1
|
Salamon K, Linn-Peirano S, Simoni A, Ruiz-Rosado JDD, Becknell B, John P, Schwartz L, Spencer JD. Analysing the influence of dapagliflozin on urinary tract infection vulnerability and kidney injury in mice infected with uropathogenic Escherichia coli. Diabetes Obes Metab 2025; 27:40-53. [PMID: 39344841 PMCID: PMC11620950 DOI: 10.1111/dom.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
AIM Sodium-glucose co-transporter-2 (SGLT2) inhibitors have revolutionized clinical medicine, but their association with urinary tract infection (UTI) risk remains debated. This study investigates the influence of dapagliflozin on UTI outcomes, focusing on kidney injury. MATERIALS AND METHODS Female non-diabetic C57BL/6J and C3H/HeOuJ mice, along with diabetic db/db mice, were orally administered dapagliflozin (1 mg/kg or 10 mg/kg) for 7 days before transurethral uropathogenic Escherichia coli (UPEC) infection. Mice were killed either 24 h after UTI or after six additional days of dapagliflozin treatment. UPEC titers were enumerated, and kidney histopathology, injury, fibrosis and function were assessed. RESULTS Vehicle- and dapagliflozin-treated C57BL/6J mice exhibited similar urine and bladder UPEC titers, with minimal kidney burden 24 h after UTI. In C3H/HeOuJ mice, UPEC burden was comparable in vehicle- and 1 mg/kg dapagliflozin-treated groups both 24 h and 7 days after UTI. However, C3H/HeOuJ mice receiving 10 mg/kg dapagliflozin had increased UPEC titers in the urine, bladder and kidneys at both endpoints. Kidney injury and fibrosis markers, as well as kidney function, were similar in vehicle and dapagliflozin groups. In diabetic db/db mice receiving dapagliflozin, UPEC strain UTI89 titers were reduced 7 days after UTI compared to vehicle-treated mice, but no difference in UPEC titers was observed when mice were infected with UPEC strain CFT073. Kidney injury and fibrosis markers and kidney function remained similar across treatment groups. CONCLUSIONS Dapagliflozin does not consistently influence UTI susceptibility and shows limited impact on kidney injury or fibrosis, suggesting SGLT2 inhibitors have minimal effects on UTI-related kidney complications.
Collapse
Affiliation(s)
- Kristin Salamon
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
| | - Sarah Linn-Peirano
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Veterinary Medicine, Columbus, OH USA
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN USA
| | - Aaron Simoni
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Medicine, Columbus, OH USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Medicine, Columbus, OH USA
| | - Preeti John
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
| | - Laura Schwartz
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Medicine, Columbus, OH USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children’s, Columbus, OH USA
- The Ohio State University College of Medicine, Columbus, OH USA
| |
Collapse
|
2
|
Luiz BM, Cergole-Novella MC, Dantas STA, de Lira DRP, de Souza GFR, Fernandes IDA, Orsi H, Solveira G, Rall VLM, Dos Santos LF, Hernandes RT. Enteroaggregative Escherichia coli (EAEC) isolates obtained from non-diarrheic children carry virulence factor-encoding genes from Extraintestinal Pathogenic E. Coli (ExPEC). Braz J Microbiol 2024; 55:3551-3561. [PMID: 39083223 PMCID: PMC11711792 DOI: 10.1007/s42770-024-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 01/11/2025] Open
Abstract
Enteroaggregative E. coli (EAEC) is one of the most frequent pathogens isolated from diarrheal patients as well as from healthy individuals in Brazil and has recently also been implicated as an extraintestinal pathogenic E. coli (ExPEC) associated with bloodstream and urinary tract infections. In this study, 37 EAEC isolates, obtained from fecal samples of non-diarrheic children, were molecularly and phenotypically characterized to access the pathogenic features of these isolates. The EAEC isolates were assigned into the phylogroups A (54.1%), D (29.7%), B1 (13.5%) and B2 (2.7%); and harbored genes responsible for encoding the major pilin subunit of the aggregative adherence fimbriae (AAFs) or aggregate-forming pili (AFP) adhesins as follows: aggA (24.3%), agg3A (5.4%), agg4A (27.0%), agg5A (32.4%) and afpA (10.8%). The most frequent O:H serotypes were O15:H2 (8.1%), O38:H25 (5.4%) and O86:H2 (5.4%). Twenty-one isolates (56.8%) produce the aggregative adherence (AA) pattern on HeLa cells, and biofilm formation was more efficient among EAEC isolates harboring the aggA and agg5A genes. PFGE analysis showed that 31 (83.8%) of the isolates were classified into 10 distinct clusters, which reinforces the high diversity found among the isolates studied. Of note, 40.5% (15/37) of the EAEC isolates have a genetic profile compatible with E. coli isolates with intrinsic potential to cause extraintestinal infections in healthy individuals, and therefore, classified as EAEC/ExPEC hybrids. In conclusion, we showed the presence of EAEC/ExPEC hybrids in the intestinal microbiota of non-diarrheic children, possibly representing the source of some endogenous extraintestinal infections.
