1
|
Sveholm E, Mattila H, Aro N, Valkonen M, Paasela T, Pakula TM. Transcriptomic and metabolic changes in Trichoderma reesei caused by mutation in xylanase regulator 1 (xyr1). BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:106. [PMID: 39030601 PMCID: PMC11265206 DOI: 10.1186/s13068-024-02556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Trichoderma reesei is known for its ability to produce large amounts of extracellular proteins and is one of the most important industrially used filamentous fungus. Xylanase regulator 1 (XYR1) is the master regulator responsible for the activation of cellulase and hemicellulase gene expression under inducing conditions. It has been reported that strains with point mutations in certain areas of xyr1 bypass the need for inducing carbon source, allowing high (hemi)cellulase production even in the presence of glucose. These mutations also change the profile of produced proteins, shifting it more towards xylanase production, and increase the overall protein production in inducing conditions. However, how these mutations alter the metabolism and other cellular processes to cause these changes remains unclear. RESULTS In this study, we aimed to explore changes caused by a point mutation in xyr1 on transcriptomic and metabolic level to better understand the reasons behind the increased protein production in both repressing glucose and inducing lactose conditions. As expected, the expression of many carbohydrate-active enzyme (CAZy) genes was increased in the xyr1 mutant in both conditions. However, their induction was higher under inducing conditions. The xyr1 mutant strain built more biomass and produced more extracellular proteins during growth on lactose compared to the wild type xyr1 strain. Genes involved in oxidoreductive D-galactose catabolism pathway were upregulated in the xyr1 mutant strain, potentially contributing to the more efficient utilization of lactose. In addition to CAZy genes, clustering and enrichment analysis showed over-representation of mitochondria-related Gene Ontology terms in clusters where gene expression was higher in the xyr1 mutant, indicating that mitochondria play a role in the altered metabolic state associated with the xyr1 mutation. Metabolomics revealed that free tyrosine was more abundant in the xyr1 mutant strain in all measured timepoints, whereas multiple fatty acids were less abundant in the mutant strain on glucose. CONCLUSIONS The results contribute to more in-depth knowledge on T. reesei physiology growing under inducing and repressing carbon sources and gives new insights on the function of the master regulator XYR1. The vast data generated serve as a source for new targets for improved protein production.
Collapse
Affiliation(s)
- Emmi Sveholm
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044, Espoo, Finland
| | - Hans Mattila
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044, Espoo, Finland
| | - Nina Aro
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044, Espoo, Finland
| | - Mari Valkonen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044, Espoo, Finland
| | - Tanja Paasela
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044, Espoo, Finland.
| | - Tiina M Pakula
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, 02044, Espoo, Finland
| |
Collapse
|
2
|
de Assis MA, da Silva JJB, de Carvalho LM, Parreiras LS, Cairo JPLF, Marone MP, Gonçalves TA, Silva DS, Dantzger M, de Figueiredo FL, Carazzolle MF, Pereira GAG, Damasio A. A Multiomics Perspective on Plant Cell Wall-Degrading Enzyme Production: Insights from the Unexploited Fungus Trichoderma erinaceum. J Fungi (Basel) 2024; 10:407. [PMID: 38921393 PMCID: PMC11205114 DOI: 10.3390/jof10060407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a β-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.
Collapse
Affiliation(s)
- Michelle A. de Assis
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Jovanderson J. B. da Silva
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Lucas M. de Carvalho
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Lucas S. Parreiras
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - João Paulo L. F. Cairo
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
- York Structural Biology Laboratory (YSBL), Department of Chemistry, University of York, York YO10 5DD, UK
| | - Marina P. Marone
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Thiago A. Gonçalves
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Desireé S. Silva
- SENAI Institute for Biomass Innovation, Três Lagoas 79640-250, Brazil;
| | - Miriam Dantzger
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Fernanda L. de Figueiredo
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Marcelo F. Carazzolle
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Gonçalo A. G. Pereira
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| |
Collapse
|
3
|
Liu Y, Li T, Zhu H, Cao L, Liang L, Liu D, Shen Q. Methionine inducing carbohydrate esterase secretion of Trichoderma harzianum enhances the accessibility of substrate glycosidic bonds. Microb Cell Fact 2024; 23:120. [PMID: 38664812 PMCID: PMC11046756 DOI: 10.1186/s12934-024-02394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.
Collapse
Affiliation(s)
- Yang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tuo Li
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Han Zhu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Linhua Cao
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lebin Liang
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dongyang Liu
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Qirong Shen
- Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
4
|
Zhu Z, Zou G, Chai S, Xiao M, Wang Y, Wang P, Zhou Z. The protein methyltransferase TrSAM inhibits cellulase gene expression by interacting with the negative regulator ACE1 in Trichoderma reesei. Commun Biol 2024; 7:375. [PMID: 38548869 PMCID: PMC10978942 DOI: 10.1038/s42003-024-06072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Protein methylation is a commonly posttranslational modification of transcriptional regulators to fine-tune protein function, however, whether this regulation strategy participates in the regulation of lignocellulase synthesis and secretion in Trichoderma reesei remains unexplored. Here, a putative protein methyltransferase (TrSAM) is screened from a T. reesei mutant with the ability to express heterologous β-glucosidase efficiently even under glucose repression. The deletion of its encoding gene trsam causes a significant increase of cellulase activities in all tested T. reesei strains, including transformants of expressing heterologous genes using cbh1 promotor. Further investigation confirms that TrSAM interacts with the cellulase negative regulator ACE1 via its amino acid residue Arg383, which causes a decrease in the ACE1-DNA binding affinity. The enzyme activity of a T. reesei strain harboring ACE1R383Q increases by 85.8%, whereas that of the strains with trsam or ace1 deletion increases by more than 100%. By contrast, the strain with ACE1R383K shows no difference to the parent strain. Taken together, our results demonstrate that TrSAM plays an important role in regulating the expression of cellulase and heterologous proteins initiated by cbh1 promotor through interacting with ACE1R383. Elimination and mutation of TrSAM and its downstream ACE1 alleviate the carbon catabolite repression (CCR) in expressing cellulase and heterologous protein in varying degrees. This provides a new solution for the exquisite modification of T. reesei chassis.
Collapse
Affiliation(s)
- Zhihua Zhu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gen Zou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Science, 1000 Jinqi Rd, Shanghai, 201403, China
| | - Shunxing Chai
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meili Xiao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinmei Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China.
| |
Collapse
|
5
|
Adnan M, Liu G. Promoters and Synthetic Promoters in Trichoderma reesei. Methods Mol Biol 2024; 2844:47-68. [PMID: 39068331 DOI: 10.1007/978-1-0716-4063-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Trichoderma reesei holds immense promise for large-scale protein production, rendering it an excellent subject for deeper exploration using genetic engineering methods to achieve a comprehensive grasp of its cellular physiology. Understanding the genetic factors governing its intrinsic regulatory network is crucial, as lacking this knowledge could impede the expression of target genes. Prior and ongoing studies have concentrated on advancing new expression systems grounded in synthetic biology principles. These methodologies involve utilizing established potent promoters or engineered variations. Genomic and transcriptomic analyses have played a pivotal role in identifying robust promoters and expression systems, including light-responsive, copper-inducible, L-methionine-inducible, and Tet-On systems, among others. This chapter seeks to highlight various research endeavors focusing on tunable and constitutive promoters, the impact of different promoters on both native and foreign protein expression, the discovery of fresh promoters, and strategies conducive to future research aimed at refining and enhancing protein expression in T. reesei. Characterizing new promoters and adopting innovative expression systems hold the potential to significantly expand the molecular toolkit accessible for genetically engineering T. reesei strains. For instance, modifying potent inducible promoters such as Pcbh1 by replacing transcriptional repressors (cre1, ace1) with activators (xyr1, ace2, ace3, hap2/3/5) and integrating synthetic expression systems can result in increased production of crucial enzymes such as endoglucanases (EGLs), β-glucosidases (BGLs), and cellobiohydrolases (CBHs). Similarly, robust constitutive promoters such as Pcdna1 can be converted into synthetic hybrid promoters by incorporating activation elements from potent inducible promoters, facilitating cellulase induction and expression even under repressive conditions. Nevertheless, further efforts are necessary to uncover innovative promoters and devise novel expression strategies to enhance the production of desired proteins on an industrial scale.
Collapse
Affiliation(s)
- Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Christopher M, Sreeja-Raju A, Abraham A, Gokhale DV, Pandey A, Sukumaran RK. Early cellular events and potential regulators of cellulase induction in Penicillium janthinellum NCIM 1366. Sci Rep 2023; 13:5057. [PMID: 36977777 PMCID: PMC10050438 DOI: 10.1038/s41598-023-32340-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Cellulase production by fungi is tightly regulated in response to environmental cues, and understanding this mechanism is a key pre-requisite in the efforts to improve cellulase secretion. Based on UniProt descriptions of secreted Carbohydrate Active enZymes (CAZymes), 13 proteins of the cellulase hyper-producer Penicillium janthinellum NCIM 1366 (PJ-1366) were annotated as cellulases- 4 cellobiohydrolases (CBH), 7 endoglucanases (EG) and 2 beta glucosidases (BGL). Cellulase, xylanase, BGL and peroxidase activities were higher for cultures grown on a combination of cellulose and wheat bran, while EG was stimulated by disaccharides. Docking studies indicated that the most abundant BGL- Bgl2- has different binding sites for the substrate cellobiose and the product glucose, which helps to alleviate feedback inhibition, probably accounting for the low level of glucose tolerance exhibited. Out of the 758 transcription factors (TFs) differentially expressed on cellulose induction, 13 TFs were identified whose binding site frequencies on the promoter regions of the cellulases positively correlated with their abundance in the secretome. Further, correlation analysis of the transcriptional response of these regulators and TF-binding sites on their promoters indicated that cellulase expression is possibly preceded by up-regulation of 12 TFs and down-regulation of 16 TFs, which cumulatively regulate transcription, translation, nutrient metabolism and stress response.
