1
|
Nhim S, Tintó-Font E, Casas-Vila N, Michel-Todó L, Cortés A. Heterochromatin dynamics during the initial stages of sexual development in Plasmodium falciparum. Sci Rep 2024; 14:23180. [PMID: 39369041 PMCID: PMC11455859 DOI: 10.1038/s41598-024-73981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Asexual replication of Plasmodium falciparum in the human blood results in exponential parasite growth and causes all clinical symptoms of malaria. However, at each round of the replicative cycle, some parasites convert into sexual precursors called gametocytes, which develop through different stages until they become infective to mosquito vectors. The genome-wide distribution of heterochromatin, a type of chromatin generally refractory to gene expression, is identical at all asexual blood stages, but is altered in stage II/III and more mature gametocytes. However, it is not known if these changes occur concomitantly with sexual conversion or at a later time during gametocyte development. Using a transgenic line in which massive sexual conversion can be conditionally induced, we show that the genome-wide distribution of heterochromatin at the initial stages of sexual development (i.e., sexual rings and stage I gametocytes) is almost identical to asexual blood stages, and major changes do not occur until stage II/III. However, we found that at loci with heterochromatin alterations, transcriptional changes associated with sexual development typically precede, rather than follow, changes in heterochromatin occupancy.
Collapse
Affiliation(s)
- Sandra Nhim
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Núria Casas-Vila
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lucas Michel-Todó
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alfred Cortés
- ISGlobal, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
2
|
Omoda A, Matsumoto K, Yoshino KI, Tachibana M, Tsuboi T, Torii M, Ishino T, Iriko H. Skeleton binding protein 1 localizes to the Maurer's cleft and interacts with PfHSP70-1 and PfHSP70-x in Plasmodium falciparum gametocyte-infected erythrocytes. Parasitol Int 2024; 100:102864. [PMID: 38331312 DOI: 10.1016/j.parint.2024.102864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Plasmodium falciparum accounts for the majority of malaria deaths, due to pathology provoked by the ability of infected erythrocytes to adhere to vascular endothelium within deep tissues. The parasite recognizes endothelium by trafficking and displaying protein ligands on the surface of asexual stage infected erythrocytes, such as members of the large family of pathogenic proteins, P. falciparum erythrocyte membrane protein 1 (PfEMP1). Parasite-encoded skeleton binding protein 1 (SBP1) plays an important role in the transport of these binding-related surface proteins, via cleft-like membranous structures termed Maurer's clefts, which are present within the cytoplasm of infected erythrocytes. Erythrocytes infected with gametocyte stages accumulate in the extravascular compartment of bone marrow; and it was suggested that their surface-expressed adhesion molecule profile and protein trafficking mechanisms might differ from those in asexual stage parasites. Protein trafficking mechanisms via Maurer's clefts have been well investigated in asexual stage parasite-infected erythrocytes; but little is known regarding the gametocyte stages. In this study, we characterized SBP1 during gametocyte maturation and demonstrated that SBP1 is expressed and localizes to dot-like Maurer's cleft structures in the cytoplasm of gametocyte-infected erythrocytes. Co-immunoprecipitation and mass spectrometry assays indicated that SBP1 interacts with the molecular chaperones PfHSP70-1 and PfHSP70-x. Localization analysis suggested that some PfHSP70-1 and/or PfHSP70-x localize in a dot-like pattern within the cytoplasm of immature gametocyte-infected erythrocytes. These findings suggest that SBP1 may interact with HSP70 chaperones in the infected erythrocyte cytoplasm during the immature gametocyte stages.
Collapse
Affiliation(s)
- Ayaka Omoda
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan
| | - Konomi Matsumoto
- Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Hyogo, Japan
| | | | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan
| | - Motomi Torii
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan; Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hideyuki Iriko
- Division of Global Infectious Diseases, Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan; Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Hyogo, Japan.