Collapse
Affiliation(s)
- Bruna M Luiz
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | | | - Stéfani T A Dantas
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Daiany R P de Lira
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | | | | | - Henrique Orsi
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Guilherme Solveira
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Vera L M Rall
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil
| | - Luís F Dos Santos
- Centro de Bacteriologia, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Rodrigo T Hernandes
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP, Brasil.
| |
Collapse
|
3
|
Mattoo TK, Spencer JD. Biomarkers for urinary tract infection: present and future perspectives. Pediatr Nephrol 2024; 39:2833-2844. [PMID: 38483594 DOI: 10.1007/s00467-024-06321-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 08/28/2024]
Abstract
A prompt diagnosis of urinary tract infection (UTI) is necessary to minimize its symptoms and limit sequelae. The current UTI screening by urine test strip analysis and microscopic examination has suboptimal diagnostic accuracy. A definitive diagnosis of UTI by urine culture takes two to three days for the results. These limitations necessitate a need for better biomarkers for the diagnosis and subsequent management of UTI in children. Here, we review the value of currently available UTI biomarkers and highlight the potential of emerging biomarkers that can facilitate a more rapid and accurate UTI diagnosis. Of the newer UTI biomarkers, the most promising are blood procalcitonin (PCT) and urinary neutrophil gelatinase-associated lipocalin (NGAL). PCT can provide diagnostic benefits and should be considered in patients who have a blood test for other reasons. NGAL, which is on the threshold of clinical care, needs more research to address its scope and utilization, including point-of-care application. Employment of these and other biomarkers may ultimately improve UTI diagnosis, guide UTI therapy, reduce antibiotic use, and mitigate UTI complications.
Collapse
Affiliation(s)
- Tej K Mattoo
- Pediatric Nephrologist, Wayne Pediatrics, Detroit, MI, USA.
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Urology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
4
|
Marsh MC, Junquera GY, Stonebrook E, Spencer JD, Watson JR. Urinary Tract Infections in Children. Pediatr Rev 2024; 45:260-270. [PMID: 38689106 DOI: 10.1542/pir.2023-006017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Despite the American Academy of Pediatrics guidelines for the evaluation, treatment, and management of urinary tract infections (UTIs), UTI diagnosis and management remains challenging for clinicians. Challenges with acute UTI management stem from vague presenting signs and symptoms, diagnostic uncertainty, limitations in laboratory testing, and selecting appropriate antibiotic therapy in an era with increasing rates of antibiotic-resistant uropathogens. Recurrent UTI management remains difficult due to an incomplete understanding of the factors contributing to UTI, when to assess a child with repeated infections for kidney and urinary tract anomalies, and limited prevention strategies. To help reduce these uncertainties, this review provides a comprehensive overview of UTI epidemiology, risk factors, diagnosis, treatment, and prevention strategies that may help pediatricians overcome the challenges associated with acute and recurrent UTI management.
Collapse
Affiliation(s)
- Melanie C Marsh
- Division of Hospital Medicine, Department of Pediatrics, Advocate Aurora Atrium Health Systems, Chicago, IL
| | - Guillermo Yepes Junquera
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Infectious Diseases
| | - Emily Stonebrook
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Nephrology and Hypertension, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - John David Spencer
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Division of Nephrology and Hypertension, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Joshua R Watson
- Center for Clinical Excellence, Nationwide Children's Hospital, Columbus, OH
- Division of Infectious Diseases
| |
Collapse
|
5
|
Castañeda-Meléndrez AM, Magaña-Lizárraga JA, Martínez-Valenzuela M, Clemente-Soto AF, García-Cervantes PC, Delgado-Vargas F, Bernal-Reynaga R. Genomic characterization of a multidrug-resistant uropathogenic Escherichia coli and evaluation of Echeveria plant extracts as antibacterials. AIMS Microbiol 2024; 10:41-61. [PMID: 38525046 PMCID: PMC10955171 DOI: 10.3934/microbiol.2024003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 03/26/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common bacterial agent associated with urinary tract infections, threatening public health systems with elevated medical costs and high morbidity rates. The successful establishment of the infection is associated with virulence factors encoded in its genome, in addition to antibacterial resistance genes, which could limit the treatment and resolution of the infection. In this sense, plant extracts from the genus Echeveria have traditionally been used to treat diverse infectious diseases. However, little is known about the effects of these extracts on bacteria and their potential mechanisms of action. This study aims to sequence a multidrug-resistant UPEC isolate (UTI-U7) and assess the multilocus sequence typing (MLST), virulence factors, antimicrobial resistance profile, genes, serotype, and plasmid content. Antimicrobial susceptibility profiling was performed using the Kirby-Bauer disk diffusion. The antibacterial and anti-adherent