Collapse
Affiliation(s)
- Meera Christopher
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - AthiraRaj Sreeja-Raju
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Rajeev K Sukumaran
- Biofuels and Biorefineries Section, Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Pappanamcode, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
7
|
Role of the Nitrogen Metabolism Regulator TAM1 in Regulation of Cellulase Gene Expression in Trichoderma reesei. Appl Environ Microbiol 2023; 89:e0142122. [PMID: 36602369 PMCID: PMC9888229 DOI: 10.1128/aem.01421-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The filamentous fungus Trichoderma reesei is one of the most prolific cellulase producers and has been established as a model microorganism for investigating mechanisms modulating eukaryotic gene expression. Identification and functional characterization of transcriptional regulators involved in complex and stringent regulation of cellulase genes are, however, not yet complete. Here, a Zn(II)2Cys6-type transcriptional factor TAM1 that is homologous to Aspergillus nidulans TamA involved in nitrogen metabolism, was found not only to regulate ammonium utilization but also to control cellulase gene expression in T. reesei. Whereas Δtam1 cultivated with peptone as a nitrogen source did not exhibit a growth defect that was observed on ammonium, it was still significantly compromised in cellulase biosynthesis. The absence of TAM1 almost fully abrogated the rapid cellulase gene induction in a resting-cell-inducing system. Overexpression of gdh1 encoding the key ammonium assimilatory enzyme in Δtam1 rescued the growth defect on ammonium but not the defect in cellulase gene expression. Of note, mutation of the Zn(II)2Cys6 DNA-binding motif of TAM1 hardly affected cellulase gene expression, while a truncated ARE1 mutant lacking the C-terminal 12 amino acids that are required for the interaction with TAM1 interfered with cellulase biosynthesis. The defect in cellulase induction of Δtam1 was rescued by overexpression of the key transactivator for cellulase gene, XYR1. Our results thus identify a nitrogen metabolism regulator as a new modulator participating in the regulation of induced cellulase gene expression. IMPORTANCE Transcriptional regulators are able to integrate extracellular nutrient signals and exert a combinatorial control over various metabolic genes. A plethora of such factors therefore constitute a complex regulatory network ensuring rapid and accurate cellular response to acquire and utilize nutrients. Despite the in-depth mechanistic studies of functions of the Zn(II)2Cys6-type transcriptional regulator TamA and its orthologues in nitrogen utilization, their involvement in additional physiological processes remains unknown. In this study, we demonstrated that TAM1 exerts a dual regulatory role in mediating ammonium utilization and induced cellulase production in the well known cellulolytic fungus Trichoderma reesei, suggesting a potentially converged regulatory node between nitrogen utilization and cellulase biosynthesis. This study not only contributes to unveiling the intricate regulatory network underlying cellulase gene expression in cellulolytic fungus but also helps expand our knowledge of fungal strategies to achieve efficient and coordinated nutrient acquisition for rapid propagation.
Collapse
|
8
|
Rabby MRI, Ahmed ZB, Paul GK, Chowdhury NN, Akter F, Razu MH, Karmaker P, Khan M. A Combined Study on Optimization, In Silico Modeling, and Genetic Modification of Large Scale Microbial Cellulase Production. Biochem Res Int 2022; 2022:4598937. [PMID: 36589721 PMCID: PMC9797302 DOI: 10.1155/2022/4598937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Cellulase is a biocatalyst that hydrolyzes cellulosic biomass and is considered a major group of industrial enzymes for its applications. Extensive work has been done on microbial cellulase but fungi are considered a novel strain for their maximum cellulase production. Production cost and novel microbial strains are major challenges for its improvement where cheap agro wastes can be essential sources of cellulose as substrates. The researcher searches for more cellulolytic microbes from natural sources but the production level of isolated strains is comparatively low. So genetic modification or mutation can be employed for large-scale cellulase production before optimization. After genetic modification than in silico molecular modeling can be evaluated for substrate molecule's binding affinity. In this review, we focus not only on the conventional methods of cellulase production but also on modern biotechnological approaches applied to cellulase production by a sequential study on common cellulase-producing microbes, modified microbes, culture media, carbon sources, substrate pretreatment process, and the importance of optimum pH and temperature on fermentation. In this review, we also compare different cellulase activity determination methods. As a result, this review provides insights into the interrelationship between the characteristics of optimizing different culture conditions, genetic modification, and in silico enzyme modeling for the production of cellulase enzymes, which may aid in the advancement of large-scale integrated enzyme manufacturing of substrate-specific enzymes.
Collapse
Affiliation(s)
| | - Zabed Bin Ahmed
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Gobindo Kumar Paul
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | | | - Fatema Akter
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Pranab Karmaker
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka, Bangladesh
| |
Collapse
|
9
|
Shen L, Yan A, Wang Y, Wang Y, Liu H, Zhong Y. Tailoring the expression of Xyr1 leads to efficient production of lignocellulolytic enzymes in Trichoderma reesei for improved saccharification of corncob residues. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:142. [PMID: 36528622 PMCID: PMC9759857 DOI: 10.1186/s13068-022-02240-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei is extensively used for the industrial-scale cellulase production. It has been well known that the transcription factor Xyr1 plays an important role in the regulatory network controlling cellulase gene expression. However, the role of Xyr1 in the regulation of cellulase expression has not been comprehensively elucidated, which hinders further improvement of lignocellulolytic enzyme production. RESULTS Here, the expression dosage of xyr1 was tailored in T. reesei by differentially overexpressing the xyr1 gene under the control of three strong promoters (Pegl2, Pcbh1, and Pcdna1), and the transcript abundance of xyr1 was elevated 5.8-, 12.6-, and 47.2-fold, respectively. We found expression of cellulase genes was significantly increased in the Pegl2-driven xyr1 overexpression strain QE2X, whereas relatively low in the Pcbh1- and Pcdna1-driven overexpression strains. We also found that the Pegl2-driven overexpression of xyr1 caused a more significant opening of chromatin in the core promoter region of the prominent cellulase genes. Furthermore, the cellulase activity showed a 3.2-fold increase in the strain QE2X, while insignificant improvement in the Pcbh1- and Pcdna1-driven strains. Finally, the saccharification efficiency toward acid-pretreated corncob residues containing high-content lignin by the crude enzyme from QE2X was increased by 57.2% compared to that from the parental strain. Moreover, LC-MS/MS and RT-qPCR analysis revealed that expression of accessory proteins (Cip1, Cip2, Swo1, and LPMOs) was greatly improved in QE2X, which partly explained the promoting effect of the Pegl2-driven overexpression on enzymatic hydrolysis of lignocellulose biomass. CONCLUSIONS Our results underpin that the precise tailoring expression of xyr1 is essential for highly efficient cellulase synthesis, which provide new insights into the role of Xyr1 in regulating cellulase expression in T. reesei. Moreover, these results also provides a prospective strategy for strain improvement to enhance the lignocellulolytic enzyme production for use in biorefinery applications.
Collapse
Affiliation(s)
- Linjing Shen
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Aiqin Yan
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yifan Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yubo Wang
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Hong Liu
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yaohua Zhong
- grid.27255.370000 0004 1761 1174State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| |
Collapse
|
10
|
In Vitro Characterization of a Nuclear Receptor-like Domain of the Xylanase Regulator 1 from Trichoderma reesei. J Fungi (Basel) 2022; 8:jof8121254. [PMID: 36547587 PMCID: PMC9784857 DOI: 10.3390/jof8121254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Engineering transcription factors is an interesting research target gaining increasing attention, such as in the case of industrially used organisms. With respect to sustainability, biomass-degrading saprophytic fungi, such as Trichoderma reesei, are promising industrial work horses because they exhibit a high secretory capacity of native and heterologously expressed enzymes and compounds. A single-point mutation in the main transactivator of xylanase and cellulase expressions in T. reesei Xyr1 led to a strongly deregulated and enhanced xylanase expression. Circular dichroism spectroscopy revealed a change in secondary structure caused by this mutation. According to electrophoretic mobility shift assays and determination of the equilibrium-binding constants, the DNA-binding affinity of the mutated Xyr1 was considerably reduced compared to the wild-type Xyr1. Both techniques were also used to investigate the allosteric response to carbohydrates (D-glucose-6-phosphate, D-xylose, and sophorose) signalling the repression or induction of Xyr1 target genes. The mutated Xyr1 no longer exhibited a conformational change in response to these carbohydrates, indicating that the observed deregulation is not a simple matter of a change in DNA-binding of the transactivator. Altogether, we postulate that the part of Xyr1 where the mutation is located functions as a nuclear receptor-like domain that mediates carbohydrate signals and modulates the Xyr1 transactivating activity.
Collapse
|
11
|
Mattam AJ, Chaudhari YB, Velankar HR. Factors regulating cellulolytic gene expression in filamentous fungi: an overview. Microb Cell Fact 2022; 21:44. [PMID: 35317826 PMCID: PMC8939176 DOI: 10.1186/s12934-022-01764-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/27/2022] [Indexed: 12/19/2022] Open
Abstract
The growing demand for biofuels such as bioethanol has led to the need for identifying alternative feedstock instead of conventional substrates like molasses, etc. Lignocellulosic biomass is a relatively inexpensive feedstock that is available in abundance, however, its conversion to bioethanol involves a multistep process with different unit operations such as size reduction, pretreatment, saccharification, fermentation, distillation, etc. The saccharification or enzymatic hydrolysis of cellulose to glucose involves a complex family of enzymes called cellulases that are usually fungal in origin. Cellulose hydrolysis requires the synergistic action of several classes of enzymes, and achieving the optimum secretion of these simultaneously remains a challenge. The expression of fungal cellulases is controlled by an intricate network of transcription factors and sugar transporters. Several genetic engineering efforts have been undertaken to modulate the expression of cellulolytic genes, as well as their regulators. This review, therefore, focuses on the molecular mechanism of action of these transcription factors and their effect on the expression of cellulases and hemicellulases.
Collapse
Affiliation(s)
- Anu Jose Mattam
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Yogesh Babasaheb Chaudhari
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India.
| |
Collapse
|
12
|
Promoter regulation and genetic engineering strategies for enhanced cellulase expression in Trichoderma reesei. Microbiol Res 2022; 259:127011. [DOI: 10.1016/j.micres.2022.127011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/18/2023]
|
13
|
Karuppiah V, Zhixiang L, Liu H, Murugappan V, Kumaran S, Perianaika Anahas AM, Chen J. Co-cultivation of T. asperellum GDFS1009 and B. amyloliquefaciens 1841: Strategy to regulate the production of ligno-cellulolytic enzymes for the lignocellulose biomass degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113833. [PMID: 34592667 DOI: 10.1016/j.jenvman.2021.113833] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The influence of fossil fuels on the environment focused on the development of new technology on biofuels. In this situation, lignocellulolytic hydrolysis enzymes such as Cellobiohydrolase, β-Glucosidase, Endoglucanase, cellulase and xylanase have broad applications in the biofuel production. The Trichoderma have used for the production of cellulase and xylanase to hydrolyze the lignocellulose. Hence, in the present study, co-culture has been employed to induce the production of polysaccharide hydrolyzing enzymes under both induction and repression conditions. The enzyme activity and its gene expression were induced by the co-culture of T. asperellum and B. amyloliquefaciens compared to the monoculture. Further, the co-culture upregulated the transcription regulatory genes and downregulated the repressor genes under both repressor and inducer conditions, respectively. The crude enzyme produced by the co-culture and monocultures using the optimized medium containing molasses, cornmeal and rice bran were further used to hydrolyze the pretreated corn Stover, rice straw, and wheat straw. These results indicate that the co-culture of T. asperellum and B. amyloliquefaciens is a promising and inexpensive method to advance the innovation on the continuous production of cellulase and xylanase under different circumstances for the bioconversion of lignocellulosic biomass into glucose for the bio-fuels.
