explore a greater diversity of bacterial vectors and find the best combination of implemented attenuations, generating personalized models that guarantee the maximum effectiveness in cancer therapy and vaccination.
Collapse
Affiliation(s)
- Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Mariel García-Chagollán
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Biomedical Research Centre of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
4
|
Hosseinian K, Gerami A, Bral M, Venketaraman V. Mycobacterium tuberculosis-Human Immunodeficiency Virus Infection and the Role of T Cells in Protection. Vaccines (Basel) 2024; 12:730. [PMID: 39066368 PMCID: PMC11281535 DOI: 10.3390/vaccines12070730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB), primarily caused by Mycobacterium tuberculosis (M. tb), remains a widespread fatal health issue that becomes significantly detrimental when coupled with HIV. This study explores the host's innate and adaptive immune system response to TB in HIV immunocompromised patients, highlighting the significant role of CD8+ T cells. While the crucial role of macrophages and cytokines, like TNF-α and IFN-γ, in managing the host's immune response to M. tb is examined, the emphasis is on the changes that occur as a result of HIV coinfection. With the progression of HIV infection, the primary source of IFN-γ changes from CD4+ to CD8+ T cells, especially when latent TB advances to an active state. This study sheds light on the necessity of developing new preventative measures such as vaccines and new treatment approaches to TB, especially for immunocompromised patients, who are at a higher risk of life-threatening complications due to TB-HIV coinfection.
Collapse
Affiliation(s)
| | | | | | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
5
|
Li F, Dang W, Du Y, Xu X, He P, Zhou Y, Zhu B. Tuberculosis Vaccines and T Cell Immune Memory. Vaccines (Basel) 2024; 12:483. [PMID: 38793734 PMCID: PMC11125691 DOI: 10.3390/vaccines12050483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB) remains a major infectious disease partly due to the lack of an effective vaccine. Therefore, developing new and more effective TB vaccines is crucial for controlling TB. Mycobacterium tuberculosis (M. tuberculosis) usually parasitizes in macrophages; therefore, cell-mediated immunity plays an important role. The maintenance of memory T cells following M. tuberculosis infection or vaccination is a hallmark of immune protection. This review analyzes the development of memory T cells during M. tuberculosis infection and vaccine immunization, especially on immune memory induced by BCG and subunit vaccines. Furthermore, the factors affecting the development of memory T cells are discussed in detail. The understanding of the development of memory T cells should contribute to designing more effective TB vaccines and optimizing vaccination strategies.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Wenrui Dang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yunjie Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Xiaonan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Pu He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Yuhe Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
| | - Bingdong Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; (F.L.); (W.D.); (Y.D.); (X.X.); (P.H.); (Y.Z.)
- College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Hoseinpour R, Hasani A, Baradaran B, Abdolalizadeh J, Salehi R, Hasani A, Nabizadeh E, Yekani M, Hasani R, Kafil HS, Azizian K, Memar MY. Tuberculosis vaccine developments and efficient delivery systems: A comprehensive appraisal. Heliyon 2024; 10:e26193. [PMID: 38404880 PMCID: PMC10884459 DOI: 10.1016/j.heliyon.2024.e26193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Despite the widespread use of the Bacillus Calmette-Guérin (BCG) vaccine, Mycobacterium tuberculosis (MTB) continues to be a global burden. Vaccination has been proposed to prevent and treat tuberculosis (TB) infection, and several of them are in different phases of clinical trials. Though vaccine production is in progress but requires more attention. There are several TB vaccines in the trial phase, most of which are based on a combination of proteins/adjuvants or recombinant viral vectors used for selected MTB antigens. In this review, we attempted to discuss different types of TB vaccines based on the vaccine composition, the immune responses generated, and their clinical trial phases. Furthermore, we have briefly overviewed the effective delivery systems used for the TB vaccine and their effectiveness in different vaccines.
Collapse
Affiliation(s)
- Rasoul Hoseinpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Laboratory sciences and Microbiology, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alka Hasani
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit, Sina Educational, Research, and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Hasani
- Department of Clinical Biochemistry and Applied Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Hossein Samadi Kafil
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhou F, Zhang D. Recent advance in the development of tuberculosis vaccines in clinical trials and virus-like particle-based vaccine candidates. Front Immunol 2023; 14:1238649. [PMID: 38022657 PMCID: PMC10652786 DOI: 10.3389/fimmu.2023.1238649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis (TB) remains a serious public health threat around the world. An effective vaccine is urgently required for cost-effective, long-term control of TB. However, the only licensed vaccine Bacillus Calmette-Guerin (BCG) is limited to prevent TB for its highly variable efficacy. Substantial progress has been made in research and development (R&D) of TB vaccines in the past decades, and a dozen vaccine candidates, including live attenuated mycobacterial vaccines, killed mycobacterial vaccines, adjuvanted subunit vaccines, viral vector vaccines, and messenger RNA (mRNA) vaccines were developed in clinical trials to date. Nevertheless, many challenges to the successful authorization for the use and deployment of an effective tuberculosis vaccine remain. Therefore, it is still necessary and urgent to continue exploring new vaccine construction approaches. Virus-like particles (VLPs) present excellent prospects in the field of vaccine development because of their helpful immunological features such as being safe templates without containing viral nucleic acid, repetitive surface geometry, conformational epitopes similar to natural viruses, and enhancing both innate and adaptive immune responses. The marketization process of VLP vaccines has never stopped despite VLP vaccines face several shortcomings such as their complex and slow development process and high production cost, and several VLP-based vaccines, including vaccines against Human papillomavirus (HPV), Hepatitis B Virus (HBV) and malaria, are successfully licensed for use at the market. In this review, we provide an update on the current progress regarding the development of TB vaccines in clinical trials and seek to give an overview of VLP-based TB vaccine candidates.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Dongmei Zhang
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Lacámara S, Martin C. MTBVAC: A Tuberculosis Vaccine Candidate Advancing Towards Clinical Efficacy Trials in TB Prevention. Arch Bronconeumol 2023; 59:S0300-2896(23)00305-8. [PMID: 39492297 DOI: 10.1016/j.arbres.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/05/2024]
Abstract
Tuberculosis (TB) remains a major global health burden, causing more than 10 million new cases and 1.6 million deaths each year. Currently, the only approved TB vaccine in use in humans, is the one hundred years old vaccine, BCG, an attenuated vaccine derived from an isolate of Mycobacterium bovis that causes TB in cattle. BCG shows a variable efficacy in preventing pulmonary forms of the disease in humans, so new vaccines are needed to help stop TB transmission. Among the 15 diverse TB vaccine candidates in clinical trials, MTBVAC is the only one based on rational attenuation of a human clinical isolate of Mycobacterium tuberculosis, which contains the largest number of antigens of the TB vaccine candidates in the pipeline. MTBVAC was designed and constructed as a response to the need to confer a better TB protection in terms of pulmonary disease prevention in newborns, adolescents, and adults. This review aims to provide an overview of the preclinical and clinical development of MTBVAC to the present. We will focus on the clinical development of MTBVAC, and we will compare it with other TB vaccine candidates currently in Phase 3 efficacy trials.