effects of the methanol extracts (ME) of Echeveria (E. craigiana, E. kimnachii, and E. subrigida) against UTI-U7 were determined. The isolate was characterized as an O25:H4-B2-ST2279-CH40 subclone and had resistant determinants to aminoglycosides, β-lactams, fluoroquinolones/quinolones, amphenicols, and tetracyclines, which matched with the antimicrobial resistance profile. The virulence genes identified encode adherence factors, iron uptake, protectins/serum resistance, and toxins. Identified plasmids belonged to the IncF group (IncFIA, IncFIB, and IncFII), alongside several prophage-like elements. After an extensive genome analysis that confirmed the pathogenic status of UTI-U7 isolate, Echeveria extracts were tested to determine their antibacterial effects; as an extract, E. subrigida (MIC, 5 mg/mL) displayed the best inhibitory effect. However, the adherence between UTI-U7 and HeLa cells was unaffected by the ME of the E. subrigida extract.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rodolfo Bernal-Reynaga
- Unidad de Investigaciones en Salud Pública “Dra. Kaethe Willms”, Facultad de Ciencias Químico-Biológicas. Universidad Autónoma de Sinaloa. Ciudad Universitaria, Culiacán, Sinaloa, México
| |
Collapse
|
6
|
Schwartz L, de Dios Ruiz-Rosado J, Stonebrook E, Becknell B, Spencer JD. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol 2023; 19:658-671. [PMID: 37479904 PMCID: PMC10913074 DOI: 10.1038/s41581-023-00737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections seen in clinical practice. The ascent of UTI-causing pathogens to the kidneys results in pyelonephritis, which can trigger kidney injury, scarring and ultimately impair kidney function. Despite sizable efforts to understand how infections develop or are cleared in the bladder, our appreciation of the mechanisms by which infections develop, progress or are eradicated in the kidney is limited. The identification of virulence factors that are produced by uropathogenic Escherichia coli to promote pyelonephritis have begun to fill this knowledge gap, as have insights into the mechanisms by which kidney tubular epithelial cells oppose uropathogenic E. coli infection to prevent or eradicate UTIs. Emerging data also illustrate how specific cellular immune responses eradicate infection whereas other immune cell populations promote kidney injury. Insights into the mechanisms by which uropathogenic E. coli circumvent host immune defences or antibiotic therapy to cause pyelonephritis is paramount to the development of new prevention and treatment strategies to mitigate pyelonephritis and its associated complications.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily Stonebrook
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
7
|
Increased Levels of (p)ppGpp Correlate with Virulence and Biofilm Formation, but Not with Growth, in Strains of Uropathogenic Escherichia coli. Int J Mol Sci 2023; 24:ijms24043315. [PMID: 36834725 PMCID: PMC9962837 DOI: 10.3390/ijms24043315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Urinary tract infections are one of the most frequent bacterial diseases worldwide. UPECs are the most prominent group of bacterial strains among pathogens responsible for prompting such infections. As a group, these extra-intestinal infection-causing bacteria have developed specific features that allow them to sustain and develop in their inhabited niche of the urinary tract. In this study, we examined 118 UPEC isolates to determine their genetic background and antibiotic resistance. Moreover, we investigated correlations of these characteristics with the ability to form biofilm and to induce a general stress response. We showed that this strain collection expressed unique UPEC attributes, with the highest representation of FimH, SitA, Aer, and Sfa factors (100%, 92.5%, 75%, and 70%, respectively). According to CRA (Congo red agar) analysis, the strains particularly predisposed to biofilm formation represented 32.5% of the isolates. Those biofilm forming strains presented a significant ability to accumulate multi-resistance traits. Most notably, these strains presented a puzzling metabolic phenotype-they showed elevated basal levels of (p)ppGpp in the planktonic phase and simultaneously exhibited a shorter generation time when compared to non-biofilm-forming strains. Moreover, our virulence analysis showed these phenotypes to be crucial for the development of severe infections in the Galleria mellonella model.
Collapse
|
8
|
Shanmugasundarasamy T, Karaiyagowder Govindarajan D, Kandaswamy K. A review on pilus assembly mechanisms in Gram-positive and Gram-negative bacteria. Cell Surf 2022; 8:100077. [PMID: 35493982 PMCID: PMC9046445 DOI: 10.1016/j.tcsw.2022.100077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The surface of Gram-positive and Gram-negative bacteria contains long hair-like proteinaceous protrusion known as pili or fimbriae. Historically, pilin proteins were considered to play a major role in the transfer of genetic material during bacterial conjugation. Recent findings however elucidate their importance in virulence, biofilm formation, phage transduction, and motility. Therefore, it is crucial to gain mechanistic insights on the subcellular assembly of pili and the localization patterns of their subunit proteins (major and minor pilins) that aid the macromolecular pilus assembly at the bacterial surface. In this article, we review the current knowledge of pilus assembly mechanisms in a wide range of Gram-positive and Gram-negative bacteria, including subcellular localization patterns of a few pilin subunit proteins and their role in virulence and pathogenesis.