Collapse
Affiliation(s)
- Valliappan Karuppiah
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Lu Zhixiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Hongyi Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Vallikkannu Murugappan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Subramanian Kumaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | | | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
14
|
Why Is the Correct Selection of Trichoderma Strains Important? The Case of Wheat Endophytic Strains of T. harzianum and T. simmonsii. J Fungi (Basel) 2021; 7:jof7121087. [PMID: 34947069 PMCID: PMC8704890 DOI: 10.3390/jof7121087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 01/17/2023] Open
Abstract
The search for endophytic fungi in the roots of healthy wheat plants from a non-irrigation field trial allowed us to select 4 out of a total of 54 cultivable isolates belonging to the genus Trichoderma, identified as T. harzianum T136 and T139, T. simmonsii T137, and T. afroharzianum T138. In vitro assays against the phytopathogenic fungus Fusarium graminearum showed that the T. harzianum strains had the highest biocontrol potential and that T136 exhibited the highest cellulase and chitinase activities. Production patterns of eight phytohormones varied among the Trichoderma strains. All four, when applied alone or in combination, colonized roots of other wheat cultivars and promoted seed germination, tillering, and plant growth under optimal irrigation conditions in the greenhouse. Apart from T136, the endophytic Trichoderma strains showed plant protection capacity against drought as they activated the antioxidant enzyme machinery of the wheat plants. However, T. simmonsii T137 gave the best plant size and spike weight performance in water-stressed plants at the end of the crop. This trait correlated with significantly increased production of indole acetic acid and abscisic acid and increased 1-aminocyclopropane-1-carboxylic acid deaminase activity by T137. This study shows the potential of Trichoderma endophytes and that their success in agricultural systems requires careful selection of suitable strains.
Collapse
|
15
|
Yan S, Xu Y, Yu XW. From induction to secretion: a complicated route for cellulase production in Trichoderma reesei. BIORESOUR BIOPROCESS 2021; 8:107. [PMID: 38650205 PMCID: PMC10991602 DOI: 10.1186/s40643-021-00461-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
The filamentous fungus Trichoderma reesei has been widely used for cellulase production that has extensive applications in green and sustainable development. Increasing costs and depletion of fossil fuels provoke the demand for hyper-cellulase production in this cellulolytic fungus. To better manipulate T. reesei for enhanced cellulase production and to lower the cost for large-scale fermentation, it is wise to have a comprehensive understanding of the crucial factors and complicated biological network of cellulase production that could provide new perspectives for further exploration and modification. In this review, we summarize recent progress and give an overview of the cellular process of cellulase production in T. reesei, including the carbon source-dependent cellulase induction, complicated transcriptional regulation network, and efficient protein assembly and trafficking. Among that, the key factors involved in cellulase production were emphasized, shedding light on potential perspectives for further engineering.
Collapse
Affiliation(s)
- Su Yan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiao-Wei Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
16
|
Aliyu H, Gorte O, Neumann A, Ochsenreither K. Global Transcriptome Profile of the Oleaginous Yeast Saitozyma podzolica DSM 27192 Cultivated in Glucose and Xylose. J Fungi (Basel) 2021; 7:758. [PMID: 34575796 PMCID: PMC8466774 DOI: 10.3390/jof7090758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
Unlike conventional yeasts, several oleaginous yeasts, including Saitozyma podzolica DSM 27192, possess the innate ability to grow and produce biochemicals from plant-derived lignocellulosic components such as hexose and pentose sugars. To elucidate the genetic basis of S. podzolica growth and lipid production on glucose and xylose, we performed comparative temporal transcriptome analysis using RNA-seq method. Approximately 3.4 and 22.2% of the 10,670 expressed genes were differentially (FDR < 0.05, and log2FC > 1.5) expressed under batch and fed batch modes, respectively. Our analysis revealed that a higher number of sugar transporter genes were significantly overrepresented in xylose relative to glucose-grown cultures. Given the low homology between proteins encoded by most of these genes and those of the well-characterised transporters, it is plausible to conclude that S. podzolica possesses a cache of putatively novel sugar transporters. The analysis also suggests that S. podzolica potentially channels carbon flux from xylose via both the non-oxidative pentose phosphate and potentially via the first steps of the Weimberg pathways to yield xylonic acid. However, only the ATP citrate lyase (ACL) gene showed significant upregulation among the essential oleaginous pathway genes under nitrogen limitation in xylose compared to glucose cultivation. Combined, these findings pave the way toward the design of strategies or the engineering of efficient biomass hydrolysate utilization in S. podzolica for the production of various biochemicals.
Collapse
Affiliation(s)
- Habibu Aliyu
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.G.); (A.N.)
| | | | | | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (O.G.); (A.N.)
| |
Collapse
|
17
|
Primerano P, Juric M, Mach R, Mach-Aigner A, Derntl C. Expanding the toolbox: another auxotrophic marker for targeted gene integrations in Trichoderma reesei. Fungal Biol Biotechnol 2021; 8:9. [PMID: 34521467 PMCID: PMC8442374 DOI: 10.1186/s40694-021-00116-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The filamentous ascomycete Trichoderma reesei is used for the industrial production of cellulases and holds the promise for heterologous gene expression due to its outstandingly high protein secretion rates and its long-term application in industry and science. A prerequisite for successful heterologous gene expression is the ability to insert a corresponding expression cassette at suitable loci in the genome of T. reesei. RESULTS In this study, we test and demonstrate the applicability of the his1 gene [encoding for the ATP phosphoribosyltransferase (EC 2.4.2.17), part of the histidine biosynthesis pathway] and locus for targeted gene insertion. Deletion of the his1 promoter and a part of the coding region leads to histidine auxotrophy. Reestablishment of the his1 locus restores prototrophy. We designed a matching plasmid that allows integration of an expression cassette at the his1 locus. This is demonstrated by the usage of the reporter EYFP (enhanced yellow fluorescence protein). Further, we describe a minimal effort and seamless marker recycling method. Finally, we test the influence of the integration site on the gene expression by comparing three strains bearing the same EYFP expression construct at different loci. CONCLUSION With the establishment of his1 as integration locus and auxotrophic marker, we could expand the toolbox for strain design in T. reesei. This facilitates future strain constructions with the aim of heterologous gene expression.
Collapse
Affiliation(s)
- Paul Primerano
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Wien, Austria
| | - Melani Juric
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Wien, Austria
| | - Robert Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Wien, Austria
| | - Astrid Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Wien, Austria
| | - Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Wien, Austria
| |
Collapse
|
18
|
Chen X, Song B, Liu M, Qin L, Dong Z. Understanding the Role of Trichoderma reesei Vib1 in Gene Expression during Cellulose Degradation. J Fungi (Basel) 2021; 7:jof7080613. [PMID: 34436152 PMCID: PMC8397228 DOI: 10.3390/jof7080613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Vib1, a member of the Ndt80/PhoG-like transcription factor family, has been shown to be essential for cellulase production of Trichoderma reesei. Here, we combined transcriptomic and genetic analyses to gain mechanistic insights into the roles of Vib1 during cellulose degradation. Our transcriptome analysis showed that the vib1 deletion caused 586 genes with decreased expression and 431 genes with increased expression on cellulose. The downregulated genes were enriched for Gene Ontology terms associated with carbohydrate metabolism, transmembrane transport, oxidoreductase activity, and transcription factor activity. Of the 258 genes induced by cellulose, 229 showed no or decreased expression in Δvib1 on cellulose, including almost all (hemi)cellulase genes, crucial sugar transporter genes (IDs:69957, 3405), and the genes encoding main transcriptional activators Xyr1 and Ace3. Additionally, Vib1 also regulated the expression of genes involved in secondary metabolism. Further comparison of the transcriptomes of Δvib1 and Δxyr1 in cellulose revealed that the genes regulated by Vib1 had much overlap with Xyr1 targets especially for the gene set induced by cellulose, presumably whose expression requires the cooperativity between Vib1 and Xyr1. Genetic evidence indicated that Vib1 regulates cellulase gene expression partially via Xyr1. Our results will provide new clues for strain improvement.
Collapse
Affiliation(s)
- Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Bingran Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Minglu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Lina Qin
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
- Correspondence:
| |
Collapse
|
19
|
Trichoderma reesei ACE4, a Novel Transcriptional Activator Involved in the Regulation of Cellulase Genes during Growth on Cellulose. Appl Environ Microbiol 2021; 87:e0059321. [PMID: 34047636 DOI: 10.1128/aem.00593-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Trichoderma reesei is a model strain for cellulase production. Cellulase gene expression in T. reesei is controlled by multiple transcription factors. Here, we identified by comparative genomic screening a novel transcriptional activator, ACE4 (activator of cellulase expression 4), that positively regulates cellulase gene expression on cellulose in T. reesei. Disruption of the ace4 gene significantly decreased expression of four main cellulase genes and the essential cellulase transcription factor-encoding gene ace3. Overexpression of ace4 increased cellulase production by approximately 22% compared to that in the parental strain. Further investigations using electrophoretic mobility shift assays, DNase I footprinting assays, and chromatin immunoprecipitation assays indicated that ACE4 directly binds to the promoter of cellulase genes by recognizing the two adjacent 5'-GGCC-3' sequences. Additionally, ACE4 directly binds to the promoter of ace3 and, in turn, regulates the expression of ACE3 to facilitate cellulase production. Collectively, these results demonstrate an important role for ACE4 in regulating cellulase gene expression, which will contribute to understanding the mechanism underlying cellulase expression in T. reesei. IMPORTANCE T. reesei is commonly utilized in industry to produce cellulases, enzymes that degrade lignocellulosic biomass for the production of bioethanol and bio-based products. T. reesei is capable of rapidly initiating the biosynthesis of cellulases in the presence of cellulose, which has made it useful as a model fungus for studying gene expression in eukaryotes. Cellulase gene expression is controlled through multiple transcription factors at the transcriptional level. However, the molecular mechanisms by which transcription is controlled remain unclear. In the present study, we identified a novel transcription factor, ACE4, which regulates cellulase expression on cellulose by binding to the promoters of cellulase genes and the cellulase activator gene ace3. Our study not only expands the general functional understanding of the novel transcription factor ACE4 but also provides evidence for the regulatory mechanism mediating gene expression in T. reesei.