Collapse
Affiliation(s)
- Sergio Lacámara
- Departamento de Microbiología Pediatría, Radiología y Salud Pública, Facultad de Medicina Universidad de Zaragoza, Spain
| | - Carlos Martin
- Departamento de Microbiología Pediatría, Radiología y Salud Pública, Facultad de Medicina Universidad de Zaragoza, Spain; CIBERES Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario Miguel Servet, ISS Aragón, Zaragoza, Spain.
| |
Collapse
|
9
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
11
|
Khalid K, Poh CL. The Promising Potential of Reverse Vaccinology-Based Next-Generation Vaccine Development over Conventional Vaccines against Antibiotic-Resistant Bacteria. Vaccines (Basel) 2023; 11:1264. [PMID: 37515079 PMCID: PMC10385262 DOI: 10.3390/vaccines11071264] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as inactivated vaccines (IVs) and live attenuated vaccines (LAVs), were effective in preventing bacterial infections. However, they have shown reduced efficacy against emerging antibiotic-resistant bacteria, including MDR M. tuberculosis. Additionally, the large-scale production of LAVs and IVs requires the growth of live pathogenic microorganisms. A more promising approach for the accelerated development of vaccines against antibiotic-resistant bacteria involves the use of in silico immunoinformatics techniques and reverse vaccinology. The bioinformatics approach can identify highly conserved antigenic targets capable of providing broader protection against emerging drug-resistant bacteria. Multi-epitope vaccines, such as recombinant protein-, DNA-, or mRNA-based vaccines, which incorporate several antigenic targets, offer the potential for accelerated development timelines. This review evaluates the potential of next-generation vaccine development based on the reverse vaccinology approach and highlights the development of safe and immunogenic vaccines through relevant examples from successful preclinical and clinical studies.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya 47500, Malaysia
| |
Collapse
|
12
|
Triglia D, Gogan KM, Keane J, O’Sullivan MP. Glucose metabolism and its role in the maturation and migration of human CD1c + dendritic cells following exposure to BCG. Front Cell Infect Microbiol 2023; 13:1113744. [PMID: 37475964 PMCID: PMC10354370 DOI: 10.3389/fcimb.2023.1113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/02/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Tuberculosis (TB) still kills over 1 million people annually. The only approved vaccine, BCG, prevents disseminated disease in children but shows low efficacy at preventing pulmonary TB. Myeloid dendritic cells (mDCs) are promising targets for vaccines and immunotherapies to combat infectious diseases due to their essential role in linking innate and adaptive immune responses. DCs undergo metabolic reprogramming following exposure to TLR agonists, which is thought to be a prerequisite for a successful host response to infection. We hypothesized that metabolic rewiring also plays a vital role in the maturation and migration of DCs stimulated with BCG. Consequently, we investigated the role of glycolysis in the activation of primary human myeloid CD1c+ DCs in response to BCG. Methods/results We show that CD1c+ mDC mature and acquire a more energetic phenotype upon challenge with BCG. Pharmacological inhibition of glycolysis with 2-deoxy-D-glucose (2-DG) decreased cytokine secretion and altered cell surface expression of both CD40 and CCR7 on BCG-challenged, compared to untreated, mDCs. Furthermore, inhibition of glycolysis had differential effects on infected and uninfected bystander mDCs in BCG-challenged cultures. For example, CCR7 expression was increased by 2-DG treatment following challenge with BCG and this increase in expression was seen only in BCG-infected mDCs. Moreover, although 2-DG treatment inhibited CCR7-mediated migration of bystander CD1C+ DCs in a transwell assay, migration of BCG-infected cells proceeded independently of glycolysis. Discussion Our results provide the first evidence that glycolysis plays divergent roles in the maturation and migration of human CD1c+ mDC exposed to BCG, segregating with infection status. Further investigation of cellular metabolism in DC subsets will be required to determine whether glycolysis can be targeted to elicit better protective immunity against Mtb.
Collapse
Affiliation(s)
- Denise Triglia
- TB Immunology Laboratory, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Karl M. Gogan
- Department of Respiratory Medicine, St James Hospital, Dublin, Ireland
| | - Joseph Keane
- TB Immunology Laboratory, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Department of Respiratory Medicine, St James Hospital, Dublin, Ireland
| | - Mary P. O’Sullivan
- TB Immunology Laboratory, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Baatjies L, van Rensberg IC, Snyders C, Gutschmidt A, Loxton AG, Williams MJ. Investigating Mycobacterium tuberculosis sufR (rv1460) in vitro and ex vivo expression and immunogenicity. PLoS One 2023; 18:e0286965. [PMID: 37319185 PMCID: PMC10270350 DOI: 10.1371/journal.pone.0286965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Iron is vital metal for Mycobacterium tuberculosis infection, survival, and persistence within its human host. The mobilization of sulphur (SUF) operon encodes the primary iron-sulphur (Fe-S) biogenesis system in M. tuberculosis and is induced during iron limitation and intracellular growth of M. tuberculosis, pointing to its importance during infection. To study sufR expression at single cell level during intracellular growth of M. tuberculosis a fluorescent reporter was generated by cloning a 123 bp sufR promoter region upstream of a promotorless mcherry gene in an integrating vector. Expression analysis and fluorescence measurements during in vitro culture revealed that the reporter was useful for measuring induction of the promoter but was unable to detect subsequent repression due to the stability of mCherry. During intracellular growth in THP-1 macrophages, increased fluorescence was observed in the strain harbouring the reporter relative to the control strain, however this induction was only observed in a small sub-set of the population. Since SufR levels are predicted to be elevated during infection we hypothesize that it is immunogenic and may induce an immune response in M. tuberculosis infected individuals. The immune response elicited by SufR for both whole blood assay (WBA, a short term 12-hr stimulation to characterise the production of cytokines/growth factors suggestive of an effector response) and lymphocyte proliferation assay (LPA, a longer term 7-day stimulation to see if SufR induces a memory type immune response) were low and did not show a strong immune response for the selected Luminex analytes (MCP-1, RANTES, IL-1b, IL-8, MIP-1b, IFN-g, IL-6 and MMP-9) measured in three clinical groups, namely active TB, QuantiFERON positive (QFN pos) and QFN negative (QFN neg) individuals.
Collapse
Affiliation(s)
- Lucinda Baatjies
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ilana C. van Rensberg
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice Snyders
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrea Gutschmidt
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Monique J. Williams
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Morrison H, Jackson S, McShane H. Controlled human infection models in COVID-19 and tuberculosis: current progress and future challenges. Front Immunol 2023; 14:1211388. [PMID: 37304270 PMCID: PMC10248465 DOI: 10.3389/fimmu.2023.1211388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Controlled Human Infection Models (CHIMs) involve deliberately exposing healthy human volunteers to a known pathogen, to allow the detailed study of disease processes and evaluate methods of treatment and prevention, including next generation vaccines. CHIMs are in development for both tuberculosis (TB) and Covid-19, but challenges remain in their ongoing optimisation and refinement. It would be unethical to deliberately infect humans with virulent Mycobacteria tuberculosis (M.tb), however surrogate models involving other mycobacteria, M.tb Purified Protein Derivative or genetically modified forms of M.tb either exist or are under development. These utilise varying routes of administration, including via aerosol, per bronchoscope or intradermal injection, each with their own advantages and disadvantages. Intranasal CHIMs with SARS-CoV-2 were developed against the backdrop of the evolving Covid-19 pandemic and are currently being utilised to both assess viral kinetics, interrogate the local and systemic immunological responses post exposure, and identify immune correlates of protection. In future it is hoped they can be used to assess new treatments and vaccines. The changing face of the pandemic, including the emergence of new virus variants and increasing levels of vaccination and natural immunity within populations, has provided a unique and complex environment within which to develop a SARS-CoV-2 CHIM. This article will discuss current progress and potential future developments in CHIMs for these two globally significant pathogens.
Collapse
|
15
|
Witt KD. Role of MHC class I pathways in Mycobacterium tuberculosis antigen presentation. Front Cell Infect Microbiol 2023; 13:1107884. [PMID: 37009503 PMCID: PMC10050577 DOI: 10.3389/fcimb.2023.1107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
MHC class I antigen processing is an underappreciated area of nonviral host–pathogen interactions, bridging both immunology and cell biology, where the pathogen’s natural life cycle involves little presence in the cytoplasm. The effective response to MHC-I foreign antigen presentation is not only cell death but also phenotypic changes in other cells and stimulation of the memory cells ready for the next antigen reoccurrence. This review looks at the MHC-I antigen processing pathway and potential alternative sources of the antigens, focusing on Mycobacterium tuberculosis (Mtb) as an intracellular pathogen that co-evolved with humans and developed an array of decoy strategies to survive in a hostile environment by manipulating host immunity to its own advantage. As that happens via the selective antigen presentation process, reinforcement of the effective antigen recognition on MHC-I molecules may stimulate subsets of effector cells that act earlier and more locally. Vaccines against tuberculosis (TB) could potentially eliminate this disease, yet their development has been slow, and success is limited in the context of this global disease’s spread. This review’s conclusions set out potential directions for MHC-I-focused approaches for the next generation of vaccines.
