1
|
Liu C, Lei L, Zhu J, Chen L, Peng S, Zhang M, Zhang Z, Tang J, Chen Q, Kong L, Zheng Y, Ladera-Carmona M, Kogel KH, Wei Y, Qi P. FgGET3, an ATPase of the GET Pathway, Is Important for the Development and Virulence of Fusarium graminearum. Int J Mol Sci 2024; 25:12172. [PMID: 39596240 PMCID: PMC11594295 DOI: 10.3390/ijms252212172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
GET3 is an ATPase protein that plays a pivotal role in the guided entry of the tail-anchored (GET) pathway. The protein facilitates the targeting and inserting of tail-anchored (TA) proteins into the endoplasmic reticulum (ER) by interacting with a receptor protein complex on the ER. The role of GET3 in various biological processes has been established in yeast, plants, and mammals but not in filamentous fungi. Fusarium graminearum is the major causal agent of Fusarium head blight (FHB), posing a threat to the yield and quality of wheat. In this study, we found that FgGET3 exhibits a high degree of sequence and structural conservation with its homologs across a wide range of organisms. Ectopic expression of FgGET3 in yeast restored the growth defects of the Saccharomyces cerevisiae ScGET3 knock-out mutant. Furthermore, FgGET3 was found to dimerize and localize to the cytoplasm, similar to its homologs in other species. Deletion of FgGET3 in F. graminearum results in decreased fungal growth, fragmented vacuoles, altered abiotic stress responses, reduced conidia production, delayed conidial germination, weakened virulence on wheat spikes and reduced DON production. Collectively, these findings underscore the critical role of FgGET3 in regulating diverse cellular and biological functions essential for the growth and virulence of F. graminearum.
Collapse
Affiliation(s)
- Caihong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
| | - Lu Lei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Lirun Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Shijing Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Mi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Ziyi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Jie Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Maria Ladera-Carmona
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| |
Collapse
|
2
|
Storer ISR, Sastré-Velásquez LE, Easter T, Mertens B, Dallemulle A, Bottery M, Tank R, Offterdinger M, Bromley MJ, van Rhijn N, Gsaller F. Shining a light on the impact of antifungals on Aspergillus fumigatus subcellular dynamics through fluorescence imaging. Antimicrob Agents Chemother 2024; 68:e0080324. [PMID: 39404344 PMCID: PMC11539212 DOI: 10.1128/aac.00803-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024] Open
Abstract
Fluorescent proteins (FPs) are indispensable tools used for molecular imaging, single-cell dynamics, imaging in infection models, and more. However, next-generation FPs have yet to be characterized in Aspergillus. Here, we characterize 18 FPs in the pathogenic filamentous fungus Aspergillus fumigatus spanning the visible light spectrum. We report on in vivo FP brightness in hyphal and spore morphotypes and show how a fluoropyrimidine-based selection system can be used to iteratively introduce four distinct FPs enabling the simultaneous visualization of the cell membrane, mitochondria, peroxisomes, and vacuoles. Using this strain, we describe and compare the dynamic responses of organelles to stresses induced by voriconazole, amphotericin B, and the novel antifungal drugs olorofim and manogepix. The expansion to the fluorescent genetic toolbox will overcome boundaries in research applications that involve fluorescence imaging in filamentous fungi.
Collapse
Affiliation(s)
- I. S. R. Storer
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - L. E. Sastré-Velásquez
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - T. Easter
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - B. Mertens
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Dallemulle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - M. Bottery
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - R. Tank
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - M. Offterdinger
- Institute of Neurobiochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - M. J. Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - N. van Rhijn
- Manchester Fungal Infection Group, Division of Infection, Immunity, and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Microbial Evolution Research Manchester, University of Manchester, Manchester, United Kingdom
| | - F. Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Diehl C, Pinzan CF, de Castro PA, Delbaje E, García Carnero LC, Sánchez-León E, Bhalla K, Kronstad JW, Kim DG, Doering TL, Alkhazraji S, Mishra NN, Ibrahim AS, Yoshimura M, Vega Isuhuaylas LA, Pham LTK, Yashiroda Y, Boone C, dos Reis TF, Goldman GH. Brilacidin, a novel antifungal agent against Cryptococcus neoformans. mBio 2024; 15:e0103124. [PMID: 38916308 PMCID: PMC11253610 DOI: 10.1128/mbio.01031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Cryptococcus neoformans causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against C. neoformans. BRI can affect the organization of the cell membrane, increasing the fungal cell permeability. We also investigated the effects of BRI against the model system Saccharomyces cerevisiae by analyzing libraries of mutants grown in the presence of BRI. In S. cerevisiae, BRI also affects the cell membrane organization, but in addition the cell wall integrity pathway and calcium metabolism. In vivo experiments show BRI significantly reduces C. neoformans survival inside macrophages and partially clears C. neoformans lung infection in an immunocompetent murine model of invasive pulmonary cryptococcosis. We also observed that BRI interacts with caspofungin (CAS) and amphotericin (AmB), potentiating their mechanism of action against C. neoformans. BRI + CAS affects endocytic movement, calcineurin, and mitogen-activated protein kinases. Our results indicate that BRI is a novel antifungal drug against cryptococcosis. IMPORTANCE Invasive fungal infections have a high mortality rate causing more deaths annually than tuberculosis or malaria. Cryptococcosis, one of the most prevalent fungal diseases, is generally characterized by meningitis and is mainly caused by two closely related species of basidiomycetous yeasts, Cryptococcus neoformans and Cryptococcus gattii. There are few therapeutic options for treating cryptococcosis, and searching for new antifungal agents against this disease is very important. Here, we present brilacidin (BRI) as a potential antifungal agent against C. neoformans. BRI is a small molecule host defense peptide mimetic that has previously exhibited broad-spectrum immunomodulatory/anti-inflammatory activity against bacteria and viruses. BRI alone was shown to inhibit the growth of C. neoformans, acting as a fungicidal drug, but surprisingly also potentiated the activity of caspofungin (CAS) against this species. We investigated the mechanism of action of BRI and BRI + CAS against C. neoformans. We propose BRI as a new antifungal agent against cryptococcosis.
Collapse
Affiliation(s)
- Camila Diehl
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Laura C. García Carnero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kabir Bhalla
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - James W. Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong-gyu Kim
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sondus Alkhazraji
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Nagendra N. Mishra
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ashraf S. Ibrahim
- Division of Infectious Diseases, The Lundquist Institute for Biomedical Innovation at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | | | | | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
4
|
Nishitani A, Hiramatsu K, Kadooka C, Hiroshima K, Sawada K, Okutsu K, Yoshizaki Y, Takamine K, Goto M, Tamaki H, Futagami T. Overexpression of the DHA1 family, ChlH and ChlK, leads to enhanced dicarboxylic acids production in koji fungi, Aspergillus luchuensis mut. kawachii and Aspergillus oryzae. J Biosci Bioeng 2024; 137:281-289. [PMID: 38331655 DOI: 10.1016/j.jbiosc.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
The white koji fungus Aspergillus luchuensis mut. kawachii secretes substantial amounts of citric acid through the expression of the citric acid exporter CexA, a member of the DHA1 family. In this study, we aimed to characterize 11 CexA homologs (Chl proteins) encoded in the genome of A. luchuensis mut. kawachii to identify novel transporters useful for organic acid production. We constructed overexpression strains of chl genes using a cexA disruptant of the A. luchuensis mut. kawachii as the host strain, which prevented excessive secretion of citric acid into the culture supernatant. Subsequently, we evaluated the effects of overexpression of chl on producing organic acids by analyzing the culture supernatant. All overexpression strains did not exhibit significant citric acid accumulation in the culture supernatant, indicating that Chl proteins are not responsible for citric acid export. Furthermore, the ChlH overexpression strain displayed an accumulation of 2-oxoglutaric and fumaric acids in the culture supernatant, while the ChlK overexpression strain exhibited the accumulation of 2-oxoglutaric, malic and succinic acids. Notably, the ChlH and ChlK overexpression led to a substantial increase in the production of 2-oxoglutaric acid, reaching approximately 25 mM and 50 mM, respectively. Furthermore, ChlH and ChlK overexpression also significantly increased the secretory production of dicarboxylic acids, including 2-oxoglutaric acid, in the yellow koji fungus, Aspergillus oryzae. Our study demonstrates that overexpression of DHA1 family gene results in enhanced secretion of organic acids in koji fungi of the genus Aspergillus.
Collapse
Affiliation(s)
- Atsushi Nishitani
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kentaro Hiramatsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Kyoka Hiroshima
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Kayu Okutsu
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Yumiko Yoshizaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kazunori Takamine
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hisanori Tamaki
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Taiki Futagami
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan; Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| |
Collapse
|
5
|
Li C, Cong H, Cao X, Sun Y, Lu K, Li L, Wang Y, Zhang Y, Li Q, Jiang J, Li L. CfErp3 regulates growth, conidiation, inducing ipomeamarone and the pathogenicity of Ceratocystis fimbriata. Fungal Genet Biol 2024; 170:103846. [PMID: 38048937 DOI: 10.1016/j.fgb.2023.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The Erp3 protein, which is an important member of the p24 family, is primarily responsible for the transport of cargo from the ER to the Golgi apparatus in Saccharomyces cerevisiae. However, the function of Erp3 in plant pathogenic fungi has not been reported. In this study, we characterized the ERP3 gene in Ceratocystis fimbriata, which causes the devastating disease sweetpotato black rot. The ΔCferp3 mutants exhibited slow growth, reduced conidia production, attenuated virulence, and reduced ability to induce host to produce toxins. Further analysis revealed that CfErp3 was localized in the ER and vesicles and regulated endocytosis, cell wall integrity, and osmotic stress responses, modulated ROS levels, and the production of ipomeamarone during pathogen-host interactions. These results indicate that CfErp3 regulates C. fimbriata growth and pathogenicity as well as the production of ipomeamarone in sweetpotato by controlling endocytosis, oxidative homeostasis, and responses to cell wall and osmotic stresses.