| |
Collapse
|
3
|
Jeninga MD, Tang J, Selvarajah SA, Maier AG, Duffy MF, Petter M. Plasmodium falciparum gametocytes display global chromatin remodelling during sexual differentiation. BMC Biol 2023; 21:65. [PMID: 37013531 PMCID: PMC10071754 DOI: 10.1186/s12915-023-01568-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND The protozoan malaria parasite Plasmodium falciparum has a complex life cycle during which it needs to differentiate into multiple morphologically distinct life forms. A key process for transmission of the disease is the development of male and female gametocytes in the human blood, yet the mechanisms determining sexual dimorphism in these haploid, genetically identical sexual precursor cells remain largely unknown. To understand the epigenetic program underlying the differentiation of male and female gametocytes, we separated the two sexual forms by flow cytometry and performed RNAseq as well as comprehensive ChIPseq profiling of several histone variants and modifications. RESULTS We show that in female gametocytes the chromatin landscape is globally remodelled with respect to genome-wide patterns and combinatorial usage of histone variants and histone modifications. We identified sex specific differences in heterochromatin distribution, implicating exported proteins and ncRNAs in sex determination. Specifically in female gametocytes, the histone variants H2A.Z/H2B.Z were highly enriched in H3K9me3-associated heterochromatin. H3K27ac occupancy correlated with stage-specific gene expression, but in contrast to asexual parasites this was unlinked to H3K4me3 co-occupancy at promoters in female gametocytes. CONCLUSIONS Collectively, we defined novel combinatorial chromatin states differentially organising the genome in gametocytes and asexual parasites and unravelled fundamental, sex-specific differences in the epigenetic code. Our chromatin maps represent an important resource for future understanding of the mechanisms driving sexual differentiation in P. falciparum.
Collapse
Affiliation(s)
- Myriam D Jeninga
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jingyi Tang
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Shamista A Selvarajah
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Alexander G Maier
- The Australian National University, Research School of Biology, 134 Linnaeus Way, Canberra, ACT, 2601, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute, 792 Elizabeth Street, Melbourne, VIC, 3000, Australia
- Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Michaela Petter
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Department of Medicine, University of Melbourne, Bio21 Institute, 30 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
4
|
Almaazmi SY, Singh H, Dutta T, Blatch GL. Exported J domain proteins of the human malaria parasite. Front Mol Biosci 2022; 9:978663. [PMID: 36120546 PMCID: PMC9470956 DOI: 10.3389/fmolb.2022.978663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
The heat shock protein 40 (Hsp40) family, also called J domain proteins (JDPs), regulate their Hsp70 partners by ensuring that they are engaging the right substrate at the right time and in the right location within the cell. A number of JDPs can serve as co-chaperone for a particular Hsp70, and so one generally finds many more JDPs than Hsp70s in the cell. In humans there are 13 Hsp70s and 49 JDPs. The human malaria parasite, Plasmodium falciparum, has dedicated an unusually large proportion of its genome to molecular chaperones, with a disproportionately high number of JDPs (PfJDPs) of 49 members. Interestingly, just under half of the PfJDPs are exported into the host cell during the asexual stage of the life cycle, when the malaria parasite invades mature red blood cells. Recent evidence suggests that these PfJDPs may be functionalizing both host and parasite Hsp70s within the infected red blood cell, and thereby driving the renovation of the host cell towards pathological ends. PfJDPs have been found to localize to the host cytosol, mobile structures within the host cytosol (so called “J Dots”), the host plasma membrane, and specialized structures associated with malaria pathology such as the knobs. A number of these exported PfJDPs are essential, and there is growing experimental evidence that they are important for the survival and pathogenesis of the malaria parasite. This review critiques our understanding of the important role these exported PfJDPs play at the host-parasite interface.