Collapse
|
20
|
Sukumaran RK, Christopher M, Kooloth-Valappil P, Sreeja-Raju A, Mathew RM, Sankar M, Puthiyamadam A, Adarsh VP, Aswathi A, Rebinro V, Abraham A, Pandey A. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. BIORESOURCE TECHNOLOGY 2021; 329:124746. [PMID: 33610429 DOI: 10.1016/j.biortech.2021.124746] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic materials are the favoured feedstock for biorefineries due to their abundant availability and non-completion with food. Biobased technologies for refining these materials are limited mainly by the cost of biomass hydrolyzing enzymes, typically sourced from filamentous fungi. Therefore, considerable efforts have been directed at improving the quantity and quality of secreted lignocellulose degrading enzymes from fungi in order to attain overall economic viability. Process improvements and media engineering probably have reached their thresholds and further production enhancements require modifying the fungal metabolism to improve production and secretion of these enzymes. This review focusses on the types and mechanisms of action of known fungal biomass degrading enzymes, our current understanding of the genetic control exerted on their expression, and possible routes for intervention, especially on modulating catabolite repression, transcriptional regulators, signal transduction, secretion pathways etc., in order to improve enzyme productivity, activity and stability.
Collapse
Affiliation(s)
- Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Meera Christopher
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prajeesh Kooloth-Valappil
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - AthiraRaj Sreeja-Raju
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Reshma M Mathew
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anoop Puthiyamadam
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Velayudhanpillai-Prasannakumari Adarsh
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Aswathi Aswathi
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Valan Rebinro
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
21
|
Effects of the Transcription Factor Ace2 from Trichoderma reesei on Cellulase and Hemicellulase Expression in Trichoderma orientalis EU7-22. Appl Biochem Biotechnol 2021; 193:2098-2109. [PMID: 33608806 DOI: 10.1007/s12010-021-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
Trichoderma orientalis (T. orientalis) EU7-22 has a complete cellulase system and shows a remarkable enzyme activity with high potential in the industry. Ace2 is an important transcriptional factor for cellulase and hemicellulase expression in Trichoderma reesei (T. reesei). However, the ace2 gene cannot be found in the genome of T. orientalis. Researches show that the mechanism of cellulase transcriptional regulation in T. orientalis keeps high similarity with T. reesei up till now. So, in this study, the ace2 of Trichoderma reesei QM9414 was heterologous expressed in T. orientalis EU7-22. As a result, xylanase activity and β-glucosidase activity of ace2 heterogeneous expression strains are improved and total cellulase activity is decreased. The result of qPCR is in accordance with enzyme activities. This study provides a reference for an in-depth study on transcriptional regulation mechanisms of T. orientalis.
Collapse
|
22
|
Zheng F, Yang R, Cao Y, Zhang W, Lv X, Meng X, Zhong Y, Chen G, Zhou Q, Liu W. Engineering Trichoderma reesei for Hyperproduction of Cellulases on Glucose to Efficiently Saccharify Pretreated Corncobs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12671-12682. [PMID: 33140639 DOI: 10.1021/acs.jafc.0c04663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is widely used as a cellulase producer in the industry. Herein, we describe the rational engineering of the publicly available T. reesei QM9414 strain to achieve a remarkable high-level production of cellulase on glucose. Overexpression of the key cellulase regulator XYR1 by the copper-repressible promoter Ptcu1 was first implemented to achieve a full cellulase production in the context of catabolite repression (CCR) while eliminating the requirement of inducing sugars for enzyme production. The T. reesei bgl1 gene was further overexpressed to compensate for its low β-glucosidase activity on glucose. This overexpression resulted in a 102% increase in FPase activity compared with the CCR-released RUT-C30 strain cultured on Avicel. Moreover, the saccharification efficiency toward pretreated corncob residues by crude enzymes from the engineered strain on glucose increased by 85% compared with that treated by enzymes from RUT-C30 cultivated on Avicel. The engineered T. reesei strain thus shows great potential as a viable alternative to deliver commercial cellulases after further optimization for efficient saccharification of agricultural waste.
Collapse
Affiliation(s)
- Fanglin Zheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Renfei Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Yanli Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Xinxing Lv
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Qingxin Zhou
- Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, No.202 Gongye North Road, Jinan 250100, P. R. China
- College of Life Science, Shandong Normal University, No.88 Wenhua East Road, Jinan 250014, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
23
|
Derntl C, Mach R, Mach-Aigner A. Application of the human estrogen receptor within a synthetic transcription factor in Trichoderma reesei. Fungal Biol Biotechnol 2020; 7:12. [PMID: 32765896 PMCID: PMC7396459 DOI: 10.1186/s40694-020-00102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022] Open
Abstract
Background Synthetic gene expression systems offer a possibility for controllable and targeted induction of the expression of genes of interest, which is a fundamental technique necessary for basic research and industrial applications. The human estrogen receptor α contains a ligand binding domain that enforces dimerization and nuclear import upon binding of the inducer 17β-estradiol. In this study, we tested the potential of this ligand binding domain to be used in filamentous fungi as an auto-regulatory domain in a synthetic transcription factor. Results We constructed the synthetic transcription factor SynX by fusing the DNA-binding domain of Xyr1 (Xylanase Regulator 1), the transactivation domain of Ypr1 (Yellow Pigment Regulator 1), and the ligand binding domain of the human estrogen receptor α. SynX is able to strongly induce the gene expression of xylanases and an aldose reductase by addition of 17β-estradiol, but SynX does not induce gene expression of cellulases. Importantly, the induction of xylanase activities is mostly carbon source independent and can be fine-tuned by controlling the concentration of 17β-estradiol. Conclusion The ability of SynX to induce gene expression of xylanase encoding genes by addition of 17β-estradiol demonstrates that the ligand binding domain of the human estrogen receptor α works in filamentous fungi, and that it can be combined with a transactivation domain other than the commonly used transactivation domain of herpes simplex virion protein VP16.
Collapse
Affiliation(s)
- Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Robert Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Astrid Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| |
Collapse
|
24
|
Jiang X, Du J, He R, Zhang Z, Qi F, Huang J, Qin L. Improved Production of Majority Cellulases in Trichoderma reesei by Integration of cbh1 Gene From Chaetomium thermophilum. Front Microbiol 2020; 11:1633. [PMID: 32765463 PMCID: PMC7381231 DOI: 10.3389/fmicb.2020.01633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Lignocellulose is an abundant waste resource and has been considered as a promising material for production of biofuels or other valuable bio-products. Currently, one of the major bottlenecks in the economic utilization of lignocellulosic materials is the cost-efficiency of converting lignocellulose into soluble sugars for fermentation. One way to address this problem is to seek superior lignocellulose degradation enzymes or further improve current production yields of lignocellulases. In the present study, the lignocellulose degradation capacity of a thermophilic fungus Chaetomium thermophilum was firstly evaluated and compared to that of the biotechnological workhorse Trichoderma reesei. The data demonstrated that compared to T. reesei, C. thermophilum displayed substantially higher cellulose-utilizing efficiency with relatively lower production of cellulases, indicating that better cellulases might exist in C. thermophilum. Comparison of the protein secretome between C. thermophilum and T. reesei showed that the secreted protein categories were quite different in these two species. In addition, to prove that cellulases in C. thermophilum had better enzymatic properties, the major cellulase cellobiohydrolase I (CBH1) from C. thermophilum and T. reesei were firstly characterized, respectively. The data showed that the specific activity of C. thermophilum CBH1 was about 4.5-fold higher than T. reesei CBH1 in a wide range of temperatures and pH. To explore whether increasing CBH1 activity in T. reesei could contribute to improving the overall cellulose-utilizing efficiency of T. reesei, T. reesei cbh1 gene was replaced with C. thermophilum cbh1 gene by integration of C. thermophilum cbh1 gene into T. reesei cbh1 gene locus. The data surprisingly showed that this gene replacement not only increased the cellobiohydrolase activities by around 4.1-fold, but also resulted in stronger induction of other cellulases genes, which caused the filter paper activities, Azo-CMC activities and β-glucosidase activities increased by about 2.2, 1.9, and 2.3-fold, respectively. The study here not only provided new resources of superior cellulases genes and new strategy to improve the cellulase production in T. reesei, but also contribute to opening the path for fundamental research on C. thermophilum.
Collapse
Affiliation(s)
- Xianzhang Jiang
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiawen Du
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ruonan He
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhengying Zhang
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Feng Qi
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jianzhong Huang
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Lina Qin
- National Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, China.,Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
25
|
Zhang T, Liu H, Lv B, Li C. Regulating Strategies for Producing Carbohydrate Active Enzymes by Filamentous Fungal Cell Factories. Front Bioeng Biotechnol 2020; 8:691. [PMID: 32733865 PMCID: PMC7360787 DOI: 10.3389/fbioe.2020.00691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Filamentous fungi are important eukaryotic organisms crucial in substrate degradation and carbon cycle on the earth and have been harnessed as cell factories for the production of proteins and other high value-added products in recent decades. As cell factories, filamentous fungi play a crucial role in industrial protein production as both native hosts and heterologous hosts. In this review, the regulation strategies of carbohydrate active enzyme expression at both transcription level and protein level are introduced, and the transcription regulations are highlighted with induction mechanism, signaling pathway, and promoter and transcription factor regulation. Afterward, the regulation strategies in protein level including suitable posttranslational modification, protein secretion enhancement, and protease reduction are also presented. Finally, the challenges and perspectives in this field are discussed. In this way, a comprehensive knowledge regarding carbohydrate active enzyme production regulation at both transcriptional and protein levels is provided with the particular goal of aiding in the practical application of filamentous fungi for industrial protein production.