Collapse
Affiliation(s)
- Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Yancheng Biological Engineering Higher Vocational Technology School, Yancheng, Jiangsu Province 224051, China
| | - Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yong Sun
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Kailun Lu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Qiang Li
- Chinese Academy of Agricultural Sciences Sweet Potato Research Institute, Xuzhou, Jiangsu Province 221131, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Lianwei Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| |
Collapse
|
6
|
Huang Z, Cao H, Wang H, Huang P, Wang J, Cai Y, Wang Q, Li Y, Wang J, Liu X, Lin F, Lu J. The triglyceride catabolism regulated by a serine/threonine protein phosphatase, Smek1, is required for development and plant infection in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2023; 24:1256-1272. [PMID: 37357820 PMCID: PMC10502837 DOI: 10.1111/mpp.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Magnaporthe oryzae is a pathogenic fungus that seriously harms rice production. Phosphatases and carbon metabolism play crucial roles in the growth and development of eukaryotes. However, it remains unclear how serine/threonine phosphatases regulate the catabolism of triglycerides, a major form of stored lipids. In this study, we identified a serine/threonine protein phosphatase regulatory subunit, Smek1, which is required for the growth, conidiation, and virulence of M. oryzae. Deletion of SMEK1 led to defects in the utilization of lipids, arabinose, glycerol, and ethanol. In glucose medium, the expression of genes involved in lipolysis, long-chain fatty acid degradation, β-oxidation, and the glyoxylate cycle increased in the Δsmek1 mutant, which is consistent with ΔcreA in which a carbon catabolite repressor CREA was deleted. In lipid medium, the expression of genes involved in long-chain fatty acid degradation, β-oxidation, the glyoxylate cycle, and utilization of arabinose, ethanol, or glycerol decreased in the Δsmek1 mutant, which is consistent with Δcrf1 in which a transcription activator CRF1 required for carbon metabolism was deleted. Lipase activity, however, increased in the Δsmek1 mutant in both glucose and lipid media. Moreover, Smek1 directly interacted with CreA and Crf1, and dephosphorylated CreA and Crf1 in vivo. The phosphatase Smek1 is therefore a dual-function regulator of the lipid and carbohydrate metabolism, and controls fungal development and virulence by coordinating the functions of CreA and Crf1 in carbon catabolite repression (CCR) and derepression (CCDR).
Collapse
Affiliation(s)
- Zhicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | | | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ying‐Ying Cai
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Qing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Yan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiao‐Hong Liu
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Fu‐Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Jianping Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
7
|
Itani A, Shida Y, Ogasawara W. A microfluidic device for simultaneous detection of enzyme secretion and elongation of a single hypha. Front Microbiol 2023; 14:1125760. [PMID: 36937311 PMCID: PMC10020217 DOI: 10.3389/fmicb.2023.1125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Filamentous fungi grow through elongation of their apical region by exocytosis and secrete enzymes that can be of commercial or industrial importance. Their hyphae exhibit extensive branching, making it difficult to control hyphal growth for observation and analysis. Therefore, although hyphal morphology and productivity are closely related, the relationship between the two has not yet been clarified. Conventional morphology and productivity studies have only compared the results of macro imaging of fungal pellets cultured in bulk with the averaged products in the culture medium. Filamentous fungi are multicellular and their expression differs between different hyphae. To truly understand the relationship between morphology and productivity, it is necessary to compare the morphology and productivity of individual hyphae. To achieve this, we developed a microfluidic system that confines hyphae to individual channels for observation and investigated the relationship between their growth, morphology, and enzyme productivity. Furthermore, using Trichoderma reesei, a potent cellulase-producing fungus, as a model, we developed a cellulase detection assay with 4-MUC substrate to detect hyphal growth and enzyme secretion in a microfluidic device in real time. Using a strain that expresses cellobiohydrolase I (CBH I) fused with AcGFP1, we compared fluorescence from the detection assay with GFP fluorescence intensity, which showed a strong correlation between the two. These results indicate that extracellular enzymes can be easily detected in the microfluidic device in real time because the production of cellulase is synchronized in T. reesei. This microfluidic system enables real-time visualization of the dynamics of hypha and enzymes during carbon source exchange and the quantitative dynamics of gene expression. This technology can be applied to many biosystems from bioenergy production to human health.
Collapse
Affiliation(s)
- Ayaka Itani
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
8
|
SNARE Protein AoSec22 Orchestrates Mycelial Growth, Vacuole Assembly, Trap Formation, Stress Response, and Secondary Metabolism in Arthrobotrys oligospora. J Fungi (Basel) 2023; 9:jof9010075. [PMID: 36675896 PMCID: PMC9863257 DOI: 10.3390/jof9010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotes and play a vital role in fungal growth, development, and pathogenicity. However, the functions of SNAREs are still largely unknown in nematode-trapping fungi. Arthrobotrys oligospora is a representative species of nematode-trapping fungi that can produce adhesive networks (traps) for nematode predation. In this study, we characterized AoSec22 in A. oligospora, a homolog of the yeast SNARE protein Sec22. Deletion of Aosec22 resulted in remarkable reductions in mycelial growth, the number of nuclei, conidia yield, and trap formation, especially for traps that failed to develop mature three-dimensional networks. Further, absence of Aosec22 impaired fatty acid utilization, autophagy, and stress tolerance; in addition, the vacuoles became small and fragmented in the hyphal cells of the ∆Aosec22 mutant, and large vacuoles failed to form. The reduced sporulation capacity correlated with the transcriptional repression of several sporulation-related genes, and the impaired accumulation of lipid droplets is in line with the transcriptional repression of several genes involved in fatty acid oxidation. Moreover, absence of Aosec22 remarkably impaired secondary metabolism, resulting in 4717 and 1230 compounds upregulated and downregulated in the ∆Aosec22 mutant, respectively. Collectively, our data highlighted that the SNARE protein AoSec22 plays a pleiotropic role in mycelial growth and development, vacuole assembly, lipid metabolism, stress response, and secondary metabolism; in particular, it is required for the proper development of traps in A. oligospora.
Collapse
|
9
|
Jimenez M, Best JT, Date SS, Graham TR. Quantification of Golgi Protein Mislocalization to the Budding Yeast Vacuole. Methods Mol Biol 2023; 2557:17-28. [PMID: 36512206 DOI: 10.1007/978-1-0716-2639-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The localization of proteins to the Golgi complex is a dynamic process requiring sorting signals in the cytosolic domains of resident Golgi proteins and retrograde vesicular trafficking. Disruptions in these signals or in the retrograde pathways often lead to mislocalization of Golgi proteins to the vacuole in budding yeast. The extent of vacuolar mislocalization can be quantified through colocalization of GFP-tagged Golgi proteins with fluorescent dyes that mark either the vacuole limiting membrane or the vacuole lumen. Manders' colocalization coefficient (MCC) is a useful tool for quantifying the degree of colocalization. However, the dilution of fluorescence signal intensity that occurs when GFP-tagged Golgi proteins mislocalize to the much larger vacuole is problematic for thresholding the images prior to calculating the MCC. In this chapter, we describe the use of Multi-Otsu thresholding in ImageJ to quantify the degree of GFP-tagged protein mislocalization to the vacuole. Furthermore, these methods can be applied to other colocalization events within the cell.
Collapse
Affiliation(s)
- Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Jordan T Best
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Swapneeta S Date
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Distinct roles for different autophagy-associated genes in the virulence of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genet Biol 2022; 163:103748. [PMID: 36309095 DOI: 10.1016/j.fgb.2022.103748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 01/06/2023]
Abstract
The fungal wheat pathogen Zymoseptoria tritici causes major crop losses as the causal agent of the disease Septoria tritici blotch. The infection cycle of Z. tritici displays two distinct phases, beginning with an extended symptomless phase of 1-2 weeks, before the fungus induces host cell death and tissue collapse in the leaf. Recent evidence suggests that the fungus uses little host-derived nutrition during asymptomatic colonisation, raising questions as to the sources of energy required for this initial growth phase. Autophagy is crucial for the pathogenicity of other fungal plant pathogens through its roles in supporting cellular differentiation and growth under starvation. Here we characterised the contributions of the autophagy genes ZtATG1 and ZtATG8 to the development and virulence of Z. tritici. Deletion of ZtATG1 led to inhibition of autophagy but had no impact on starvation-induced hyphal differentiation or virulence, suggesting that autophagy is not required for Z. tritici pathogenicity. Contrastingly, ZtATG8 deletion delayed the transition to necrotrophic growth, despite having no influence on filamentous growth under starvation, pointing to an autophagy-independent role of ZtATG8 during Z. tritici infection. To our knowledge, this study represents the first to find autophagy not to contribute to the virulence of a fungal plant pathogen, and reveals novel roles for different autophagy-associated proteins in Z. tritici.
Collapse
|
11
|
Abstract
Whole-cell immobilization by entrapment in natural polymers can be a tool for morphological control and facilitate biomass retention. In this study, the possibility of immobilizing the filamentous fungus Aspergillus oryzae for l-malic acid production was evaluated with the two carbon sources acetate and glucose. A. oryzae conidia were entrapped in alginate, agar, and κ-carrageenan and production was monitored in batch processes in shake flasks and 2.5-L bioreactors. With glucose, the malic acid concentration after 144 h of cultivation using immobilized particles was mostly similar to the control with free biomass. In acetate medium, production with immobilized conidia of A. oryzae in shake flasks was delayed and titers were generally lower compared to cultures with free mycelium. While all immobilization matrices were stable in glucose medium, disintegration of bead material and biomass detachment in acetate medium was observed in later stages of the fermentation. Still, immobilization proved advantageous in bioreactor cultivations with acetate and resulted in increased malic acid titers. This study is the first to evaluate immobilization of A. oryzae for malic acid production and describes the potential but also challenges regarding the application of different matrices in glucose and acetate media.