Collapse
Affiliation(s)
- Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Tanima Dutta
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- PathWest Nedlands, QEII Medical Centre, Nedlands, WA, Australia
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
- The Institute of Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- *Correspondence: Gregory L. Blatch,
| |
Collapse
|
5
|
Connacher J, Josling GA, Orchard LM, Reader J, Llinás M, Birkholtz LM. H3K36 methylation reprograms gene expression to drive early gametocyte development in Plasmodium falciparum. Epigenetics Chromatin 2021; 14:19. [PMID: 33794978 PMCID: PMC8017609 DOI: 10.1186/s13072-021-00393-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The Plasmodium sexual gametocyte stages are the only transmissible form of the malaria parasite and are thus responsible for the continued transmission of the disease. Gametocytes undergo extensive functional and morphological changes from commitment to maturity, directed by an equally extensive control program. However, the processes that drive the differentiation and development of the gametocyte post-commitment, remain largely unexplored. A previous study reported enrichment of H3K36 di- and tri-methylated (H3K36me2&3) histones in early-stage gametocytes. Using chromatin immunoprecipitation followed by high-throughput sequencing, we identify a stage-specific association between these repressive histone modifications and transcriptional reprogramming that define a stage II gametocyte transition point. Results Here, we show that H3K36me2 and H3K36me3 from stage II gametocytes are associated with repression of genes involved in asexual proliferation and sexual commitment, indicating that H3K36me2&3-mediated repression of such genes is essential to the transition from early gametocyte differentiation to intermediate development. Importantly, we show that the gene encoding the transcription factor AP2-G as commitment master regulator is enriched with H3K36me2&3 and actively repressed in stage II gametocytes, providing the first evidence of ap2-g gene repression in post-commitment gametocytes. Lastly, we associate the enhanced potency of the pan-selective Jumonji inhibitor JIB-04 in gametocytes with the inhibition of histone demethylation including H3K36me2&3 and a disruption of normal transcriptional programs. Conclusions Taken together, our results provide the first description of an association between global gene expression reprogramming and histone post-translational modifications during P. falciparum early sexual development. The stage II gametocyte-specific abundance of H3K36me2&3 manifests predominantly as an independent regulatory mechanism targeted towards genes that are repressed post-commitment. H3K36me2&3-associated repression of genes is therefore involved in key transcriptional shifts that accompany the transition from early gametocyte differentiation to intermediate development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00393-9.
Collapse
Affiliation(s)
- Jessica Connacher
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Gabrielle A Josling
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lindsey M Orchard
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
6
|
Role of the J Domain Protein Family in the Survival and Pathogenesis of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:97-123. [PMID: 34569022 DOI: 10.1007/978-3-030-78397-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plasmodium falciparum has dedicated an unusually large proportion of its genome to molecular chaperones (2% of all genes), with the heat shock protein 40 (Hsp40) family (now called J domain proteins, JDPs) exhibiting evolutionary radiation into 49 members. A large number of the P. falciparum JDPs (PfJDPs) are predicted to be exported, with certain members shown experimentally to be present in the erythrocyte cytosol (PFA0660w and PFE0055c) or erythrocyte membrane (ring-infected erythrocyte surface antigen, RESA). PFA0660w and PFE0055c are associated with an exported plasmodial Hsp70 (PfHsp70-x) within novel mobile structures called J-dots, which have been proposed to be dedicated to the trafficking of key membrane proteins such as erythrocyte membrane protein 1 (PfEMP1). Well over half of the PfJDPs appear to be essential, including the J-dot PfJDP, PFE0055c, while others have been found to be required for growth under febrile conditions (e.g. PFA0110w, the ring-infected erythrocyte surface antigen protein [RESA]) or involved in pathogenesis (e.g. PF10_0381 has been shown to be important for protrusions of the infected red blood cell membrane, the so-called knobs). Here we review what is known about those PfJDPs that have been well characterised, and may be directly or indirectly involved in the survival and pathogenesis of the malaria parasite.
Collapse
|
7
|
Shonhai A, Blatch GL. Heat Shock Proteins of Malaria: Highlights and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:237-246. [PMID: 34569028 DOI: 10.1007/978-3-030-78397-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The deadliest malaria parasite of humans, Plasmodium falciparum, is an obligate parasite that has had to develop mechanisms for survival under the unfavourable conditions it confronts within host cells. The chapters in the book "Heat Shock Proteins of Malaria" provide a critique of the evidence that heat shock proteins (Hsps) play a key role in the survival of P. falciparum in host cells. The role of the plasmodial Hsp arsenal is not limited to the protection of the parasite cell (largely through their role as molecular chaperones), as some of these proteins also promote the pathological development of malaria. This is largely due to the export of a large number of these proteins into the infected erythrocyte cytosol. Although P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main virulence factor for the malaria parasite, some of the exported plasmodial Hsps appear to augment parasite virulence. While this book largely delves into experimentally validated information on the role of Hsps in the development and pathogenicity of malaria, some of the information is based on hypotheses yet to be fully tested. Therefore, here we highlight what we know to be definite roles of plasmodial Hsps. Furthermore, we distill information that could provide practical insights on the options available for future research directions, including interventions against malaria that may target the role of Hsps in the development of the disease.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou, South Africa.