Collapse
Affiliation(s)
- Teng Zhang
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Hu Liu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
26
|
Meng QS, Zhang F, Liu CG, Zhao XQ, Bai FW. Identification of a novel repressor encoded by the putative gene ctf1 for cellulase biosynthesis in Trichoderma reesei through artificial zinc finger engineering. Biotechnol Bioeng 2020; 117:1747-1760. [PMID: 32124970 DOI: 10.1002/bit.27321] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 11/09/2022]
Abstract
Strains from Trichoderma reesei have been used for cellulase production with a long history. It has been well known that cellulase biosynthesis by the fungal species is controlled through regulators, and elucidation of their regulation network is of great importance for engineering T. reesei with robust cellulase production. However, progress in this regard is still very limited. In this study, T. reesei RUT-C30 was transformed with an artificial zinc finger protein (AZFP) library, and the mutant T. reesei M2 with improved cellulase production was screened. Compared to its parent strain, the filter paper activity and endo-β-glucanase activity in cellulases produced by T. reesei M2 increased 67.2% and 35.3%, respectively. Analysis by quantitative reverse transcription polymerase chain reaction indicated significant downregulation of the putative gene ctf1 in T. reesei M2, and its deletion mutants were thus developed for further studies. An increase of 36.9% in cellulase production was observed in the deletion mutants, but when ctf1 was constitutively overexpressed in T. reesei RUT-C30 under the control of the strong pdc1 promoter, cellulase production was substantially compromised. Comparative transcriptomic analysis revealed that the deletion of ctf1 upregulated transcription of gene encoding the regulator VIB1, but downregulated transcription of gene encoding another regulator RCE1, which consequently upregulated genes encoding the transcription factors XYR1 and ACE3 for the activation of genes encoding cellulolytic enzymes. As a result, ctf1 was characterized as a gene encoding a repressor for cellulase production in T. reesei RUT-C30, which is significant for further elucidating molecular mechanism underlying cellulase biosynthesis by the fungal species for rational design to develop robust strains for cellulase production. And in the meantime, AZFP transformation was validated to be an effective strategy for identifying functions of putative genes in the genome of T. reesei.
Collapse
Affiliation(s)
- Qing-Shan Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Science, and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Beier S, Hinterdobler W, Bazafkan H, Schillinger L, Schmoll M. CLR1 and CLR2 are light dependent regulators of xylanase and pectinase genes in Trichoderma reesei. Fungal Genet Biol 2019; 136:103315. [PMID: 31816399 DOI: 10.1016/j.fgb.2019.103315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/22/2019] [Accepted: 12/01/2019] [Indexed: 11/28/2022]
Abstract
Regulation of plant cell wall degradation is of utmost importance for understanding the carbon cycle in nature, but also to improve industrial processes aimed at enzyme production for next generation biofuels. Thereby, the transcription factor networks in different fungi show conservation as well as striking differences, particularly between Trichoderma reesei and Neurospora crassa. Here, we aimed to gain insight into the function of the transcription factors CLR1 and CLR2 in T. reesei, which are crucial for cellulase gene expression in N. crassa. We studied impacts on gene regulation with cellulose, xylan, pectin and chitin, growth on 95 different carbon sources as well as an involvement in regulation of secondary metabolism or development. We found that CLR1 is present in the genome of T. reesei and other Trichoderma spp., albeit with considerably lower homology compared to other ascomycetes. CLR1 and CLR2 regulate pectinase transcript levels upon growth on pectin, no major function was detected on chitin. CLR1 and CLR2 form a positive feedback cycle on xylan and were found to be responsible for balancing co-regulation of xylanase genes in light and darkness with distinct and in part opposite regulatory effects of up to 8fold difference. Our data suggest that CLR1 and CLR2 have evolved differently in T. reesei compared to other fungi. We propose a model in which their main function is in adjustment of regulation of xylanase gene expression to different light conditions and to balance transcript levels of genes involved in plant cell wall degradation according to their individual relevance for this process.
Collapse
Affiliation(s)
- Sabrina Beier
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| | - Wolfgang Hinterdobler
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| | - Hoda Bazafkan
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| | - Lukas Schillinger
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| | - Monika Schmoll
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria.
| |
Collapse
|
28
|
Hu Y, Xu W, Hu S, Lian L, Zhu J, Shi L, Ren A, Zhao M. InGanoderma lucidum, Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose. Environ Microbiol 2019; 22:107-121. [DOI: 10.1111/1462-2920.14826] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/05/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Wenzhao Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Shishan Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| | - MingWen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life SciencesNanjing Agricultural University Jiangsu 210095 Nanjing People's Republic of China
| |
Collapse
|
29
|
Wang F, Zhang R, Han L, Guo W, Du Z, Niu K, Liu Y, Jia C, Fang X. Use of fusion transcription factors to reprogram cellulase transcription and enable efficient cellulase production in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:244. [PMID: 31636703 PMCID: PMC6792246 DOI: 10.1186/s13068-019-1589-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/09/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Trichoderma reesei is widely used for cellulase production and accepted as an example for cellulase research. Cre1-mediated carbon catabolite repression (CCR) can significantly inhibit the transcription of cellulase genes during cellulase fermentation in T. reesei. Early efforts have been undertaken to modify Cre1 for the release of CCR; however, this approach leads to arrested hyphal growth and decreased biomass accumulation, which negatively affects cellulase production. RESULTS In this study, novel fusion transcription factors (fTFs) were designed to release or attenuate CCR inhibition in cellulase transcription, while Cre1 was left intact to maintain normal hyphal growth. Four designed fTFs were introduced into the T. reesei genome, which generated several transformants, named Kuace3, Kuclr2, Kuace2, and Kuxyr1. No obvious differences in growth were observed between the parent and transformant strains. However, the transcription levels of cel7a, a major cellulase gene, were significantly elevated in all the transformants, particularly in Kuace2 and Kuxyr1, when grown on lactose as a carbon source. This suggested that CCR inhibition was released or attenuated in the transformant strains. The growth of Kuace2 and Kuxyr1 was approximately equivalent to that of the parent strain in fed-batch fermentation process. However, we observed a 3.2- and 2.1-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of the parent strain. Moreover, we observed a 6.1- and 3.9-fold increase in the pNPCase titers of the Kuace2 and Kuxyr1 strains, respectively, compared with that of Δcre1 strain. CONCLUSIONS A new strategy based on fTFs was successfully established in T. reesei to improve cellulase titers without impairing fungal growth. This study will be valuable for lignocellulosic biorefining and for guiding the development of engineering strategies for producing other important biochemical compounds in fungal species.
Collapse
Affiliation(s)
- Fangzhong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong China
| | - Ruiqin Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Wei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Zhiqiang Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Yucui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Chunjiang Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| |
Collapse
|
30
|
Novy V, Nielsen F, Seiboth B, Nidetzky B. The influence of feedstock characteristics on enzyme production in Trichoderma reesei: a review on productivity, gene regulation and secretion profiles. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:238. [PMID: 31624500 PMCID: PMC6781402 DOI: 10.1186/s13068-019-1571-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/20/2019] [Indexed: 05/21/2023]
Abstract
Biorefineries, designed for the production of lignocellulose-based chemicals and fuels, are receiving increasing attention from the public, governments, and industries. A major obstacle for biorefineries to advance to commercial scale is the high cost of the enzymes required to derive the fermentable sugars from the feedstock used. As summarized in this review, techno-economic studies suggest co-localization and integration of enzyme manufacturing with the cellulosic biorefinery as the most promising alternative to alleviate this problem. Thus, cultivation of Trichoderma reesei, the principal producer of lignocellulolytic enzymes, on the lignocellulosic biomass processed on-site can reduce the cost of enzyme manufacturing. Further, due to a complex gene regulation machinery, the fungus can adjust the gene expression of the lignocellulolytic enzymes towards the characteristics of the feedstock, increasing the hydrolytic efficiency of the produced enzyme cocktail. Despite extensive research over decades, the underlying regulatory mechanisms are not fully elucidated. One aspect that has received relatively little attention in literature is the influence the characteristics of a lignocellulosic substrate, i.e., its chemical and physical composition, has on the produced enzyme mixture. Considering that the fungus is dependent on efficient enzymatic degradation of the lignocellulose for continuous supply of carbon and energy, a relationship between feedstock characteristics and secretome composition can be expected. The aim of this review was to systematically collect, appraise, and aggregate data and integrate results from studies analyzing enzyme production by T. reesei on insoluble cellulosic model substrates and lignocellulosic biomass. The results show that there is a direct effect of the substrate's complexity (rated by structure, composition of the lignin-carbohydrate complex, and recalcitrance in enzymatic saccharification) on enzyme titers and the composition of specific activities in the secretome. It further shows that process-related factors, such as substrate loading and cultivation set-up, are direct targets for increasing enzyme yields. The literature on transcriptome and secretome composition further supports the proposed influence of substrate-related factors on the expression of lignocellulolytic enzymes. This review provides insights into the interrelation between the characteristics of the substrate and the enzyme production by T. reesei, which may help to advance integrated enzyme manufacturing of substrate-specific enzymes cocktails at scale.
Collapse
Affiliation(s)
- Vera Novy
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Graz, Austria
- Present Address: Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, Canada
| | - Fredrik Nielsen
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Graz, Austria
- Present Address: Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, Canada
| | - Bernhard Seiboth
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, NAWI Graz, Graz University of Technology, Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib) GmbH, Graz, Austria
| |
Collapse
|
31
|
Derntl C, Mach RL, Mach-Aigner AR. Fusion transcription factors for strong, constitutive expression of cellulases and xylanases in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:231. [PMID: 31583017 PMCID: PMC6767844 DOI: 10.1186/s13068-019-1575-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/22/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND The filamentous ascomycete T. reesei is industrially used to produce cellulases and xylanases. Cost-effective production of cellulases is a bottleneck for biofuel production. Previously, different strain and process optimizations were deployed to enhance enzyme production rates. One approach is the overexpression of the main activator Xyr1 and a second is the construction of synthetic transcription factors. Notably, these genetic manipulations were introduced into strains bearing the wild-type xyr1 gene and locus. RESULTS Here, we constructed a Xyr1-deficient strain expressing a non-functional truncated version of Xyr1. This strain was successfully used as platform strain for overexpression of Xyr1, which enhanced the cellulase and xylanase production rates under inducing conditions, with the exception of lactose-there the cellulase production was severely reduced. Further, we introduced fusion transcription factors consisting of the DNA-binding domain of Xyr1 and the transactivation domain of either Ypr1 or Ypr2 (regulators of the sorbicillinoid biosynthesis gene cluster). The fusion of Xyr1 and Ypr2 yielded a moderately transactivating transcription factor, whereas the fusion of Xyr1 and Ypr1 yielded a highly transactivating transcription factor that induced xylanases and cellulases nearly carbon source independently. Especially, high production levels of xylanases were achieved on glycerol. CONCLUSION During this study, we constructed a Xyr1-deficient strain that can be fully reconstituted, which makes it an ideal platform strain for Xyr1-related studies. The mere overexpression of Xyr1 turned out not to be a successful strategy for overall enhancement of the enzyme production rates. We gained new insights into the regulatory properties of transcription factors by constructing respective fusion proteins. The Xyr1-Ypr1-fusion transcription factor could induce xylanase production rates on glycerol to outstanding extents, and hence could be deployed in the future to utilize crude glycerol, the main co-product of the biodiesel production process.