Collapse
|
12
|
Colabardini AC, Wang F, Dong Z, Pardeshi L, Rocha MC, Costa JH, dos Reis TF, Brown A, Jaber QZ, Fridman M, Fill T, Rokas A, Malavazi I, Wong KH, Goldman GH. Heterogeneity in the transcriptional response of the human pathogen Aspergillus fumigatus to the antifungal agent caspofungin. Genetics 2022; 220:iyab183. [PMID: 34718550 PMCID: PMC8733440 DOI: 10.1093/genetics/iyab183] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023] Open
Abstract
Aspergillus fumigatus is the main causative agent of invasive pulmonary aspergillosis (IPA), a severe disease that affects immunosuppressed patients worldwide. The fungistatic drug caspofungin (CSP) is the second line of therapy against IPA but has increasingly been used against clinical strains that are resistant to azoles, the first line antifungal therapy. In high concentrations, CSP induces a tolerance phenotype with partial reestablishment of fungal growth called CSP paradoxical effect (CPE), resulting from a change in the composition of the cell wall. An increasing number of studies has shown that different isolates of A. fumigatus exhibit phenotypic heterogeneity, including heterogeneity in their CPE response. To gain insights into the underlying molecular mechanisms of CPE response heterogeneity, we analyzed the transcriptomes of two A. fumigatus reference strains, Af293 and CEA17, exposed to low and high CSP concentrations. We found that there is a core transcriptional response that involves genes related to cell wall remodeling processes, mitochondrial function, transmembrane transport, and amino acid and ergosterol metabolism, and a variable response related to secondary metabolite (SM) biosynthesis and iron homeostasis. Specifically, we show here that the overexpression of a SM pathway that works as an iron chelator extinguishes the CPE in both backgrounds, whereas iron depletion is detrimental for the CPE in Af293 but not in CEA17. We next investigated the function of the transcription factor CrzA, whose deletion was previously shown to result in heterogeneity in the CPE response of the Af293 and CEA17 strains. We found that CrzA constitutively binds to and modulates the expression of several genes related to processes involved in CSP tolerance and that crzA deletion differentially impacts the SM production and growth of Af293 and CEA17. As opposed to the ΔcrzACEA17 mutant, the ΔcrzAAf293 mutant fails to activate cell wall remodeling genes upon CSP exposure, which most likely severely affects its macrostructure and extinguishes its CPE. This study describes how heterogeneity in the response to an antifungal agent between A. fumigatus strains stems from heterogeneity in the function of a transcription factor and its downstream target genes.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, 999078, China
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Jonas Henrique Costa
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Thaila Fernanda dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Alec Brown
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo CEP 13083-970, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos CEP 13565-905, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, Institute of Translational Medicine, University of Macau, Macau 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| |
Collapse
|
13
|
Morita Y, Katakura Y, Takegawa K, Higuchi Y. Correlative Localization Analysis Between mRNA and Enhanced Green Fluorescence Protein-Fused Protein by a Single-Molecule Fluorescence in situ Hybridization Using an egfp Probe in Aspergillus oryzae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:721398. [PMID: 37744096 PMCID: PMC10512357 DOI: 10.3389/ffunb.2021.721398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 09/26/2023]
Abstract
Although subcellular localization analysis of proteins fused with enhanced green fluorescence protein (EGFP) has been widely conducted in filamentous fungi, little is known about the localization of messenger RNAs (mRNAs) encoding the EGFP-fused proteins. In this study, we performed single-molecule fluorescence in situ hybridization (smFISH) using an egfp probe to simultaneously visualize EGFP-fused proteins and their mRNAs in the hyphal cells of the filamentous fungus Aspergillus oryzae. We investigated the subcellular localization of mRNAs encoding cytoplasmic EGFP, an actin marker protein Lifeact tagged with EGFP, and several EGFP-fused proteins AoSec22, AoSnc1, AoVam3, and AoUapC that localize to the endoplasmic reticulum (ER), the apical vesicle cluster Spitzenkörper, vacuolar membrane, and plasma membrane, respectively. Visualization of these mRNAs by smFISH demonstrated that each mRNA exhibited distinct localization patterns likely depending on the mRNA sequence. In particular, we revealed that mRNAs encoding Lifeact-EGFP, EGFP-AoSec22, EGFP-AoVam3, and AoUapC-EGFP, but not cytoplasmic EGFP and EGFP-AoSnc1, were preferentially localized at the apical cell, suggesting certain mechanisms to regulate the existence of these transcripts among hyphal regions. Our findings provide the distinct localization information of each mRNA in the hyphal cells of A. oryzae.
Collapse
Affiliation(s)
| | | | | | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Higuchi Y. Membrane Traffic in Aspergillus oryzae and Related Filamentous Fungi. J Fungi (Basel) 2021; 7:jof7070534. [PMID: 34356913 PMCID: PMC8303533 DOI: 10.3390/jof7070534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
The industrially important filamentous fungus Aspergillus oryzae, known as the yellow Koji mold and also designated the Japanese National fungus, has been investigated for understanding the intracellular membrane trafficking machinery due to the great ability of valuable enzyme production. The underlying molecular mechanisms of the secretory pathway delineate the main secretion route from the hyphal tip via the vesicle cluster Spitzenkörper, but also there is a growing body of evidence that septum-directed and unconventional secretion occurs in A. oryzae hyphal cells. Moreover, not only the secretory pathway but also the endocytic pathway is crucial for protein secretion, especially having a role in apical endocytic recycling. As a hallmark of multicellular filamentous fungal cells, endocytic organelles early endosome and vacuole are quite dynamic: the former exhibits constant long-range motility through the hyphal cells and the latter displays pleiomorphic structures in each hyphal region. These characteristics are thought to have physiological roles, such as supporting protein secretion and transporting nutrients. This review summarizes molecular and physiological mechanisms of membrane traffic, i.e., secretory and endocytic pathways, in A. oryzae and related filamentous fungi and describes the further potential for industrial applications.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Lingo DE, Shukla N, Osmani AH, Osmani SA. Aspergillus nidulans biofilm formation modifies cellular architecture and enables light-activated autophagy. Mol Biol Cell 2021; 32:1181-1192. [PMID: 33826367 PMCID: PMC8351559 DOI: 10.1091/mbc.e20-11-0734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After growing on surfaces, including those of medical and industrial importance, fungal biofilms self-generate internal microenvironments. We previously reported that gaseous microenvironments around founder Aspergillus nidulans cells change during biofilm formation causing microtubules to disassemble under control of the hypoxic transcription factor SrbA. Here we investigate if biofilm formation might also promote changes to structures involved in exocytosis and endocytosis. During biofilm formation, the endoplasmic reticulum (ER) remained intact but ER exit sites and the Golgi apparatus were modified as were endocytic actin patches. The biofilm-driven changes required the SrbA hypoxic transcription factor and could be triggered by nitric oxide, further implicating gaseous regulation of biofilm cellular architecture. By tracking green fluorescent protein (GFP)-Atg8 dynamics, biofilm founder cells were also observed to undergo autophagy. Most notably, biofilm cells that had undergone autophagy were triggered into further autophagy by spinning disk confocal light. Our findings indicate that fungal biofilm formation modifies the secretory and endocytic apparatus and show that biofilm cells can also undergo autophagy that is reactivated by light. The findings provide new insights into the changes occurring in fungal biofilm cell biology that potentially impact their unique characteristics, including antifungal drug resistance.
Collapse
Affiliation(s)
- Dale E Lingo
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Nandini Shukla
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
16
|
Human hepatitis A virus 3C protease exerts a cytostatic effect on Saccharomyces cerevisiae and affects the vacuolar compartment. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00569-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Sun X, Xu Y, Chen L, Jin X, Ni H. The salt-tolerant phenazine-1-carboxamide-producing bacterium Pseudomonas aeruginosa NF011 isolated from wheat rhizosphere soil in dry farmland with antagonism against Fusarium graminearum. Microbiol Res 2020; 245:126673. [PMID: 33429287 DOI: 10.1016/j.micres.2020.126673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
Fusarium head blight (FHB) disease caused by Fusarium graminearum (Fg) seriously affects the yield and quality of wheat. In this study, after bacterial community analysis of two wheat rhizosphere soils, the genus Pseudomonas was shown to be enriched in normal dry farmland (maize-wheat rotation) compared to that observed nearby paddy farmland (rice-wheat rotation) with serious FHB disease. Subsequently, a P. aeruginosa strain, NF011 with the highest antagonistic activity against Fg and excellent tolerance to 8.0 % of NaCl was isolated from the wheat rhizosphere soil in the normal dry farmland. Dual culture assay results showed that NF011 is a broad-spectrum fungicide for controlling six wheat pathogenic fungi. The major antifungal compound produced by NF011 was identified as phenazine-1-carboxamide (PCN) by LC-MS and nuclear magnetic resonance. 1.0 × 108 CFU/mL of NF011 or 32 mg/L of PCN could completely inhibit Fg spore germination and resulted in the destruction of Fg hypha vacuoles. Mannitol, peanut meal, beef extract, metal ions (Mn2+, Ca2+, Fe2+, and Mg2+), and amino acids (Arg and Lys) could promote the production of PCN by NF011, moreover, the optimal pH and temperature was 6.0 and 20 °C. The PCN produced by NF011 under the optimized culture conditions reached 436.55 ± 11.06 mg/L, 4.90-fold higher than that observed under the basic culture conditions. Finally, infection experiment results showed that NF011 can effectively prevent Fg spores from infecting wheat spikes and wheat grains and suppress the production of deoxynivalenol (DON). Therefore, the salt-tolerant PCN-producing NF011 has the potential to control wheat fungal disease.
Collapse
Affiliation(s)
- Xiaowen Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yin Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ling Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xinmeng Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hong Ni
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
18
|
Morita Y, Kikumatsu F, Higuchi Y, Katakura Y, Takegawa K. Characterization and functional analysis of ERAD-related AAA+ ATPase Cdc48 in Aspergillus oryzae. Fungal Biol 2020; 124:801-813. [PMID: 32883430 DOI: 10.1016/j.funbio.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022]
Abstract
Aspergillus oryzae can secrete large amounts of enzymes. However, the production of abundant secretory proteins triggers the unfolded protein response (UPR) in the endoplasmic reticulum (ER), and it is not clear how ER-associated protein degradation (ERAD) contributes to bulk protein production in A. oryzae. Here we identified AoCdc48, the sole A. oryzae ortholog of Saccharomyces cerevisiae AAA+ ATPase Cdc48, a component of the ERAD machinery. We found that AoCdc48 localizes in both nuclei and cytoplasm. Generation of an Aocdc48 conditional mutant showed that Aocdc48 repression leads to reduced cell growth and aberrant hyphal morphology. When Aocdc48-repressed cells were cultured on starch-containing plates, the α-amylase-encoding gene amyB was about 1.3-fold higher expressed. Indeed, a halo produced by secreted amylase was seen on potato starch-containing plates even when there was almost no growth under Aocdc48 repression. Fluorescence microscopy revealed that although AmyB seemed to be secreted, various organelle distributions were aberrant in Aocdc48-repressed cells. We found that D1 AAA domain is crucial for cell viability. Finally, we show that Aocdc48-overexpression also causes defects of cell growth, colonial morphology and conidial formation. Collectively, our results suggest that AoCdc48 is essential for growth and organelle distribution but dispensable for amylase secretion.