Collapse
Affiliation(s)
- Karolina D. Witt
- Pandemic Sciences Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Karolina D. Witt,
| |
Collapse
|
16
|
Safety and Immunogenicity of Recombinant Bacille Calmette-Guérin Strain VPM1002 and Its Derivatives in a Goat Model. Int J Mol Sci 2023; 24:ijms24065509. [PMID: 36982586 PMCID: PMC10058566 DOI: 10.3390/ijms24065509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
A more effective vaccine against tuberculosis than Bacille Calmette-Guérin (BCG) is urgently needed. BCG derived recombinant VPM1002 has been found to be more efficacious and safer than the parental strain in mice models. Newer candidates, such as VPM1002 Δpdx1 (PDX) and VPM1002 ΔnuoG (NUOG), were generated to further improve the safety profile or efficacy of the vaccine. Herein, we assessed the safety and immunogenicity of VPM1002 and its derivatives, PDX and NUOG, in juvenile goats. Vaccination did not affect the goats’ health in regards to clinical/hematological features. However, all three tested vaccine candidates and BCG induced granulomas at the site of injection, with some of the nodules developing ulcerations approximately one month post-vaccination. Viable vaccine strains were cultured from the injection site wounds in a few NUOG- and PDX- vaccinated animals. At necropsy (127 days post-vaccination), BCG, VPM1002, and NUOG, but not PDX, still persisted at the injection granulomas. All strains, apart from NUOG, induced granuloma formation only in the lymph nodes draining the injection site. In one animal, the administered BCG strain was recovered from the mediastinal lymph nodes. Interferon gamma (IFN-γ) release assay showed that VPM1002 and NUOG induced a strong antigen-specific response comparable to that elicited by BCG, while the response to PDX was delayed. Flow cytometry analysis of IFN-γ production by CD4+, CD8+, and γδ T cells showed that CD4+ T cells of VPM1002- and NUOG-vaccinated goats produced more IFN-γ compared to BCG-vaccinated and mock-treated animals. In summary, the subcutaneous application of VPM1002 and NUOG induced anti-tuberculous immunity, while exhibiting a comparable safety profile to BCG in goats.
Collapse
|
17
|
Wilson L, Gracie L, Kidy F, Thomas GN, Nirantharakumar K, Greenfield S, Manaseki-Holland S, Ward DJ, Gooden TE. Safety and efficacy of tuberculosis vaccine candidates in low- and middle-income countries: a systematic review of randomised controlled clinical trials. BMC Infect Dis 2023; 23:120. [PMID: 36829123 PMCID: PMC9951834 DOI: 10.1186/s12879-023-08092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) remains a leading cause of death worldwide, with 98% of cases occurring in low- and middle-income countries (LMICs). The only vaccine licenced for the prevention of TB has limited protection for adolescents, adults and vulnerable populations. A safe and effective vaccine for all populations at risk is imperative to achieve global elimination of TB. We aimed to systematically review the efficacy and safety of TB vaccine candidates in late-phase clinical trials conducted in LMICs. METHODS Medline, Embase, CENTRAL, PubMed, Clinicaltrials.gov and Greylit.org were searched in June 2021 to identify phase 2 or later clinical randomised controlled trials that report the efficacy or safety (adverse events) of TB vaccine candidates with participants of any age living in an LMIC. TB vaccine candidates listed in the 2020 WHO Global TB Report were eligible for inclusion aside from BCG revaccination. Trials were excluded if all participants had active TB at baseline. Two reviewers independently assessed papers for eligibility, and for bias and quality using the Risk of Bias 2 tool and GRADE guidelines, respectively. We report efficacy rates and frequencies of adverse events from each included trial where available and qualitatively synthesise the findings. RESULTS Thirteen papers representing eleven trials met our inclusion criteria. Seven vaccine candidates were reviewed across seven countries: M72/AS01, RUTI, VPM1002, H56:IC31, MTBVAC, DAR-901 and ID93 + GLA-SE. Two trials reported on efficacy: an efficacy rate of 54% (95% CI 11.5, 76.2) was reported for M72/AS01 in adults with latent TB and 3% (95% CI -13.9, 17.7) for DAR-901 in healthy adolescents. However, the latter trial was underpowered. All vaccine candidates had comparable occurrences of adverse events between treatment arms and demonstrated acceptable safety profiles; though, RUTI resulted in one serious complication in a person living with HIV. M72/AS01 was the only vaccine considered safe across a diverse group of people including people living with HIV or latent TB and healthy infants and adolescents. CONCLUSION Further efficacy trials for M72/AS01 are warranted to include additional populations at risk where safety has been demonstrated. Further safety trials are needed for the remaining vaccine candidates to confirm safety in vulnerable populations.
Collapse
Affiliation(s)
- Lydia Wilson
- grid.439591.30000 0004 0399 2770Homerton University Hospital, Homerton Row, London, UK
| | - Lara Gracie
- grid.6572.60000 0004 1936 7486Institute of Medical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Farah Kidy
- grid.6572.60000 0004 1936 7486Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - G. Neil Thomas
- grid.6572.60000 0004 1936 7486Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Krishnarajah Nirantharakumar
- grid.6572.60000 0004 1936 7486Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Sheila Greenfield
- grid.6572.60000 0004 1936 7486Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Semira Manaseki-Holland
- grid.6572.60000 0004 1936 7486Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Derek J. Ward
- grid.6572.60000 0004 1936 7486Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Tiffany E. Gooden
- grid.6572.60000 0004 1936 7486Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
18
|
The Induction of Antigen 85B-Specific CD8 + T Cells by Recombinant BCG Protects against Mycobacterial Infection in Mice. Int J Mol Sci 2023; 24:ijms24020966. [PMID: 36674484 PMCID: PMC9862620 DOI: 10.3390/ijms24020966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection remains a major health problem worldwide. Although the Bacillus Calmette-Guérin (BCG) vaccine is the most widely used vaccination for preventing tuberculosis (TB), its efficacy is limited. We previously developed a new recombinant BCG (rBCG)-based vaccine encoding the Ag85B protein of M. kansasii (Mkan85B), termed rBCG-Mkan85B, and its administration is followed by boosting with plasmid DNA expressing the Ag85B gene (DNA-Mkan85B). Previously, we identified MHC-I (H2-Kd)-restricted epitopes that highly cross-react with those of Mtb in BALB/c (H2d) and CB6F1 (H2b/d) mice. We also reported that the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination protocol protected CB6F1 mice against M. kansasii infection. In this study, to investigate the protective effect of our novel rBCG against Mtb infection, CB6F1 mice were either left unimmunized or immunized with the BCG, rBCG-Mkan85B, or rBCG-Mkan85B/DNA-Mkan85B vaccine for 10 weeks prior to inhalation exposure to the virulent Mtb Erdman strain for another 6 weeks. Compared with the BCG and rBCG-Mkan85B vaccinations, the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination protocol significantly reduced the numbers of pulmonary colony-forming units (CFUs). Moreover, the rBCG-Mkan85B/DNA-Mkan85B prime-boost vaccination induced antigen-specific polyfunctional CD4+ and CD8+ T cells. These results suggest that CD8+ T-cell immunity to immunodominant epitopes of Mtb is enhanced by rBCG vector-based immunization. Thus, rBCG vector-based vaccinations may overcome the limited ability of the current BCG vaccine to elicit TB immunity.