Collapse
Affiliation(s)
- Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Astrid R. Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| |
Collapse
|
32
|
Till P, Derntl C, Kiesenhofer DP, Mach RL, Yaver D, Mach-Aigner AR. Regulation of gene expression by the action of a fungal lncRNA on a transactivator. RNA Biol 2019; 17:47-61. [PMID: 31517564 PMCID: PMC6948969 DOI: 10.1080/15476286.2019.1663618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial factors acting on regulatory processes in eukaryotes. Recently, for the first time in a filamentous fungus, the lncRNA HAX1 was characterized in the ascomycete Trichoderma reesei. In industry, this fungus is widely applied for the high-yield production of cellulases. The lncRNA HAX1 was reported to influence the expression of cellulase-encoding genes; interestingly, this effect is dependent on the presence of its most abundant length. Clearly, HAX1 acts in association with a set of well-described transcription factors to regulate gene expression. In this study, we attempted to elucidate the regulatory strategy of HAX1 and its interactions with the major transcriptional activator Xylanase regulator 1 (Xyr1). We demonstrated that HAX1 interferes with the negative feedback regulatory loop of Xyr1 in a sophisticated manner and thus ultimately has a positive effect on gene expression.
Collapse
Affiliation(s)
- Petra Till
- Christian Doppler laboratory for optimized expression of carbohydrate-active enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Daniel P Kiesenhofer
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Debbie Yaver
- Production Strain Technology, Novozymes Inc., Davis, CA, USA
| | - Astrid R Mach-Aigner
- Christian Doppler laboratory for optimized expression of carbohydrate-active enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
33
|
Xu X, Fan C, Song L, Li J, Chen Y, Zhang Y, Liu B, Zhang W. A Novel CreA-Mediated Regulation Mechanism of Cellulase Expression in the Thermophilic Fungus Humicola insolens. Int J Mol Sci 2019; 20:ijms20153693. [PMID: 31357701 PMCID: PMC6696435 DOI: 10.3390/ijms20153693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
The thermophilic fungus Humicola insolens produces cellulolytic enzymes that are of great scientific and commercial interest; however, few reports have focused on its cellulase expression regulation mechanism. In this study, we constructed a creA gene (carbon catabolite repressor gene) disruption mutant strain of H. insolens that exhibited a reduced radial growth rate and stouter hyphae compared to the wild-type (WT) strain. The creA disruption mutant also expressed elevated pNPCase (cellobiohydrolase activities), pNPGase (β-glucosidase activities), and xylanase levels in non-inducing fermentation with glucose. Unlike other fungi, the H. insolenscreA disruption mutant displayed lower FPase (filter paper activity), CMCase (carboxymethyl cellulose activity), pNPCase, and pNPGase activity than observed in the WT strain when fermentation was induced using Avicel, whereas its xylanase activity was higher than that of the parental strain. These results indicate that CreA acts as a crucial regulator of hyphal growth and is part of a unique cellulase expression regulation mechanism in H. insolens. These findings provide a new perspective to improve the understanding of carbon catabolite repression regulation mechanisms in cellulase expression, and enrich the knowledge of metabolism diversity and molecular regulation of carbon metabolism in thermophilic fungi.
Collapse
Affiliation(s)
- Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Chao Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Liya Song
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, No.11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Jinyang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Yuan Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
| |
Collapse
|
34
|
Liu P, Lin A, Zhang G, Zhang J, Chen Y, Shen T, Zhao J, Wei D, Wang W. Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening. Microb Cell Fact 2019; 18:81. [PMID: 31077201 PMCID: PMC6509817 DOI: 10.1186/s12934-019-1131-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cellulolytic enzymes produced by the filamentous fungus Trichoderma reesei are commonly used in biomass conversion. The high cost of cellulase is still a significant challenge to commercial biofuel production. Improving cellulase production in T. reesei for application in the cellulosic biorefinery setting is an urgent priority. RESULTS Trichoderma reesei hyper-cellulolytic mutant SS-II derived from the T. reesei NG14 strain exhibited faster growth rate and more efficient lignocellulosic biomass degradation than those of RUT-C30, another hyper-cellulolytic strain derived from NG14. To identify any genetic changes that occurred in SS-II, we sequenced its genome using Illumina MiSeq. In total, 184 single nucleotide polymorphisms and 40 insertions and deletions were identified. SS-II sequencing revealed 107 novel mutations and a full-length wild-type carbon catabolite repressor 1 gene (cre1). To combine the mutations of RUT-C30 and SS-II, the sequence of one confirmed beneficial mutation in RUT-C30, cre196, was introduced in SS-II to replace full-length cre1, forming the mutant SS-II-cre196. The total cellulase production of SS-II-cre196 was decreased owing to the limited growth of SS-II-cre196. In contrast, 57 genes mutated only in SS-II were selected and knocked out in RUT-C30. Of these, 31 were involved in T. reesei growth or cellulase production. Cellulase activity was significantly increased in five deletion strains compared with that in two starter strains, RUT-C30 and SS-II. Cellulase production of T. reesei Δ108642 and Δ56839 was significantly increased by 83.7% and 70.1%, respectively, compared with that of RUT-C30. The amount of glucose released from pretreated corn stover hydrolyzed by the crude enzyme from Δ108642 increased by 11.9%. CONCLUSIONS The positive attribute confirmed in one cellulase hyper-producing strain does not always work efficiently in another cellulase hyper-producing strain, owing to the differences in genetic background. Genome re-sequencing revealed novel mutations that might affect cellulase production and other pathways indirectly related to cellulase formation. Our strategy of combining the mutations of two strains successfully identified a number of interesting phenotypes associated with cellulase production. These findings will contribute to the creation of a gene library that can be used to investigate the involvement of various genes in the regulation of cellulase production.
Collapse
Affiliation(s)
- Pei Liu
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Aibo Lin
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Guoxiu Zhang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Jiajia Zhang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Yumeng Chen
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Tao Shen
- Sunson Industry Group Co, Ltd, Beijing, China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|
35
|
Han H, Ling Z, Khan A, Virk AK, Kulshrestha S, Li X. Improvements of thermophilic enzymes: From genetic modifications to applications. BIORESOURCE TECHNOLOGY 2019; 279:350-361. [PMID: 30755321 DOI: 10.1016/j.biortech.2019.01.087] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Thermozymes (from thermophiles or hyperthermophiles) offer obvious advantages due to their excellent thermostability, broad pH adaptation, and hydrolysis ability, resulting in diverse industrial applications including food, paper, and textile processing, biofuel production. However, natural thermozymes with low yield and poor adaptability severely hinder their large-scale applications. Extensive studies demonstrated that using genetic modifications such as directed evolution, semi-rational design, and rational design, expression regulations and chemical modifications effectively improved enzyme's yield, thermostability and catalytic efficiency. However, mechanism-based techniques for thermozymes improvements and applications need more attention. In this review, stabilizing mechanisms of thermozymes are summarized for thermozymes improvements, and these improved thermozymes eventually have large-scale industrial applications.
Collapse
Affiliation(s)
- Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Saurabh Kulshrestha
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
36
|
de Paula RG, Antoniêto ACC, Ribeiro LFC, Srivastava N, O'Donovan A, Mishra PK, Gupta VK, Silva RN. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv 2019; 37:107347. [PMID: 30771467 DOI: 10.1016/j.biotechadv.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products. During biomass pretreatment and degradation, toxic compounds are produced, and undesirable carbon catabolic repression (CCR) can occur. In order to solve this problem, microbial metabolic pathways and transcription factors involved have been investigated along with the application of protein engineering to optimize the biorefinery platform. Engineered Microorganisms have been used to produce specific enzymes to breakdown biomass polymers and metabolize sugars to produce ethanol as well other biochemical compounds. Protein engineering strategies have been used for modifying lignocellulolytic enzymes to overcome enzymatic limitations and improving both their production and functionality. Furthermore, promoters and transcription factors, which are key proteins in this process, are modified to promote microbial gene expression that allows a maximum performance of the hydrolytic enzymes for lignocellulosic degradation. The present review will present a critical discussion and highlight the aspects of the use of microorganisms to convert lignocellulose into value-added bioproduct as well combat the bottlenecks to make the biorefinery platform from lignocellulose attractive to the market.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Anthonia O'Donovan
- School of Science and Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - P K Mishra
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Vijai K Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
37
|
Llanos A, Déjean S, Neugnot-Roux V, François JM, Parrou JL. Carbon sources and XlnR-dependent transcriptional landscape of CAZymes in the industrial fungus Talaromyces versatilis: when exception seems to be the rule. Microb Cell Fact 2019; 18:14. [PMID: 30691469 PMCID: PMC6348686 DOI: 10.1186/s12934-019-1062-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/13/2019] [Indexed: 11/19/2022] Open
Abstract
Background Research on filamentous fungi emphasized the remarkable redundancy in genes encoding hydrolytic enzymes, the similarities but also the large differences in their expression, especially through the role of the XlnR/XYR1 transcriptional activator. The purpose of this study was to evaluate the specificities of the industrial fungus Talaromyces versatilis, getting clues into the role of XlnR and the importance of glucose repression at the transcriptional level, to provide further levers for cocktail production. Results By studying a set of 62 redundant genes representative of several categories of enzymes, our results underlined the huge plasticity of transcriptional responses when changing nutritional status. As a general trend, the more heterogeneous the substrate, the more efficient to trigger activation. Genetic modifications of xlnR led to significant reorganisation of transcriptional patterns. Just a minimal set of genes actually fitted in a simplistic model of regulation by a transcriptional activator, and this under specific substrates. On the contrary, the diversity of xlnR+ versus ΔxlnR responses illustrated the existence of complex and unpredicted patterns of co-regulated genes that were highly dependent on the culture condition, even between genes that encode members of a functional category of enzymes. They notably revealed a dual, substrate-dependant repressor-activator role of XlnR, with counter-intuitive transcripts regulations that targeted specific genes. About glucose, it appeared as a formal repressive sugar as we observed a massive repression of most genes upon glucose addition to the mycelium grown on wheat straw. However, we also noticed a positive role of this sugar on the basal expression of a few genes, (notably those encoding cellulases), showing again the strong dependence of these regulatory mechanisms upon promoter and nutritional contexts. Conclusions The diversity of transcriptional patterns appeared to be the rule, while common and stable behaviour, both within gene families and with fungal literature, the exception. The setup of a new biotechnological process to reach optimized, if not customized expression patterns of enzymes, hence appeared tricky just relying on published data that can lead, in the best scenario, to approximate trends. We instead encourage preliminary experimental assays, carried out in the context of interest to reassess gene responses, as a mandatory step before thinking in (genetic) strategies for the improvement of enzyme production in fungi.![]() Electronic supplementary material The online version of this article (10.1186/s12934-019-1062-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agustina Llanos
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France.,Adisseo France S.A.S, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR5219-Université de Toulouse; CNRS-UPS, 31062, Toulouse Cedex 9, France
| | | | - Jean M François
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France
| | - Jean-Luc Parrou
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France.