Collapse
Affiliation(s)
- Yuki Morita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Futa Kikumatsu
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.
| | - Yoshinori Katakura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| |
Collapse
|
19
|
Kaur B, Punekar NS. Autophagy is important to the acidogenic metabolism of Aspergillus niger. PLoS One 2019; 14:e0223895. [PMID: 31603923 PMCID: PMC6788731 DOI: 10.1371/journal.pone.0223895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/01/2019] [Indexed: 11/24/2022] Open
Abstract
Significant phenotypic overlaps exist between autophagy and acidogenesis in Aspergillus niger. The possible role of autophagy in the acidogenic growth and metabolism of this fungus was therefore examined and the movement of cytosolic EGFP to vacuoles served to monitor this phenomenon. An autophagy response to typical as well as a metabolic inhibitor-induced nitrogen starvation was observed in A. niger mycelia. The vacuolar re-localization of cytosolic EGFP was not observed upon nitrogen starvation in the A. niger Δatg1 strain. The acidogenic growth of the fungus consisted of a brief log phase followed by an extended autophagy-like state throughout the idiophase of fermentation. Mycelia in the idiophase were highly vacuolated and EGFP was localized to the vacuoles but no autolysis was observed. Both autophagy and acidogenesis are compromised in Δatg1 and Δatg8 strains of A. niger. The acidogenic growth of the fungus thus appears to mimic a condition of nutrient limitation and is associated with an extended autophagy-like state. This crucial role of autophagy in acidogenic A. niger physiology could be of value in improving citric acid fermentation.
Collapse
Affiliation(s)
- Baljinder Kaur
- Metabolism and Enzymology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Narayan S. Punekar
- Metabolism and Enzymology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail:
| |
Collapse
|
20
|
Sun Y, Niu Y, Huang H, He B, Ma L, Tu Y, Tran VT, Zeng B, Hu Z. Mevalonate Diphosphate Decarboxylase MVD/Erg19 Is Required for Ergosterol Biosynthesis, Growth, Sporulation and Stress Tolerance in Aspergillus oryzae. Front Microbiol 2019; 10:1074. [PMID: 31156588 PMCID: PMC6532591 DOI: 10.3389/fmicb.2019.01074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Mevalonate diphosphate decarboxylase (MVD; EC 4.1.1.33) is a key enzyme of the mevalonic acid (MVA) pathway. In fungi, the MVA pathway functions as upstream of ergosterol biosynthesis, and MVD is also known as Erg19. Previously, we have identified Aoerg19 in Aspergillus oryzae using bioinformatic analysis. In this study, we showed that AoErg19 function is conserved using phylogenetic analysis and yeast complementation assay. Quantitative reverse transcription-PCR (qRT-PCR) indicated that Aoerg19 expression changed in different growth stages and under different forms of abiotic stress. Subcellular localization analysis showed that AoErg19 was located in the vacuole. Overexpression of Aoerg19 decreased the ergosterol content in A. oryzae, which may due to the feedback-mediated downregulation of Aoerg8. Consistent with the decrease in ergosterol content, both Aoerg19 overexpression and RNAi strains of A. oryzae are sensitive to abiotic stressors, including ergosterol biosynthesis inhibitor, temperature, salt and ethanol. Thus, we have identified the function of AoErg19 in A. oryzae, which may assist in genetic modification of MVA and the ergosterol biosynthesis pathway.
Collapse
Affiliation(s)
- Yunlong Sun
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yali Niu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hui Huang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Long Ma
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme - Protein Technology, VNU University of Science, Hanoi, Vietnam.,Faculty of Biology, VNU University of Science, Hanoi, Vietnam
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
21
|
Li B, Dong X, Zhao R, Kou R, Zheng X, Zhang H. The t-SNARE protein FgPep12, associated with FgVam7, is essential for ascospore discharge and plant infection by trafficking Ca2+ ATPase FgNeo1 between Golgi and endosome/vacuole in Fusarium graminearum. PLoS Pathog 2019; 15:e1007754. [PMID: 31067272 PMCID: PMC6527245 DOI: 10.1371/journal.ppat.1007754] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/20/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment receptors (SNAREs) play a crucial role in the development and virulence through mediation of membrane fusion and vesicle trafficking in pathogens. Our previous studies reported that the SNARE protein FgVam7 and its binding proteins FgVps39/41 are involved in vesicle trafficking and are important for vegetative growth, asexual/sexual development, deoxynivalenol production and virulence in the Fusarium head blight fungus Fusarium graminearum. Here, we identified and characterized another FgVam7 binding protein in F. graminearum, FgPep12, an ortholog of yeast t-SNARE Pep12 with both the SNARE and TM domains being essential for its localization and function. Deletion of FgPep12 caused defects in vegetative growth, conidiogenesis, deoxynivalenol production and virulence. Cytological observation revealed that FgPep12 localizes to the Golgi apparatus, late endosomes and vacuoles, and is necessary for transport from the vacuole to prevacuolar compartment. Further investigation revealed that both FgPep12 and FgVam7 are essential for ascospore discharge through interaction with and trafficking of the Ca2+ ATPase FgNeo1 between the Golgi and endosomal/vacuolar system. FgNeo1 has similar biological roles to FgPep12 and is required for ascospore discharge in F. graminearum. Together, these results provide solid evidence to help unravel the mechanisms underlying the manipulation of ascospore discharge and plant infection by SNARE proteins in F. graminearum. SNARE proteins which mediate fusion of transport vesicles with the correct target membrane, are essential components of vesicle trafficking machinery. Together with the cognate effectors, SNAREs coordinate the dynamics of trafficking pathway and determines the cargo proteins destination. Here, we found that SNARE protein FgPep12 is important for fungal development and virulence through its involvement in vesicle trafficking between the Golgi and endosomal/vacuolar system. We further provide multiple lines of evidence showing that SNARE proteins modulate development and ascospore discharge in pathogenic fungi. FgPep12, associated with FgVam7, is required for the trafficking of the Ca2+ ATPase FgNeo1 between the Golgi and endosomal/vacuolar system, thus controlling growth, asexual development, ascospore discharge and plant infection in F. graminearum.
Collapse
Affiliation(s)
- Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xin Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Rui Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rongchuan Kou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- * E-mail:
| |
Collapse
|
22
|
Panzer S, Brych A, Batschauer A, Terpitz U. Opsin 1 and Opsin 2 of the Corn Smut Fungus Ustilago maydis Are Green Light-Driven Proton Pumps. Front Microbiol 2019; 10:735. [PMID: 31024506 PMCID: PMC6467936 DOI: 10.3389/fmicb.2019.00735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/25/2019] [Indexed: 01/19/2023] Open
Abstract
In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis.
Collapse
Affiliation(s)
- Sabine Panzer
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| | - Annika Brych
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Alfred Batschauer
- Department of Plant Physiology and Photobiology, Faculty of Biology, Philipps University, Marburg, Germany
| | - Ulrich Terpitz
- Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University, Würzburg, Germany
| |
Collapse
|
23
|
Li B, Gao Y, Mao HY, Borkovich KA, Ouyang SQ. The SNARE protein FolVam7 mediates intracellular trafficking to regulate conidiogenesis and pathogenicity in Fusarium oxysporum f. sp. lycopersici. Environ Microbiol 2019; 21:2696-2706. [PMID: 30848031 PMCID: PMC6850041 DOI: 10.1111/1462-2920.14585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 12/27/2022]
Abstract
Soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs) are conserved in fungi, plants and animals. The Vam7 gene encodes a v‐SNARE protein that involved in vesicle trafficking in fungi. Here, we identified and characterized the function of FolVam7, a homologue of the yeast SNARE protein Vam7p in Fusarium oxysporum f. sp. lycopersici (Fol), a fungal pathogen of tomato. FolVam7 contains SNARE and PX (Phox homology) domains that are indispensable for normal localization and function of FolVam7. Targeted gene deletion showed that FolVam7‐mediated vesicle trafficking is important for vegetative growth, asexual development, conidial morphology and plant infection. Further cytological examinations revealed that FolVam7 is localized to vesicles and vacuole membranes in the hyphae stage. Moreover, the ΔFolvam7 mutant is insensitive to salt and osmotic stresses and hypersensitive to cell wall stressors. Taken together, our results suggested that FolVam7‐mediated vesicle trafficking promotes vegetative growth, conidiogenesis and pathogenicity of Fol.
Collapse
Affiliation(s)
- Bing Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Key Laboratory for Plant-Microbe Interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Gao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hui-Ying Mao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Katherine A Borkovich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Shou-Qiang Ouyang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Onelli E, Scali M, Caccianiga M, Stroppa N, Morandini P, Pavesi G, Moscatelli A. Microtubules play a role in trafficking prevacuolar compartments to vacuoles in tobacco pollen tubes. Open Biol 2018; 8:180078. [PMID: 30381363 PMCID: PMC6223213 DOI: 10.1098/rsob.180078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
Fine regulation of exocytosis and endocytosis plays a basic role in pollen tube growth. Excess plasma membrane secreted during pollen tube elongation is known to be retrieved by endocytosis and partially reused in secretory pathways through the Golgi apparatus. Dissection of endocytosis has enabled distinct degradation pathways to be identified in tobacco pollen tubes and has shown that microtubules influence the transport of plasma membrane internalized in the tip region to vacuoles. Here, we used different drugs affecting the polymerization state of microtubules together with SYP21, a marker of prevacuolar compartments, to characterize trafficking of prevacuolar compartments in Nicotiana tabacum pollen tubes. Ultrastructural and biochemical analysis showed that microtubules bind SYP21-positive microsomes. Transient transformation of pollen tubes with LAT52-YFP-SYP21 revealed that microtubules play a key role in the delivery of prevacuolar compartments to tubular vacuoles.
