1
|
Lakshminarayanan K, Murugan D, Venkatesan J, Vasanthakumari Thirumalaiswamy H, Gadais C, Rangasamy L. Siderophore-Conjugated Antifungals: A Strategy to Potentially Cure Fungal Infections. ACS Infect Dis 2024; 10:2448-2466. [PMID: 38905481 DOI: 10.1021/acsinfecdis.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Fungi pose a global threat to humankind due to the increasing emergence of multi-drug-resistant fungi. There is a rising incidence of invasive fungal infections. Due to the structural complexity of fungal cell membranes, only a few classes of antifungal agents are effective and have been approved by the U.S. FDA. Hence, researchers globally are focusing on developing novel strategies to cure fungal infections. One of the potential strategies is the "Trojan horse" approach, which uses the siderophore-mediated iron acquisition (SIA) system to scavenge iron to deliver potent antifungal agents for therapeutics and diagnostics. These siderophore conjugates chelate to iron and are taken up through siderophore-iron transporters, which are overexpressed exclusively on microbes such as bacteria or fungi, but not mammalian cells. Our comprehensive review delves into recent advancements in the design of siderophore-conjugated antifungal agents to gain fungal cell entry. Notably, our focus extends to unraveling the intricate relationship between the structure of natural siderophores or siderophore-like molecules and the resulting antifungal activity. By exploring these design strategies, we aim to contribute to the ongoing discourse on combating drug-resistant fungal infections and advancing the landscape of antifungal theranostics.
Collapse
Affiliation(s)
- Kalaiarasu Lakshminarayanan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Dhanashree Murugan
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Janarthanan Venkatesan
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Harashkumar Vasanthakumari Thirumalaiswamy
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology, Vellore 632014, India
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| | - Charlène Gadais
- ISCR UMR 6226 (Institute of Chemical Sciences of Rennes), Faculty of Pharmacy, University of Rennes, 35042 Rennes cedex, France
| | - Loganathan Rangasamy
- Drug Discovery Unit (DDU), Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
2
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
3
|
Zhao F, Sun C, Liu Z, Cabrera A, Escobar M, Huang S, Yuan Q, Nie Q, Luo KL, Lin A, Vanegas JA, Zhu T, Hilton IB, Gao X. Multiplex Base-Editing Enables Combinatorial Epigenetic Regulation for Genome Mining of Fungal Natural Products. J Am Chem Soc 2023; 145:413-421. [PMID: 36542862 PMCID: PMC10162584 DOI: 10.1021/jacs.2c10211] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genome mining of cryptic natural products (NPs) remains challenging, especially in filamentous fungi, owing to their complex genetic regulation. Increasing evidence indicates that several epigenetic modifications often act cooperatively to control fungal gene transcription, yet the ability to predictably manipulate multiple genes simultaneously is still largely limited. Here, we developed a multiplex base-editing (MBE) platform that significantly improves the capability and throughput of fungal genome manipulation, leading to the simultaneous inactivation of up to eight genes using a single transformation. We then employed MBE to inactivate three negative epigenetic regulators combinatorially in Aspergillus nidulans, enabling the activation of eight cryptic gene clusters compared to the wild-type strains. A group of novel NPs harboring unique cichorine and polyamine hybrid chemical scaffolds were identified, which were not reported previously. We envision that our scalable and efficient MBE platform can be readily applied in other filamentous fungi for the genome mining of novel NPs, providing a powerful approach for the exploitation of fungal chemical diversity.
Collapse
Affiliation(s)
- Fanglong Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Chunxiao Sun
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Alan Cabrera
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Mario Escobar
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Shunyu Huang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Qichen Yuan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Qiuyue Nie
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Kevin Lee Luo
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Angela Lin
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Jeffrey A Vanegas
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Palmieri D, Segorbe D, López-Berges MS, De Curtis F, Lima G, Di Pietro A, Turrà D. Alkaline pH, Low Iron Availability, Poor Nitrogen Sources and CWI MAPK Signaling Are Associated with Increased Fusaric Acid Production in Fusarium oxysporum. Toxins (Basel) 2023; 15:50. [PMID: 36668870 PMCID: PMC9862527 DOI: 10.3390/toxins15010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
Fusaric acid (FA) is one of the first secondary metabolites isolated from phytopathogenic fungi belonging to the genus Fusarium. This molecule exerts a toxic effect on plants, rhizobacteria, fungi and animals, and it plays a crucial role in both plant and animal pathogenesis. In plants, metal chelation by FA is considered one of the possible mechanisms of action. Here, we evaluated the effect of different nitrogen sources, iron content, extracellular pH and cellular signalling pathways on the production of FA siderophores by the pathogen Fusarium oxysporum (Fol). Our results show that the nitrogen source affects iron chelating activity and FA production. Moreover, alkaline pH and iron limitation boost FA production, while acidic pH and iron sufficiency repress it independent of the nitrogen source. FA production is also positively regulated by the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway and inhibited by the iron homeostasis transcriptional regulator HapX. Collectively, this study demonstrates that factors promoting virulence (i.e., alkaline pH, low iron availability, poor nitrogen sources and CWI MAPK signalling) are also associated with increased FA production in Fol. The obtained new insights on FA biosynthesis regulation can be used to prevent both Fol infection potential and toxin contamination.
Collapse
Affiliation(s)
- Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - David Segorbe
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Manuel S. López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Giuseppe Lima
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | - David Turrà
- Department of Agricultural Sciences, Università di Napoli Federico II, 80055 Portici, Italy
- Center for Studies on Bioinspired Agro-Enviromental Technology, Università di Napoli Federico II, 80055 Portici, Italy
| |
Collapse
|
5
|
Alijani Z, Amini J, Karimi K, Pertot I. Characterization of the Mechanism of Action of Serratia rubidaea Mar61-01 against Botrytis cinerea in Strawberries. PLANTS (BASEL, SWITZERLAND) 2022; 12:154. [PMID: 36616283 PMCID: PMC9823761 DOI: 10.3390/plants12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Several bacterial strains belonging to Serratia spp. possess biocontrol capability, both against phytopathogens and human pathogenic species, thanks to the production of secondary metabolites, including as a red-pink, non-diffusible pigment, 2-methyl-3-pentyl-6-methoxyprodiginine (prodigiosin). Botrytis cinerea is the causal agent of gray mold, which is an economically relevant disease of many crops worldwide. Gray mold is normally controlled by chemical fungicides, but the environmental and health concerns about the overuse of pesticides call for environmentally friendly approaches, such as the use of biocontrol agents. In this study, the efficacy of a specific strain of Serratia rubidaea (Mar61-01) and its metabolite prodigiosin were assessed against B. cinerea under in vitro and in vivo conditions. This strain was effective against B. cinerea, and the effect of prodigiosin was confirmed under in vitro and in vivo conditions. The strain suppressed mycelial growth of B. cinerea (71.72%) in the dual-culture method. The volatile compounds produced by the strain inhibited mycelial growth and conidia germination of B. cinerea by 65.01% and 71.63%, respectively. Efficacy of prodigiosin produced by S. rubidaea Mar61-01 on mycelial biomass of B. cinerea was 94.15% at the highest concentration tested (420 µg/mL). The effect of prodigiosin on plant enzymes associated with induction of resistance was also studied, indicating that the activity of polyphenol oxidase (PPO), superoxide dismutase (SOD) and phenylalanine ammonia lyase (PAL) were increased when prodigiosin was added to the B. cinerea inoculum on strawberry fruits, while catalase (CAT) and peroxidase (POD) did not change. In addition, the volatile organic compounds (VOCs) produced by S. rubidaea Mar61-01 reduced mycelial growth and inhibited conidial germination of B. cinerea in vitro. The findings confirmed the relevant role of prodigiosin produced by S. rubidaea Mar61-01 in the biocontrol of B. cinerea of strawberries, but also indicate that there are multiple mechanisms of action, where the VOCs produced by the bacterium and the plant-defense reaction may contribute to the control of the phytopathogen. Serratia rubidaea Mar61-01 could be a suitable strain, both to enlarge our knowledge about the potential of Serratia as a biocontrol agent of B. cinerea and to develop new biofungicides to protect strawberries in post-harvest biocontrol.