Collapse
|
9
|
Redha MA, Al Sweih N, Albert MJ. Virulence and phylogenetic groups of Escherichia coli cultured from raw sewage in Kuwait. Gut Pathog 2022; 14:18. [PMID: 35473592 PMCID: PMC9044736 DOI: 10.1186/s13099-022-00490-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/09/2022] [Indexed: 12/14/2022] Open
Abstract
In Kuwait, some untreated sewage is discharged into the sea which poses health risks. Therefore, we determined the virulence traits and the phylogenetic groups of E. coli cultured from raw sewage. Sewage was collected once every month for 12 months with culturing of a total of 140 E. coli isolates. E. coli was typed by the methods of Clermont. The five pathotypes of diarrheagenic E. coli (DEC), and extra-intestinal pathogenic E. coli (ExPEC) were detected by specific PCR assays. Four virulence genes which correlate with pathogenicity in animal models, were used for the first time for detection of ExPEC—vat (vacuolating auto-transporter toxin), fyuA (yersiniabactin receptor), chuA (heme-binding protein), and yfcV (major subunit of putative chaperon-usher fimbria). Most E. coli belonged to phylogenetic groups A (65[45%]) and B1 (34[24.3%]). Three (2.1%) isolates were DEC, while 14 (10%) isolates were ExPEC mostly in group B2 (57.1%). A relatively high prevalence of ExPEC in sewage has public health implications.
Collapse
Affiliation(s)
- Mahdi A Redha
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Noura Al Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - M John Albert
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait.
| |
Collapse
|
10
|
Prevalence and Impact of Biofilms on Bloodstream and Urinary Tract Infections: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2021; 10:antibiotics10070825. [PMID: 34356749 PMCID: PMC8300799 DOI: 10.3390/antibiotics10070825] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
This study sought to assess the prevalence and impact of biofilms on two commonly biofilm-related infections, bloodstream and urinary tract infections (BSI and UTI). Separated systematic reviews and meta-analyses of observational studies were carried out in PubMed and Web of Sciences databases from January 2005 to May 2020, following PRISMA protocols. Studies were selected according to specific and defined inclusion/exclusion criteria. The obtained outcomes were grouped into biofilm production (BFP) prevalence, BFP in resistant vs. susceptible strains, persistent vs. non-persistent BSI, survivor vs. non-survivor patients with BSI, and catheter-associated UTI (CAUTI) vs. non-CAUTI. Single-arm and two-arm analyses were conducted for data analysis. In vitro BFP in BSI was highly related to resistant strains (odds ratio-OR: 2.68; 95% confidence intervals-CI: 1.60–4.47; p < 0.01), especially for methicillin-resistant Staphylococci. BFP was also highly linked to BSI persistence (OR: 2.65; 95% CI: 1.28–5.48; p < 0.01) and even to mortality (OR: 2.05; 95% CI: 1.53–2.74; p < 0.01). Candida spp. was the microorganism group where the highest associations were observed. Biofilms seem to impact Candida BSI independently from clinical differences, including treatment interventions. Regarding UTI, multi-drug resistant and extended-spectrum β-lactamase-producing strains of Escherichia coli, were linked to a great BFP prevalence (OR: 2.92; 95% CI: 1.30–6.54; p < 0.01 and OR: 2.80; 95% CI: 1.33–5.86; p < 0.01). More in vitro BFP was shown in CAUTI compared to non-CAUTI, but with less statistical confidence (OR: 2.61; 95% CI: 0.67–10.17; p < 0.17). This study highlights that biofilms must be recognized as a BSI and UTI resistance factor as well as a BSI virulence factor.
Collapse
|
11
|
Metabolites Potentiate Nitrofurans in Nongrowing Escherichia coli. Antimicrob Agents Chemother 2021; 65:AAC.00858-20. [PMID: 33361301 DOI: 10.1128/aac.00858-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/17/2020] [Indexed: 01/17/2023] Open
Abstract
Nitrofurantoin (NIT) is a broad-spectrum bactericidal antibiotic used in the treatment of urinary tract infections. It is a prodrug that once activated by nitroreductases goes on to inhibit bacterial DNA, RNA, cell wall, and protein synthesis. Previous work has suggested that NIT retains considerable activity against nongrowing bacteria. Here, we have found that Escherichia coli grown to stationary phase in minimal or artificial urine medium is not susceptible to NIT. Supplementation with glucose under conditions where cells remained nongrowing (other essential nutrients were absent) sensitized cultures to NIT. We conceptualized NIT sensitivity as a multi-input AND gate and lack of susceptibility as an insufficiency in one or more of those inputs. The inputs considered were an activating enzyme, cytoplasmic abundance of NIT, and reducing equivalents required for NIT activation. We systematically assessed the contribution of each of these inputs and found that NIT import and the level of activating enzyme were not contributing factors to the lack of susceptibility. Rather, evidence suggested that the low abundance of reducing equivalents is why stationary-phase E. coli are not killed by NIT and catabolites can resensitize those cells. We found that this phenomenon also occurred when using nitrofurazone, which established generality to the nitrofuran antibiotic class. In addition, we observed that NIT activity against stationary-phase uropathogenic E. coli (UPEC) could also be potentiated through metabolite supplementation. These findings suggest that the combination of nitrofurans with specific metabolites could improve the outcome of uncomplicated urinary tract infections.