Collapse
Affiliation(s)
- Elisabetta Onelli
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Monica Scali
- Department of Life Science, Siena University, Via A. Moro 2, 53100 Siena, Italy
| | - Marco Caccianiga
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Nadia Stroppa
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Piero Morandini
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | - Giulio Pavesi
- Department of Biosciences, Milan University, Via Celoria 26, 20133 Milan, Italy
| | | |
Collapse
|
25
|
Cao H, Huang P, Yan Y, Shi Y, Dong B, Liu X, Ye L, Lin F, Lu J. The basic helix-loop-helix transcription factor Crf1 is required for development and pathogenicity of the rice blast fungus by regulating carbohydrate and lipid metabolism. Environ Microbiol 2018; 20:3427-3441. [PMID: 30126031 DOI: 10.1111/1462-2920.14387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 08/12/2018] [Accepted: 08/12/2018] [Indexed: 01/22/2023]
Abstract
Pyricularia oryzae is a plant pathogen causing rice blast, a serious disease spreading in cultivated rice globally. Transcription factors play important regulatory roles in fungal development and pathogenicity. Here, we characterized the biological functions of Crf1, a basic helix-loop-helix (bHLH) transcription factor, in the development and pathogenicity of P. oryzae with functional genetics, molecular and biochemical approaches. We found that CRF1 is necessary for virulence and plays an indispensable role in the regulation of carbohydrate and lipid metabolism in P. oryzae. Deletion of CRF1 led to defects in utilization of lipids, ethanol, glycerol and L-arabinose, and down-regulation of many important genes in lipolysis, β-oxidation, gluconeogenesis, as well as glycerol and arabinose metabolism. CRF1 is also essential for peroxisome and vacuole function, and conidial cell death during appressorium formation. The appressorium turgor, penetration ability and virulence in Δcrf1 were restored by supplementation of exogenous glucose. The virulence of Crf1 mutant was also recovered by adding exogenous D-xylose, but not by addition of ethanol, pyruvate, leucine or L-arabinose. These data showed that Crf1 plays an important role in the complex regulatory network of carbohydrate and lipid metabolism that governs fungal development and pathogenicity.
Collapse
Affiliation(s)
- Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| |
Collapse
|
26
|
Li B, Dong X, Li X, Chen H, Zhang H, Zheng X, Zhang Z. A subunit of the HOPS endocytic tethering complex, FgVps41, is important for fungal development and plant infection in Fusarium graminearum. Environ Microbiol 2018; 20:1436-1451. [PMID: 29411478 DOI: 10.1111/1462-2920.14050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 01/28/2023]
Abstract
The signals by which eukaryotic cells communicate with the environment are usually mediated by vesicle trafficking to be attenuated or terminated. However, vesicle trafficking-mediated signal transmission during interactions between pathogens and host plants is poorly understood. Here, we identified and characterized the vacuole sorting protein FgVps41, which is the yeast HOPS tethering complex subunit Vps41 homolog in Fusarium graminearum. Targeted gene deletion demonstrated that FgVps41 is important for vegetative growth, asexual/sexual development, conidial morphology, plant infection and deoxynivalenol production. Cellular localization and cytological examinations revealed that FgVps41 localizes to early/late endosomes and vacuole membrane, and is recruited to prevacuolar compartments and vacuole membrane by interacting with FgRab7 in F. graminearum. Furthermore, we found FgVps41 mediates vacuole membrane fusion and sorting of FgApeI, a cargo protein involving in the cytosol-to-vacuole targeting pathway. In addition, we found that FgVps41 interacts with FgYck3, a vacuolar type I casein kinase, which regulates vesicle fusion in the AP-3 pathway. Deletion of FgYck3 showed similar phenotypes to the ΔFgvps41 mutant, and both FgRab7 and FgYck3 regulate the normal localization of FgVps41. Collectively, our results demonstrate that FgVps41 acts as a HOPS tethering complex subunit and is important for the development of infection-related morphogenesis in F. graminearum.
Collapse
Affiliation(s)
- Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xin Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xinrui Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
27
|
Caspofungin-Mediated Growth Inhibition and Paradoxical Growth in Aspergillus fumigatus Involve Fungicidal Hyphal Tip Lysis Coupled with Regenerative Intrahyphal Growth and Dynamic Changes in β-1,3-Glucan Synthase Localization. Antimicrob Agents Chemother 2017; 61:AAC.00710-17. [PMID: 28760907 DOI: 10.1128/aac.00710-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022] Open
Abstract
Caspofungin targets cell wall β-1,3-glucan synthesis and is the international consensus guideline-recommended salvage therapy for invasive aspergillosis. Although caspofungin is inhibitory at low concentrations, it exhibits a paradoxical effect (reversal of growth inhibition) at high concentrations by an undetermined mechanism. Treatment with caspofungin at either the growth-inhibitory concentration (0.5 μg/ml) or paradoxical growth-inducing concentration (4 μg/ml) for 24 h caused similar abnormalities, including wider, hyperbranched hyphae, increased septation, and repeated hyphal tip lysis, followed by regenerative intrahyphal growth. By 48 h, only hyphae at the colony periphery treated with the high caspofungin concentration displayed paradoxical growth. A similar high concentration of caspofungin also induced the paradoxical growth of Aspergillus fumigatus during human A549 alveolar cell invasion. Localization of the β-1,3-glucan synthase complex (Fks1 and Rho1) revealed significant differences between cells exposed to the growth-inhibitory and paradoxical growth-inducing concentrations of caspofungin. At both concentrations, Fks1 initially mislocalized from the hyphal tips to vacuoles. However, only continuous exposure to 4 μg/ml of caspofungin for 48 h led to recovery of the normal hyphal morphology with renewed localization of Fks1 to hyphal tips. Rho1 remained at the hyphal tip after treatment with both caspofungin concentrations but was required for paradoxical growth. Farnesol blocked paradoxical growth and relocalized Fks1 and Rho1 to vacuoles. Our results highlight the importance of regenerative intrahyphal growth as a rapid adaptation to the fungicidal lytic effects of caspofungin on hyphal tips and the dynamic localization of Fks1 as part of the mechanism for the caspofungin-mediated paradoxical response in A. fumigatus.
Collapse
|
28
|
Li B, Liu L, Li Y, Dong X, Zhang H, Chen H, Zheng X, Zhang Z. The FgVps39-FgVam7-FgSso1 Complex Mediates Vesicle Trafficking and Is Important for the Development and Virulence of Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:410-422. [PMID: 28437167 DOI: 10.1094/mpmi-11-16-0242-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Vesicle trafficking is an important event in eukaryotic organisms. Many proteins and lipids transported between different organelles or compartments are essential for survival. These processes are mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Rab-GTPases, and multisubunit tethering complexes such as class C core vacuole or endosome tethering and homotypic fusion or vacuole protein sorting (HOPS). Our previous study has demonstrated that FgVam7, which encodes a SNARE protein involving in vesicle trafficking, plays crucial roles in growth, asexual or sexual development, deoxynivalenol production, and pathogenicity in Fusarium graminearum. Here, the affinity purification approach was used to identify FgVam7-interacting proteins to explore its regulatory mechanisms during vesicle trafficking. The orthologs of yeast Vps39, a HOPS tethering complex subunit, and Sso1, a SNARE protein localized to the vacuole or endosome, were identified and selected for further characterization. In yeast two-hybrid and glutathione-S-transferase pull-down assays, FgVam7, FgVps39, and FgSso1 interacted with each other as a complex. The ∆Fgvps39 mutant generated by targeted deletion was significantly reduced in vegetative growth and asexual development. It failed to produce sexual spores and was defective in plant infection and deoxynivalenol production. Further cellular localization and cytological examinations suggested that FgVps39 is involved in vesicle trafficking from early or late endosomes to vacuoles in F. graminearum. Additionally, the ∆Fgvps39 mutant was defective in vacuole morphology and autophagy, and it was delayed in endocytosis. Our results demonstrate that FgVam7 interacts with FgVps39 and FgSso1 to form a unique complex, which is involved in vesicle trafficking and modulating the proper development of infection-related morphogenesis in F. graminearum.
Collapse
Affiliation(s)
- Bing Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Luping Liu
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Ying Li
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Xin Dong
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Haifeng Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Huaigu Chen
- 2 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaobo Zheng
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| | - Zhengguang Zhang
- 1 Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China; and
| |
Collapse
|
29
|
Tournu H, Carroll J, Latimer B, Dragoi AM, Dykes S, Cardelli J, Peters TL, Eberle KE, Palmer GE. Identification of small molecules that disrupt vacuolar function in the pathogen Candida albicans. PLoS One 2017; 12:e0171145. [PMID: 28151949 PMCID: PMC5289544 DOI: 10.1371/journal.pone.0171145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023] Open
Abstract
The fungal vacuole is a large acidified organelle that performs a variety of cellular functions. At least a sub-set of these functions are crucial for pathogenic species of fungi, such as Candida albicans, to survive within and invade mammalian tissue as mutants with severe defects in vacuolar biogenesis are avirulent. We therefore sought to identify chemical probes that disrupt the normal function and/or integrity of the fungal vacuole to provide tools for the functional analysis of this organelle as well as potential experimental therapeutics. A convenient indicator of vacuolar integrity based upon the intracellular accumulation of an endogenously produced pigment was adapted to identify Vacuole Disrupting chemical Agents (VDAs). Several chemical libraries were screened and a set of 29 compounds demonstrated to reproducibly cause loss of pigmentation, including 9 azole antifungals, a statin and 3 NSAIDs. Quantitative analysis of vacuolar morphology revealed that (excluding the azoles) a sub-set of 14 VDAs significantly alter vacuolar number, size and/or shape. Many C. albicans mutants with impaired vacuolar function are deficient in the formation of hyphal elements, a process essential for its pathogenicity. Accordingly, all 14 VDAs negatively impact C. albicans hyphal morphogenesis. Fungal selectivity was observed for approximately half of the VDA compounds identified, since they did not alter the morphology of the equivalent mammalian organelle, the lysosome. Collectively, these compounds comprise of a new collection of chemical probes that directly or indirectly perturb normal vacuolar function in C. albicans.