Collapse
Affiliation(s)
- Zahra Alijani
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj P.O. Box 416, Iran
| | - Jahanshir Amini
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj P.O. Box 416, Iran
| | - Kaivan Karimi
- Safiabad Agricultural Research and Education and Natural Resources Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful P.O. Box 333, Iran
| | - Ilaria Pertot
- Research and Innovation Center, Fondazione Edmund Mach (FEM), 38010 San Michele all’Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy
| |
Collapse
|
6
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
7
|
Huilgol SN, Nandeesha KL, Banu H. Fungal Biocontrol Agents: An Eco-friendly Option for the Management of Plant Diseases to Attain Sustainable Agriculture in India. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Gohel NM, Raghunandan BL, Patel NB, Parmar HV, Raval DB. Role of Fungal Biocontrol Agents for Sustainable Agriculture. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Šimonovičová A, Vojtková H, Nosalj S, Piecková E, Švehláková H, Kraková L, Drahovská H, Stalmachová B, Kučová K, Pangallo D. Aspergillus niger Environmental Isolates and Their Specific Diversity Through Metabolite Profiling. Front Microbiol 2021; 12:658010. [PMID: 34248871 PMCID: PMC8261049 DOI: 10.3389/fmicb.2021.658010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
We present a biological profile of 16 Aspergillus niger environmental isolates from different types of soils and solid substrates across a pH range, from an ultra-acidic (<3.5) to a very strongly alkaline (>9.0) environment. The soils and solid substrates also differ in varying degrees of anthropic pollution, which in most cases is caused by several centuries of mining activity at old mining sites, sludge beds, ore deposits, stream sediments, and coal dust. The values of toxic elements (As, Sb, Zn, Cu, Pb) very often exceed the limit values. The isolates possess different macro- and micromorphological features. All the identifications of Aspergillus niger isolates were confirmed by molecular PCR analysis and their similarity was expressed by RAMP analysis. The biochemical profile of isolates based on FF-MicroPlate tests from the Biolog system showed identical biochemical reactions in 50 tests, while in 46 tests the utilisation reactions differed. The highest similarity of strains isolated from substrates with the same pH, as well as the most suitable biochemical tests for analysis of the phenotypic similarity of isolated strains, were confirmed when evaluating the biochemical profile using multicriterial analysis in the Canoco program. The isolates were screened for mycotoxin production by thin-layer chromatography (TLC), as well. Two of them were able to synthesise ochratoxin A, while none produced fumonisins under experimental conditions. Presence of toxic compounds in contaminated sites may affect environmental microscopic fungi and cause the genome alteration, which may result in changes of their physiology, including the production of different (secondary) metabolites, such as mycotoxins.
Collapse
Affiliation(s)
- Alexandra Šimonovičová
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Sanja Nosalj
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Elena Piecková
- Department of Microbiology, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Hana Švehláková
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Lucia Kraková
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hana Drahovská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbara Stalmachová
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Kateřina Kučová
- Department of Environmental Engineering, Faculty of Mining and Geology, VSB - Technical University of Ostrava, Ostrava, Czechia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Stanford FA, Matthies N, Cseresnyés Z, Figge MT, Hassan MIA, Voigt K. Expression Patterns in Reductive Iron Assimilation and Functional Consequences during Phagocytosis of Lichtheimia corymbifera, an Emerging Cause of Mucormycosis. J Fungi (Basel) 2021; 7:jof7040272. [PMID: 33916756 PMCID: PMC8065604 DOI: 10.3390/jof7040272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022] Open
Abstract
Iron is an essential micronutrient for most organisms and fungi are no exception. Iron uptake by fungi is facilitated by receptor-mediated internalization of siderophores, heme and reductive iron assimilation (RIA). The RIA employs three protein groups: (i) the ferric reductases (Fre5 proteins), (ii) the multicopper ferroxidases (Fet3) and (iii) the high-affinity iron permeases (Ftr1). Phenotyping under different iron concentrations revealed detrimental effects on spore swelling and hyphal formation under iron depletion, but yeast-like morphology under iron excess. Since access to iron is limited during pathogenesis, pathogens are placed under stress due to nutrient limitations. To combat this, gene duplication and differential gene expression of key iron uptake genes are utilized to acquire iron against the deleterious effects of iron depletion. In the genome of the human pathogenic fungus L. corymbifera, three, four and three copies were identified for FRE5, FTR1 and FET3 genes, respectively. As in other fungi, FET3 and FTR1 are syntenic and co-expressed in L. corymbifera. Expression of FRE5, FTR1 and FET3 genes is highly up-regulated during iron limitation (Fe-), but lower during iron excess (Fe+). Fe- dependent upregulation of gene expression takes place in LcFRE5 II and III, LcFTR1 I and II, as well as LcFET3 I and II suggesting a functional role in pathogenesis. The syntenic LcFTR1 I–LcFET3 I gene pair is co-expressed during germination, whereas LcFTR1 II- LcFET3 II is co-expressed during hyphal proliferation. LcFTR1 I, II and IV were overexpressed in Saccharomyces cerevisiae to represent high and moderate expression of intracellular transport of Fe3+, respectively. Challenge of macrophages with the yeast mutants revealed no obvious role for LcFTR1 I, but possible functions of LcFTR1 II and IVs in recognition by macrophages. RIA expression pattern was used for a new model of interaction between L. corymbifera and macrophages.
Collapse
Affiliation(s)
- Felicia Adelina Stanford
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute (HKI), 07745 Jena, Germany; (F.A.S.); (N.M.); (M.I.A.H.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Nina Matthies
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute (HKI), 07745 Jena, Germany; (F.A.S.); (N.M.); (M.I.A.H.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute, 12622 Jena, Germany;
| | - Marc Thilo Figge
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Applied Systems Biology, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute, 12622 Jena, Germany;
| | - Mohamed I. Abdelwahab Hassan
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute (HKI), 07745 Jena, Germany; (F.A.S.); (N.M.); (M.I.A.H.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
- National Research Centre, Pests & Plant Protection Department, 33rd El Buhouth St., Dokki, Giza 12622, Egypt
| | - Kerstin Voigt
- Jena Microbial Resource Collection, Leibniz Institute for Natural Product Research, and Infection Biology—Hans Knöll Institute (HKI), 07745 Jena, Germany; (F.A.S.); (N.M.); (M.I.A.H.)
- Institute of Microbiology, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Correspondence: or ; Tel.: +49-3641-532-1395
| |
Collapse
|
11
|
Toledo H, Sánchez CI, Marín L, Amich J, Calera JA. Regulation of zinc homeostatic genes by environmental pH in the filamentous fungus Aspergillus fumigatus. Environ Microbiol 2021; 24:643-666. [PMID: 33687784 DOI: 10.1111/1462-2920.15452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Aspergillus fumigatus can grow over a broad range of pH values even though zinc availability is greatly conditioned by ambient pH. It has been previously shown that regulation of zinc homeostatic genes in this fungus relies on the transcription factor ZafA. In addition, their expression is further modulated by the transcription factor PacC depending on ambient pH, which allows this fungus to grow in diverse types of niches, including soils and the lungs of immunosuppressed hosts. In this work the regulation by PacC of genes zrfB and zrfC that are expressed, respectively, under acidic and alkaline zinc-limiting conditions have been analysed in detail. Thus, data that extend the current model for PacC function, including the role of the full-length PacC72 protein and the PacC processed forms (PacC53 and PacC27 ) on gene expression has been provided, and a new mechanism for the repression of acid-expressed genes in alkaline media based on interference with the start of transcription has been described. Moreover, it was proposed that the transcription of both acid-expressed and alkaline-expressed genes under zinc-limiting conditions might also rely on a third factor (putatively Pontin/Reptin), which may be required to integrate the action of PacC and ZafA into gene specific transcriptional responses.
Collapse
Affiliation(s)
- Héctor Toledo
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Servicio de Microbiología Clínica y Parasitología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Clara Inés Sánchez
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Laura Marín
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain
| | - Jorge Amich
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.,Manchester Fungal Infection Group, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - José Antonio Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
12
|
Cogo AJD, Façanha AR, da Silva Teixeira LR, de Souza SB, da Rocha JG, Figueira FF, Eutrópio FJ, Bertolazi AA, de Rezende CE, Krohling CA, Okorokov LA, Cruz C, Ramos AC, Okorokova-Façanha AL. Plasma membrane H + pump at a crossroads of acidic and iron stresses in yeast-to-hypha transition. Metallomics 2020; 12:2174-2185. [PMID: 33320152 DOI: 10.1039/d0mt00179a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron is an essential nutrient but is toxic in excess mainly under acidic conditions. Yeasts have emerged as low cost, highly efficient soil inoculants for the decontamination of metal-polluted areas, harnessing an increasing understanding of their metal tolerance mechanisms. Here, we investigated the effects of extracellular iron and acid pH stress on the dimorphism of Yarrowia lipolytica. Its growth was unaffected by 1 or 2 mM FeSO4, while a strong cellular iron accumulation was detected. However, the iron treatments decreased the hyphal length and number, mainly at 2 mM FeSO4 and pH 4.5. Inward cell membrane H+ fluxes were found at pH 4.5 and 6.0 correlated with a pH increase at the cell surface and a conspicuous yeast-to-hypha transition activity. Conversely, a remarkable H+ efflux was detected at pH 3.0, related to the extracellular microenvironment acidification and inhibition of yeast-to-hypha transition. Iron treatments intensified H+ influxes at pH 4.5 and 6.0 and inhibited H+ efflux at pH 3.0. Moreover, iron treatments inhibited the expression and activities of the plasma membrane H+-ATPase, with the H+ transport inhibited to a greater extent than the ATP hydrolysis, suggesting an iron-induced uncoupling of the pump. Our data indicate that Y. lipolytica adaptations to high iron and acidic environments occur at the expense of remodelling the yeast morphogenesis through a cellular pH modulation by H+-ATPases and H+ coupled transporters, highlighting the capacity of this non-conventional yeast to accumulate high amounts of iron and its potential application for bioremediation.