Collapse
|
12
|
Braz VS, Melchior K, Moreira CG. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front Cell Infect Microbiol 2020; 10:548492. [PMID: 33409157 PMCID: PMC7779793 DOI: 10.3389/fcimb.2020.548492] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic plasticity promotes evolution and a vast diversity in Escherichia coli varying from avirulent to highly pathogenic strains, including the emergence of virulent hybrid microorganism. This ability also contributes to the emergence of antimicrobial resistance. These hybrid pathogenic E. coli (HyPEC) are emergent threats, such as O104:H4 from the European outbreak in 2011, aggregative adherent bacteria with the potent Shiga-toxin. Here, we briefly revisited the details of these E. coli classic and hybrid pathogens, the increase in antimicrobial resistance in the context of a genetically empowered multifaceted and versatile bug and the growing need to advance alternative therapies to fight these infections.
Collapse
Affiliation(s)
- Vânia Santos Braz
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
13
|
García-Bonillo C, Texidó R, Reyes-Carmenaty G, Gilabert-Porres J, Borrós S. Study of the Human Albumin Role in the Formation of a Bacterial Biofilm on Urinary Devices Using QCM-D. ACS APPLIED BIO MATERIALS 2020; 3:3354-3364. [PMID: 35025378 DOI: 10.1021/acsabm.0c00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are the most common health care-associated infections due to rapid bacterial colonization+ and biofilm formation in urinary catheters. This behavior has been extensively documented in medical devices. However, there is a few literature works on CAUTI providing a model that allows the exhaustive study of biofilm formation in a urinary environment. The development of an effective model would be helpful to identify the factors that promote the biofilm formation and identify strategies to avoid it. In this work, we have developed a model to test biofilm formation on urinary medical device surfaces by simulating environmental and physical conditions using a quartz crystal microbalance with dissipation (QCM-D) module with an uropathogenic strain. Moreover, we used the developed model to study the role of human albumin present in artificial urine at high concentrations because of renal failure or heart-diseases in patients. Despite model limitations using artificial urine, these tests show that human albumin can be considered as a promoter of biofilm formation on hydrophobic surfaces, being a possible risk factor to developing a CAUTI.
Collapse
Affiliation(s)
| | - Robert Texidó
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Intimate Attachment of Escherichia coli O157:H7 to Urinary Bladder Epithelium in the Gnotobiotic Piglet Model. Microorganisms 2020; 8:microorganisms8020263. [PMID: 32075320 PMCID: PMC7074727 DOI: 10.3390/microorganisms8020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/29/2020] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC), a pathogenic subset of Shiga toxin-producing E. coli (STEC), is an important cause of hemorrhagic colitis and hemolytic–uremic syndrome (HUS), and a rare cause of urinary tract infections (UTIs) with associated HUS. EHEC strains attach intimately to intestinal epithelium with formation of actin pedestals (attaching-effacing (A/E) lesions); however, the mechanism of EHEC attachment to the uroepithelium is unknown. We conducted a retrospective study on archived urinary bladder specimens from gnotobiotic piglets that naturally developed cystitis associated with EHEC O157:H7 infection following oral inoculation and fecal shedding. Paraffin-embedded bladder tissues from three piglets with cystitis and immunohistochemical evidence of EHEC O157:H7 adherence to the uroepithelium were processed for and examined by transmission electron microscopy. EHEC O157:H7 bacteria were found in one of three piglets, intimately attached to pedestals on the apical surfaces of the superficial urothelium (umbrella cells). Cystitis was significantly associated with the length of survival of the piglets post-inoculation (p = 0.0339; estimated odds ratio = 2.6652). This is the first report of E. coli causing A/E-like lesions in the uroepithelium, and also evidence of the utility of the gnotobiotic piglet as a model for studies of the pathogenesis of EHEC UTIs.