Collapse
Affiliation(s)
- Helene Tournu
- Department of Clinical Pharmacy, Division of Clinical and Experimental Therapeutics, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Jennifer Carroll
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Brian Latimer
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Ana-Maria Dragoi
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Samantha Dykes
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - James Cardelli
- Department of Medicine, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Tracy L. Peters
- Department of Clinical Pharmacy, Division of Clinical and Experimental Therapeutics, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Karen E. Eberle
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Glen E. Palmer
- Department of Clinical Pharmacy, Division of Clinical and Experimental Therapeutics, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| |
Collapse
|
30
|
Kikuma T, Tadokoro T, Maruyama JI, Kitamoto K. AoAtg26, a putative sterol glucosyltransferase, is required for autophagic degradation of peroxisomes, mitochondria, and nuclei in the filamentous fungus Aspergillus oryzae. Biosci Biotechnol Biochem 2016; 81:384-395. [PMID: 27696999 DOI: 10.1080/09168451.2016.1240603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a conserved process in eukaryotic cells for degradation of cellular proteins and organelles. In filamentous fungi, autophagic degradation of organelles such as peroxisomes, mitochondria, and nuclei occurs in basal cells after the prolonged culture, but its mechanism is not well understood. Here, we functionally analyzed the filamentous fungus Aspergillus oryzae AoAtg26, an ortholog of the sterol glucosyltransferase PpAtg26 involved in pexophagy in the yeast Pichia pastoris. Deletion of Aoatg26 caused a severe decrease in conidiation and aerial hyphae formation, which is typically observed in the autophagy-deficient A. oryzae strains. In addition, cup-shaped AoAtg8-positive membrane structures were accumulated in the Aoatg26 deletion strain, indicating that autophagic process is impaired. Indeed, the Aoatg26 deletion strain was defective in the degradation of peroxisomes, mitochondria, and nuclei. Taken together, AoAtg26 plays an important role for autophagic degradation of organelles in A. oryzae, which may physiologically contribute to the differentiation in filamentous fungi.
Collapse
Affiliation(s)
- Takashi Kikuma
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | - Takayuki Tadokoro
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | - Jun-Ichi Maruyama
- a Department of Biotechnology , The University of Tokyo , Tokyo , Japan
| | | |
Collapse
|
31
|
Qi Z, Liu M, Dong Y, Zhu Q, Li L, Li B, Yang J, Li Y, Ru Y, Zhang H, Zheng X, Wang P, Zhang Z. The syntaxin protein (MoSyn8) mediates intracellular trafficking to regulate conidiogenesis and pathogenicity of rice blast fungus. THE NEW PHYTOLOGIST 2016; 209:1655-1667. [PMID: 26522477 DOI: 10.1111/nph.13710] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate cellular membrane fusion and intracellular vesicle trafficking in eukaryotic cells, and are critical in the growth and development of pathogenic fungi such as Magnaporthe oryzae which causes rice blast. Rice blast is thought to involve distinct SNARE-mediated transport and secretion of fungal effector proteins into the host to modulate rice immunity. We have previously characterized two SNARE proteins, secretory protein (MoSec22) and vesicle-associated membrane protein (MoVam7), as being important in cellular transport and pathogenicity. Here, we show that syntaxin 8 (MoSyn8), a Qc-SNARE protein homolog, also plays important roles in growth, conidiation, and pathogenicity. The MoSYN8 deletion mutant (∆Mosyn8) mutant exhibits defects in endocytosis and F-actin organization, appressorium turgor pressure generation, and host penetration. In addition, the ∆Mosyn8 mutant cannot elaborate biotrophic invasion of the susceptible rice host, or secrete avirulence factors Avr-Pia (corresponding to the rice resistance gene Pia) and Avrpiz-t (the cognate Avr gene for the resistance gene Piz-t) proteins. Our study of MoSyn8 advances our understanding of SNARE proteins in effector secretion which underlies the normal physiology and pathogenicity of M. oryzae, and it sheds new light on the mechanism of the blight disease caused by M. oryzae.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Qian Zhu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Lianwei Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Jie Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Yanyan Ru
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| | - Ping Wang
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, LA, 70118, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
32
|
Heine D, Petereit L, Schumann MR, Patzelt D, Rachid L, Brandt U, Werner A, Pöggeler S, Fleißner A. The tetraspanin TSP3 of Neurospora crassa is a vacuolar membrane protein and shares characteristics with IDI proteins. Mycologia 2016; 108:581-9. [PMID: 26908649 DOI: 10.3852/15-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/01/2016] [Indexed: 11/10/2022]
Abstract
The fungal vacuole is an organelle, which adopts pleiotropic morphologies and functions. In aging and starving hyphae it is the compartment of degradation and recycling of cellular constituents. Here we identified TSP3, one of three tetraspanins present in the filamentous ascomycete fungus Neurospora crassa, as a vacuolar membrane protein. The protein is detected only in aging and starving cultures and under other conditions, which induce autophagy, such as vegetative incompatibility or the presence of the macrolide antibiotic rapamycin. Mutant analysis revealed that TSP3 is dispensable for growth and development of the fungus under laboratory conditions. Together these findings indicate that tsp3 shares characteristics with idi (induced during incompatibility) genes and might promote vacuolar functions related to autophagy.
Collapse
Affiliation(s)
- Daniela Heine
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Linda Petereit
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marcel R Schumann
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Diana Patzelt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Leila Rachid
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Antonia Werner
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Stefanie Pöggeler
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
33
|
Zhang H, Li B, Fang Q, Li Y, Zheng X, Zhang Z. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2016; 17:108-19. [PMID: 25880818 PMCID: PMC6638462 DOI: 10.1111/mpp.12267] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play critical and conserved roles in membrane fusion and vesicle transport of eukaryotic cells. Previous studies have shown that various homologues of SNARE proteins are also important in the infection of host plants by pathogenic fungi. Here, we report the characterization of a SNARE homologue, FgVam7, from Fusarium graminearum that causes head blight in wheat and barley worldwide. Phylogenetic analysis and domain comparison reveal that FgVam7 is homologous to Vam7 proteins of Saccharomyces cerevisiae (ScVam7), Magnaporthe oryzae (MoVam7) and several additional fungi by containing a PhoX homology (PX) domain and a SNARE domain. We show that FgVam7 plays a regulatory role in cellular differentiation and virulence in F. graminearum. Deletion of FgVAM7 significantly reduces vegetative growth, conidiation and conidial germination, sexual reproduction and virulence. The ΔFgvam7 mutant also exhibits a defect in vacuolar maintenance and delayed endocytosis. Moreover, the ΔFgvam7 mutant is insensitive to salt and osmotic stresses, and hypersensitive to cell wall stressors. Further characterization of FgVam7 domains indicate that the PX and SNARE domains are conserved in controlling Vam7 protein localization and function, respectively. Finally, FgVam7 has been shown to positively regulate the expression of several deoxynivalenol (DON) biosynthesis genes TRI5, TRI6 and TRI101, and DON production. Our studies provide evidence for SNARE proteins as an additional means of regulatory mechanisms that govern growth, differentiation and virulence of pathogenic fungi.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Qin Fang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
34
|
Li Y, Li B, Liu L, Chen H, Zhang H, Zheng X, Zhang Z. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum. Sci Rep 2015; 5:18101. [PMID: 26657788 PMCID: PMC4674805 DOI: 10.1038/srep18101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/11/2015] [Indexed: 11/08/2022] Open
Abstract
The Ccz1-Mon1 protein complex, the guanine nucleotide exchange factor (GEF) of the late endosomal Rab7 homolog Ypt7, is required for the late step of multiple vacuole delivery pathways, such as cytoplasm-to-vacuole targeting (Cvt) pathway and autophagy processes. Here, we identified and characterized the yeast Mon1 homolog in Fusarium graminearum, named FgMon1. FgMON1 encodes a trafficking protein and is well conserved in filamentous fungi. Targeted gene deletion showed that the ∆Fgmon1 mutant was defective in vegetative growth, asexual/sexual development, conidial germination and morphology, plant infection and deoxynivalenol production. Cytological examination revealed that the ∆Fgmon1 mutant was also defective in vacuole fusion and autophagy, and delayed in endocytosis. Yeast two hybrid and in vitro GST-pull down assays approved that FgMon1 physically interacts with a Rab GTPase FgRab7 which is also important for the development, infection, membrane fusion and autophagy in F. graminearum. FgMon1 likely acts as a GEF of FgRab7 and constitutively activated FgRab7 was able to rescue the defects of the ∆Fgmon1 mutant. In summary, our study provides evidences that FgMon1 and FgRab7 are critical components that modulate vesicle trafficking, endocytosis and autophagy, and thereby affect the development, plant infection and DON production of F. graminearum.
Collapse
Affiliation(s)
- Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Bing Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Luping Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
35
|
Characterization of a Novel Prevacuolar Compartment in Neurospora crassa. EUKARYOTIC CELL 2015; 14:1253-63. [PMID: 26453652 DOI: 10.1128/ec.00128-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/03/2015] [Indexed: 12/22/2022]
Abstract
Using confocal microscopy, we observed ring-like organelles, similar in size to nuclei, in the hyphal tip of the filamentous fungus Neurospora crassa. These organelles contained a subset of vacuolar proteins. We hypothesize that they are novel prevacuolar compartments (PVCs). We examined the locations of several vacuolar enzymes and of fluorescent compounds that target the vacuole. Vacuolar membrane proteins, such as the vacuolar ATPase (VMA-1) and the polyphosphate polymerase (VTC-4), were observed in the PVCs. A pigment produced by adenine auxotrophs, used to visualize vacuoles, also accumulated in PVCs. Soluble enzymes of the vacuolar lumen, alkaline phosphatase and carboxypeptidase Y, were not observed in PVCs. The fluorescent molecule Oregon Green 488 carboxylic acid diacetate, succinimidyl ester (carboxy-DFFDA) accumulated in vacuoles and in a subset of PVCs, suggesting maturation of PVCs from the tip to distal regions. Three of the nine Rab GTPases in N. crassa, RAB-2, RAB-4, and RAB-7, localized to the PVCs. RAB-2 and RAB-4, which have similar amino acid sequences, are present in filamentous fungi but not in yeasts, and no function has previously been reported for these Rab GTPases in fungi. PVCs are highly pleomorphic, producing tubular projections that subsequently become detached. Dynein and dynactin formed globular clusters enclosed inside the lumen of PVCs. The size, structure, dynamic behavior, and protein composition of the PVCs appear to be significantly different from those of the well-studied prevacuolar compartment of yeasts.