Collapse
Affiliation(s)
- Antônio Jesus Dorighetto Cogo
- Laboratório de Bioquímica e Fisiologia de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Misslinger M, Hortschansky P, Brakhage AA, Haas H. Fungal iron homeostasis with a focus on Aspergillus fumigatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118885. [PMID: 33045305 DOI: 10.1016/j.bbamcr.2020.118885] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
To maintain iron homeostasis, fungi have to balance iron acquisition, storage, and utilization to ensure sufficient supply and to avoid toxic excess of this essential trace element. As pathogens usually encounter iron limitation in the host niche, this metal plays a particular role during virulence. Siderophores are iron-chelators synthesized by most, but not all fungal species to sequester iron extra- and intracellularly. In recent years, the facultative human pathogen Aspergillus fumigatus has become a model for fungal iron homeostasis of siderophore-producing fungal species. This article summarizes the knowledge on fungal iron homeostasis and its links to virulence with a focus on A. fumigatus. It covers mechanisms for iron acquisition, storage, and detoxification, as well as the modes of transcriptional iron regulation and iron sensing in A. fumigatus in comparison to other fungal species. Moreover, potential translational applications of the peculiarities of fungal iron metabolism for treatment and diagnosis of fungal infections is addressed.
Collapse
Affiliation(s)
- Matthias Misslinger
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany; Department Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Institute of Molecular Biology - Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
14
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
15
|
Yadav V, Lekkala MMVSN, Surekha C, Neelapu NRR. Global Scenario of Advance Fungal Research in Crop Protection. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Alijani Z, Amini J, Ashengroph M, Bahramnejad B. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. Int J Food Microbiol 2019; 307:108276. [DOI: 10.1016/j.ijfoodmicro.2019.108276] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/27/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
|
17
|
Savita, Sharma A. Fungi as Biological Control Agents. BIOFERTILIZERS FOR SUSTAINABLE AGRICULTURE AND ENVIRONMENT 2019. [DOI: 10.1007/978-3-030-18933-4_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
López-Díaz C, Rahjoo V, Sulyok M, Ghionna V, Martín-Vicente A, Capilla J, Di Pietro A, López-Berges MS. Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. MOLECULAR PLANT PATHOLOGY 2018; 19:440-453. [PMID: 28093838 PMCID: PMC6638071 DOI: 10.1111/mpp.12536] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/30/2016] [Accepted: 01/10/2017] [Indexed: 05/03/2023]
Abstract
Fusaric acid (FA) is amongst the oldest identified secondary metabolites produced by Fusarium species, known for a long time to display strong phytotoxicity and moderate toxicity to animal cells; however, the cellular targets of FA and its function in fungal pathogenicity remain unknown. Here, we investigated the role of FA in Fusarium oxysporum, a soil-borne cross-kingdom pathogen that causes vascular wilt on more than 100 plant species and opportunistic infections in humans. Targeted deletion of fub1, encoding a predicted orthologue of the polyketide synthase involved in FA biosynthesis in F. verticillioides and F. fujikuroi, abolished the production of FA and its derivatives in F. oxysporum. We further showed that the expression of fub1 was positively controlled by the master regulator of secondary metabolism LaeA and the alkaline pH regulator PacC through the modulation of chromatin accessibility at the fub1 locus. FA exhibited strong phytotoxicity on tomato plants, which was rescued by the exogenous supply of copper, iron or zinc, suggesting a possible function of FA as a chelating agent of these metal ions. Importantly, the severity of vascular wilt symptoms on tomato plants and the mortality of immunosuppressed mice were significantly reduced in fub1Δ mutants and fully restored in the complemented strains. Collectively, these results provide new insights into the regulation and mode of action of FA, as well as on the function of this phytotoxin during the infection process of F. oxysporum.
Collapse
Affiliation(s)
- Cristina López-Díaz
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| | - Vahid Rahjoo
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, Tulln, 3430, Austria
| | - Veronica Ghionna
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| | - Adela Martín-Vicente
- Mycology Unit, Medical School, Universitat Rovira i Virgili, IISPV, Reus, 43204, Spain
| | - Javier Capilla
- Mycology Unit, Medical School, Universitat Rovira i Virgili, IISPV, Reus, 43204, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| | - Manuel S López-Berges
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| |
Collapse
|
19
|
Sun X, Zhao Y, Jia J, Xie J, Cheng J, Liu H, Jiang D, Fu Y. Uninterrupted Expression of CmSIT1 in a Sclerotial Parasite Coniothyrium minitans Leads to Reduced Growth and Enhanced Antifungal Ability. Front Microbiol 2017; 8:2208. [PMID: 29176968 PMCID: PMC5686095 DOI: 10.3389/fmicb.2017.02208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/26/2017] [Indexed: 01/02/2023] Open
Abstract
Coniothyrium minitans is an important mycoparasite of Sclerotinia sclerotiorum. In addition, it also produces small amounts of antifungal substances. ZS-1TN1812, an abnormal mutant, was originally screened from a T-DNA insertional library. This mutant showed abnormal growth phenotype and could significantly inhibit the growth of S. sclerotiorum when dual-cultured on a PDA plate. When spraying the filtrate of ZS-1TN1812 on the leaves of rapeseed, S. sclerotiorum infection was significantly inhibited, suggesting that the antifungal substances produced by this mutant were effective on rapeseed leaves. The thermo-tolerant antifungal substances could specifically suppress the growth of S. sclerotiorum, but could not significantly suppress the growth of another fungus, Colletotrichum higginsianum. However, C. higginsianum was more sensitive to proteinous antibiotics than S. sclerotiorum. The T-DNA insertion in ZS-1TN1812 activated the expression of CmSIT1, a gene involved in siderophore-mediated iron transport. It was also determined that mutant ZS-1TN1812 produced hypha with high iron levels. In the wild-type strain ZS-1, CmSIT1 was expressed only when in contact with S. sclerotiorum, and consistent overexpression of CmSIT1 showed similar phenotypes as ZS-1TN1812. Therefore, activated expression of CmSIT1 leads to the enhanced antifungal ability, and CmSIT1 is a potential gene for improving the control ability of C. minitans.
Collapse
Affiliation(s)
- Xiping Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ying Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Odoni DI, van Gaal MP, Schonewille T, Tamayo-Ramos JA, Martins Dos Santos VAP, Suarez-Diez M, Schaap PJ. Aspergillus niger Secretes Citrate to Increase Iron Bioavailability. Front Microbiol 2017; 8:1424. [PMID: 28824560 PMCID: PMC5539119 DOI: 10.3389/fmicb.2017.01424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 11/13/2022] Open
Abstract
Aspergillus niger has an innate ability to secrete various organic acids, including citrate. The conditions required for A. niger citrate overproduction are well described, but the physiological reasons underlying extracellular citrate accumulation are not yet fully understood. One of the less understood culture conditions is the requirement of growth-limiting iron concentrations. While this has been attributed to iron-dependent citrate metabolizing enzymes, this straightforward relationship does not always hold true. Here, we show that an increase in citrate secretion under iron limited conditions is a physiological response consistent with a role of citrate as A. niger iron siderophore. We found that A. niger citrate secretion increases with decreasing amounts of iron added to the culture medium and, in contrast to previous findings, this response is independent of the nitrogen source. Differential transcriptomics analyses of the two A. niger mutants NW305 (gluconate non-producer) and NW186 (gluconate and oxalate non-producer) revealed up-regulation of the citrate biosynthesis gene citA under iron limited conditions compared to iron replete conditions. In addition, we show that A. niger can utilize Fe(III) citrate as iron source. Finally, we discuss our findings in the general context of the pH-dependency of A. niger organic acid production, offering an explanation, besides competition, for why A. niger organic acid production is a sequential process influenced by the external pH of the culture medium.
