1
|
Kemenesi G, Tóth GE, Mayora-Neto M, Scott S, Temperton N, Wright E, Mühlberger E, Hume AJ, Suder EL, Zana B, Boldogh SA, Görföl T, Estók P, Szentiványi T, Lanszki Z, Somogyi BA, Nagy Á, Pereszlényi CI, Dudás G, Földes F, Kurucz K, Madai M, Zeghbib S, Maes P, Vanmechelen B, Jakab F. Isolation of infectious Lloviu virus from Schreiber's bats in Hungary. Nat Commun 2022; 13:1706. [PMID: 35361761 PMCID: PMC8971391 DOI: 10.1038/s41467-022-29298-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Some filoviruses can be transmitted to humans by zoonotic spillover events from their natural host and filovirus outbreaks have occured with increasing frequency in the last years. The filovirus Lloviu virus (LLOV), was identified in 2002 in Schreiber's bats (Miniopterus schreibersii) in Spain and was subsequently detected in bats in Hungary. Here we isolate infectious LLOV from the blood of a live sampled Schreiber's bat in Hungary. The isolate is subsequently sequenced and cultured in the Miniopterus sp. kidney cell line SuBK12-08. It is furthermore able to infect monkey and human cells, suggesting that LLOV might have spillover potential. A multi-year surveillance of LLOV in bats in Hungary detects LLOV RNA in both deceased and live animals as well as in coupled ectoparasites from the families Nycteribiidae and Ixodidae. This correlates with LLOV seropositivity in sampled Schreiber's bats. Our data support the role of bats, specifically Miniopterus schreibersii as hosts for LLOV in Europe. We suggest that bat-associated parasites might play a role in the natural ecology of filoviruses in temperate climate regions compared to filoviruses in the tropics.
Collapse
Affiliation(s)
- Gábor Kemenesi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| | - Gábor E Tóth
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Universities of Kent & Greenwich, Kent, UK
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Universities of Kent & Greenwich, Kent, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Chatham Maritime, Universities of Kent & Greenwich, Kent, UK
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Ellen L Suder
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Brigitta Zana
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | | | - Tamás Görföl
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Péter Estók
- Department of Zoology, Eszterházy Károly University, Eger, Hungary
| | - Tamara Szentiványi
- Institute of Ecology and Botany, ÖK Centre for Ecological Research, Vácrátót, Hungary
| | - Zsófia Lanszki
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Balázs A Somogyi
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ágnes Nagy
- Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | | | - Gábor Dudás
- Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | - Fanni Földes
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Kornélia Kurucz
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Mónika Madai
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Safia Zeghbib
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Piet Maes
- Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Bert Vanmechelen
- Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Jiang S, Mukherjee N, Bennett RS, Chen H, Logue J, Dighero-Kemp B, Kurtz JR, Adams R, Phillips D, Schürch CM, Goltsev Y, Hickey JW, McCaffrey EF, Delmastro A, Chu P, Reader JR, Keesler RI, Galván JA, Zlobec I, Van Rompay KKA, Liu DX, Hensley LE, Nolan GP, McIlwain DR. Rhesus Macaque CODEX Multiplexed Immunohistochemistry Panel for Studying Immune Responses During Ebola Infection. Front Immunol 2021; 12:729845. [PMID: 34938283 PMCID: PMC8685521 DOI: 10.3389/fimmu.2021.729845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Non-human primate (NHP) animal models are an integral part of the drug research and development process. For some biothreat pathogens, animal model challenge studies may offer the only possibility to evaluate medical countermeasure efficacy. A thorough understanding of host immune responses in such NHP models is therefore vital. However, applying antibody-based immune characterization techniques to NHP models requires extensive reagent development for species compatibility. In the case of studies involving high consequence pathogens, further optimization for use of inactivated samples may be required. Here, we describe the first optimized CO-Detection by indEXing (CODEX) multiplexed tissue imaging antibody panel for deep profiling of spatially resolved single-cell immune responses in rhesus macaques. This 21-marker panel is composed of a set of 18 antibodies that stratify major immune cell types along with a set three Ebola virus (EBOV)-specific antibodies. We validated these two sets of markers using immunohistochemistry and CODEX in fully inactivated Formalin-Fixed Paraffin-Embedded (FFPE) tissues from mock and EBOV challenged macaques respectively and provide an efficient framework for orthogonal validation of multiple antibody clones using CODEX multiplexed tissue imaging. We also provide the antibody clones and oligonucleotide tag sequences as a valuable resource for other researchers to recreate this reagent set for future studies of tissue immune responses to EBOV infection and other diseases.