Collapse
|
19
|
Rawat BS, Kumar D, Soni V, Rosenn EH. Therapeutic Potentials of Immunometabolomic Modulations Induced by Tuberculosis Vaccination. Vaccines (Basel) 2022; 10:vaccines10122127. [PMID: 36560537 PMCID: PMC9781011 DOI: 10.3390/vaccines10122127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.
Collapse
Affiliation(s)
- Bhupendra Singh Rawat
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Deepak Kumar
- Department of Zoology, University of Rajasthan, Jaipur 302004, Rajasthan, India
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence:
| | - Eric H. Rosenn
- School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
20
|
Armianinova DK, Karpov DS, Kotliarova MS, Goncharenko AV. Genetic Engineering in Mycobacteria. Mol Biol 2022. [DOI: 10.1134/s0026893322060036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Genetic tools for targeted modification of the mycobacterial genome contribute to the understanding of the physiology and virulence mechanisms of mycobacteria. Human and animal pathogens, such as the Mycobacterium tuberculosis complex, which causes tuberculosis, and M. leprae, which causes leprosy, are of particular importance. Genetic research opens up novel opportunities to identify and validate new targets for antibacterial drugs and to develop improved vaccines. Although mycobacteria are difficult to work with due to their slow growth rate and a limited possibility to transfer genetic information, significant progress has been made in developing genetic engineering methods for mycobacteria. The review considers the main approaches to changing the mycobacterial genome in a targeted manner, including homologous and site-specific recombination and use of the CRISPR/Cas system.
Collapse
|
21
|
Cranmer LM, Cotton MF, Day CL, Nemes E. What's Old and New in Tuberculosis Vaccines for Children. J Pediatric Infect Dis Soc 2022; 11:S110-S116. [PMID: 36314550 PMCID: PMC9620432 DOI: 10.1093/jpids/piac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tuberculosis (TB) is a leading cause of global child mortality. Until the turn of the 21st century, Mycobacterium bovis bacille Calmette-Guerin (BCG) was the only vaccine to prevent TB. The pediatric TB vaccine pipeline has advanced in the past decade to include the evaluation of novel whole cell vaccines to replace infant BCG and investigation of subunit and whole cell vaccines to boost TB immunity during adolescence. We describe the history of BCG, current TB vaccine candidates in clinical trials, and the challenges and opportunities for future TB vaccine research in children. Children are a critical target population for TB vaccines, and expansion of the pediatric TB vaccine pipeline is urgently needed to end the TB pandemic.
Collapse
Affiliation(s)
- Lisa M Cranmer
- Department of Pediatrics, Division of Pediatric Infectious Disease, Emory School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mark F Cotton
- Department of Pediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - Cheryl L Day
- Department of Microbiology & Immunology, Emory School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Dockrell HM. A next generation BCG vaccine moves forward. THE LANCET. INFECTIOUS DISEASES 2022; 22:1404-1406. [PMID: 35772448 DOI: 10.1016/s1473-3099(22)00287-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Hazel M Dockrell
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1A7HT, UK.
| |
Collapse
|
23
|
BCGΔBCG1419c increased memory CD8 + T cell-associated immunogenicity and mitigated pulmonary inflammation compared with BCG in a model of chronic tuberculosis. Sci Rep 2022; 12:15824. [PMID: 36138053 PMCID: PMC9499934 DOI: 10.1038/s41598-022-20017-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/07/2022] [Indexed: 12/18/2022] Open
Abstract
Previously, we reported that a hygromycin resistant version of the BCGΔBCG1419c vaccine candidate reduced tuberculosis (TB) disease in BALB/c, C57BL/6, and B6D2F1 mice infected with Mycobacterium tuberculosis (Mtb) H37Rv. Here, the second-generation version of BCGΔBCG1419c (based on BCG Pasteur ATCC 35734, without antibiotic resistance markers, and a complete deletion of BCG1419c) was compared to its parental BCG for immunogenicity and protective efficacy against the Mtb clinical isolate M2 in C57BL/6 mice. Both BCG and BCGΔBCG1419c induced production of IFN-γ, TNF-α, and/or IL-2 by effector memory (CD44+CD62L-), PPD-specific, CD4+ T cells, and only BCGΔBCG1419c increased effector memory, PPD-specific CD8+ T cell responses in the lungs and spleens compared with unvaccinated mice before challenge. BCGΔBCG1419c increased levels of central memory (CD62L+CD44+) T CD4+ and CD8+ cells compared to those of BCG-vaccinated mice. Both BCG strains elicited Th1-biased antigen-specific polyfunctional effector memory CD4+/CD8+ T cell responses at 10 weeks post-infection, and both vaccines controlled Mtb M2 growth in the lung and spleen. Only BCGΔBCG1419c significantly ameliorated pulmonary inflammation and decreased neutrophil infiltration into the lung compared to BCG-vaccinated and unvaccinated mice. Both BCG strains reduced pulmonary TNF-α, IFN-γ, and IL-10 levels. Taken together, BCGΔBCG1419c increased memory CD8+T cell-associated immunogenicity and mitigated pulmonary inflammation compared with BCG.
Collapse
|
24
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
25
|
Liebler-Tenorio EM, Heyl J, Wedlich N, Figl J, Köhler H, Krishnamoorthy G, Nieuwenhuizen NE, Grode L, Kaufmann SHE, Menge C. Vaccine-Induced Subcutaneous Granulomas in Goats Reflect Differences in Host-Mycobacterium Interactions between BCG- and Recombinant BCG-Derivative Vaccines. Int J Mol Sci 2022; 23:10992. [PMID: 36232295 PMCID: PMC9570401 DOI: 10.3390/ijms231910992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberculous granulomas are highly dynamic structures reflecting the complex host-mycobacterium interactions. The objective of this study was to compare granuloma development at the site of vaccination with BCG and its recombinant derivatives in goats. To characterize the host response, epithelioid cells, multinucleated giant cells (MNGC), T cell subsets, B cells, plasma cells, dendritic cells and mycobacterial antigen were labelled by immunohistochemistry, and lipids and acid-fast bacteria (AFB) were labelled by specific staining. Granulomas with central caseous necrosis developed at the injection site of most goats though lesion size and extent of necrosis differed between vaccine strains. CD4+ T and B cells were more scarce and CD8+ cells were more numerous in granulomas induced by recombinant derivatives compared to their parental BCG strain. Further, the numbers of MNGCs and cells with lipid bodies were markedly lower in groups administered with recombinant BCG strains. Microscopic detection of AFB and mycobacterial antigen was rather frequent in the area of central necrosis, however, the isolation of bacteria in culture was rarely successful. In summary, BCG and its recombinant derivatives induced reproducibly subcutaneous caseous granulomas in goats that can be easily monitored and surgically removed for further studies. The granulomas reflected the genetic modifications of the recombinant BCG-derivatives and are therefore suitable models to compare reactions to different mycobacteria or TB vaccines.