Collapse
|
15
|
Rapid Growth and Metabolism of Uropathogenic Escherichia coli in Relation to Urine Composition. Clin Microbiol Rev 2019; 33:33/1/e00101-19. [PMID: 31619395 DOI: 10.1128/cmr.00101-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause a majority of urinary tract infections (UTIs). Since UPEC strains can become antibiotic resistant, adjunct or alternate therapies are urgently needed. UPEC strains grow extremely rapidly in patients with UTIs. Thus, this review focuses on the relation between urine composition and UPEC growth and metabolism. Compilation of urinary components from two major data sources suggests the presence of sufficient amino acids and carbohydrates as energy sources and abundant phosphorus, sulfur, and nitrogen sources. In a mouse UTI model, mutants lacking enzymes of the tricarboxylic acid cycle, gluconeogenesis, and the nonoxidative branch of the pentose cycle are less competitive than the corresponding parental strains, which is consistent with amino acids as major energy sources. Other evidence suggests that carbohydrates are required energy sources. UPEC strains in urine ex vivo and in vivo express transporters for peptides, amino acids, carbohydrates, and iron and genes associated with nitrogen limitation, amino acid synthesis, nucleotide synthesis, and nucleotide salvage. Mouse models confirm the requirement for many, but not all, of these genes. Laboratory evolution studies suggest that rapid nutrient uptake without metabolic rewiring is sufficient to account for rapid growth. Proteins and pathways required for rapid growth should be considered potential targets for alternate or adjunct therapies.
Collapse
|
16
|
A Coordinated Response at The Transcriptome and Interactome Level is Required to Ensure Uropathogenic Escherichia coli Survival during Bacteremia. Microorganisms 2019; 7:microorganisms7090292. [PMID: 31450662 PMCID: PMC6780601 DOI: 10.3390/microorganisms7090292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/03/2023] Open
Abstract
Localized infections or disruption of the skin barrier can enable the entry of bacteria into the bloodstream, possibly leading to acute inflammation and sepsis. There is currently no holistic view on how bacteria can survive and spread in the bloodstream. In this context, we combined transposon mutagenesis, gene-expression profiling and a protein interaction network analysis to examine how uropathogenic Escherichia coli can proliferate in blood. Our results indicate that, upon migration from the urea to serum, E. coli reacts to the osmolarity difference, triggering a transcriptomic response in order to express survival genes. The proteins codified by these genes are precisely organized at the interactome level and specifically target short linear motifs located in disordered regions of host proteins. Such a coordinated response helps to explain how bacteria can adapt to and survive environmental changes within the host. Overall, our results provide a general framework for the study of bacteremia and reveal new targets for potential study as novel antimicrobials.
Collapse
|
17
|
Growth Rate of Escherichia coli During Human Urinary Tract Infection: Implications for Antibiotic Effect. Antibiotics (Basel) 2019; 8:antibiotics8030092. [PMID: 31336946 PMCID: PMC6783841 DOI: 10.3390/antibiotics8030092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is the primary cause of urinary tract infection (UTI), which is one of the most frequent human infections. While much is understood about the virulence factors utilized by uropathogenic E. coli (UPEC), less is known about the bacterial growth dynamics taking place during infection. Bacterial growth is considered essential for successful host colonization and infection, and most antibiotics in clinical use depend on active bacterial growth to exert their effect. However, a means to measure the in situ bacterial growth rate during infection has been lacking. Due to faithful coordination between chromosome replication and cell growth and division in E. coli, chromosome replication provides a quantitative measure of the bacterial growth rate. In this study, we explored the potential for inferring in situ bacterial growth rate from a single urine sample in patients with E. coli bacteriuria by differential genome quantification (ori:ter) performed by quantitative PCR. We found active bacterial growth in almost all samples. However, this occurs with day-to-day and inter-patient variability. Our observations indicate that chromosome replication provides not only a robust measure of bacterial growth rate, but it can also be used as a means to evaluate antibiotic effect.
Collapse
|
18
|
Shokouhi Mostafavi SK, Najar-Peerayeh S, Mohabbati Mobarez A, Kardoust Parizi M. Serogroup distribution, diversity of exotoxin gene profiles, and phylogenetic grouping of CTX-M-1- producing uropathogenic Escherichia coli. Comp Immunol Microbiol Infect Dis 2019; 65:148-153. [PMID: 31300106 DOI: 10.1016/j.cimid.2019.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
Abstract
The emergence of CTX-M-1 producing Uropathogenic Escherichia coli (UPEC) has become a serious challenge. In addition to antimicrobial resistance, a number of virulence factors have been shown. Therefore, this study was designed to determine the prevalence of O- serogroups, phylogenetic groups, exotoxin genes, and antimicrobial resistance properties of CTX-M-1- producing UPEC. A total of 248 UPEC isolates were collected. The antibiotic resistance was performed, and PCR was used to detect the blaCTX-M1, exotoxins, serogroups and phylogroups of UPEC. Of 248 isolates, 95 (38.3%) harbored blaCTX-M-1. Of them, serogroups O1 and O25 were predominant, accounting for 20% and 13.7%, respectively. The hlyA was the dominant exotoxin gene (32.6%), followed by sat (28.4%), vat (22.1%), cnf (13.7%), picU (8.4%), and cdt (2.1%). The hlyA gene was significantly associated with pyelonephritis (P = 0.003). Moreover, almost half of the isolates (45.4%) belonged to phylogenetic group B2. Most of exotoxin genes were present in significantly higher proportions in group B2 isolates except cdt gene (P < 0.05). All of the isolates were susceptible to imipenem, nitrofurantoin, and fosfomycin. The CTX-M-1-producing UPEC strains causing nosocomial infections are more likely to harbor certain exotoxin genes, raising the possibility that this increase in virulence genes may result in an increased risk of complicated UTI.