Collapse
Affiliation(s)
- Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Nilanjan Mukherjee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Richard S. Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - James Logue
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Bonnie Dighero-Kemp
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Jonathan R. Kurtz
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Ricky Adams
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Darci Phillips
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Christian M. Schürch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Yury Goltsev
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - John W. Hickey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Erin F. McCaffrey
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Alea Delmastro
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Pauline Chu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - J. Rachel Reader
- California National Primate Research Center, University of California, Davis, CA, United States
| | - Rebekah I. Keesler
- California National Primate Research Center, University of California, Davis, CA, United States
| | - José A. Galván
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Koen K. A. Van Rompay
- California National Primate Research Center, University of California, Davis, CA, United States
| | - David X. Liu
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Lisa E. Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Garry P. Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - David R. McIlwain
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Yao W, Yang Z, Lou X, Mao H, Yan H, Zhang Y. Simultaneous Detection of Ebola Virus and Pathogens Associated With Hemorrhagic Fever by an Oligonucleotide Microarray. Front Microbiol 2021; 12:713372. [PMID: 34394063 PMCID: PMC8363200 DOI: 10.3389/fmicb.2021.713372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022] Open
Abstract
Ebola virus infection causes severe hemorrhagic fever, and its mortality rates varied from 25 to 90% in the previous outbreaks. The highly infectious and lethal nature of this virus highlights the need for reliable and sensitive diagnostic methods to distinguish it from other diseases present with similar clinical symptoms. Based on multiplex polymerase chain reaction (PCR) and oligonucleotide microarray technology, a cost-effective, multipathogen and high-throughput method was developed for simultaneous detection of Ebola virus and other pathogens associated with hemorrhagic fever, including Marburg virus, Lassa fever virus, Junin virus, Machupo virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, malaria parasite, hantavirus, severe fever with thrombocytopenia syndrome virus, dengue virus, yellow fever virus, Chikungunya virus, influenza A virus, and influenza B virus. This assay had an excellent specificity for target pathogens, without overlap signal between the probes. The limit of detection was approximately 103 pathogen copies/μl. A total of 60 positive nucleic acid samples for different pathogens were detected, a concordance of 100% was observed between microarray assay and real-time PCR analysis. Consequently, the described oligonucleotide microarray may be specific and sensitive assay for diagnosis and surveillance of infections caused by Ebola virus and other species of hemorrhagic fever pathogens.
Collapse
Affiliation(s)
- Wenwu Yao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhangnv Yang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiuyu Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
4
|
Surtees R, Stern D, Ahrens K, Kromarek N, Lander A, Kreher P, Weiss S, Hewson R, Punch EK, Barr JN, Witkowski PT, Couacy-Hymann E, Marzi A, Dorner BG, Kurth A. Development of a multiplex microsphere immunoassay for the detection of antibodies against highly pathogenic viruses in human and animal serum samples. PLoS Negl Trop Dis 2020; 14:e0008699. [PMID: 33095766 PMCID: PMC7641473 DOI: 10.1371/journal.pntd.0008699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/04/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022] Open
Abstract
Surveillance of highly pathogenic viruses circulating in both human and animal populations is crucial to unveil endemic infections and potential zoonotic reservoirs. Monitoring the burden of disease by serological assay could be used as an early warning system for imminent outbreaks as an increased seroprevalance often precedes larger outbreaks. However, the multitude of highly pathogenic viruses necessitates the need to identify specific antibodies against several targets from both humans as well as from potential reservoir animals such as bats. In order to address this, we have developed a broadly reactive multiplex microsphere immunoassay (MMIA) for the detection of antibodies against several highly pathogenic viruses from both humans and animals. To this aim, nucleoproteins (NP) of Ebola virus (EBOV), Marburg virus (MARV) and nucleocapsid proteins (NP) of Crimean-Congo haemorrhagic fever virus, Rift Valley fever virus and Dobrava-Belgrade hantavirus were employed in a 5-plex assay for IgG detection. After optimisation, specific binding to each respective NP was shown by testing sera from humans and non-human primates with known infection status. The usefulness of our assay for serosurveillance was shown by determining the immune response against the NP antigens in a panel of 129 human serum samples collected in Guinea between 2011 and 2012 in comparison to a panel of 88 sera from the German blood bank. We found good agreement between our MMIA and commercial or in-house reference methods by ELISA or IIFT with statistically significant higher binding to both EBOV NP and MARV NP coupled microspheres in the Guinea panel. Finally, the MMIA was successfully adapted to detect antibodies from bats that had been inoculated with EBOV- and MARV- virus-like particles, highlighting the versatility of this technique and potentially enabling the monitoring of wildlife as well as human populations with this assay. We were thus able to develop and validate a sensitive and broadly reactive high-throughput serological assay which could be used as a screening tool to detect antibodies against several highly pathogenic viruses.