| |
Collapse
|
38
|
Benocci T, Aguilar-Pontes MV, Kun RS, Lubbers RJM, Lail K, Wang M, Lipzen A, Ng V, Grigoriev IV, Seiboth B, Daly P, de Vries RP. Deletion of either the regulatory gene ara1 or metabolic gene xki1 in Trichoderma reesei leads to increased CAZyme gene expression on crude plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:81. [PMID: 31007715 PMCID: PMC6454604 DOI: 10.1186/s13068-019-1422-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/03/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Trichoderma reesei is one of the major producers of enzymes for the conversion of plant biomass to sustainable fuels and chemicals. Crude plant biomass can induce the production of CAZymes in T. reesei, but there is limited understanding of how the transcriptional response to crude plant biomass is regulated. In addition, it is unknown whether induction on untreated recalcitrant crude plant biomass (with a large diversity of inducers) can be sustained for longer. We investigated the transcriptomic response of T. reesei to the two industrial feedstocks, corn stover (CS) and soybean hulls (SBH), over time (4 h, 24 h and 48 h), and its regulatory basis using transcription factor deletion mutants (Δxyr1 and Δara1). We also investigated whether deletion of a xylulokinase gene (Δxki1) from the pentose catabolic pathway that converts potential inducers could lead to increased CAZyme gene expression. RESULTS By analyzing the transcriptomic responses using clustering as well as differential and cumulative expression of plant biomass degrading CAZymes, we found that corn stover induced a broader range and higher expression of CAZymes in T. reesei, while SBH induced more pectinolytic and mannanolytic transcripts. XYR1 was the major TF regulating CS utilization, likely due to the significant amount of d-xylose in this substrate. In contrast, ARA1 had a stronger effect on SBH utilization, which correlates with a higher abundance of l-arabinose in SBH that activates ARA1. Blocking pentose catabolism by deletion of xki1 led to higher expression of CAZyme encoding genes on both substrates at later time points. Surprisingly, this was also observed for Δara1 at later time points. Many of these genes were XYR1 regulated, suggesting that inducers for this regulator accumulated over time on both substrates. CONCLUSION Our data demonstrates the complexity of the regulatory system related to plant biomass degradation in T. reesei and the effect the feedstock composition has on this. Furthermore, this dataset provides leads to improve the efficiency of a T. reesei enzyme cocktail, such as by the choice of substrate or by deleting xki1 to obtain higher production of plant biomass degrading CAZymes.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Roland Sándor Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ronnie J. M. Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Kathleen Lail
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598 USA
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
39
|
Meng QS, Liu CG, Zhao XQ, Bai FW. Engineering Trichoderma reesei Rut-C30 with the overexpression of egl1 at the ace1 locus to relieve repression on cellulase production and to adjust the ratio of cellulolytic enzymes for more efficient hydrolysis of lignocellulosic biomass. J Biotechnol 2018; 285:56-63. [DOI: 10.1016/j.jbiotec.2018.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023]
|
40
|
Fitz E, Wanka F, Seiboth B. The Promoter Toolbox for Recombinant Gene Expression in Trichoderma reesei. Front Bioeng Biotechnol 2018; 6:135. [PMID: 30364340 PMCID: PMC6193071 DOI: 10.3389/fbioe.2018.00135] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023] Open
Abstract
The ascomycete Trichoderma reesei is one of the main fungal producers of cellulases and xylanases based on its high production capacity. Its enzymes are applied in food, feed, and textile industry or in lignocellulose hydrolysis in biofuel and biorefinery industry. Over the last years, the demand to expand the molecular toolbox for T. reesei to facilitate genetic engineering and improve the production of heterologous proteins grew. An important instrument to modify the expression of key genes are promoters to initiate and control their transcription. To date, the most commonly used promoter for T. reesei is the strong inducible promoter of the main cellobiohydrolase cel7a. Beside this one, there is a number of alternative inducible promoters derived from other cellulase- and xylanase encoding genes and a few constitutive promoters. With the advances in genomics and transcriptomics the identification of new constitutive and tunable promoters with different expression strength was simplified. In this review, we will discuss new developments in the field of promoters and compare their advantages and disadvantages. Synthetic expression systems constitute a new option to control gene expression and build up complex gene circuits. Therefore, we will address common structural features of promoters and describe options for promoter engineering and synthetic design of promoters. The availability of well-characterized gene expression control tools is essential for the analysis of gene function, detection of bottlenecks in gene networks and yield increase for biotechnology applications.
Collapse
Affiliation(s)
- Elisabeth Fitz
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Franziska Wanka
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
41
|
Alazi E, Ram AFJ. Modulating Transcriptional Regulation of Plant Biomass Degrading Enzyme Networks for Rational Design of Industrial Fungal Strains. Front Bioeng Biotechnol 2018; 6:133. [PMID: 30320082 PMCID: PMC6167437 DOI: 10.3389/fbioe.2018.00133] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023] Open
Abstract
Filamentous fungi are the most important microorganisms for the industrial production of plant polysaccharide degrading enzymes due to their unique ability to secrete these proteins efficiently. These carbohydrate active enzymes (CAZymes) are utilized industrially for the hydrolysis of plant biomass for the subsequent production of biofuels and high-value biochemicals. The expression of the genes encoding plant biomass degrading enzymes is tightly controlled. Naturally, large amounts of CAZymes are produced and secreted only in the presence of the plant polysaccharide they specifically act on. The signal to produce is conveyed via so-called inducer molecules which are di- or mono-saccharides (or derivatives thereof) released from the specific plant polysaccharides. The presence of the inducer results in the activation of a substrate-specific transcription factor (TF), which is required not only for the controlled expression of the genes encoding the CAZymes, but often also for the regulation of the expression of the genes encoding sugar transporters and catabolic pathway enzymes needed to utilize the released monosaccharide. Over the years, several substrate-specific TFs involved in the degradation of cellulose, hemicellulose, pectin, starch and inulin have been identified in several fungal species and systems biology approaches have made it possible to uncover the enzyme networks controlled by these TFs. The requirement for specific inducers for TF activation and subsequently the expression of particular enzyme networks determines the choice of feedstock to produce enzyme cocktails for industrial use. It also results in batch-to-batch variation in the composition and amounts of enzymes due to variations in sugar composition and polysaccharide decorations of the feedstock which hampers the use of cheap feedstocks for constant quality of enzyme cocktails. It is therefore of industrial interest to produce specific enzyme cocktails constitutively and independently of inducers. In this review, we focus on the methods to modulate TF activities for inducer-independent production of CAZymes and highlight various approaches that are used to construct strains displaying constitutive expression of plant biomass degrading enzyme networks. These approaches and combinations thereof are also used to construct strains displaying increased expression of CAZymes under inducing conditions, and make it possible to design strains in which different enzyme mixtures are simultaneously produced independently of the carbon source.
Collapse
Affiliation(s)
| | - Arthur F. J. Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
42
|
New Genomic Approaches to Enhance Biomass Degradation by the Industrial Fungus Trichoderma reesei. Int J Genomics 2018; 2018:1974151. [PMID: 30345291 PMCID: PMC6174759 DOI: 10.1155/2018/1974151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/20/2018] [Accepted: 07/29/2018] [Indexed: 11/17/2022] Open
Abstract
The filamentous fungi Trichoderma reesei is one of the most well-studied cellulolytic microorganisms. It is the most important fungus for the industrial production of enzymes to biomass deconstruction being widely used in the biotechnology industry, mainly in the production of biofuels. Here, we performed an analytic review of the holocellulolytic system presented by T. reesei as well as the transcriptional and signaling mechanisms involved with holocellulase expression in this fungus. We also discuss new perspectives about control of secretion and cellulase expression based on RNA-seq and functional characterization data of T. reesei growth in different carbon sources, which comprise glucose, cellulose, sophorose, and sugarcane bagasse.
Collapse
|
43
|
Kostyleva EV, Tsurikova NV, Sereda A, Velikoretskaya IA, Veselkina TN, Lobanov NS, Shashkov IA, Sinitsyn A. Enhancement of Activity of Carbohydrases with Endo-depolymerase Action in Trichoderma reesei Using Mutagenesis. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718050120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
44
|
Xia Y, Yang L, Xia L. Combined strategy of transcription factor manipulation and β-glucosidase gene overexpression in Trichoderma reesei and its application in lignocellulose bioconversion. ACTA ACUST UNITED AC 2018; 45:803-811. [DOI: 10.1007/s10295-018-2041-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/27/2018] [Indexed: 12/01/2022]
Abstract
Abstract
The industrial application of Trichoderma reesei has been greatly limited by insufficient β-glucosidase activity in its cellulase system. In this study, a novel β-glucosidase expression cassette was constructed and integrated at the target site in T. reesei ZU-02, which achieved the overexpression of β-glucosidase gene and in situ disruption of the cellulase transcriptional repressor ACE1. The resulting transformants showed significant increase in both β-glucosidase activity (BGA) and filter paper activity (FPA). The BGA and FPA increased to 25.13 IU/mL and 20.06 FPU/mL, respectively, 167- and 2.45-fold higher than that of the host strain. Meanwhile, the obtained cellulase system exhibited improved ratio of BGA to FPA, leading to better synergistic effect between cellulase components. Furthermore, submerged fermentation of the transformant was established in 50 m3 fermenter yielding 112.2 IU/mL β-glucosidase and 89.76 FPU/mL total cellulase. The newly constructed T. reesei transformant achieved improved hydrolysis yield (90.6%) with reduced enzyme loading (15 FPU/g substrate).