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia. .,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa. .,The Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia. .,Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates.
| |
Collapse
|
8
|
Jonsdottir TK, Gabriela M, Gilson PR. The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:141-167. [PMID: 34569024 DOI: 10.1007/978-3-030-78397-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The genus Plasmodium comprises intracellular eukaryotic parasites that infect many vertebrate groups and cause deadly malaria disease in humans. The parasites employ a suite of heat shock proteins to help traffic other proteins to different compartments within their own cells and that of the host cells they parasitise. This review will cover the role of these chaperones in protein export and host cell modification in the asexual blood stage of the human parasite P. falciparum which is the most deadly and well-studied parasite species. We will examine the role chaperones play in the import of proteins into the secretory pathway from where they are escorted to the vacuole space surrounding the intraerythrocytic parasite. Here, other heat shock proteins unfold protein cargoes and extrude them into the red blood cell (RBC) cytosol from where additional chaperones of parasite and possibly host origin refold the cargo proteins and guide them to their final functional destinations within their RBC host cells. The secretory pathway also serves as a launch pad for proteins targeted to the non-photosynthetic apicoplast organelle of endosymbiotic origin, and the role of heat shock proteins in trafficking proteins here will be reviewed. Finally, the function of chaperones in protein trafficking into the mitochondrion, the remaining organelle of endosymbiotic origin, will be discussed.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
9
|
Neveu G, Lavazec C. Erythrocyte Membrane Makeover by Plasmodium falciparum Gametocytes. Front Microbiol 2019; 10:2652. [PMID: 31787966 PMCID: PMC6856072 DOI: 10.3389/fmicb.2019.02652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum sexual parasites, called gametocytes, are the only parasite stages responsible for transmission from humans to Anopheles mosquitoes. During their maturation, P. falciparum gametocytes remodel the structural and mechanical properties of the membrane of their erythrocyte host. This remodeling is induced by the export of several parasite proteins and a dynamic reorganization of the erythrocyte cytoskeleton. Some of these modifications are specific for sexual stages and play a key role for gametocyte maturation, sequestration in internal organs, subsequent release in the bloodstream and ability to persist in circulation. Here we discuss the mechanisms developed by gametocytes to remodel their host cell and the functional relevance of these modifications.
Collapse
Affiliation(s)
- Gaëlle Neveu
- Inserm U1016, CNRS UMR 8104, Université de Paris, Institut Cochin, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR 8104, Université de Paris, Institut Cochin, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
10
|
Daniyan MO, Przyborski JM, Shonhai A. Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence. Biomolecules 2019; 9:E295. [PMID: 31340488 PMCID: PMC6681276 DOI: 10.3390/biom9070295] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.
Collapse
Affiliation(s)
- Michael O Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220005, Nigeria.
| | - Jude M Przyborski
- Center of Infectious Diseases, Parasitology, University of Heidelberg Medical School, INF324, 69120 Heidelberg, Germany
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa.
| |
Collapse
|
11
|
Filarsky M, Fraschka SA, Niederwieser I, Brancucci NMB, Carrington E, Carrió E, Moes S, Jenoe P, Bártfai R, Voss TS. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science 2018; 359:1259-1263. [PMID: 29590075 DOI: 10.1126/science.aan6042] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/17/2018] [Indexed: 11/02/2022]
Abstract
Malaria is caused by Plasmodium parasites that proliferate in the bloodstream. During each replication cycle, some parasites differentiate into gametocytes, the only forms able to infect the mosquito vector and transmit malaria. Sexual commitment is triggered by activation of AP2-G, the master transcriptional regulator of gametocytogenesis. Heterochromatin protein 1 (HP1)-dependent silencing of ap2-g prevents sexual conversion in proliferating parasites. In this study, we identified Plasmodium falciparum gametocyte development 1 (GDV1) as an upstream activator of sexual commitment. We found that GDV1 targeted heterochromatin and triggered HP1 eviction, thus derepressing ap2-g Expression of GDV1 was responsive to environmental triggers of sexual conversion and controlled via a gdv1 antisense RNA. Hence, GDV1 appears to act as an effector protein that induces sexual differentiation by antagonizing HP1-dependent gene silencing.