Collapse
Affiliation(s)
| | - Johannes Heyl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Nadine Wedlich
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Julia Figl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | | | | | - Leander Grode
- Vakzine Projekt Management GmbH, 30625 Hannover, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| |
Collapse
|
26
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
27
|
Cotton MF, Madhi SA, Luabeya AK, Tameris M, Hesseling AC, Shenje J, Schoeman E, Hatherill M, Desai S, Kapse D, Brückner S, Koen A, Jose L, Moultrie A, Bhikha S, Walzl G, Gutschmidt A, Kotze LA, Allies DL, Loxton AG, Shaligram U, Abraham M, Johnstone H, Grode L, Kaufmann SHE, Kulkarni PS. Safety and immunogenicity of VPM1002 versus BCG in South African newborn babies: a randomised, phase 2 non-inferiority double-blind controlled trial. THE LANCET INFECTIOUS DISEASES 2022; 22:1472-1483. [DOI: 10.1016/s1473-3099(22)00222-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
|
28
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
29
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
30
|
Melkie ST, Arias L, Farroni C, Jankovic Makek M, Goletti D, Vilaplana C. The role of antibodies in tuberculosis diagnosis, prophylaxis and therapy: a review from the ESGMYC study group. Eur Respir Rev 2022; 31:31/163/210218. [PMID: 35264411 DOI: 10.1183/16000617.0218-2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/05/2022] Open
Abstract
Tuberculosis (TB) is still responsible for the deaths of >1 million people yearly worldwide, and therefore its correct diagnosis is one of the key components of any TB eradication programme. However, current TB diagnostic tests have many limitations, and improved diagnostic accuracy is urgently needed. To improve the diagnostic performance of traditional serology, a combination of different Mycobacterium tuberculosis (MTB) antigens and different antibody isotypes has been suggested, with some showing promising performance for the diagnosis of active TB. Given the incomplete protection conferred by bacille Calmette-Guérin (BCG) vaccination against adult pulmonary TB, efforts to discover novel TB vaccines are ongoing. Efficacy studies from advanced TB vaccines designed to stimulate cell-mediated immunity failed to show protection, suggesting that they may not be sufficient and warranting the need for other types of immunity. The role of antibodies as tools for TB therapy, TB diagnosis and TB vaccine design is discussed. Finally, we propose that the inclusion of antibody-based TB vaccines in current clinical trials may be advisable to improve protection.
Collapse
Affiliation(s)
- Solomon Tibebu Melkie
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Lilibeth Arias
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy
| | - Mateja Jankovic Makek
- Dept for Respiratory Diseases, University Clinical Centre Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,ESCMID (European Society on Clinical Microbiology and Infectious Diseases) study group on mycobacterial infections, Basel, Switzerland
| |
Collapse
|
31
|
Carpenter SM, Lu LL. Leveraging Antibody, B Cell and Fc Receptor Interactions to Understand Heterogeneous Immune Responses in Tuberculosis. Front Immunol 2022; 13:830482. [PMID: 35371092 PMCID: PMC8968866 DOI: 10.3389/fimmu.2022.830482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Despite over a century of research, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), continues to kill 1.5 million people annually. Though less than 10% of infected individuals develop active disease, the specific host immune responses that lead to Mtb transmission and death, as well as those that are protective, are not yet fully defined. Recent immune correlative studies demonstrate that the spectrum of infection and disease is more heterogenous than has been classically defined. Moreover, emerging translational and animal model data attribute a diverse immune repertoire to TB outcomes. Thus, protective and detrimental immune responses to Mtb likely encompass a framework that is broader than T helper type 1 (Th1) immunity. Antibodies, Fc receptor interactions and B cells are underexplored host responses to Mtb. Poised at the interface of initial bacterial host interactions and in granulomatous lesions, antibodies and Fc receptors expressed on macrophages, neutrophils, dendritic cells, natural killer cells, T and B cells have the potential to influence local and systemic adaptive immune responses. Broadening the paradigm of protective immunity will offer new paths to improve diagnostics and vaccines to reduce the morbidity and mortality of TB.
Collapse
Affiliation(s)
- Stephen M. Carpenter
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Cleveland Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Lenette L. Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
- Parkland Health and Hospital System, Dallas, TX, United States
| |
Collapse
|
32
|
Martínez-Pérez A, Estévez O, González-Fernández Á. Contribution and Future of High-Throughput Transcriptomics in Battling Tuberculosis. Front Microbiol 2022; 13:835620. [PMID: 35283833 PMCID: PMC8908424 DOI: 10.3389/fmicb.2022.835620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
While Tuberculosis (TB) infection remains a serious challenge worldwide, big data and “omic” approaches have greatly contributed to the understanding of the disease. Transcriptomics have been used to tackle a wide variety of queries including diagnosis, treatment evolution, latency and reactivation, novel target discovery, vaccine response or biomarkers of protection. Although a powerful tool, the elevated cost and difficulties in data interpretation may hinder transcriptomics complete potential. Technology evolution and collaborative efforts among multidisciplinary groups might be key in its exploitation. Here, we discuss the main fields explored in TB using transcriptomics, and identify the challenges that need to be addressed for a real implementation in TB diagnosis, prevention and therapy.
Collapse
Affiliation(s)
- Amparo Martínez-Pérez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - Olivia Estévez
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| | - África González-Fernández
- Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.,Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain
| |
Collapse
|
33
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
34
|
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a leading cause of mortality and morbidity due to a single infectious agent. Aerosol infection with Mtb can result in a range of responses from elimination, active, incipient, subclinical, and latent Mtb infections (LTBI), depending on the host's immune response and the dose and nature of infecting bacilli. Currently, BCG is the only vaccine approved to prevent TB. Although BCG confers protection against severe forms of childhood TB, its use in adults and those with comorbid conditions, such as HIV infection, is questionable. Novel vaccines, including recombinant BCG (rBCG), were developed to improve BCG's efficacy and use as an alternative to BCG in a vulnerable population. The first-generation rBCG vaccines had different Mtb antigens and were tested as a prime, prime-boost, or immunotherapeutic intervention. The novel vaccines target one or more of the following requirements, namely prevention of infection (POI), prevention of disease (POD), prevention of recurrence (POR), and therapeutic vaccines to treat a TB disease. Several vaccine candidates currently in development are classified into four primary categories: live attenuated whole-cell vaccine, inactivated whole-cell vaccine, adjuvanted protein subunit vaccine, and viral-vectored vaccine. Each vaccine's immunogenicity, safety, and efficacy are tested in preclinical animal models and further validated through various phases of clinical trials. This chapter summarizes the various TB vaccine candidates under different clinical trial stages and promises better protection against TB.
Collapse
Affiliation(s)
- Radha Gopalaswamy
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamilnadu, India
| | - Selvakumar Subbian
- The Public Health Research Institute Center at New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
35
|
After 100 Years of BCG Immunization against Tuberculosis, What Is New and Still Outstanding for This Vaccine? Vaccines (Basel) 2021; 10:vaccines10010057. [PMID: 35062718 PMCID: PMC8778337 DOI: 10.3390/vaccines10010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
In 2021, most of the world was reasonably still concerned about the COVID-19 pandemic, how cases were up and down in different countries, how the vaccination campaigns were ongoing, and most people were familiar with the speed with which vaccines against SARS-Co-V2 were developed, analyzed, and started to be applied in an attempt to curb the pandemic. Because of this, it may have somehow passed relatively inadvertently for people outside of the field that the vaccine used to control tuberculosis (TB), Mycobacterium bovis Bacille Calmette-Guérin (BCG), was first applied to humans a century ago. Over these years, BCG has been the vaccine applied to most human beings in the world, despite its known lack of efficacy to fully prevent respiratory TB. Several strategies have been employed in the last 20 years to produce a novel vaccine that would replace, or boost, immunity and protection elicited by BCG. In this work, to avoid potential redundancies with recently published reviews, I only aim to present my current thoughts about some of the latest findings and outstanding questions that I consider worth investigating to help develop a replacement or modified BCG in order to successfully fight TB, based on BCG itself.