Collapse
Affiliation(s)
- Dorett I Odoni
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| | - Merlijn P van Gaal
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands.,Laboratory of Microbiology, Wageningen University & ResearchWageningen, Netherlands
| | - Tom Schonewille
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| | - Juan A Tamayo-Ramos
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands.,LifeGlimmer GmBHBerlin, Germany
| | - Maria Suarez-Diez
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| | - Peter J Schaap
- Laboratory of System and Synthetic Biology, Wageningen University & ResearchWageningen, Netherlands
| |
Collapse
|
21
|
Arango RA, Carlson CM, Currie CR, McDonald BR, Book AJ, Green F, Lebow NK, Raffa KF. Antimicrobial Activity of Actinobacteria Isolated From the Guts of Subterranean Termites. ENVIRONMENTAL ENTOMOLOGY 2016; 45:1415-1423. [PMID: 28028088 PMCID: PMC5225880 DOI: 10.1093/ee/nvw126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/24/2016] [Indexed: 05/15/2023]
Abstract
Subterranean termites need to minimize potentially pathogenic and competitive fungi in their environment in order to maintain colony health. We examined the ability of Actinobacteria isolated from termite guts in suppressing microorganisms commonly encountered in a subterranean environment. Guts from two subterranean termite species, Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks, were extracted and plated on selective chitin media. A total of 38 Actinobacteria isolates were selected for in vitro growth inhibition assays. Target microbes included three strains of Serratia marcescens Bizio, two mold fungi (Trichoderma sp. and Metarhizium sp.), a yeast fungus (Candida albicans (C.P. Robin) Berkhout), and four basidiomycete fungi (Gloeophyllum trabeum (Persoon) Murrill, Tyromyces palustris (Berkeley & M.A. Curtis) Murrill, Irpex lacteus (Fries) Fries, and Trametes versicolor (L.) Lloyd). Results showed both broad and narrow ranges of antimicrobial activity against the mold fungi, yeast fungus, and S. marcescens isolates by the Actinobacteria selected. This suggests that termite gut-associated Actinobacteria produce secondary antimicrobial compounds that may be important for pathogen inhibition in termites. Basidiomycete fungi were strongly inhibited by the selected Actinobacteria isolates, with G. trabeum and T. versicolor being most inhibited, followed by I. lacteus and T. palustris The degree of inhibition was correlated with shifts in pH caused by the Actinobacteria. Nearly all Actinobacteria isolates raised pH of the growth medium to basic levels (i.e. pH ∼8.0-9.5). We summarize antimicrobial activity of these termite gut-associated Actinobacteria and examine the implications of these pH shifts.
Collapse
Affiliation(s)
- R A Arango
- USDA Forest Products Laboratory, One Gifford Pinchot Dr., Madison, WI 53726 (; )
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706
| | - C M Carlson
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706 (; ; ; )
| | - C R Currie
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706 (; ; ; )
| | - B R McDonald
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706 (; ; ; )
| | - A J Book
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706 (; ; ; )
| | - F Green
- USDA Forest Products Laboratory, One Gifford Pinchot Dr., Madison, WI 53726 (; )
| | - N K Lebow
- Department of Food Science, Washington State University, 100 Dairy Rd., Pullman, WA 99164
| | - K F Raffa
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr., Madison, WI 53706
| |
Collapse
|
22
|
Kröber A, Scherlach K, Hortschansky P, Shelest E, Staib P, Kniemeyer O, Brakhage AA. HapX Mediates Iron Homeostasis in the Pathogenic Dermatophyte Arthroderma benhamiae but Is Dispensable for Virulence. PLoS One 2016; 11:e0150701. [PMID: 26960149 PMCID: PMC4784894 DOI: 10.1371/journal.pone.0150701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/18/2016] [Indexed: 12/14/2022] Open
Abstract
For many pathogenic fungi, siderophore-mediated iron acquisition is essential for virulence. The process of siderophore production and further mechanisms to adapt to iron limitation are strictly controlled in fungi to maintain iron homeostasis. Here we demonstrate that the human pathogenic dermatophyte Arthroderma benhamiae produces the hydroxamate siderophores ferricrocin and ferrichrome C. Additionally, we show that the iron regulator HapX is crucial for the adaptation to iron starvation and iron excess, but is dispensable for virulence of A. benhamiae. Deletion of hapX caused downregulation of siderophore biosynthesis genes leading to a decreased production of siderophores during iron starvation. Furthermore, HapX was required for transcriptional repression of genes involved in iron-dependent pathways during iron-depleted conditions. Additionally, the ΔhapX mutant of A. benhamiae was sensitive to high-iron concentrations indicating that HapX also contributes to iron detoxification. In contrast to other pathogenic fungi, HapX of A. benhamiae was redundant for virulence and a ΔhapX mutant was still able to infect keratinized host tissues in vitro. Our findings underline the highly conserved role of the transcription factor HapX for maintaining iron homeostasis in ascomycetous fungi but, unlike in many other human and plant pathogenic fungi, HapX of A. benhamiae is not a virulence determinant.
Collapse
Affiliation(s)
- Antje Kröber
- Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Ekaterina Shelest
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Peter Staib
- Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- * E-mail:
| |
Collapse
|
23
|
Poester VR, Klafke GB, Cabana ÂL, Adornes AC, Silva Filho RPD, Xavier MO. ISOLAMENTO E IDENTIFICAÇÃO DE FUNGOS DO GÊNERO Aspergillus spp. DE ÁGUA UTILIZADA NA REABILITAÇÃO DE PINGUINS-DEMAGALHÃES. CIÊNCIA ANIMAL BRASILEIRA 2015. [DOI: 10.1590/1089-6891v16i428509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo A aspergilose caracteriza-se por ser a principal causa de mortalidade de pinguins em cativeiro. A infecção pelo gênero Aspergillus ocorre principalmente por via aérea, porém o fungo pode ter dispersão pela água. Neste sentido, este trabalho teve como objetivo avaliar a água do tanque onde os pinguins-de-Magalhães permanecem para reabilitação no Centro de Recuperação de Animais Marinhos de Rio Grande, RS, Brasil, quanto à presença de fungos filamentosos do gênero Aspergillus. As amostras de água foram coletadas semanalmente durante um período de 10 meses e processadas em um período máximo de seis horas utilizando-se a técnica da membrana filtrante, com incubação a 25 ºC e 37 ºC por até sete dias. Das 40 amostras analisadas, 32 foram positivas para o isolamento do gênero Aspergillus, sendo que dessas 60% pertenciam à espécie A. fumigatus. Algumas variáveis interferiram significativamente no isolamento do gênero Aspergillus e/ou da espécie A. fumigatus, como temperatura de incubação, sazonalidade e densidade populacional. Este trabalho demonstra que Aspergillus spp. está presente na água, podendo essa ser uma potencial fonte de infecção para os pinguins em reabilitação.
Collapse
|
24
|
Bussink HJ, Bignell EM, Múnera-Huertas T, Lucena-Agell D, Scazzocchio C, Espeso EA, Bertuzzi M, Rudnicka J, Negrete-Urtasun S, Peñas-Parilla MM, Rainbow L, Peñalva MÁ, Arst HN, Tilburn J. Refining the pH response in Aspergillus nidulans: a modulatory triad involving PacX, a novel zinc binuclear cluster protein. Mol Microbiol 2015; 98:1051-72. [PMID: 26303777 PMCID: PMC4832277 DOI: 10.1111/mmi.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 01/18/2023]
Abstract
The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline ambient pH which, signalled by the Pal pathway, results in the processing of PacC72 to PacC27 via PacC53. Here we investigate two levels at which the pH regulatory system is transcriptionally moderated by pH and identify and characterise a new component of the pH regulatory machinery, PacX. Transcript level analysis and overexpression studies demonstrate that repression of acid‐expressed palF, specifying the Pal pathway arrestin, probably by PacC27 and/or PacC53, prevents an escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC
trans‐alleles show that pacC preferential alkaline‐expression results from derepression by depletion of the acid‐prevalent PacC72 form. We additionally show that pacC repression requires PacX. pacX mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels resulting in traces of PacC27 formed by pH‐independent proteolysis. pacX was cloned by impala transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure with an amino‐terminal coiled‐coil and a carboxy‐terminal zinc binuclear cluster. pacX mutations indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans genetics, resulted from an insertion of an endogenous Fot1‐like transposon.
Collapse
Affiliation(s)
- Henk-Jan Bussink
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Elaine M Bignell
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Claudio Scazzocchio
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay, France
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Institute for Inflammation and Repair, University of Manchester, 46 Grafton Street, Manchester, M13 9NT, UK
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Susana Negrete-Urtasun
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Maria M Peñas-Parilla
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Lynne Rainbow
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel Á Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Herbert N Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| |
Collapse
|
25
|
Dieryckx C, Gaudin V, Dupuy JW, Bonneu M, Girard V, Job D. Beyond plant defense: insights on the potential of salicylic and methylsalicylic acid to contain growth of the phytopathogen Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2015; 6:859. [PMID: 26528317 PMCID: PMC4607878 DOI: 10.3389/fpls.2015.00859] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/29/2015] [Indexed: 05/27/2023]
Abstract
Using Botrytis cinerea we confirmed in the present work several previous studies showing that salicylic acid, a main plant hormone, inhibits fungal growth in vitro. Such an inhibitory effect was also observed for the two salicylic acid derivatives, methylsalicylic and acetylsalicylic acid. In marked contrast, 5-sulfosalicylic acid was totally inactive. Comparative proteomics from treated vs. control mycelia showed that both the intracellular and extracellular proteomes were affected in the presence of salicylic acid or methylsalicylic acid. These data suggest several mechanisms that could potentially account for the observed fungal growth inhibition, notably pH regulation, metal homeostasis, mitochondrial respiration, ROS accumulation and cell wall remodeling. The present observations support a role played by the phytohormone SA and derivatives in directly containing the pathogen. Data are available via ProteomeXchange with identifier PXD002873.