Collapse
Affiliation(s)
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ashraf Mohabbati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Kardoust Parizi
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Mostafavi SKS, Najar‐Peerayeh S, Mobarez AM, Parizi MK. Characterization of uropathogenic
E. coli
O25b‐B2‐ST131, O15:K52:H1, and CGA: Neutrophils apoptosis, serum bactericidal assay, biofilm formation, and virulence typing. J Cell Physiol 2019; 234:18272-18282. [DOI: 10.1002/jcp.28459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
| | - Shahin Najar‐Peerayeh
- Department of Bacteriology Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | | | - Mehdi Kardoust Parizi
- Department of Urology Shariati Hospital, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
20
|
Abstract
AIM Urinary tract infections (UTIs) are increasingly antibiotic resistant, and alternate or adjunct therapies are urgently needed. Several studies suggest that D-mannose ingestion and a hypothesized increase in urinary D-mannose reduce UTI frequency. Our goal was to develop a reliable assay for urinary D-mannose, which is needed to assess the effects of supplemental D-mannose on urinary D-mannose and UTIs. RESULTS We developed an enzymatic assay for D-mannose in urine. Hexoses in urine were phosphorylated, sequentially isomerized and oxidized, and the increases in reduced NADPH were measured in a spectrophotometer. Urinary mannose from ten volunteers was well above the detection limit and ranged from 8 to 700 μM. CONCLUSION A rapid, reliable, and sensitive assay was developed, readily detected urinary D-mannose, and is adaptable to high-throughput analysis. If urinary D-mannose is shown to correlate with susceptibility to UTIs, then the assay could assess susceptibility to UTIs and direct mannose therapy.
Collapse
|
21
|
Mandakhalikar KD, Wang R, Rahmat JN, Chiong E, Neoh KG, Tambyah PA. Restriction of in vivo infection by antifouling coating on urinary catheter with controllable and sustained silver release: a proof of concept study. BMC Infect Dis 2018; 18:370. [PMID: 30081836 PMCID: PMC6090839 DOI: 10.1186/s12879-018-3296-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Catheter Associated Urinary Tract Infections are among the most common urological infections world-wide. Bacterial biofilms and encrustation cause significant complications in patients with urinary catheters. The objective of the study is to demonstrate the efficacy and safety of an anti-microbial and anti-encrustation silver nanoparticle (AgNP) coating on silicone urinary catheter in two different animal models. METHODS Antifouling coating (P3) was prepared with alternate layers of polydopamine and AgNP and an outermost antifouling layer. Sixteen C57BL/6 female mice and two female PWG Micropigs® were used to perform the experiments. In mice, a 5 mm long silicone catheter with or without P3 was transurethrally placed into the urinary bladder. Micropigs were transurethrally implanted - one with P3 silicone catheter and the other with commercially available silver coated silicone catheter. Both models were challenged with E. coli. Bacteriuria was evaluated routinely and upon end of study (2 weeks for mice, 3 weeks for micropigs), blood, catheters and bladders were harvested and analysed for bacterial colonization and encrustation as well as for toxicity. RESULTS Lower bacterial colonization was seen on P3 catheters as well as in bladders of animals with P3 catheter. Bacteriuria was consistently less in mice with P3 catheter than with uncoated catheters. Encrustation was lower on P3 catheter and in bladder of micropig with P3 catheter. No significant toxicity of P3 was observed in mice or in micropig as compared to controls. The numbers were small in this proof of concept study and technical issues were noted especially with the porcine model. CONCLUSIONS Antifouling P3 coating reduces bacterial colonization on catheter and in animal bladders without causing any considerable toxicity for 2 to 3 weeks. This novel coating could potentially reduce the complications of indwelling urethral catheters.
Collapse
Affiliation(s)
- Kedar Diwakar Mandakhalikar
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Singapore.
| | - Rong Wang
- ACI Medical Pte Ltd, Singapore, 069534, Singapore
| | - Juwita N Rahmat
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Edmund Chiong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Paul A Tambyah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Singapore
| |
Collapse
|
22
|
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause most uncomplicated urinary tract infections (UTIs). These strains are a subgroup of extraintestinal pathogenic E. coli (ExPEC) strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than other E. coli isolates and survive in that niche. To date, there has not been a reliable method available to measure their growth rate in vivo. Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR), a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robust in vivo, matching or exceeding in vitro growth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi). In contrast, asymptomatic bacteriuria (ABU) strains tended to maintain high growth rates in vivo at 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR, E. coli in urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth rates in vivo and resistance to the innate immune response appear to be critical phenotypes of UPEC strains. Uropathogenic Escherichia coli (UPEC) strains cause most urinary tract infections in otherwise healthy women. While we understand numerous virulence factors are utilized by E. coli to colonize and persist within the urinary tract, these properties are inconsequential unless bacteria can divide rapidly and survive the host immune response. To determine the contribution of growth rate to successful colonization and persistence, we employed two methods: one involving the segregation of a nonreplicating plasmid in bacteria as they divide and the peak-to-trough ratio, a sequencing-based method that enumerates chromosomal replication forks present during cell division. We found that UPEC strains divide extraordinarily rapidly during human UTIs. These techniques will be broadly applicable to measure in vivo growth rates of other bacterial pathogens during host colonization.