Collapse
Affiliation(s)
- Rebecca Surtees
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Daniel Stern
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Katharina Ahrens
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nicole Kromarek
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Lander
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Petra Kreher
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Sabrina Weiss
- Institute of Virology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Roger Hewson
- Virology and Pathogenesis Group, National Infection Service, Public Health England, Porton Down, United Kingdom
| | - Emma K Punch
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - John N Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | - Peter T Witkowski
- Institute of Virology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | | | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Brigitte G Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Andreas Kurth
- Biosafety Level-4 Laboratory, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
5
|
Natesan M, Wu SW, Chen CI, Jensen SMR, Karlovac N, Dyas BK, Mudanyali O, Ulrich RG. A Smartphone-Based Rapid Telemonitoring System for Ebola and Marburg Disease Surveillance. ACS Sens 2019; 4:61-68. [PMID: 30525467 PMCID: PMC6350200 DOI: 10.1021/acssensors.8b00842] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a digital and multiplexed platform for the rapid detection and telemonitoring of infections caused by Ebola and Marburg filoviruses. The system includes a flow cell assay cartridge that captures specific antibodies with microarrayed recombinant antigens from all six species of filovirus, and a smartphone fluorescent reader for high-performance interpretation of test results. Multiplexed viral proteins, which are expandable to include greater numbers of probes, were incorporated to obtain highest confidence results by cross-correlation, and a custom smartphone application was developed for data analysis, interpretation, and communication. The smartphone reader utilizes an opto-electro-mechanical hardware attachment that snaps at the back of a Motorola smartphone and provides a user interface to manage the operation, acquire test results, and communicate with cloud service. The application controls the hardware attachment to turn on LEDs and digitally record the optically enhanced images. Assay processing time is approximately 20 min for microliter amounts of blood, and test results are digitally processed and displayed within 15 s. Furthermore, a secure cloud service was developed for the telemonitoring of test results generated by the smartphone readers in the field. Assay system results were tested with sera from nonhuman primates that received a live attenuated EBOV vaccine. This integrated system will provide a rapid, reliable, and digital solution to prevent the rapid overwhelming of medical systems and resources during EVD or MVD outbreaks. Further, this disease-monitoring system will be useful in resource-limited countries where there is a need for dispersed laboratory analysis of recent or active infections.
Collapse
Affiliation(s)
- Mohan Natesan
- Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Sz-Wei Wu
- NOWDiagnostics Inc., Inglewood, California 90301, United States
| | - Chieh-I Chen
- NOWDiagnostics Inc., Inglewood, California 90301, United States
| | - Stig M. R. Jensen
- Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Neven Karlovac
- NOWDiagnostics Inc., Inglewood, California 90301, United States
| | - Beverly K. Dyas
- Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Onur Mudanyali
- NOWDiagnostics Inc., Inglewood, California 90301, United States
| | - Robert G. Ulrich
- Division of Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| |
Collapse
|
6
|
Keasey SL, Smith JL, Fernandez S, Durbin AP, Zhao BM, Ulrich RG. Impact of Dengue Virus Serotype 2 Strain Diversity on Serological Immune Responses to Dengue. ACS Infect Dis 2018; 4:1705-1717. [PMID: 30347144 DOI: 10.1021/acsinfecdis.8b00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dengue is a mosquito-borne disease caused by four dengue virus serotypes (DENV1-4) that are loosely categorized by sequence commonalities and antibody recognition profiles. The highly variable envelope protein (E) that is prominently displayed on the surface of DENV is an essential component of vaccines currently under development, yet the impact of using single strains to represent each serotype in tetravalent vaccines has not been adequately studied. We synthesized chimeric E by replacing highly variable residues from a dengue virus serotype 2 vaccine strain (PUO-218) with those from 16 DENV2 lineages spanning 60 years of antigen evolution. Examining sera from human and rhesus macaques challenged with single strains of DENV2, antibody-E interactions were markedly inhibited or enhanced by residues mainly focused within a 480 Å2 footprint displayed on the E backbone. The striking impact of E diversity on polyclonal immune responses suggests that frequent antigen updates may be necessary for vaccines to counter shifts in circulating strains.