Collapse
Affiliation(s)
- Ying Xia
- 0000 0004 1759 700X grid.13402.34 Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou China
| | - Lirong Yang
- 0000 0004 1759 700X grid.13402.34 Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou China
| | - Liming Xia
- 0000 0004 1759 700X grid.13402.34 Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University 310027 Hangzhou China
| |
Collapse
|
45
|
Zhang J, Wu C, Wang W, Wang W, Wei D. Construction of enhanced transcriptional activators for improving cellulase production in Trichoderma reesei RUT C30. BIORESOUR BIOPROCESS 2018; 5:40. [PMID: 32288986 PMCID: PMC7101855 DOI: 10.1186/s40643-018-0226-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/14/2018] [Indexed: 11/21/2022] Open
Abstract
Enhancing cellulase production in Trichoderma reesei is of great interest for an economical biorefinery. Artificial transcription factors are a potentially powerful molecular strategy for improving cellulase production in T. reesei. In this study, enhanced transcriptional activators XYR1VP, ACE2VP, and ACE1VP were constructed by linking the C terminus of XYR1, ACE2, or ACE1 with an activation domain of herpes simplex virus protein VP16. T. reesei transformants TXYR1VP, TACE2VP, and TACE1VP showed improved cellulase and/or xylanase production. TXYR1VP has a cellulase-free phenotype but with significantly elevated xylanase production. Xylanase I and xylanase II activities [U/(mg biomass)] increased by 51% and 80%, respectively, in TXYR1VP in comparison with parental strain RUT C30. The filter paper activity of TACE2VP in the Avicel-based medium increased by 52% compared to that of RUT C30. In the Avicel-based medium, TACE1VP manifested an 80% increase in FPase activity and a 50% increase in xylanase activity as compared to those of RUT C30. Additionally, when pretreated corn stover was hydrolyzed, crude enzymes produced from TACE1VP yielded a greater glucose release than did the enzymes produced by parental strain RUT C30.![]()
Collapse
Affiliation(s)
- Jiajia Zhang
- 1New World Institute of Biotechnology, State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Chuan Wu
- 1New World Institute of Biotechnology, State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Wei Wang
- 2State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Wei Wang
- 1New World Institute of Biotechnology, State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Dongzhi Wei
- 1New World Institute of Biotechnology, State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|
46
|
Dattenböck C, Tisch D, Schuster A, Monroy AA, Hinterdobler W, Schmoll M. Gene regulation associated with sexual development and female fertility in different isolates of Trichoderma reesei. Fungal Biol Biotechnol 2018; 5:9. [PMID: 29785273 PMCID: PMC5952832 DOI: 10.1186/s40694-018-0055-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/12/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Trichoderma reesei is one of the most frequently used filamentous fungi in industry for production of homologous and heterologous proteins. The ability to use sexual crossing in this fungus was discovered several years ago and opens up new perspectives for industrial strain improvement and investigation of gene regulation. RESULTS Here we investigated the female sterile strain QM6a in comparison to the fertile isolate CBS999.97 and backcrossed derivatives of QM6a, which have regained fertility (FF1 and FF2 strains) in both mating types under conditions of sexual development. We found considerable differences in gene regulation between strains with the CBS999.97 genetic background and the QM6a background. Regulation patterns of QM6a largely clustered with the backcrossed FF1 and FF2 strains. Differential regulation between QM6a and FF1/FF2 as well as clustering of QM6a patterns with those of CBS999.97 strains was also observed. Consistent mating type dependent regulation was limited to mating type genes and those involved in pheromone response, but included also nta1 encoding a putative N-terminal amidase previously not associated with development. Comparison of female sterile QM6a with female fertile strains showed differential expression in genes encoding several transcription factors, metabolic genes and genes involved in secondary metabolism. CONCLUSIONS Evaluation of the functions of genes specifically regulated under conditions of sexual development and of genes with highest levels of transcripts under these conditions indicated a relevance of secondary metabolism for sexual development in T. reesei. Among others, the biosynthetic genes of the recently characterized SOR cluster are in this gene group. However, these genes are not essential for sexual development, but rather have a function in protection and defence against competitors during reproduction.
Collapse
Affiliation(s)
- Christoph Dattenböck
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - Doris Tisch
- Institute of Chemical Engineering, Research Area Molecular Biotechnology, TU Wien, 1060 Vienna, Austria
| | - Andre Schuster
- Institute of Chemical Engineering, Research Area Molecular Biotechnology, TU Wien, 1060 Vienna, Austria
| | - Alberto Alonso Monroy
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad Lorenz Straße 24, 3430 Tulln, Austria
| |
Collapse
|
47
|
Zhang F, Zhao X, Bai F. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. BIORESOURCE TECHNOLOGY 2018; 247:676-683. [PMID: 30060399 DOI: 10.1016/j.biortech.2017.09.126] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 05/05/2023]
Abstract
Trichoderma reesei is a widely used cellulase producer, and development of robust strains for improved cellulase production is of great interest. In this study, the gene Trvib-1 encoding a putative transcription factor was overexpressed in T. reesei Rut-C30, and effects on cellulase production by the manipulation as well as corn stover degradation by the crude enzyme were investigated. Cellulase production and protein secretion were significantly improved in the culture of the recombinant T. reesei Vib-1, which were 200% and 219%, respectively, higher than that produced by the parent strain. Cellulase induction was enhanced in the presence of pure cellulose as well as various soluble inducers. Glucose released from the pretreated corn stover hydrolyzed by the crude enzyme in the recombinant strain was improved 40%. These results indicate that the overexpression of Trvib-1 is a feasible strategy for producing cellulase to enhance bioconversion efficiency of lignocellulosic biomass.
Collapse
Affiliation(s)
- Fei Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
48
|
Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, Lu G. Carbon Catabolite Repression in Filamentous Fungi. Int J Mol Sci 2017; 19:ijms19010048. [PMID: 29295552 PMCID: PMC5795998 DOI: 10.3390/ijms19010048] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022] Open
Abstract
Carbon Catabolite Repression (CCR) has fascinated scientists and researchers around the globe for the past few decades. This important mechanism allows preferential utilization of an energy-efficient and readily available carbon source over relatively less easily accessible carbon sources. This mechanism helps microorganisms to obtain maximum amount of glucose in order to keep pace with their metabolism. Microorganisms assimilate glucose and highly favorable sugars before switching to less-favored sources of carbon such as organic acids and alcohols. In CCR of filamentous fungi, CreA acts as a transcription factor, which is regulated to some extent by ubiquitination. CreD-HulA ubiquitination ligase complex helps in CreA ubiquitination, while CreB-CreC deubiquitination (DUB) complex removes ubiquitin from CreA, which causes its activation. CCR of fungi also involves some very crucial elements such as Hexokinases, cAMP, Protein Kinase (PKA), Ras proteins, G protein-coupled receptor (GPCR), Adenylate cyclase, RcoA and SnfA. Thorough study of molecular mechanism of CCR is important for understanding growth, conidiation, virulence and survival of filamentous fungi. This review is a comprehensive revision of the regulation of CCR in filamentous fungi as well as an updated summary of key regulators, regulation of different CCR-dependent mechanisms and its impact on various physical characteristics of filamentous fungi.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Waqar Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Arif
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Bio-Pesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
49
|
Benocci T, Aguilar-Pontes MV, Kun RS, Seiboth B, de Vries RP, Daly P. ARA1 regulates not only l-arabinose but also d-galactose catabolism in Trichoderma reesei. FEBS Lett 2017; 592:60-70. [PMID: 29215697 DOI: 10.1002/1873-3468.12932] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/18/2017] [Accepted: 11/29/2017] [Indexed: 11/11/2022]
Abstract
Trichoderma reesei is used to produce saccharifying enzyme cocktails for biofuels. There is limited understanding of the transcription factors (TFs) that regulate genes involved in release and catabolism of l-arabinose and d-galactose, as the main TF XYR1 is only partially involved. Here, the T. reesei ortholog of ARA1 from Pyricularia oryzae that regulates l-arabinose releasing and catabolic genes was deleted and characterized by growth profiling and transcriptomics along with a xyr1 mutant and xyr1/ara1 double mutant. Our results show that in addition to the l-arabinose-related role, T. reesei ARA1 is essential for expression of d-galactose releasing and catabolic genes, while XYR1 is not involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Roland Sándor Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical, Environmental and Biological Engineering, TU Wien, Vienna, Austria
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, The Netherlands
| |
Collapse
|
50
|
Jiang F, Ma L, Cai R, Ma Q, Guo G, Du L, Xiao D. Efficient crude multi-enzyme produced by Trichoderma reesei using corncob for hydrolysis of lignocellulose. 3 Biotech 2017; 7:339. [PMID: 28955636 DOI: 10.1007/s13205-017-0982-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
To improve the efficiency of enzymatic saccharification for lignocellulose, an efficient crude multi-enzyme was produced by Trichoderma reesei using corncob, a low cost inducer. Expression of cbh1, bgl1, egl1, xyn1 and positive regulator xyr1 induced by corncob increased significantly compared to that by cellulose. After 120 h induction by corncob, enzymatic activities on filter, CMC, β-glucose and xylan increased 86.5, 46.9, 120.9 and 291.2% compared to those induced by cellulose, and the concentration of secreted protein increased by 120.8%. FPase:β-glucosidase and FPase:xylanase values in crude multi-enzyme I (ECI, induced by corncob) were higher than that in crude multi-enzyme II (ECII, induced by cellulose). Under the same hydrolysis conditions, the volume dosage of ECI was only half of ECII, but ECI still showed a maximum of 12.5 and 33.4% higher than ECII in the total reducing sugar and glucose yield in lignocellulose hydrolysis. Corncob could be a candidate for low cost production of multi-enzyme for efficient lignocellulose degradation, and this work could guide the genetic modification of T. reesei to obtain efficient multi-enzyme for lignocellulose hydrolysis.
Collapse
Affiliation(s)
- Fengchao Jiang
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Lijuan Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Rui Cai
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Qing Ma
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Gaojie Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Liping Du
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| | - Dongguang Xiao
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 People's Republic of China
| |
Collapse
|