Collapse
|
23
|
Madelung M, Kronborg T, Doktor TK, Struve C, Krogfelt KA, Møller-Jensen J. DFI-seq identification of environment-specific gene expression in uropathogenic Escherichia coli. BMC Microbiol 2017; 17:99. [PMID: 28438119 PMCID: PMC5404293 DOI: 10.1186/s12866-017-1008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Background During infection of the urinary tract, uropathogenic Escherichia coli (UPEC) are exposed to different environments, such as human urine and the intracellular environments of bladder epithelial cells. Each environment elicits a distinct bacterial environment-specific transcriptional response. We combined differential fluorescence induction (DFI) with next-generation sequencing, collectively termed DFI-seq, to identify differentially expressed genes in UPEC strain UTI89 during growth in human urine and bladder cells. Results DFI-seq eliminates the need for iterative cell sorting of the bacterial library and yields a genome-wide view of gene expression. By analysing the gene expression of UPEC in human urine we found that genes involved in amino acid biosynthesis were upregulated. Deletion mutants lacking genes involved in arginine biosynthesis were outcompeted by the wild type during growth in human urine and inhibited in their ability to invade or proliferate in the J82 bladder epithelial cell line. Furthermore, DFI-seq was used to identify genes involved in invasion of J82 bladder epithelial cells. 56 genes were identified to be differentially expressed of which almost 60% encoded hypothetical proteins. One such gene UTI89_C5139, displayed increased adhesion and invasion of J82 cells when deleted from UPEC strain UTI89. Conclusions We demonstrate the usefulness of DFI-seq for identification of genes required for optimal growth of UPEC in human urine, as well as potential virulence genes upregulated during infection of bladder cell culture. DFI-seq holds potential for the study of bacterial gene expression in live-animal infection systems. By linking fitness genes, such as those genes involved in amino acid biosynthesis, to virulence, this study contributes to our understanding of UPEC pathophysiology. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1008-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle Madelung
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tina Kronborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Karen Angeliki Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
24
|
Kuan L, Schaffer JN, Zouzias CD, Pearson MM. Characterization of 17 chaperone-usher fimbriae encoded by Proteus mirabilis reveals strong conservation. J Med Microbiol 2014; 63:911-922. [PMID: 24809384 DOI: 10.1099/jmm.0.069971-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteus mirabilis is a Gram-negative enteric bacterium that causes complicated urinary tract infections, particularly in patients with indwelling catheters. Sequencing of clinical isolate P. mirabilis HI4320 revealed the presence of 17 predicted chaperone-usher fimbrial operons. We classified these fimbriae into three groups by their genetic relationship to other chaperone-usher fimbriae. Sixteen of these fimbriae are encoded by all seven currently sequenced P. mirabilis genomes. The predicted protein sequence of the major structural subunit for 14 of these fimbriae was highly conserved (≥ 95% identity), whereas three other structural subunits (Fim3A, UcaA and Fim6A) were variable. Further examination of 58 clinical isolates showed that 14 of the 17 predicted major structural subunit genes of the fimbriae were present in most strains (>85%). Transcription of the predicted major structural subunit genes for all 17 fimbriae was measured under different culture conditions designed to mimic conditions in the urinary tract. The majority of the fimbrial genes were induced during stationary phase, static culture or colony growth when compared to exponential-phase aerated culture. Major structural subunit proteins for six of these fimbriae were detected using MS of proteins sheared from the surface of broth-cultured P. mirabilis, demonstrating that this organism may produce multiple fimbriae within a single culture. The high degree of conservation of P. mirabilis fimbriae stands in contrast to uropathogenic Escherichia coli and Salmonella enterica, which exhibit greater variability in their fimbrial repertoires. These findings suggest there may be evolutionary pressure for P. mirabilis to maintain a large fimbrial arsenal.
Collapse
Affiliation(s)
- Lisa Kuan
- Departments of Microbiology and Urology, New York University Medical Center, New York, NY, USA
| | - Jessica N Schaffer
- Departments of Microbiology and Urology, New York University Medical Center, New York, NY, USA
| | - Christos D Zouzias
- Departments of Microbiology and Urology, New York University Medical Center, New York, NY, USA
| | - Melanie M Pearson
- Departments of Microbiology and Urology, New York University Medical Center, New York, NY, USA
| |
Collapse
|