Collapse
|
36
|
Pfannmüller A, Wagner D, Sieber C, Schönig B, Boeckstaens M, Marini AM, Tudzynski B. The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner. PLoS One 2015; 10:e0125487. [PMID: 25909858 PMCID: PMC4409335 DOI: 10.1371/journal.pone.0125487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/14/2015] [Indexed: 12/18/2022] Open
Abstract
The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to yeast.
Collapse
Affiliation(s)
- Andreas Pfannmüller
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Dominik Wagner
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christian Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Birgit Schönig
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Mélanie Boeckstaens
- Laboratoire de Biologie du Transport Membranaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Anna Maria Marini
- Laboratoire de Biologie du Transport Membranaire, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
37
|
Shoji JY, Charlton ND, Yi M, Young CA, Craven KD. Vegetative hyphal fusion and subsequent nuclear behavior in Epichloë grass endophytes. PLoS One 2015; 10:e0121875. [PMID: 25837972 PMCID: PMC4383479 DOI: 10.1371/journal.pone.0121875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 02/18/2015] [Indexed: 01/18/2023] Open
Abstract
Epichloë species (including the former genus Neotyphodium) are fungal symbionts of many agronomically important forage grasses, and provide their grass hosts with protection from a wide range of biotic and abiotic stresses. Epichloë species include many interspecific hybrids with allodiploid-like genomes, which may provide the potential for combined traits or recombination to generate new traits. Though circumstantial evidence suggests that such interspecific hybrids might have arisen from nuclear fusion events following vegetative hyphal fusion between different Epichloë strains, this hypothesis has not been addressed empirically. Here, we investigated vegetative hyphal fusion and subsequent nuclear behavior in Epichloë species. A majority of Epichloë strains, especially those having a sexual stage, underwent self vegetative hyphal fusion. Vegetative fusion also occurred between two hyphae from different Epichloë strains. Though Epichloë spp. are uninucleate fungi, hyphal fusion resulted in two nuclei stably sharing the same cytoplasm, which might ultimately lead to nuclear fusion. In addition, protoplast fusion experiments gave rise to uninucleate putative hybrids, which apparently had two markers, one from each parent within the same nucleus. These results are consistent with the notion that interspecific hybrids arise from vegetative hyphal fusion. However, we also discuss additional factors, such as post-hybridization selection, that may be important to explain the recognized prevalence of hybrids in Epichloë species.
Collapse
Affiliation(s)
- Jun-ya Shoji
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Nikki D. Charlton
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Mihwa Yi
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Carolyn A. Young
- The Samuel Roberts Noble Foundation, Forage Improvement Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
| | - Kelly D. Craven
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, United States of America
- * E-mail:
| |
Collapse
|
38
|
Abstract
Koji mold, Aspergillus oryzae, has been used for the production of sake, miso, and soy sauce for more than one thousand years in Japan. Due to the importance, A. oryzae has been designated as the national micro-organism of Japan (Koku-kin). A. oryzae has been intensively studied in the past century, with most investigations focusing on breeding techniques and developing methods for Koji making for sake brewing. However, the understanding of fundamental biology of A. oryzae remains relatively limited compared with the yeast Saccharomyces cerevisiae. Therefore, we have focused on studying the cell biology including live cell imaging of organelles, protein vesicular trafficking, autophagy, and Woronin body functions using the available genomic information. In this review, I describe essential findings of cell biology of A. oryzae obtained in our study for a quarter of century. Understanding of the basic biology will be critical for not its biotechnological application, but also for an understanding of the fundamental biology of other filamentous fungi.
Collapse
Affiliation(s)
- Katsuhiko Kitamoto
- a Department of Biotechnology , The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
| |
Collapse
|
39
|
Kistler HC, Broz K. Cellular compartmentalization of secondary metabolism. Front Microbiol 2015; 6:68. [PMID: 25709603 PMCID: PMC4321598 DOI: 10.3389/fmicb.2015.00068] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/20/2015] [Indexed: 12/26/2022] Open
Abstract
Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.
Collapse
Affiliation(s)
- H. Corby Kistler
- United States Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, University of MinnesotaSaint Paul, MN, USA
| | | |
Collapse
|
40
|
Park DS, Yu YM, Kim YJ, Maeng PJ. Negative regulation of the vacuole-mediated resistance to K(+) stress by a novel C2H2 zinc finger transcription factor encoded by aslA in Aspergillus nidulans. J Microbiol 2015; 53:100-10. [PMID: 25626364 DOI: 10.1007/s12275-015-4701-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 01/31/2023]
Abstract
In fungi and plants, vacuoles function as a storage and sequestration vessel for a wide variety of ions and are responsible for cytosolic ion homeostasis and responses to ionic shock. In the filamentous fungus Aspergillus nidulans, however, little is known about the molecular genetic mechanisms of vacuolar biogenesis and function. In the present study, we analyzed the function of the aslA gene (AN5583) encoding a novel C2H2-type zinc finger transcription factor (TF) in relation to K(+) stress resistance, vacuolar morphology, and vacuolar transporters. The mutant lacking aslA showed increased mycelial growth and decreased branching at high K(+) concentrations. Deletion of aslA also caused elevated K(+) stress-inducible expression of the genes, nhxA (AN2288), vnxA (AN6986), and vcxA (AN0471), encoding putative endosomal and vacuolar cation/H(+) exchangers, as well as cpyA and vpsA genes encoding the proteins involved in vacuolar biogenesis. Interestingly, vacuolar fragmentation induced by K(+) stress was alleviated by aslA deletion, resulting in persistence of unfragmented vacuoles. In the presence of bafilomycin, an inhibitor of vacuolar H(+)-ATPase, the mutant phenotype was suppressed in terms of growth rates and vacuolar morphology. These results together suggest that the C2H2-type zinc finger TF AslA attenuates the K(+) stress-inducible expression of the genes encoding the ion pumps involved in vacuolar sequestration of K(+) ions powered by vacuolar H(+)-ATPase, as well as the proteins that function in vacuolar biogenesis.
Collapse
Affiliation(s)
- Dong Soo Park
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | |
Collapse
|
41
|
Funamoto R, Saito K, Oyaizu H, Aono T, Saito M. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita. MYCORRHIZA 2015; 25:55-60. [PMID: 24838377 DOI: 10.1007/s00572-014-0588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rintaro Funamoto
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
42
|
Hosomi A, Higuchi Y, Yagi S, Takegawa K. Vsl1p cooperates with Fsv1p for vacuolar protein transport and homotypic fusion in Schizosaccharomyces pombe. MICROBIOLOGY-SGM 2014; 161:89-98. [PMID: 25378562 DOI: 10.1099/mic.0.080481-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Members of the SNARE protein family participate in the docking-fusion step of several intracellular vesicular transport events. Saccharomyces cerevisiae Vam7p was identified as a SNARE protein that acts in vacuolar protein transport and membrane fusion. However, in Schizosaccharomyces pombe, there have been no reports regarding the counterpart of Vam7p. Here, we found that, although the SPCC594.06c gene has low similarity to Vam7p, the product of SPCC594.06c has a PX domain and SNARE motif like Vam7p, and thus we designated the gene Sch. pombe vsl1(+) (Vam7-like protein 1). The vsl1Δ cells showed no obvious defect in vacuolar protein transport. However, cells of the vsl1Δ mutant with a deletion of fsv1(+), which encodes another SNARE protein, displayed extreme defects in vacuolar protein transport and vacuolar morphology. Vsl1p was localized to the vacuolar membrane and prevacuolar compartment, and its PX domain was essential for proper localization. Expression of the fusion protein GFP-Vsl1p was able to suppress ZnCl2 sensitivity and the vacuolar protein sorting defect in the fsv1Δ cells. Moreover, GFP-Vsl1p was mislocalized in a pep12Δ mutant and in cells overexpressing fsv1(+). Importantly, overexpression of Sac. cerevisiae VAM7 could suppress the sensitivity to ZnCl2 of vsl1Δ cells and the vacuolar morphology defect of vsl1Δfsv1Δ cells in Sch. pombe. Taken together, these data suggest that Vsl1p and Fsv1p are required for vacuolar protein transport and membrane fusion, and they function cooperatively with Pep12p in the same membrane-trafficking step.
Collapse
Affiliation(s)
- Akira Hosomi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Satoshi Yagi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| |
Collapse
|
43
|
de Castro PA, Chiaratto J, Winkelströter LK, Bom VLP, Ramalho LNZ, Goldman MHS, Brown NA, Goldman GH. The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence. PLoS One 2014; 9:e103957. [PMID: 25083783 PMCID: PMC4118995 DOI: 10.1371/journal.pone.0103957] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022] Open
Abstract
Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Calcium homeostasis and signaling is essential for numerous biological processes and also influences A. fumigatus pathogenicity. The presented study characterized the function of the A. fumigatus homologues of three Saccharomyces cerevisiae calcium channels, voltage-gated Cch1, stretch-activated Mid1 and vacuolar Yvc1. The A. fumigatus calcium channels cchA, midA and yvcA were regulated at transcriptional level by increased calcium levels. The YvcA::GFP fusion protein localized to the vacuoles. Both ΔcchA and ΔmidA mutant strains showed reduced radial growth rate in nutrient-poor minimal media. Interestingly, this growth defect in the ΔcchA strain was rescued by the exogenous addition of CaCl2. The ΔcchA, ΔmidA, and ΔcchA ΔmidA strains were also sensitive to the oxidative stress inducer, paraquat. Restriction of external Ca2+ through the addition of the Ca2+-chelator EGTA impacted upon the growth of the ΔcchA and ΔmidA strains. All the A. fumigatus ΔcchA, ΔmidA, and ΔyvcA strains demonstrated attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Infection with the parental strain resulted in a 100% mortality rate at 15 days post-infection, while the mortality rate of the ΔcchA, ΔmidA, and ΔyvcA strains after 15 days post-infection was only 25%. Collectively, this investigation strongly indicates that CchA, MidA, and YvcA play a role in A. fumigatus calcium homeostasis and virulence.