Collapse
Affiliation(s)
- Cindy Dieryckx
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Vanessa Gaudin
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Jean-William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de BordeauxBordeaux, France
| | - Marc Bonneu
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de BordeauxBordeaux, France
| | - Vincent Girard
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| | - Dominique Job
- Laboratoire Mixte UMR 5240, Plateforme de Protéomique, Centre National de la Recherche ScientifiqueLyon, France
| |
Collapse
|
26
|
The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis. PLoS Pathog 2014; 10:e1004413. [PMID: 25329394 PMCID: PMC4199764 DOI: 10.1371/journal.ppat.1004413] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
Destruction of the pulmonary epithelium is a major feature of lung diseases caused by the mould pathogen Aspergillus fumigatus. Although it is widely postulated that tissue invasion is governed by fungal proteases, A. fumigatus mutants lacking individual or multiple enzymes remain fully invasive, suggesting a concomitant requirement for other pathogenic activities during host invasion. In this study we discovered, and exploited, a novel, tissue non-invasive, phenotype in A. fumigatus mutants lacking the pH-responsive transcription factor PacC. Our study revealed a novel mode of epithelial entry, occurring in a cell wall-dependent manner prior to protease production, and via the Dectin-1 β-glucan receptor. ΔpacC mutants are defective in both contact-mediated epithelial entry and protease expression, and significantly attenuated for pathogenicity in leukopenic mice. We combined murine infection modelling, in vivo transcriptomics, and in vitro infections of human alveolar epithelia, to delineate two major, and sequentially acting, PacC-dependent processes impacting epithelial integrity in vitro and tissue invasion in the whole animal. We demonstrate that A. fumigatus spores and germlings are internalised by epithelial cells in a contact-, actin-, cell wall- and Dectin-1 dependent manner and ΔpacC mutants, which aberrantly remodel the cell wall during germinative growth, are unable to gain entry into epithelial cells, both in vitro and in vivo. We further show that PacC acts as a global transcriptional regulator of secreted molecules during growth in the leukopenic mammalian lung, and profile the full cohort of secreted gene products expressed during invasive infection. Our study reveals a combinatorial mode of tissue entry dependent upon sequential, and mechanistically distinct, perturbations of the pulmonary epithelium and demonstrates, for the first time a protective role for Dectin-1 blockade in epithelial defences. Infecting ΔpacC mutants are hypersensitive to cell wall-active antifungal agents highlighting the value of PacC signalling as a target for antifungal therapy. Inhaled spores of the pathogenic mould Aspergillus fumigatus cause fungal lung infections in humans having immune defects. A. fumigatus spores germinate within the immunocompromised lung, producing invasively growing, elongated cells called hyphae. Hyphae degrade the surrounding pulmonary tissue, a process thought to be caused by secreted fungal enzymes; however, A. fumigatus mutants lacking one or more protease activities retain fully invasive phenotypes in mouse models of disease. Here we report the first discovery of a non-invasive A. fumigatus mutant, which lacks a pH-responsive transcription factor PacC. Using global transcriptional profiling of wild type and mutant isolates, and in vitro pulmonary invasion assays, we established that loss of PacC leads to a compound non-invasive phenotype characterised by deficits in both contact-mediated epithelial entry and protease expression. Consistent with an important role for epithelial entry in promoting invasive disease in mammalian tissues, PacC mutants remain surface-localised on mammalian epithelia, both in vitro and in vivo. Our study sets a new precedent for involvement of both host and pathogen activities in promoting epithelial invasion by A. fumigatus and supports a model wherein fungal protease activity acting subsequently to, or in parallel with, host-mediated epithelial entry provides the mechanistic basis for tissue invasion.
Collapse
|
27
|
Abstract
Siderophores are chelators synthesized by microbes to sequester iron. This article summarizes the knowledge on the fungal siderophore metabolism with a focus on Aspergillus fumigatus. In recent years, A. fumigatus became a role model for fungal biosynthesis, uptake and degradation of siderophores as well as regulation of siderophore-mediated iron handling and the elucidation of siderophore functions. Siderophore functions comprise uptake, intracellular transport and storage of iron. This proved to be crucial not only for adaptation to iron starvation conditions but also for germination, asexual and sexual propagation, antioxidative defense, mutual interaction, microbial competition as well as virulence in plant and animal hosts. Recent studies also indicate the high potential of siderophores and its biosynthetic pathway to improve diagnosis and therapy of fungal infections.
Collapse
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
28
|
Transcriptomic analysis of the role of Rim101/PacC in the adaptation of Ustilago maydis to an alkaline environment. Microbiology (Reading) 2014; 160:1985-1998. [DOI: 10.1099/mic.0.076216-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alkaline pH triggers an adaptation mechanism in fungi that is mediated by Rim101/PacCp, a zinc finger transcription factor. To identify the genes under its control in Ustilago maydis, we performed microarray analyses, comparing gene expression in a wild-type strain versus a rim101/pacC mutation strain of the fungus. In this study we obtained evidence of the large number of genes regulated mostly directly, but also indirectly (probably through regulation of other transcription factors), by Rim101/PacCp, including proteins involved in a large number of physiological activities of the fungus. Our analyses suggest that the response to alkaline conditions under the control of the Pal/Rim pathway involves changes in the cell wall and plasma membrane through alterations in their lipid, protein and polysaccharide composition, changes in cell polarity, actin cytoskeleton organization, and budding patterns. Also as expected, adaptation involves regulation by Rim101/PacC of genes involved in meiotic functions, such as recombination and segregation, and expression of genes involved in ion and nutrient transport, as well as general vacuole functions.
Collapse
|
29
|
Szigeti Z, Szaniszló S, Fazekas E, Gyémánt G, Szabon J, Antal K, Emri T, Balla J, Balla G, Csernoch L, Pócsi I. Optimization of triacetylfusarinine C and ferricrocin productions in Aspergillus fumigatus. Acta Microbiol Immunol Hung 2014; 61:107-19. [PMID: 24939680 DOI: 10.1556/amicr.61.2014.2.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron is an essential element for all microorganisms. Bacteria and fungi produce versatile siderophores for binding and storing this essential transition metal when its availability is limited in the environment. The aim of the study was to optimize the fermentation medium of Aspergillus fumigatus for siderophore production. Triacetyl-fusarinine C and ferricrocin yields were dependent on glucose and glycine supplementations as well as the initial pH of the culture media. The optimal fermentation medium for triacetylfusarinine C production contained 8% glucose, 0.4% glycine and the initial pH was set to 5.9. Meanwhile, maximal ferricrocin yields were recorded in the presence of 10% glucose, 0.5% glycine and at an initial pH of 7.4. Under optimized fermentation conditions, the yields for triacetylfusarinine C and ferricrocin increased up to 2.9 g/l culture medium and 18.9 mg/g mycelium, respectively.
Collapse
Affiliation(s)
- Zsuzsa Szigeti
- 1 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology Debrecen Hungary
| | - Szilvia Szaniszló
- 1 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology Debrecen Hungary
| | - Erika Fazekas
- 2 University of Debrecen Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology Debrecen Hungary
| | - Gyöngyi Gyémánt
- 2 University of Debrecen Department of Inorganic and Analytical Chemistry, Faculty of Science and Technology Debrecen Hungary
| | - Judit Szabon
- 1 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology Debrecen Hungary
| | - Károly Antal
- 3 Eszterházy Károly College Department of Zoology, Faculty of Sciences Eger Hungary
| | - Tamás Emri
- 1 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology Debrecen Hungary
| | | | | | - László Csernoch
- 7 University of Debrecen Department of Physiology, Medical and Health Science Center Debrecen Hungary
| | - István Pócsi
- 1 University of Debrecen Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology Debrecen Hungary
| |
Collapse
|
30
|
Barad S, Horowitz SB, Kobiler I, Sherman A, Prusky D. Accumulation of the mycotoxin patulin in the presence of gluconic acid contributes to pathogenicity of Penicillium expansum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:66-77. [PMID: 24024763 DOI: 10.1094/mpmi-05-13-0138-r] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Penicillium expansum, the causal agent of blue mold rot, causes severe postharvest fruit maceration through secretion of D-gluconic acid (GLA) and secondary metabolites such as the mycotoxin patulin in colonized tissue. GLA involvement in pathogenicity has been suggested but the mechanism of patulin accumulation and its contribution to P. expansum pathogenicity remain unclear. The roles of GLA and patulin accumulation in P. expansum pathogenicity were studied using i) glucose oxidase GOX2-RNAi mutants exhibiting decreased GOX2 expression, GLA accumulation, and reduced pathogenicity; ii) IDH-RNAi mutants exhibiting downregulation of IDH (the last gene in patulin biosynthesis), reduced patulin accumulation, and no effect on GLA level; and iii) PACC-RNAi mutants exhibiting downregulation of both GOX2 and IDH that reduced GLA and patulin production. Present results indicate that conditions enhancing the decrease in GLA accumulation by GOX2-RNAi and PACC-RNAi mutants, and not low pH, affected patulin accumulation, suggesting GLA production as the driving force for further patulin accumulation. Thus, it is suggested that GLA accumulation may modulate patulin synthesis as a direct precursor under dynamic pH conditions modulating the activation of the transcription factor PACC and the consequent pathogenicity factors, which contribute to host-tissue colonization by P. expansum.