Collapse
|
36
|
Singh AK, Srikrishna G, Bivalacqua TJ, Bishai WR. Recombinant BCGs for tuberculosis and bladder cancer. Vaccine 2021; 39:7321-7331. [PMID: 34593271 PMCID: PMC8648981 DOI: 10.1016/j.vaccine.2021.09.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022]
Abstract
Bacillus Calmette-Guérin (BCG) vaccine is an attenuated live strain of Mycobacterium bovis. It may be the most widely used vaccine in human history and is the only licensed human tuberculosis (TB) vaccine available. Despite its excellent safety history, a century of use in global vaccination programs, and its significant contribution to reducing TB mortality among children, the efficacy of BCG continues to be disputed due to its incomplete protection against pulmonary TB in adults. Still vaccines offer the best chance to contain the ongoing spread of multi-drug resistance TB and disease dissemination. The development of improved vaccines against TB therefore remains a high global priority. Interestingly, recent studies indicate that genetically modified BCG, or administration of existing BCG through alternate routes, or revaccination, offers improved protection, suggesting that BCG is well poised to make a comeback. Intravesical BCG is also the only approved microbial immunotherapy for any form of cancer, and is the first-line therapy for treatment-naïve non-muscle invasive bladder cancer (NMBIC), which represents a majority of the new bladder cancer cases diagnosed. However, almost a third of patients with NMIBC are either BCG unresponsive or have tumor recurrence, leading to a higher risk of disease progression. With very few advances in intravesical therapy over the past two decades for early-stage disease, and a limited pipeline of therapeutics in Phase 3 or late Phase 2 development, there is a major unmet need for improved intravesical therapies for NMIBC. Indeed, genetically modified candidate BCG vaccines engineered to express molecules that confer stronger protection against pulmonary TB or induce potent anti-tumor immunity in NMIBC have shown promise in both pre-clinical and clinical settings. This review discusses the development of second generation, genetically modified BCG candidates as TB vaccines and as anti-tumor adjuvant therapy for NMIBC.
Collapse
Affiliation(s)
- Alok K Singh
- Dept of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, 1550 Orleans St, Baltimore, MD 21287, USA
| | - Geetha Srikrishna
- Dept of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, 1550 Orleans St, Baltimore, MD 21287, USA
| | - Trinity J Bivalacqua
- Dept of Urology, Johns Hopkins School of Medicine, 1550 Orleans St., Baltimore, MD 21287, USA
| | - William R Bishai
- Dept of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, 1550 Orleans St, Baltimore, MD 21287, USA.
| |
Collapse
|
37
|
Suliman S, Pelzer PT, Shaku M, Rozot V, Mendelsohn SC. Meeting report: Virtual Global Forum on Tuberculosis Vaccines, 20-22 April 2021. Vaccine 2021; 39:7223-7229. [PMID: 34538522 PMCID: PMC8441545 DOI: 10.1016/j.vaccine.2021.08.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022]
Abstract
The Global Forum on Tuberculosis (TB) Vaccines was held virtually from 20 to 22 April 2021, marking its 20th anniversary. The Global Forum on TB Vaccines is the world's largest gathering of stakeholders striving to develop new vaccines to prevent TB. The program included more than 60 speakers in 11 scientific sessions, panel discussions, and workshops. It provided an overview of the state of the field, and an opportunity to share the latest research findings, as well as new and innovative approaches to TB vaccine research and development (R&D). This year, it was held against the backdrop of the COVID-19 pandemic and convened researchers, developers, funders, and other stakeholders remotely to discuss opportunities and challenges for TB vaccine R&D in these unprecedented times.
Collapse
Affiliation(s)
- Sara Suliman
- Stop TB Partnership Working Group on New TB Vaccines, New York, NY, USA; Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Puck T Pelzer
- Stop TB Partnership Working Group on New TB Vaccines, New York, NY, USA; KNCV Tuberculosis Foundation, The Hague, the Netherlands
| | - Moagi Shaku
- Stop TB Partnership Working Group on New TB Vaccines, New York, NY, USA
| | - Virginie Rozot
- Stop TB Partnership Working Group on New TB Vaccines, New York, NY, USA; South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Wernher and Beit South Building, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Simon C Mendelsohn
- Stop TB Partnership Working Group on New TB Vaccines, New York, NY, USA; South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, Wernher and Beit South Building, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
38
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
39
|
Kaufmann SHE. Vaccine Development Against Tuberculosis Over the Last 140 Years: Failure as Part of Success. Front Microbiol 2021; 12:750124. [PMID: 34691001 PMCID: PMC8526900 DOI: 10.3389/fmicb.2021.750124] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
The year 2020 was shaped by the COVID-19 pandemic which killed more people than any other infectious disease in this particular year. At the same time, the development of highly efficacious COVID-19 vaccines within less than a year raises hope that this threat can be tamed in the near future. For the last 200 years, the agent of tuberculosis (TB) has been the worst killer amongst all pathogens. Although a vaccine has been available for 100 years, TB remains a substantial threat. The TB vaccine, Bacille Calmette-Guérin (BCG), has saved tens of millions of lives since its deployment. It was the best and only choice available amongst many attempts to develop efficacious vaccines and all competitors, be they subunit vaccines, viable vaccines or killed whole cell vaccines have failed. Yet, BCG is insufficient. The last decades have witnessed a reawakening of novel vaccine approaches based on deeper insights into immunity underlying TB and BCG immunization. In addition, technical advances in molecular genetics and the design of viral vectors and adjuvants have facilitated TB vaccine development. This treatise discusses firstly early TB vaccine developments leading to BCG as the sole preventive measure which stood the test of time, but failed to significantly contribute to TB control and secondly more recent attempts to develop novel vaccines are described that focus on the genetically modified BCG-based vaccine VPM1002, which has become the frontrunner amongst viable TB vaccine candidates. It is hoped that highly efficacious vaccines against TB will become available even though it remains unclear whether and when this ambition can be accomplished. None the less it is clear that the goal of reducing TB morbidity and mortality by 90% or 95%, respectively, by 2030 as proposed by the World Health Organization depends significantly on better vaccines.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
40
|
Chiwala G, Liu Z, Mugweru JN, Wang B, Khan SA, Bate PNN, Yusuf B, Hameed HMA, Fang C, Tan Y, Guan P, Hu J, Tan S, Liu J, Zhong N, Zhang T. A recombinant selective drug-resistant M. bovis BCG enhances the bactericidal activity of a second-line anti-tuberculosis regimen. Biomed Pharmacother 2021; 142:112047. [PMID: 34426260 DOI: 10.1016/j.biopha.2021.112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022] Open
Abstract
Drug-resistant tuberculosis (DR-TB) poses a new threat to global health; to improve the treatment outcome, therapeutic vaccines are considered the best chemotherapy adjuvants. Unfortunately, there is no therapeutic vaccine approved against DR-TB. Our study assessed the therapeutic efficacy of a recombinant drug-resistant BCG (RdrBCG) vaccine in DR-TB. We constructed the RdrBCG overexpressing Ag85B and Rv2628 by selecting drug-resistant BCG strains and transformed them with plasmid pEBCG or pIBCG to create RdrBCG-E and RdrBCG-I respectively. Following successful stability testing, we tested the vaccine's safety in severe combined immune deficient (SCID) mice that lack both T and B lymphocytes plus immunoglobulins. Finally, we evaluated the RdrBCG's therapeutic efficacy in BALB/c mice infected with rifampin-resistant M. tuberculosis and treated with a second-line anti-TB regimen. We obtained M. bovis strains which were resistant to several second-line drugs and M. tuberculosis resistant to rifampin. Notably, the exogenously inserted genes were lost in RdrBCG-E but remained stable in the RdrBCG-I both in vitro and in vivo. When administered adjunct to a second-line anti-TB regimen in a murine model of DR-TB, the RdrBCG-I lowered lung M. tuberculosis burden by 1 log10. Furthermore, vaccination with RdrBCG-I adjunct to chemotherapy minimized lung tissue pathology in mice. Most importantly, the RdrBCG-I showed almost the same virulence as its parent BCG Tice strain in SCID mice. Our findings suggested that the RdrBCG-I was stable, safe and effective as a therapeutic vaccine. Hence, the "recombinant" plus "drug-resistant" BCG strategy could be a useful concept for developing therapeutic vaccines against DR-TB.