Collapse
Affiliation(s)
- Sarah L. Keasey
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Jessica L. Smith
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Stefan Fernandez
- Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand
| | - Anna P. Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 624 North Broadway, Room 251, Baltimore, Maryland 21205, United States
| | - Bryan M. Zhao
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| |
Collapse
|
7
|
Smith JL, Pugh CL, Cisney ED, Keasey SL, Guevara C, Ampuero JS, Comach G, Gomez D, Ochoa-Diaz M, Hontz RD, Ulrich RG. Human Antibody Responses to Emerging Mayaro Virus and Cocirculating Alphavirus Infections Examined by Using Structural Proteins from Nine New and Old World Lineages. mSphere 2018; 3:e00003-18. [PMID: 29577083 PMCID: PMC5863033 DOI: 10.1128/msphere.00003-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022] Open
Abstract
Mayaro virus (MAYV), Venezuelan equine encephalitis virus (VEEV), and chikungunya virus (CHIKV) are vector-borne alphaviruses that cocirculate in South America. Human infections by these viruses are frequently underdiagnosed or misdiagnosed, especially in areas with high dengue virus endemicity. Disease may progress to debilitating arthralgia (MAYV, CHIKV), encephalitis (VEEV), and death. Few standardized serological assays exist for specific human alphavirus infection detection, and antigen cross-reactivity can be problematic. Therefore, serological platforms that aid in the specific detection of multiple alphavirus infections will greatly expand disease surveillance for these emerging infections. In this study, serum samples from South American patients with PCR- and/or isolation-confirmed infections caused by MAYV, VEEV, and CHIKV were examined by using a protein microarray assembled with recombinant capsid, envelope protein 1 (E1), and E2 from nine New and Old World alphaviruses. Notably, specific antibody recognition of E1 was observed only with MAYV infections, whereas E2 was specifically targeted by antibodies from all of the alphavirus infections investigated, with evidence of cross-reactivity to E2 of o'nyong-nyong virus only in CHIKV-infected patient serum samples. Our findings suggest that alphavirus structural protein microarrays can distinguish infections caused by MAYV, VEEV, and CHIKV and that this multiplexed serological platform could be useful for high-throughput disease surveillance. IMPORTANCE Mayaro, chikungunya, and Venezuelan equine encephalitis viruses are closely related alphaviruses that are spread by mosquitos, causing diseases that produce similar influenza-like symptoms or more severe illnesses. Moreover, alphavirus infection symptoms can be similar to those of dengue or Zika disease, leading to underreporting of cases and potential misdiagnoses. New methods that can be used to detect antibody responses to multiple alphaviruses within the same assay would greatly aid disease surveillance efforts. However, possible antibody cross-reactivity between viruses can reduce the quality of laboratory results. Our results demonstrate that antibody responses to multiple alphaviruses can be specifically quantified within the same assay by using selected recombinant protein antigens and further show that Mayaro virus infections result in unique responses to viral envelope proteins.