Collapse
|
31
|
Rossi A, Cruz AHS, Santos RS, Silva PM, Silva EM, Mendes NS, Martinez-Rossi NM. Ambient pH sensing in filamentous fungi: pitfalls in elucidating regulatory hierarchical signaling networks. IUBMB Life 2013; 65:930-5. [PMID: 24265200 DOI: 10.1002/iub.1217] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 09/25/2013] [Indexed: 11/12/2022]
Abstract
In this article, the experiments used to construct the ambient pH-signaling network involved in the secretion of enzymes by filamentous fungi have been reviewed, focusing on the phosphate-repressible phosphatases in Aspergillus nidulans. Classic and molecular genetics have been used to demonstrate that proteolysis of the transcription factor PacC at alkaline ambient pH is imperative for its action, implying that the full-length version is not an active molecular form of PacC. It has been hypothesized that the transcriptional regulator PacC may be functional at both acidic and alkaline ambient pH, in either the full-length or the proteolyzed form, if it carries a pal-dependent molecular tag. The products of the pal genes are involved in a metabolic pathway that led to the synthesis of effector molecules that tag the pacC product, perhaps facilitating its proteolysis.
Collapse
Affiliation(s)
- Antonio Rossi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
SIGNIFICANCE Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. RECENT ADVANCES Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. CRITICAL ISSUES These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. FUTURE DIRECTIONS Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
33
|
PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genomics 2013; 14:138. [PMID: 23445374 PMCID: PMC3618310 DOI: 10.1186/1471-2164-14-138] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 02/23/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In fungi, environmental pH is an important signal for development, and successful host colonization depends on homeostasis. Surprisingly, little is known regarding the role of pH in fungal-fungal interactions. Species of Trichoderma grow as soil saprobes but many are primarily mycotrophic, using other fungi as hosts. Therefore, Trichoderma spp. are studied for their potential in biocontrol of plant diseases. Particularly in alkaline soil, pH is a critical limiting factor for these biofungicides, whose optimal growth pH is 4-6. Gaining an understanding of pH adaptability is an important step in broadening the activity spectrum of these economically important fungi. RESULTS We studied the pH-responsive transcription factor PacC by gene knockout and by introduction of a constitutively active allele (pacCc). ΔpacC mutants exhibited reduced growth at alkaline pH, while pacCc strains grew poorly at acidic pH. In plate confrontation assays ΔpacC mutants showed decreased ability to compete with the plant pathogens Rhizoctonia solani and Sclerotium rolfsii. The pacCc strain exhibited an overgrowth of R. solani that was comparable to the wild type, but was unable to overgrow S. rolfsii. To identify genes whose expression is dependent on pH and pacC, we designed oligonucleotide microarrays from the transcript models of the T. virens genome, and compared the transcriptomes of wild type and mutant cultures exposed to high or low pH. Transcript levels from several functional classes were dependent on pacC, on pH, or on both. Furthermore, the expression of a set of pacC-dependent genes was increased in the constitutively-active pacCc strain, and was pH-independent in some, but not all cases. CONCLUSIONS PacC is important for biocontrol-related antagonism of other fungi by T. virens. As much as 5% of the transcriptome is pH-dependent, and of these genes, some 25% depend on pacC. Secondary metabolite biosynthesis and ion transport are among the relevant gene classes. We suggest that ΔpacC mutants may have lost their full biocontrol potential due to their inability to adapt to alkaline pH, to perceive ambient pH, or both. The results raise the novel possibility of genetically manipulating Trichoderma in order to improve adaptability and biocontrol at alkaline pH.
Collapse
|
34
|
Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol 2012; 97:939-55. [DOI: 10.1007/s00253-012-4615-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/18/2012] [Accepted: 11/20/2012] [Indexed: 10/27/2022]
|
35
|
Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by Trichoderma spp. Appl Environ Microbiol 2012; 79:18-31. [PMID: 23064341 DOI: 10.1128/aem.02339-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Due to low iron availability under environmental conditions, many microorganisms excrete iron-chelating agents (siderophores) to cover their iron demands. A novel screening approach for the detection of siderophores using liquid chromatography coupled to high-resolution tandem mass spectrometry was developed to study the production of extracellular siderophores of 10 wild-type Trichoderma strains. For annotation of siderophores, an in-house library comprising 422 known microbial siderophores was established. After 96 h of cultivation, 18 different iron chelators were detected. Four of those (dimerum acid, fusigen, coprogen, and ferricrocin) were identified by measuring authentic standards. cis-Fusarinine, fusarinine A and B, and des-diserylglycylferrirhodin were annotated based on high-accuracy mass spectral analysis. In total, at least 10 novel iron-containing metabolites of the hydroxamate type were found. On average Trichoderma spp. produced 12 to 14 siderophores, with 6 common to all species tested. The highest number (15) of siderophores was detected for the most common environmental opportunistic and strongly fungicidic species, Trichoderma harzianum, which, however, did not have any unique compounds. The tropical species T. reesei had the most distinctive pattern, producing one unique siderophore (cis-fusarinine) and three others that were present only in T. harzianum and not in other species. The diversity of siderophores did not directly correlate with the antifungal potential of the species tested. Our data suggest that the high diversity of siderophores produced by Trichoderma spp. might be the result of further modifications of the nonribosomal peptide synthetase (NRPS) products and not due to diverse NRPS-encoding genes.
Collapse
|
36
|
Barad S, Horowitz SB, Moscovitz O, Lichter A, Sherman A, Prusky D. A Penicillium expansum glucose oxidase-encoding gene, GOX2, is essential for gluconic acid production and acidification during colonization of deciduous fruit. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:779-88. [PMID: 22352719 DOI: 10.1094/mpmi-01-12-0002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Penicillium expansum, the causal agent of blue mold rot, causes severe postharvest maceration of fruit through secretion of total, d-gluconic acid (GLA). Two P. expansum glucose oxidase (GOX)-encoding genes, GOX1 and GOX2, were analyzed. GOX activity and GLA accumulation were strongly related to GOX2 expression, which increased with pH to a maximum at pH 7.0, whereas GOX1 was expressed at pH 4.0, where no GOX activity or extracellular GLA were detected. This differential expression was also observed at the leading edge of the decaying tissue, where GOX2 expression was dominant. The roles of the GOX genes in pathogenicity were further studied through i) development of P. expansum goxRNAi mutants exhibiting differential downregulation of GOX2, ii) heterologous expression of the P. expansum GOX2 gene in the nondeciduous fruit-pathogen P. chrysogenum, and iii) modulation of GLA production by FeSO(4) chelation. Interestingly, in P. expansum, pH and GLA production elicited opposite effects on germination and biomass accumulation: 26% of spores germinated at pH 7.0 when GOX activity and GLA were highest whereas, in P. chrysogenum at the same pH, when GLA did not accumulate, 72% of spores germinated. Moreover, heterologous expression of P. expansum GOX2 in P. chrysogenum resulted in enhanced GLA production and reduced germination, suggesting negative regulation of spore germination and GLA production. These results demonstrate that pH modulation, mediated by GLA accumulation, is an important factor in generating the initial signal or signals for fungal development leading to host-tissue colonization by P. expansum.