Collapse
Affiliation(s)
- Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Jéssica Chiaratto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lizziane K. Winkelströter
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vinícius Leite Pedro Bom
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Helena S. Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- National Laboratory of Science and Technology of Bioethanol (CTBE), Campinas, Brazil
- * E-mail:
| |
Collapse
|
44
|
Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids. Appl Environ Microbiol 2014; 80:6046-53. [PMID: 25063657 DOI: 10.1128/aem.01078-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Conidial germination is fundamentally important to the growth and dissemination of most fungi. It has been previously shown (K. Hayer, M. Stratford, and D. B. Archer, Appl. Environ. Microbiol. 79:6924-6931, 2013, http://dx.doi.org/10.1128/AEM.02061-13), using sugar analogs, that germination is a 2-stage process involving triggering of germination and then nutrient uptake for hyphal outgrowth. In the present study, we tested this 2-stage germination process using a series of nitrogen-containing compounds for the ability to trigger the breaking of dormancy of Aspergillus niger conidia and then to support the formation of hyphae by acting as nitrogen sources. Triggering and germination were also compared between A. niger and Aspergillus nidulans using 2-deoxy-D-glucose (trigger), D-galactose (nontrigger in A. niger but trigger in A. nidulans), and an N source (required in A. niger but not in A. nidulans). Although most of the nitrogen compounds studied served as nitrogen sources for growth, only some nitrogen compounds could trigger germination of A. niger conidia, and all were related to L-amino acids. Using L-amino acid analogs without either the amine or the carboxylic acid group revealed that both the amine and carboxylic acid groups were essential for an L-amino acid to serve as a trigger molecule. Generally, conidia were able to sense and recognize nitrogen compounds that fitted into a specific size range. There was no evidence of uptake of either triggering or nontriggering compounds over the first 90 min of A. niger conidial germination, suggesting that the germination trigger sensors are not located within the spore.
Collapse
|
45
|
Shoji JY, Kikuma T, Kitamoto K. Vesicle trafficking, organelle functions, and unconventional secretion in fungal physiology and pathogenicity. Curr Opin Microbiol 2014; 20:1-9. [PMID: 24835421 DOI: 10.1016/j.mib.2014.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/11/2014] [Indexed: 12/21/2022]
Abstract
Specific localization of appropriate sets of proteins and lipids is central to functions and integrity of organelles, which in turn underlie cellular activities of eukaryotes. Vesicle trafficking is a conserved mechanism of intracellular transport, which ensures such a specific localization to a subset of organelles. In this review article, we summarize recent advances in our understanding of how vesicle trafficking and related organelles support physiology and pathogenicity of filamentous fungi. Examples include a link between Golgi organization and polarity maintenance during hyphal tip growth, a new role of early endosomes in transport of translational machinery, involvement of endosomal/vacuolar compartments in secondary metabolite synthesis, and functions of vacuoles and autophagy in fungal development, nutrient recycling and allocation. Accumulating evidence showing the importance of unconventional secretion in fungal pathogenicity is also summarized.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Kikuma
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuhiko Kitamoto
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
46
|
Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl Microbiol Biotechnol 2014; 97:9277-90. [PMID: 24077722 DOI: 10.1007/s00253-013-5221-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Autophagy is a tightly controlled degradation process in which eukaryotic cells digest their own cytoplasm containing protein complexes and organelles in the vacuole or lysosome. Two types of autophagy have been described: macroautophagy and microautophagy. Both types can be further divided into nonselective and selective processes. Molecular analysis of autophagy over the last two decades has mostly used the unicellular ascomycetes Saccharomyces cerevisiae and Pichia pastoris. Genetic analysis in these yeasts has identified 36 autophagy-related (atg) genes; many are conserved in all eukaryotes, including filamentous ascomycetes. However, the autophagic machinery also evolved significant differences in fungi, as a consequence of adaptation to diverse fungal lifestyles. Intensive studies on autophagy in the last few years have shown that autophagy in filamentous fungi is not only involved in nutrient homeostasis but in other cellular processes such as cell differentiation, pathogenicity and secondary metabolite production. This mini-review focuses on the specific roles of autophagy in filamentous fungi.
Collapse
|
47
|
Wada Y. Vacuoles in mammals: a subcellular structure indispensable for early embryogenesis. BIOARCHITECTURE 2013; 3:13-9. [PMID: 23572040 PMCID: PMC3639239 DOI: 10.4161/bioa.24126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A vacuole is a membrane-bound subcellular structure involved in intracellular digestion. Instead of the large "vacuolar" organelles that are found in plants and fungi, animal cells possess lysosomes that are smaller in size and are enriched with hydrolytic enzymes similar to those found in the vacuoles. Large vacuolar structures are often observed in highly differentiated mammalian tissues such as embryonic visceral endoderm and absorbing epithelium. Vacuoles/lysosomes share a conserved mechanism of biogenesis, and they are at the terminal of the endocytic pathways, Recent genetic studies of the mammalian orthologs of Vam/Vps genes, which have essential functions for vacuole assembly, revealed that the dynamics of vacuoles/lysosomes are important for tissue differentiation and patterning through regulation of various molecular signaling events in mammals.
Collapse
Affiliation(s)
- Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.
| |
Collapse
|
48
|
Candida albicans VMA3 is necessary for V-ATPase assembly and function and contributes to secretion and filamentation. EUKARYOTIC CELL 2013; 12:1369-82. [PMID: 23913543 DOI: 10.1128/ec.00118-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vacuolar membrane ATPase (V-ATPase) is a protein complex that utilizes ATP hydrolysis to drive protons from the cytosol into the vacuolar lumen, acidifying the vacuole and modulating several key cellular response systems in Saccharomyces cerevisiae. To study the contribution of V-ATPase to the biology and virulence attributes of the opportunistic fungal pathogen Candida albicans, we created a conditional mutant in which VMA3 was placed under the control of a tetracycline-regulated promoter (tetR-VMA3 strain). Repression of VMA3 in the tetR-VMA3 strain prevents V-ATPase assembly at the vacuolar membrane and reduces concanamycin A-sensitive ATPase-specific activity and proton transport by more than 90%. Loss of C. albicans V-ATPase activity alkalinizes the vacuolar lumen and has pleiotropic effects, including pH-dependent growth, calcium sensitivity, and cold sensitivity. The tetR-VMA3 strain also displays abnormal vacuolar morphology, indicative of defective vacuolar membrane fission. The tetR-VMA3 strain has impaired aspartyl protease and lipase secretion, as well as attenuated virulence in an in vitro macrophage killing model. Repression of VMA3 suppresses filamentation, and V-ATPase-dependent filamentation defects are not rescued by overexpression of RIM8, MDS3, EFG1, CST20, or UME6, which encode positive regulators of filamentation. Specific chemical inhibition of Vma3p function also results in defective filamentation. These findings suggest either that V-ATPase functions downstream of these transcriptional regulators or that V-ATPase function during filamentation involves independent mechanisms and alternative signaling pathways. Taken together, these data indicate that V-ATPase activity is a fundamental requirement for several key virulence-associated traits in C. albicans.
Collapse
|
49
|
Ramanujam R, Calvert ME, Selvaraj P, Naqvi NI. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae. PLoS Pathog 2013; 9:e1003527. [PMID: 23935502 PMCID: PMC3731250 DOI: 10.1371/journal.ppat.1003527] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/15/2013] [Indexed: 11/18/2022] Open
Abstract
In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate) highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA), Adenylate cyclase and Pth11 (a non-canonical GPCR) in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation) of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.
Collapse
Affiliation(s)
- Ravikrishna Ramanujam
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Meredith E. Calvert
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Poonguzhali Selvaraj
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
50
|
Colin VL, Baigorí MD, Pera LM. Tailoring fungal morphology of Aspergillus niger MYA 135 by altering the hyphal morphology and the conidia adhesion capacity: biotechnological applications. AMB Express 2013; 3:27. [PMID: 23688037 PMCID: PMC3679960 DOI: 10.1186/2191-0855-3-27] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/10/2013] [Indexed: 11/29/2022] Open
Abstract
Current problems of filamentous fungi fermentations and their further successful developments as microbial cell factories are dependent on control fungal morphology. In this connection, this work explored new experimental procedures in order to quantitatively check the potential of some culture conditions to induce a determined fungal morphology by altering both hyphal morphology and conidia adhesion capacity. The capacity of environmental conditions to modify hyphal morphology was evaluated by examining the influence of some culture conditions on the cell wall lytic potential of Aspergillus niger MYA 135. The relative value of the cell wall lytic potential was determined by measuring a cell wall lytic enzyme activity such as the mycelium-bound β-N-acetyl-D-glucosaminidase (Mb-NAGase). On the other hand, the quantitative value of conidia adhesion was considered as an index of its aggregation capacity. Concerning microscopic morphology, a highly negative correlation between the hyphal growth unit length (lHGU) and the specific Mb-NAGase activity was found (r = -0.915, P < 0.001). In fact, the environment was able to induce highly branched mycelia only under those culture conditions compatible with specific Mb-NAGase values equal to or higher than 190 U gdry.wt-1. Concerning macroscopic morphology, a low conidia adhesion capacity was followed by a dispersed mycelial growth. In fact, this study showed that conidia adhesion units per ml equal to or higher than 0.50 were necessary to afford pellets formation. In addition, it was also observed that once the pellet was formed the lHGU had an important influence on its final diameter. Finally, the biotechnological significance of such results was discussed as well.
Collapse
|