Collapse
Affiliation(s)
- Michael Filarsky
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Sabine A Fraschka
- Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, Netherlands
| | - Igor Niederwieser
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Nicolas M B Brancucci
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Eilidh Carrington
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Elvira Carrió
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Suzette Moes
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Paul Jenoe
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, Netherlands
| | - Till S Voss
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland. .,University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
12
|
Fraschka SA, Filarsky M, Hoo R, Niederwieser I, Yam XY, Brancucci NMB, Mohring F, Mushunje AT, Huang X, Christensen PR, Nosten F, Bozdech Z, Russell B, Moon RW, Marti M, Preiser PR, Bártfai R, Voss TS. Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites. Cell Host Microbe 2018; 23:407-420.e8. [PMID: 29503181 PMCID: PMC5853956 DOI: 10.1016/j.chom.2018.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium.
Collapse
Affiliation(s)
- Sabine A Fraschka
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Michael Filarsky
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Xue Yan Yam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Nicolas M B Brancucci
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02155, USA
| | - Franziska Mohring
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Annals T Mushunje
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ximei Huang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter R Christensen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford OX3 7FZ, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Robert W Moon
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Matthias Marti
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02155, USA
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Richárd Bártfai
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, the Netherlands.
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
13
|
Tibúrcio M, Dixon MWA, Looker O, Younis SY, Tilley L, Alano P. Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malar J 2015; 14:334. [PMID: 26315106 PMCID: PMC4552133 DOI: 10.1186/s12936-015-0853-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum sexual development plays a fundamental role in the transmission and spread of malaria. The ability to generate gametocytes can be lost during culture in vitro, often associated with the loss of a subtelomeric region of chromosome 9. Gametocytogenesis starts with erythrocyte invasion by a sexually committed merozoite, but the first available specific marker of sexual differentiation appears only from 24 h post invasion. METHODS Specific antibodies and gene fusions were produced to study the timing of expression and the sub-cellular localization of the P. falciparum Gametocyte EXported Protein-5 (PfGEXP5), encoded in the subtelomeric region of chromosome 9. Expression patterns were examined in wild-type parasites and in parasite lines mutated in the Apetala2-G (AP2-G) transcription factor, governing a cascade of early sexual stage specific genes. RESULTS PfGEXP5 is highly expressed in early sexual stages and it is actively exported to the infected erythrocyte cytoplasm from as early as 14 h post-invasion in haemozoin-free, ring stage-like parasites. The pattern of PfGEXP5 expression and export is similar in wild-type parasites and in independent AP2-G defective parasite lines unable to produce gametocytes. CONCLUSIONS PfGEXP5 represents the earliest post-invasion sexual stage marker described to date. This provides a tool that can be used to identify sexually committed ring stage parasites in natural infections. This early gametocyte marker would enable the identification and mapping of malaria transmission reservoirs in human populations and the study of gametocyte sequestration dynamics in infected individuals. The fact that regulation of PfGEXP5 does not depend on the AP2-G master regulator of parasite sexual development suggests that, after sexual commitment, differentiation progresses through multiple checkpoints in the early phase of gametocytogenesis.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | - Matthew W A Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Oliver Looker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sumera Younis Younis
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,Department of Parasitology, Biomedical Primate Research Centre, PO Box 306, 2280 GH, Rijswijk, The Netherlands.
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
14
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Dantzler KW, Ravel DB, Brancucci NM, Marti M. Ensuring transmission through dynamic host environments: host-pathogen interactions in Plasmodium sexual development. Curr Opin Microbiol 2015; 26:17-23. [PMID: 25867628 DOI: 10.1016/j.mib.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
Abstract
A renewed global commitment to malaria elimination lends urgency to understanding the biology of Plasmodium transmission stages. Recent progress toward uncovering the mechanisms underlying Plasmodium falciparum sexual differentiation and maturation reveals potential targets for transmission-blocking drugs and vaccines. The identification of parasite factors that alter sexual differentiation, including extracellular vesicles and a master transcriptional regulator, suggest that parasites make epigenetically controlled developmental decisions based on environmental cues. New insights into sexual development, especially host cell remodeling and sequestration in the bone marrow, highlight open questions regarding parasite homing to the tissue, transmigration across the vascular endothelium, and maturation in the parenchyma. Novel molecular and translational tools will provide further opportunities to define host-parasite interactions and design effective transmission-blocking therapeutics.