Collapse
Affiliation(s)
- Jessica L. Smith
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Christine L. Pugh
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Emily D. Cisney
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Sarah L. Keasey
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
- Department of Biology, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | | | | | - Guillermo Comach
- Laboratorio Regional de Diagnostico e Investigación del Dengue y Otras Enfermedades Virales (LARDIDEV), Instituto de Investigaciones Biomédicas de la Universidad de Carabobo (BIOMED.UC), Maracay, Aragua, Venezuela
| | - Doris Gomez
- Universidad de Cartagena, Doctorado en Medicina Tropical, Grupo UNIMOL, Cartagena, Colombia
| | - Margarita Ochoa-Diaz
- Universidad de Cartagena, Doctorado en Medicina Tropical, Grupo UNIMOL, Cartagena, Colombia
| | - Robert D. Hontz
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Robert G. Ulrich
- Molecular and Translational Sciences Division, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
8
|
Coarsey CT, Esiobu N, Narayanan R, Pavlovic M, Shafiee H, Asghar W. Strategies in Ebola virus disease (EVD) diagnostics at the point of care. Crit Rev Microbiol 2017; 43:779-798. [PMID: 28440096 PMCID: PMC5653233 DOI: 10.1080/1040841x.2017.1313814] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/21/2016] [Accepted: 03/25/2017] [Indexed: 12/13/2022]
Abstract
Ebola virus disease (EVD) is a devastating, highly infectious illness with a high mortality rate. The disease is endemic to regions of Central and West Africa, where there is limited laboratory infrastructure and trained staff. The recent 2014 West African EVD outbreak has been unprecedented in case numbers and fatalities, and has proven that such regional outbreaks can become a potential threat to global public health, as it became the source for the subsequent transmission events in Spain and the USA. The urgent need for rapid and affordable means of detecting Ebola is crucial to control the spread of EVD and prevent devastating fatalities. Current diagnostic techniques include molecular diagnostics and other serological and antigen detection assays; which can be time-consuming, laboratory-based, often require trained personnel and specialized equipment. In this review, we discuss the various Ebola detection techniques currently in use, and highlight the potential future directions pertinent to the development and adoption of novel point-of-care diagnostic tools. Finally, a case is made for the need to develop novel microfluidic technologies and versatile rapid detection platforms for early detection of EVD.
Collapse
Affiliation(s)
- Chad T. Coarsey
- Department of Computer and Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL, United States
- Asghar-Lab: Micro and Nanotechnology in Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Ramswamy Narayanan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Mirjana Pavlovic
- Department of Computer and Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Waseem Asghar
- Department of Computer and Electrical Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL, United States
- Asghar-Lab: Micro and Nanotechnology in Medicine, Florida Atlantic University, Boca Raton, FL, United States
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
9
|
González-González E, Alvarez MM, Márquez-Ipiña AR, Santiago GTD, Rodríguez-Martínez LM, Annabi N, Khademhosseini A. Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead. Crit Rev Biotechnol 2017; 37:53-68. [PMID: 26611830 PMCID: PMC5568563 DOI: 10.3109/07388551.2015.1114465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.
Collapse
Affiliation(s)
- E González-González
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - MM Alvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - AR Márquez-Ipiña
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - G Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| | - LM Rodríguez-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico, CP 64849, Monterrey, Nuevo León, México
| | - N Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115
| | - A Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
10
|
Human Survivors of Disease Outbreaks Caused by Ebola or Marburg Virus Exhibit Cross-Reactive and Long-Lived Antibody Responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:717-24. [PMID: 27335383 DOI: 10.1128/cvi.00107-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/11/2016] [Indexed: 11/20/2022]
Abstract
A detailed understanding of serological immune responses to Ebola and Marburg virus infections will facilitate the development of effective diagnostic methods, therapeutics, and vaccines. We examined antibodies from Ebola or Marburg survivors 1 to 14 years after recovery from disease, by using a microarray that displayed recombinant nucleoprotein (NP), viral protein 40 (VP40), envelope glycoprotein (GP), and inactivated whole virions from six species of filoviruses. All three outbreak cohorts exhibited significant antibody responses to antigens from the original infecting species and a pattern of additional filoviruses that varied by outbreak. NP was the most cross-reactive antigen, while GP was the most specific. Antibodies from survivors of infections by Marburg marburgvirus (MARV) species were least cross-reactive, while those from survivors of infections by Sudan virus (SUDV) species exhibited the highest cross-reactivity. Based on results revealed by the protein microarray, persistent levels of antibodies to GP, NP, and VP40 were maintained for up to 14 years after infection, and survival of infection caused by one species imparted cross-reactive antibody responses to other filoviruses.