Collapse
Affiliation(s)
- Shiri Barad
- Department of Postharvest Science of Fresh Produce, the Volcani Center, Bet Dagan, 50250, Israel
| | | | | | | | | | | |
Collapse
|
37
|
Haas H. Iron - A Key Nexus in the Virulence of Aspergillus fumigatus. Front Microbiol 2012; 3:28. [PMID: 22347220 PMCID: PMC3272694 DOI: 10.3389/fmicb.2012.00028] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/16/2012] [Indexed: 01/01/2023] Open
Abstract
Iron is an essential but, in excess, toxic nutrient. Therefore, fungi evolved fine-tuned mechanisms for uptake and storage of iron, such as the production of siderophores (low-molecular mass iron-specific chelators). In Aspergillus fumigatus, iron starvation causes extensive transcriptional remodeling involving two central transcription factors, which are interconnected in a negative transcriptional feed-back loop: the GATA-factor SreA and the bZip-factor HapX. During iron sufficiency, SreA represses iron uptake, including reductive iron assimilation and siderophore-mediated iron uptake, to avoid toxic effects. During iron starvation, HapX represses iron-consuming pathways, including heme biosynthesis and respiration, to spare iron and activates synthesis of ribotoxin AspF1 and siderophores, the latter partly by ensuring supply of the precursor, ornithine. In accordance with the expression pattern and mode of action, detrimental effects of inactivation of SreA and HapX are confined to growth during iron sufficiency and iron starvation, respectively. Deficiency in HapX, but not SreA, attenuates virulence of A. fumigatus in a murine model of aspergillosis, which underlines the crucial role of adaptation to iron limitation in virulence. Consistently, production of both extra and intracellular siderophores is crucial for virulence of A. fumigatus. Recently, the sterol regulatory element binding protein SrbA was found to be essential for adaptation to iron starvation, thereby linking regulation of iron metabolism, ergosterol biosynthesis, azole drug resistance, and hypoxia adaptation.
Collapse
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University Innsbruck, Austria
| |
Collapse
|
38
|
Linde J, Hortschansky P, Fazius E, Brakhage AA, Guthke R, Haas H. Regulatory interactions for iron homeostasis in Aspergillus fumigatus inferred by a Systems Biology approach. BMC SYSTEMS BIOLOGY 2012; 6:6. [PMID: 22260221 PMCID: PMC3305660 DOI: 10.1186/1752-0509-6-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/19/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND In System Biology, iterations of wet-lab experiments followed by modelling approaches and model-inspired experiments describe a cyclic workflow. This approach is especially useful for the inference of gene regulatory networks based on high-throughput gene expression data. Experiments can verify or falsify the predicted interactions allowing further refinement of the network model. Aspergillus fumigatus is a major human fungal pathogen. One important virulence trait is its ability to gain sufficient amounts of iron during infection process. Even though some regulatory interactions are known, we are still far from a complete understanding of the way iron homeostasis is regulated. RESULTS In this study, we make use of a reverse engineering strategy to infer a regulatory network controlling iron homeostasis in A. fumigatus. The inference approach utilizes the temporal change in expression data after a change from iron depleted to iron replete conditions. The modelling strategy is based on a set of linear differential equations and offers the possibility to integrate known regulatory interactions as prior knowledge. Moreover, it makes use of important selection criteria, such as sparseness and robustness. By compiling a list of known regulatory interactions for iron homeostasis in A. fumigatus and softly integrating them during network inference, we are able to predict new interactions between transcription factors and target genes. The proposed activation of the gene expression of hapX by the transcriptional regulator SrbA constitutes a so far unknown way of regulating iron homeostasis based on the amount of metabolically available iron. This interaction has been verified by Northern blots in a recent experimental study. In order to improve the reliability of the predicted network, the results of this experimental study have been added to the set of prior knowledge. The final network includes three SrbA target genes. Based on motif searching within the regulatory regions of these genes, we identify potential DNA-binding sites for SrbA. Our wet-lab experiments demonstrate high-affinity binding capacity of SrbA to the promoters of hapX, hemA and srbA. CONCLUSIONS This study presents an application of the typical Systems Biology circle and is based on cooperation between wet-lab experimentalists and in silico modellers. The results underline that using prior knowledge during network inference helps to predict biologically important interactions. Together with the experimental results, we indicate a novel iron homeostasis regulating system sensing the amount of metabolically available iron and identify the binding site of iron-related SrbA target genes. It will be of high interest to study whether these regulatory interactions are also important for close relatives of A. fumigatus and other pathogenic fungi, such as Candida albicans.
Collapse
Affiliation(s)
- Jörg Linde
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Cherrad S, Girard V, Dieryckx C, Gonçalves IR, Dupuy JW, Bonneu M, Rascle C, Job C, Job D, Vacher S, Poussereau N. Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics 2012; 4:835-46. [DOI: 10.1039/c2mt20041d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Schrettl M, Haas H. Iron homeostasis--Achilles' heel of Aspergillus fumigatus? Curr Opin Microbiol 2011; 14:400-5. [PMID: 21724450 PMCID: PMC3162135 DOI: 10.1016/j.mib.2011.06.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/16/2022]
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus adapts to iron limitation by upregulation of iron uptake mechanisms including siderophore biosynthesis and downregulation of iron-consuming pathways to spare iron. These metabolic changes depend mainly on the transcription factor HapX. Consistent with the crucial role of iron in pathophysiology, genetic inactivation of either HapX or the siderophore system attenuates virulence of A. fumigatus in a murine model of aspergillosis. The differences in iron handling between mammals and fungi might serve to improve therapy and diagnosis of fungal infections.
Collapse
Affiliation(s)
- Markus Schrettl
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria
| | | |
Collapse
|
41
|
Mello-de-Sousa TM, Silva-Pereira I, Poças-Fonseca MJ. Carbon source and pH-dependent transcriptional regulation of cellulase genes of Humicola grisea var. thermoidea grown on sugarcane bagasse. Enzyme Microb Technol 2011; 48:19-26. [DOI: 10.1016/j.enzmictec.2010.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
|
42
|
Omann M, Zeilinger S. How a mycoparasite employs g-protein signaling: using the example of trichoderma. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2010:123126. [PMID: 21637351 PMCID: PMC3100592 DOI: 10.1155/2010/123126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/06/2010] [Accepted: 07/20/2010] [Indexed: 12/04/2022]
Abstract
Mycoparasitic Trichoderma spp. act as potent biocontrol agents against a number of plant pathogenic fungi, whereupon the mycoparasitic attack includes host recognition followed by infection structure formation and secretion of lytic enzymes and antifungal metabolites leading to the host's death. Host-derived signals are suggested to be recognized by receptors located on the mycoparasite's cell surface eliciting an internal signal transduction cascade which results in the transcription of mycoparasitism-relevant genes. Heterotrimeric G proteins of fungi transmit signals originating from G-protein-coupled receptors mainly to the cAMP and the MAP kinase pathways resulting in regulation of downstream effectors. Components of the G-protein signaling machinery such as Gα subunits and G-protein-coupled receptors were recently shown to play crucial roles in Trichoderma mycoparasitism as they govern processes such as the production of extracellular cell wall lytic enzymes, the secretion of antifungal metabolites, and the formation of infection structures.
Collapse
Affiliation(s)
- Markus Omann
- Research Area of Gene Technology and Applied Biochemistry, Working Group Molecular Biochemistry of Fungi, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| | - Susanne Zeilinger
- Research Area of Gene Technology and Applied Biochemistry, Working Group Molecular Biochemistry of Fungi, Institute for Chemical Engineering, Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
43
|
Interaction of Cryptococcus neoformans Rim101 and protein kinase A regulates capsule. PLoS Pathog 2010; 6:e1000776. [PMID: 20174553 PMCID: PMC2824755 DOI: 10.1371/journal.ppat.1000776] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/18/2010] [Indexed: 11/19/2022] Open
Abstract
Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species. The rim101Δ mutant strain displays growth defects similar to other fungal species in the presence of alkaline pH, increased salt concentrations, and iron limitation. However, the rim101Δ strain is also characterized by a striking defect in capsule, an important virulence-associated phenotype. This capsular defect is likely due to alterations in polysaccharide attachment to the cell surface, not in polysaccharide biosynthesis. In contrast to many other C. neoformans capsule-defective strains, the rim101Δ mutant is hypervirulent in animal models of cryptococcosis. Whereas Rim101 activation in other fungal species occurs through the conserved Rim pathway, we demonstrate that C. neoformans Rim101 is also activated by the cAMP/PKA pathway. We report here that C. neoformans uses PKA and the Rim pathway to regulate the localization, activation, and processing of the Rim101 transcription factor. We also demonstrate specific host-relevant activating conditions for Rim101 cleavage, showing that C. neoformans has co-opted conserved signaling pathways to respond to the specific niche within the infected host. These results establish a novel mechanism for Rim101 activation and the integration of two conserved signaling cascades in response to host environmental conditions. Cryptococcus neoformans is an environmental fungus and an opportunistic human pathogen. Survival of this fungus within a human host depends on its ability to sense the host environment and respond with protective cellular changes. It is known that the cAMP/PKA signal transduction cascade is important for sensing host-specific environments and regulating the cellular adaptations, such as capsule and increased iron uptake, that are necessary for growth inside the infected host. Here we document that, unlike what has been described in other fungal species, a C. neoformans Rim101 homologue is directly regulated by PKA. The Rim101 signaling pathway is also involved in capsule regulation and virulence. Our study demonstrates that Rim101 integrates two conserved signal transduction cascades, and it is important in regulating microbial pathogenesis.