Collapse
Affiliation(s)
- Kathleen W Dantzler
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Deepali B Ravel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nicolas Mb Brancucci
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Tibúrcio M, Sauerwein R, Lavazec C, Alano P. Erythrocyte remodeling by Plasmodium falciparum gametocytes in the human host interplay. Trends Parasitol 2015; 31:270-8. [PMID: 25824624 DOI: 10.1016/j.pt.2015.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
The spread of malaria critically relies on the presence of Plasmodium transmission stages - the gametocytes - circulating in the blood of an infected individual, which are taken up by Anopheles mosquitoes. A striking feature of Plasmodium falciparum gametocytes is their long development inside the erythrocytes while sequestered in the internal organs of the human host. Recent studies of the molecular and cellular remodeling of the host erythrocyte induced by P. falciparum during gametocyte maturation are shedding light on how these may affect the establishment and maintenance of sequestration of the immature transmission stages and the subsequent release and circulation of mature gametocytes in the peripheral bloodstream.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Rome, Italy
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Nijmegen HB 6500, The Netherlands
| | - Catherine Lavazec
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes - Sorbonne Paris Cité, 75270 Paris, France
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena n.299, 00161 Rome, Italy.
| |
Collapse
|
17
|
Song L, Zhang J, Li C, Yao J, Jiang C, Li Y, Liu S, Liu Z. Genome-wide identification of hsp40 genes in channel catfish and their regulated expression after bacterial infection. PLoS One 2014; 9:e115752. [PMID: 25542027 PMCID: PMC4277396 DOI: 10.1371/journal.pone.0115752] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022] Open
Abstract
Heat shock proteins (HSPs) consist of a large group of chaperones whose expression is induced by high temperature, hypoxia, infection and a number of other stresses. Among all the HSPs, Hsp40 is the largest HSP family, which bind to Hsp70 ATPase domain in assisting protein folding. In this study, we identified 57 hsp40s in channel catfish (Ictalurus punctatus) through in silico analysis using RNA-Seq and genome databases. These genes can be classified into three different types, Type I, II and III, based on their structural similarities. Phylogenetic and syntenic analyses provided strong evidence in supporting the orthologies of these HSPs. Meta-analyses of RNA-Seq datasets were conducted to analyze expression profile of Hsp40s following bacterial infection. Twenty seven hsp40s were found to be significantly up- or down-regulated in the liver after infection with E. ictaluri; 19 hsp40s were found to be significantly regulated in the intestine after infection with E. ictaluri; and 19 hsp40s were found to be significantly regulated in the gill following infection with F. columnare. Altogether, a total of 42 Hsp40 genes were regulated under disease situations involving three tissues and two bacterial infections. The significant regulated expression of Hsp40 genes after bacterial infection suggested their involvement in disease defenses in catfish.
Collapse
Affiliation(s)
- Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, United States of America
| | - Jiaren Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, United States of America
| | - Chao Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, United States of America
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, United States of America
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, United States of America
| | - Yun Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, United States of America
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, United States of America
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 203 Swingle Hall, Auburn, AL 36849, United States of America
| |
Collapse
|
18
|
Otero JH, Lizák B, Feige MJ, Hendershot LM. Dissection of structural and functional requirements that underlie the interaction of ERdj3 protein with substrates in the endoplasmic reticulum. J Biol Chem 2014; 289:27504-12. [PMID: 25143379 DOI: 10.1074/jbc.m114.587147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
ERdj3, a mammalian endoplasmic reticulum (ER) Hsp40/DnaJ family member, binds unfolded proteins, transfers them to BiP, and concomitantly stimulates BiP ATPase activity. However, the requirements for ERdj3 binding to and release from substrates in cells are not well understood. We found that ERdj3 homodimers that cannot stimulate the ATPase activity of BiP (QPD mutants) bound to unfolded ER proteins under steady state conditions in much greater amounts than wild-type ERdj3. This was due to reduced release from these substrates as opposed to enhanced binding, although in both cases dimerization was strictly required for substrate binding. Conversely, heterodimers consisting of one wild-type and one mutant ERdj3 subunit bound substrates at levels comparable with wild-type ERdj3 homodimers, demonstrating that release requires only one protomer to be functional in stimulating BiP ATPase activity. Co-expressing wild-type ERdj3 and a QPD mutant, which each exclusively formed homodimers, revealed that the release rate of wild-type ERdj3 varied according to the relative half-lives of substrates, suggesting that ERdj3 release is an important step in degradation of unfolded client proteins in the ER. Furthermore, pulse-chase experiments revealed that the binding of QPD mutant homodimers remained constant as opposed to increasing, suggesting that ERdj3 does not normally undergo reiterative binding cycles with substrates.