Collapse
|
11
|
|
12
|
Banerjee N, Mukhopadhyay S. Viral glycoproteins: biological role and application in diagnosis. Virusdisease 2016; 27:1-11. [PMID: 26925438 PMCID: PMC4758313 DOI: 10.1007/s13337-015-0293-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/10/2015] [Indexed: 12/21/2022] Open
Abstract
The viruses that infect humans cause a huge global disease burden and produce immense challenge towards healthcare system. Glycoproteins are one of the major components of human pathogenic viruses. They have been demonstrated to have important role(s) in infection and immunity. Concomitantly high titres of antibodies against these antigenic viral glycoproteins have paved the way for development of novel diagnostics. Availability of appropriate biomarkers is necessary for advance diagnosis of infectious diseases especially in case of outbreaks. As human mobilization has increased manifold nowadays, dissemination of infectious agents became quicker that paves the need of rapid diagnostic system. In case of viral infection it is an emergency as virus spreads and mutates very fast. This review encircles the vast arena of viral glycoproteins, their importance in health and disease and their diagnostic applications.
Collapse
Affiliation(s)
- Nilotpal Banerjee
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073 India
| | - Sumi Mukhopadhyay
- Department of Laboratory Medicine, School of Tropical Medicine, 108, C.R Avenue, Kolkata, 700073 India
| |
Collapse
|
13
|
Piraino F, Volpetti F, Watson C, Maerkl SJ. A Digital-Analog Microfluidic Platform for Patient-Centric Multiplexed Biomarker Diagnostics of Ultralow Volume Samples. ACS NANO 2016; 10:1699-710. [PMID: 26741022 DOI: 10.1021/acsnano.5b07939] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microfluidic diagnostic devices have the potential to transform the practice of medicine. We engineered a multiplexed digital-analog microfluidic platform for the rapid and highly sensitive detection of 3-4 biomarkers in quadruplicate in 16 independent and isolated microfluidic unit cells requiring only a single 5 μL sample. We comprehensively characterized the platform by performing single enzyme and digital immunoassays, achieving single molecule detection and measured as low as ∼10 fM (330 fg/mL) GFP in buffer and ∼12 fM GFP in human serum. We applied our integrated digital detection mechanism to multiplexed detection of 1pM anti-Ebola IgG in human serum and were able to differentiate three common Ebola strains. To ascertain that the device can be applied in environments beyond clinical point-of-care settings, we developed a low-cost, portable hardware system to control and read out the microfluidic device and detected anti-Ebola IgG in ultralow volume whole blood samples to levels of 100 pM in a multiplexed assay format.
Collapse
Affiliation(s)
- Francesco Piraino
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | - Francesca Volpetti
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | - Craig Watson
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne , Lausanne 1015, Switzerland
| |
Collapse
|
14
|
Jun SR, Leuze MR, Nookaew I, Uberbacher EC, Land M, Zhang Q, Wanchai V, Chai J, Nielsen M, Trolle T, Lund O, Buzard GS, Pedersen TD, Wassenaar TM, Ussery DW. Ebolavirus comparative genomics. FEMS Microbiol Rev 2015; 39:764-78. [PMID: 26175035 PMCID: PMC4551310 DOI: 10.1093/femsre/fuv031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/17/2022] Open
Abstract
The 2014 Ebola outbreak in West Africa is the largest documented for this virus. To examine the dynamics of this genome, we compare more than 100 currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of the same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP) and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. This information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Collapse
Affiliation(s)
- Se-Ran Jun
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Joint Institute for Computational Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael R Leuze
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Intawat Nookaew
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Edward C Uberbacher
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miriam Land
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Qian Zhang
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Visanu Wanchai
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Juanjuan Chai
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Thomas Trolle
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | | | - Thomas D Pedersen
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark Assays, Cultures and Enzymes Division, Chr. Hansen A/S, Hørsholm, Denmark
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstr 7, D-55576 Zotzenheim, Germany
| | - David W Ussery
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| |
Collapse
|
15
|
Fang X, Guan M, Kong J. Rapid nucleic acid detection of Zaire ebolavirus on paper fluidics. RSC Adv 2015. [DOI: 10.1039/c5ra09430e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We presented a type of novel paper-based microfluidics for the rapid detection of Zaire ebolavirus.
Collapse
Affiliation(s)
- Xueen Fang
- Department of Chemistry and Huashan Hospital
- Fudan University
- Shanghai 200433
- P. R. China
- Shanghai Suxin Biotech. Co., Ltd
| | - Ming Guan
- Department of Chemistry and Huashan Hospital
- Fudan University
- Shanghai 200433
- P. R. China
| | - Jilie Kong
- Department of Chemistry and Huashan Hospital
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|