Collapse
|
44
|
Carboxylate transporter gene JEN1 from the entomopathogenic fungus Beauveria bassiana is involved in conidiation and virulence. Appl Environ Microbiol 2009; 76:254-63. [PMID: 19854926 DOI: 10.1128/aem.00882-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beauveria bassiana is an important entomopathogenic fungus widely used as a biological agent to control insect pests. A gene (B. bassiana JEN1 [BbJEN1]) homologous to JEN1 encoding a carboxylate transporter in Saccharomyces cerevisiae was identified in a B. bassiana transfer DNA (T-DNA) insertional mutant. Disruption of the gene decreased the carboxylate contents in hyphae, while increasing the conidial yield. However, overexpression of this transporter resulted in significant increases in carboxylates and decreased the conidial yield. BbJEN1 was strongly induced by insect cuticles and highly expressed in the hyphae penetrating insect cuticles not in hyphal bodies, suggesting that this gene is involved in the early stage of pathogenesis of B. bassiana. The bioassay results indicated that disruption of BbJEN1 significantly reduced the virulence of B. bassiana to aphids. Compared to the wild type, DeltaBbJEN1 alkalinized the insect cuticle to a reduced extent. The alkalinization of the cuticle is a physiological signal triggering the production of pathogenicity. Therefore, we identified a new factor influencing virulence, which is responsible for the alkalinization of the insect cuticle and the initiation of fungal pathogenesis in insects.
Collapse
|
45
|
KlAft, the Kluyveromyces lactis ortholog of Aft1 and Aft2, mediates activation of iron-responsive transcription through the PuCACCC Aft-type sequence. Genetics 2009; 183:93-106. [PMID: 19581449 DOI: 10.1534/genetics.109.104364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron homeostasis in fungi is regulated at the transcriptional level by two different mechanisms. It is mediated by a conserved GATA-type repressor in most fungi except in the yeast Saccharomyces cerevisiae, where it is controlled by the transcription activators Aft1 and Aft2. These activators are encoded by the paralogous genes AFT1 and AFT2, which result from the whole-genome duplication. Here, we explore regulation of iron homeostasis in the yeast Kluyveromyces lactis that diverged from S. cerevisiae before this event. We identify an ortholog of AFT1/AFT2, designated KlAFT, whose deletion leads to the inability to grow under iron limitation. We show with quantitative real-time PCR analysis that KlAft activates the transcription of all homologs of the Aft1-target genes involved in the iron transport at the cell surface in response to iron limitation. However, homologs of Aft2-specific target genes encoding intracellular iron transporters are regulated neither by KlAft nor by iron. Both bioinformatic and DNA binding and transcription analyses demonstrate that KlAft activates iron-responsive gene expression through the PuCACCC Aft-type sequence. Thus, K. lactis is the first documented species with a positive iron-transcriptional control mediated by only one copy of the Aft-type regulator. This indicates that this function was acquired before the whole-genome duplication and was then diversified into two regulators in S. cerevisiae.
Collapse
|
46
|
Wang Q, Szaniszlo PJ. Roles of the pH signaling transcription factor PacC in Wangiella (Exophiala) dermatitidis. Fungal Genet Biol 2009; 46:657-66. [PMID: 19501183 DOI: 10.1016/j.fgb.2009.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 01/03/2023]
Abstract
To study the function of the PacC transcription factor in Wangiella dermatitidis, a black, polymorphic fungal pathogen of humans with yeast-phase predominance, the PACC gene was cloned, sequenced, disrupted and expressed. Three zinc finger DNA-binding motifs were found at the N-terminus, and a signaling protease cleavage site at the C-terminus. PACC was more expressed at neutral-alkaline pH than at acidic pH. Truncation at about 40 residues of the coding sequence upstream of the conserved protease processing cleavage site of PacC affected growth on a nutrient-rich medium, increased sensitivity to Na(+) stress, decreased yeast growth at neutral-alkaline pH, and repressed hyphal growth on a nutrient-poor medium at 25 degrees C. Truncation at the coding sequence for the conserved signaling protease box of PacC impaired growth and reduced RNA expression of the class II chitin synthase gene at acidic pH. The results suggested that PacC is important not only for the adaptation of W. dermatitidis to different ambient pH conditions and Na(+) stress conditions, but also for influencing yeast-hyphal transitions in this agent of phaeohyphomycosis.
Collapse
Affiliation(s)
- Qin Wang
- Section of Molecular Genetics and Microbiology, School of Biological Sciences and Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
47
|
Fungal adaptation to the mammalian host: it is a new world, after all. Curr Opin Microbiol 2008; 11:511-6. [PMID: 18955154 DOI: 10.1016/j.mib.2008.09.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/21/2022]
Abstract
Adaptation to environmental conditions is key to fungal survival during infection of human hosts. Although the host immune system is often considered the primary obstacle to fungal colonization, invading fungi must also contend with extreme abiotic stresses. Recent work with human pathogenic fungi has uncovered systems for detecting and responding to changes in temperature, carbon source, metal ion availability, pH, and gas tension. These systems play a major role in adaptation to the host niche and are essential factors for persistence in a mammalian host. Future investigations into fungal responses to these and other abiotic components of the host environment have the potential to uncover novel targets for anti-fungal therapy.
Collapse
|
48
|
Peñalva MA, Tilburn J, Bignell E, Arst HN. Ambient pH gene regulation in fungi: making connections. Trends Microbiol 2008; 16:291-300. [DOI: 10.1016/j.tim.2008.03.006] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/14/2008] [Accepted: 03/26/2008] [Indexed: 11/15/2022]
|
49
|
Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. EUKARYOTIC CELL 2008; 7:1168-79. [PMID: 18503007 DOI: 10.1128/ec.00108-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Iron is an essential nutrient that is severely limited in the mammalian host. Candida albicans encodes a family of 15 putative ferric reductases, which are required for iron acquisition and utilization. Despite the central role of ferric reductases in iron acquisition and mobilization, relatively little is known about the regulatory networks that govern ferric reductase gene expression in C. albicans. Here we have demonstrated the differential regulation of two ferric reductases, FRE2 and FRP1, in response to distinct iron-limited environments. FRE2 and FRP1 are both induced in alkaline-pH environments directly by the Rim101 transcription factor. However, FRP1 but not FRE2 is also induced by iron chelation. We have identified a CCAAT motif as the critical regulatory sequence for chelator-mediated induction and have found that the CCAAT binding factor (CBF) is essential for FRP1 expression in iron-limited environments. We found that a hap5Delta/hap5Delta mutant, which disrupts the core DNA binding activity of CBF, is unable to grow under iron-limited conditions. C. albicans encodes three CBF-dependent transcription factors, and we identified the Hap43 protein as the CBF-dependent transcription factor required for iron-limited responses. These studies provide key insights into the regulation of ferric reductase gene expression in the fungal pathogen C. albicans.
Collapse
|
50
|
Naumenko EA, Naumov AV, Suvorova ES, Gerlach R, Ziganshin AM, Lozhkin AP, Silkin NI, Naumova RP. Participation of oxygen in the bacterial transformation of 2,4,6-trinitrotoluene. BIOCHEMISTRY (MOSCOW) 2008; 73:463-9. [PMID: 18457577 DOI: 10.1134/s0006297908040123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exposure of Bacillus cereus ZS18 cell suspensions to 2,4,6-trinitrotoluene (TNT) in the absence of other oxidizable substrates increases oxygen uptake, exceeding the basal level of respiration of the bacterium 1.5- and 2-fold with 50 and 100 mg/liter of TNT, respectively. The interaction of both living and to less extent dead bacterial cells with TNT results in the accumulation of superoxide anion (O2*-) in the extracellular medium, which was revealed by the EPR spectroscopy. The accumulation of O2*- decreased by 50-70% in the presence of Cu,Zn-superoxide dismutase of animal origin. In the presence of living bacterial cells, the level of TNT decreased progressively, yielding hydroxylaminodinitrotoluenes together with O2*-. In the presence of heat-killed cells, a moderate decrease in TNT was observed, and the appearance of O2*- was not accompanied by the production of any detectable TNT metabolites. Chelating agents inhibited the transformation of TNT and decreased the formation of O2*-. The demonstrated generation of O2*- during the interaction of TNT with K4[Fe(CN)6] together with the observed effects of chelating agents suggest the participation of iron in the one-electron reduction of TNT and the functioning of an extracellular redox cycle with the involvement of molecular oxygen.
Collapse
|