Collapse
Affiliation(s)
- Joel H Otero
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Beata Lizák
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Matthias J Feige
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
19
|
Beck JR, Muralidharan V, Oksman A, Goldberg DE. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 2014; 511:592-5. [PMID: 25043010 PMCID: PMC4130291 DOI: 10.1038/nature13574] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/11/2014] [Indexed: 12/02/2022]
Affiliation(s)
- Josh R Beck
- 1] Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2]
| | - Vasant Muralidharan
- 1] Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] [4] Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Anna Oksman
- 1] Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Daniel E Goldberg
- 1] Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA
| |
Collapse
|
20
|
Abstract
SUMMARYPlasmodium falciparumdisplays a large and remarkable variety of heat shock protein 40 family members (PfHsp40s). The majority of the PfHsp40s are poorly characterized, and although the functions of some of them have been suggested, their exact mechanism of action is still elusive and their interacting partners and client proteins are unknown. TheP. falciparumheat shock protein 70 family members (PfHsp70s) have been more extensively characterized than the PfHsp40s, with certain members shown to function as molecular chaperones. However, little is known about the PfHsp70-PfHsp40 chaperone partnerships. There is mounting evidence that these chaperones are important not only in protein homoeostasis and cytoprotection, but also in protein trafficking across the parasitophorous vacuole (PV) and into the infected erythrocyte. We propose that certain members of these chaperone families work together to maintain exported proteins in an unfolded state until they reach their final destination. In this review, we critically evaluate what is known and not known about PfHsp40s and PfHsp70s.
Collapse
|
21
|
Ingmundson A, Alano P, Matuschewski K, Silvestrini F. Feeling at home from arrival to departure: protein export and host cell remodelling during Plasmodium liver stage and gametocyte maturation. Cell Microbiol 2014; 16:324-33. [PMID: 24330249 DOI: 10.1111/cmi.12251] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 12/19/2022]
Abstract
Obligate intracellular pathogens actively remodel their host cells to boost propagation, survival, and persistence. Plasmodium falciparum, the causative agent of the most severe form of malaria, assembles a complex secretory system in erythrocytes. Export of parasite factors to the erythrocyte membrane is essential for parasite sequestration from the blood circulation and a major factor for clinical complications in falciparum malaria. Historic and recent molecular reports show that host cell remodelling is not exclusive to P. falciparum and that parasite-induced intra-erythrocytic membrane structures and protein export occur in several Plasmodia. Comparative analyses of P. falciparum asexual and sexual blood stages and imaging of liver stages from transgenic murine Plasmodium species show that protein export occurs in all intracellular phases from liver infection to sexual differentiation, indicating that mammalian Plasmodium species evolved efficient strategies to renovate erythrocytes and hepatocytes according to the specific needs of each life cycle phase. While the repertoireof identified exported proteins is remarkably expanded in asexual P. falciparum blood stages, the putative export machinery and known targeting signatures are shared across life cycle stages. A better understanding of the molecular mechanisms underlying Plasmodium protein export could assist in designing novel strategies to interrupt transmission between Anopheles mosquitoes and humans.