Collapse
MESH Headings
- Amikacin/pharmacology
- Amikacin/therapeutic use
- Animals
- Antigens, Bacterial/biosynthesis
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antitubercular Agents/pharmacology
- Antitubercular Agents/therapeutic use
- BCG Vaccine/biosynthesis
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- BCG Vaccine/therapeutic use
- Disease Models, Animal
- Drug Resistance, Bacterial/genetics
- Levofloxacin/pharmacology
- Levofloxacin/therapeutic use
- Mice, Inbred BALB C
- Mice, SCID
- Mycobacterium bovis/chemistry
- Mycobacterium bovis/drug effects
- Mycobacterium bovis/genetics
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/pathogenicity
- Plasmids
- Prothionamide/pharmacology
- Prothionamide/therapeutic use
- Pyrazinamide/pharmacology
- Pyrazinamide/therapeutic use
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/pathology
- Tuberculosis, Pulmonary/prevention & control
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Virulence
- Mice
Collapse
Affiliation(s)
- Gift Chiwala
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Julius N Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, Embu 60100, Kenya
| | - Bangxing Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shahzad Akbar Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Petuel Ndip Ndip Bate
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Buhari Yusuf
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China; Guangzhou National Laboratory, Guangzhou 510320, China.
| |
Collapse
|
41
|
Lobo N, Brooks NA, Zlotta AR, Cirillo JD, Boorjian S, Black PC, Meeks JJ, Bivalacqua TJ, Gontero P, Steinberg GD, McConkey D, Babjuk M, Alfred Witjes J, Kamat AM. 100 years of Bacillus Calmette-Guérin immunotherapy: from cattle to COVID-19. Nat Rev Urol 2021; 18:611-622. [PMID: 34131332 PMCID: PMC8204595 DOI: 10.1038/s41585-021-00481-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Bacillus Calmette-Guérin (BCG) is the most widely used vaccine worldwide and has been used to prevent tuberculosis for a century. BCG also stimulates an anti-tumour immune response, which urologists have harnessed for the treatment of non-muscle-invasive bladder cancer. A growing body of evidence indicates that BCG offers protection against various non-mycobacterial and viral infections. The non-specific effects of BCG occur via the induction of trained immunity and form the basis for the hypothesis that BCG vaccination could be used to protect against the severity of coronavirus disease 2019 (COVID-19). This Perspective article highlights key milestones in the 100-year history of BCG and projects its potential role in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Niyati Lobo
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan A Brooks
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre R Zlotta
- Division of Urology, Department of Surgery, Sinai Health System, University of Toronto, Toronto, ON, Canada
- Department of Surgical Oncology, Division of Urology, Princess Margaret Cancer Centre, University of Toronto and University Health Network, Toronto, ON, Canada
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA
| | | | | | - Joshua J Meeks
- Northwestern University School of Medicine, Chicago, IL, USA
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paolo Gontero
- Division of Urology, Molinette Hospital, University of Torino School of Medicine, Torino, Italy
| | | | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Marko Babjuk
- Department of Urology, Hospital Motol, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Alfred Witjes
- Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Ashish M Kamat
- Department of Urology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Lange C, Aaby P, Behr MA, Donald PR, Kaufmann SHE, Netea MG, Mandalakas AM. 100 years of Mycobacterium bovis bacille Calmette-Guérin. THE LANCET. INFECTIOUS DISEASES 2021; 22:e2-e12. [PMID: 34506734 DOI: 10.1016/s1473-3099(21)00403-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG), an experimental vaccine designed to protect cattle from bovine tuberculosis, was administered for the first time to a newborn baby in Paris in 1921. Over the past century, BCG has saved tens of millions of lives and has been given to more humans than any other vaccine. It remains the sole tuberculosis vaccine licensed for use in humans. BCG provides long-lasting strong protection against miliary and meningeal tuberculosis in children, but it is less effective for the prevention of pulmonary tuberculosis, especially in adults. Evidence mainly from the past two decades suggests that BCG has non-specific benefits against non-tuberculous infections in newborn babies and in older adults, and offers immunotherapeutic benefit in certain malignancies such as non-muscle invasive bladder cancer. However, as a live attenuated vaccine, BCG can cause localised or disseminated infections in immunocompromised hosts, which can also occur following intravesical installation of BCG for the treatment of bladder cancer. The legacy of BCG includes fundamental discoveries about tuberculosis-specific and non-specific immunity and the demonstration that tuberculosis is a vaccine-preventable disease, providing a foundation for new vaccines to hasten tuberculosis elimination.
Collapse
Affiliation(s)
- Christoph Lange
- Division of Clinical Infectious Diseases, Medical Clinic, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany; Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - Peter Aaby
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau; Bandim Health Project, Southern Danish University, Copenhagen, Denmark
| | - Marcel A Behr
- McGill International TB Centre and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Peter R Donald
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany; Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Anna M Mandalakas
- Global TB Program, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
43
|
Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother 2021; 17:2454-2470. [PMID: 33769193 PMCID: PMC8475575 DOI: 10.1080/21645515.2021.1885280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
Despite aggressive eradication efforts, Tuberculosis (TB) remains a global health burden, one that disproportionally affects poorer, less developed nations. The only vaccine approved for TB, the Bacillus of Calmette and Guérin (BCG) vaccine remains controversial because it's stated efficacy has been cited as anywhere from 0 to 80%. Nevertheless, there have been exciting discoveries about the mechanism of action of the BCG vaccine that suggests it has a role in immunization schedules today. We review recent data suggesting the vaccine imparts protection against both tuberculosis and non-tuberculosis pathogens via a newly discovered immune system called trained immunity. BCG's efficacy also appears to be tied to its affect on granulocytes at the epigenetic and hematopoietic stem cell levels, which we discuss in this article at length. We also write about how the different strains of the BCG vaccine elicit different immune responses, suggesting that certain BCG strains are more immunogenic than others. Finally, our review delves into how the current vaccine is being reformulated to be more efficacious, and track the development of the next generation vaccines against TB.
Collapse
Affiliation(s)
- Thomas Cho
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | | | - Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yash Dara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Shuna Jung
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
44
|
Marques-Neto LM, Piwowarska Z, Kanno AI, Moraes L, Trentini MM, Rodriguez D, Silva JLSC, Leite LCC. Thirty years of recombinant BCG: new trends for a centenary vaccine. Expert Rev Vaccines 2021; 20:1001-1011. [PMID: 34224293 DOI: 10.1080/14760584.2021.1951243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Global perception of the potential for Bacille Calmette-Guérin (BCG), and consequently recombinant BCG (rBCG), in a variety of prophylactic and therapeutic applications has been increasing. A century of information on BCG, and three decades of experience with rBCG, has generated solid knowledge in this field.Area covered: Here, we review the current state of knowledge of BCG and rBCG development. Molecular tools have facilitated the expression of a variety of molecules in BCG, with the aim of improving its efficacy as a tuberculosis vaccine, generating polyvalent vaccines against other pathogens, including viruses, bacteria, and parasites, and developing immunotherapy approaches against noninvasive bladder cancer. BCG's recently appraised heterologous effects and prospects for expanding its application to other diseases are also addressed.Expert opinion: There are high expectations for new tuberculosis vaccines currently undergoing advanced clinical trials, which could change the prospects of the field. Systems biology could reveal effective biomarkers of protection, which would greatly support vaccine development. The development of appropriate large-scale production processes would further support implementation of new vaccines and rBCG products. The next few years should consolidate the broader applications of BCG and produce insights into improvements using the recombinant BCG technology.
Collapse
Affiliation(s)
| | - Zuzanna Piwowarska
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Alex I Kanno
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luana Moraes
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Monalisa M Trentini
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Jose L S C Silva
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Luciana C C Leite
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
45
|
Gong W, Aspatwar A, Wang S, Parkkila S, Wu X. COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials. Expert Rev Vaccines 2021; 20:857-880. [PMID: 34078215 PMCID: PMC8220438 DOI: 10.1080/14760584.2021.1938550] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Introduction: The coronavirus disease 2019 (COVID-19) pandemic continues to spread worldwide and vaccination remains the most effective approach to control COVID-19. Currently, at least ten COVID-19 vaccines have been authorized under emergency authorization. However, these vaccines still face many challenges.Areas covered: This study reviews the concept and mechanisms of trained immunity induced by the Bacille Calmette Guérin (BCG) vaccine and identifies questions that should be answered before the BCG vaccine could be used to combat COVID-19 pandemic. Moreover, we present for the first time the details of current BCG vaccine clinical trials, which are underway in various countries, to assess its effectiveness in combating the COVID-19 pandemic. Finally, we discuss the challenges of COVID-19 vaccines and opportunities for the BCG vaccine. The literature was found by searching the PubMed (https://pubmed.ncbi.nlm.nih.gov/), Web of Science (www.webofknowledge.com), Embase (https://www.embase.com), and CNKI (https://www.cnki.net/) databases. The date was set as the default parameter for each database.Expert opinion: The advantages of the BCG vaccine can compensate for the shortcomings of other COVID-19 vaccines. If the efficacy of the BCG vaccine against COVID-19 is confirmed by these clinical trials, the BCG vaccine may be essential to resolve the challenges faced by COVID-19 vaccines.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8 Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Shuyong Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8 Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, 8 Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
46
|
Ahmed A, Rakshit S, Adiga V, Dias M, Dwarkanath P, D'Souza G, Vyakarnam A. A century of BCG: Impact on tuberculosis control and beyond. Immunol Rev 2021; 301:98-121. [PMID: 33955564 DOI: 10.1111/imr.12968] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.
Collapse
Affiliation(s)
- Asma Ahmed
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | | | - George D'Souza
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India.,Department of Pulmonary Medicine, St John's Medical College, Bangalore, India
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
47
|
Foster M, Hill PC, Setiabudiawan TP, Koeken VACM, Alisjahbana B, van Crevel R. BCG-induced protection against Mycobacterium tuberculosis infection: Evidence, mechanisms, and implications for next-generation vaccines. Immunol Rev 2021; 301:122-144. [PMID: 33709421 PMCID: PMC8252066 DOI: 10.1111/imr.12965] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/20/2022]
Abstract
The tuberculosis (TB) vaccine Bacillus Calmette-Guérin (BCG) was introduced 100 years ago, but as it provides insufficient protection against TB disease, especially in adults, new vaccines are being developed and evaluated. The discovery that BCG protects humans from becoming infected with Mycobacterium tuberculosis (Mtb) and not just from progressing to TB disease provides justification for considering Mtb infection as an endpoint in vaccine trials. Such trials would require fewer participants than those with disease as an endpoint. In this review, we first define Mtb infection and disease phenotypes that can be used for mechanistic studies and/or endpoints for vaccine trials. Secondly, we review the evidence for BCG-induced protection against Mtb infection from observational and BCG re-vaccination studies, and discuss limitations and variation of this protection. Thirdly, we review possible underlying mechanisms for BCG efficacy against Mtb infection, including alternative T cell responses, antibody-mediated protection, and innate immune mechanisms, with a specific focus on BCG-induced trained immunity, which involves epigenetic and metabolic reprogramming of innate immune cells. Finally, we discuss the implications for further studies of BCG efficacy against Mtb infection, including for mechanistic research, and their relevance to the design and evaluation of new TB vaccines.
Collapse
Affiliation(s)
- Mitchell Foster
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Philip C. Hill
- Centre for International HealthUniversity of OtagoDunedinNew Zealand
| | - Todia Pediatama Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| | - Valerie A. C. M. Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
- Department of Computational Biology for Individualised Infection MedicineCentre for Individualised Infection Medicine (CiiM) & TWINCOREJoint Ventures between The Helmholtz‐Centre for Infection Research (HZI) and The Hannover Medical School (MHH)HannoverGermany
| | - Bachti Alisjahbana
- Tuberculosis Working GroupFaculty of MedicineUniversitas PadjadjaranBandungIndonesia
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
48
|
Sharma A. Epidemiological transcriptomic data supports BCG protection in viral diseases including COVID-19. Gene 2021; 783:145574. [PMID: 33737124 PMCID: PMC7959679 DOI: 10.1016/j.gene.2021.145574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023]
Abstract
Epidemiological and clinical evidence suggests that Bacille Calmette-Guérin (BCG) vaccine induced trained immunity protects against non-specific infections. Multiple clinical trials are currently underway to assess effectiveness of the vaccine in the coronavirus disease 2019 (COVID-19). However, the durability and mechanism of BCG trained immunity remain unclear. Here, an integrative analysis of available epidemiological transcriptomic data related to BCG vaccination and respiratory tract viral infections as well as of reported transcriptomic alterations in COVID-19 is presented toward addressing this gap. Results suggest that the vaccine induces very long-lasting transcriptomic changes that mimic viral infections by, consistent with the present concept of trained immunity, upregulation of antiviral defense response, and oppose viral infections by, inconsistent with the concept, downregulation of myeloid cell activation. These durability and mechanistic insights argue against possible indiscriminate use of the vaccine and activated innate immune response associated safety concerns in COVID-19, in that order.
Collapse
Affiliation(s)
- Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110025 India.
| |
Collapse
|
49
|
Ruibal P, Voogd L, Joosten SA, Ottenhoff THM. The role of donor-unrestricted T-cells, innate lymphoid cells, and NK cells in anti-mycobacterial immunity. Immunol Rev 2021; 301:30-47. [PMID: 33529407 PMCID: PMC8154655 DOI: 10.1111/imr.12948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Vaccination strategies against mycobacteria, focusing mostly on classical T‐ and B‐cells, have shown limited success, encouraging the addition of alternative targets. Classically restricted T‐cells recognize antigens presented via highly polymorphic HLA class Ia and class II molecules, while donor‐unrestricted T‐cells (DURTs), with few exceptions, recognize ligands via genetically conserved antigen presentation molecules. Consequently, DURTs can respond to the same ligands across diverse human populations. DURTs can be activated either through cognate TCR ligation or via bystander cytokine signaling. TCR‐driven antigen‐specific activation of DURTs occurs upon antigen presentation via non‐polymorphic molecules such as HLA‐E, CD1, MR1, and butyrophilin, leading to the activation of HLA‐E–restricted T‐cells, CD1‐restricted T‐cells, mucosal‐associated invariant T‐cells (MAITs), and TCRγδ T‐cells, respectively. NK cells and innate lymphoid cells (ILCs), which lack rearranged TCRs, are activated through other receptor‐triggering pathways, or can be engaged through bystander cytokines, produced, for example, by activated antigen‐specific T‐cells or phagocytes. NK cells can also develop trained immune memory and thus could represent cells of interest to mobilize by novel vaccines. In this review, we summarize the latest findings regarding the contributions of DURTs, NK cells, and ILCs in anti–M tuberculosis, M leprae, and non‐tuberculous mycobacterial immunity and explore possible ways in which they could be harnessed through vaccines and immunotherapies to improve protection against Mtb.
Collapse
Affiliation(s)
- Paula Ruibal
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Voogd
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
50
|
Safar HA, Mustafa AS, McHugh TD. COVID-19 vaccine development: What lessons can we learn from TB? Ann Clin Microbiol Antimicrob 2020; 19:56. [PMID: 33256750 PMCID: PMC7702199 DOI: 10.1186/s12941-020-00402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
At the time of writing, the SARS-CoV-2 virus has infected more than 49 million people causing more than 1.2 million deaths worldwide since its emergence from Wuhan, China in December 2019. Vaccine development against SARS-CoV-2 has drawn the global attention in order to stop the spread of the virus, with more than 10 vaccines being tested in phase III clinical trials, as of November 2020. However, critical to vaccine development is consideration of the immunological response elicited as well as biological features of the vaccine and both need to be evaluated thoroughly. Tuberculosis is also a major infectious respiratory disease of worldwide prevalence and the vaccine development for tuberculosis has been ongoing for decades. In this review, we highlight some of the common features, challenges and complications in tuberculosis vaccine development, which may also be relevant for, and inform, COVID-19 vaccine development.
Collapse
Affiliation(s)
- Hussain A Safar
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Timothy D McHugh
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|