Collapse
Affiliation(s)
- Alyssa Ingmundson
- Max Planck Institute for Infection Biology, Parasitology Unit, 10117, Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Boddey JA, Cowman AF. PlasmodiumNesting: Remaking the Erythrocyte from the Inside Out. Annu Rev Microbiol 2013; 67:243-69. [DOI: 10.1146/annurev-micro-092412-155730] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Justin A. Boddey
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; ,
| | - Alan F. Cowman
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; ,
| |
Collapse
|
23
|
Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis. Proc Natl Acad Sci U S A 2013; 110:E1676-84. [PMID: 23572579 DOI: 10.1073/pnas.1217712110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gametocytes are essential for Plasmodium transmission, but little is known about the mechanisms that lead to their formation. Using piggyBac transposon-mediated insertional mutagenesis, we screened for parasites that no longer form mature gametocytes, which led to the isolation of 29 clones (insertional gametocyte-deficient mutants) that fail to form mature gametocytes. Additional analysis revealed 16 genes putatively responsible for the loss of gametocytogenesis, none of which has been previously implicated in gametocytogenesis. Transcriptional profiling and detection of an early stage gametocyte antigen determined that a subset of these mutants arrests development at stage I or in early stage II gametocytes, likely representing genes involved in gametocyte maturation. The remaining mutants seem to arrest before formation of stage I gametocytes and may represent genes involved in commitment to the gametocyte lineage.
Collapse
|
24
|
Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H, Ali O, Xu H, Kiattibutr K, Suri A, Czesny B, Adeyemo A, Myers TG, Sattabongkot J, Su XZ, Williamson KC. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS Pathog 2012; 8:e1002964. [PMID: 23093935 PMCID: PMC3475683 DOI: 10.1371/journal.ppat.1002964] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Malaria transmission requires the production of male and female gametocytes in the human host followed by fertilization and sporogonic development in the mosquito midgut. Although essential for the spread of malaria through the population, little is known about the initiation of gametocytogenesis in vitro or in vivo. Using a gametocyte-defective parasite line and genetic complementation, we show that Plasmodium falciparumgametocyte development 1 gene (Pfgdv1), encoding a peri-nuclear protein, is critical for early sexual differentiation. Transcriptional analysis of Pfgdv1 negative and positive parasite lines identified a set of gametocytogenesis early genes (Pfge) that were significantly down-regulated (>10 fold) in the absence of Pfgdv1 and expression was restored after Pfgdv1 complementation. Progressive accumulation of Pfge transcripts during successive rounds of asexual replication in synchronized cultures suggests that gametocytes are induced continuously during asexual growth. Comparison of Pfge gene transcriptional profiles in patient samples divided the genes into two groups differing in their expression in mature circulating gametocytes and providing candidates to evaluate gametocyte induction and maturation separately in vivo. The expression profile of one of the early gametocyte specific genes, Pfge1, correlated significantly with asexual parasitemia, which is consistent with the ongoing induction of gametocytogenesis during asexual growth observed in vitro and reinforces the need for sustained transmission-blocking strategies to eliminate malaria. As malaria control efforts move toward eradication it becomes increasingly important to develop interventions that block transmission. Consequently, advances are needed in our understanding of the production of gametocytes, which are required to transmit the disease. This report provides a first view of the initial stages of gametocytogenesis in vitro and in vivo and demonstrates that during each asexual replication cycle a subpopulation of parasites convert to gametocyte development providing a long transmission window. We also identify a gene that is critical for gametocyte production, P. falciparumgametocyte development 1 (Pfgdv1) and a set of genes specifically expressed during early gametocytogenesis in P. falciparum (Pfge genes). The expression profile and peri-nuclear location of Pfgdv1 in a subpopulation of schizonts is consistent with a role in an early step in gametocytogenesis. The RNA levels of Pfgdv1 and the Pfge genes accumulated gradually over several asexual cycles in vitro suggesting ongoing gametocyte formation during asexual growth. The further evaluation of these genes in a cohort of malaria infected patients indicated they are good candidates for markers to distinguish ring stage parasites committed to gametocyte production from circulating mature gametocytes, allowing direct analysis of the initiation of sexual differentiation in vivo.
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Belinda J. Morahan
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yoseph Haile
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Tetsuya Furuya
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongying Jiang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Omar Ali
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Huichun Xu
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirakorn Kiattibutr
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amreena Suri
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Beata Czesny
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jetsumon Sattabongkot
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kim C. Williamson
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|