1
|
Kitchens SR, Wang C, Price SB. Bridging Classical Methodologies in Salmonella Investigation with Modern Technologies: A Comprehensive Review. Microorganisms 2024; 12:2249. [PMID: 39597638 PMCID: PMC11596670 DOI: 10.3390/microorganisms12112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Advancements in genomics and machine learning have significantly enhanced the study of Salmonella epidemiology. Whole-genome sequencing has revolutionized bacterial genomics, allowing for detailed analysis of genetic variation and aiding in outbreak investigations and source tracking. Short-read sequencing technologies, such as those provided by Illumina, have been instrumental in generating draft genomes that facilitate serotyping and the detection of antimicrobial resistance. Long-read sequencing technologies, including those from Pacific Biosciences and Oxford Nanopore Technologies, offer the potential for more complete genome assemblies and better insights into genetic diversity. In addition to these sequencing approaches, machine learning techniques like decision trees and random forests provide powerful tools for pattern recognition and predictive modeling. Importantly, the study of bacteriophages, which interact with Salmonella, offers additional layers of understanding. Phages can impact Salmonella population dynamics and evolution, and their integration into Salmonella genomics research holds promise for novel insights into pathogen control and epidemiology. This review revisits the history of Salmonella and its pathogenesis and highlights the integration of these modern methodologies in advancing our understanding of Salmonella.
Collapse
Affiliation(s)
| | | | - Stuart B. Price
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 1130 Wire Road, Auburn, AL 36849-5519, USA; (S.R.K.); (C.W.)
| |
Collapse
|
2
|
Das S, Howlader DR, Lu T, Whittier SK, Hu G, Sharma S, Dietz ZK, Ratnakaram SSK, Varisco DJ, Ernst RK, Picking WD, Picking WL. Immunogenicity and protective efficacy of nanoparticle formulations of L-SseB against Salmonella infection. Front Immunol 2023; 14:1208848. [PMID: 37457702 PMCID: PMC10347375 DOI: 10.3389/fimmu.2023.1208848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Salmonella enterica, a Gram-negative pathogen, has over 2500 serovars that infect a wide range of hosts. In humans, S. enterica causes typhoid or gastroenteritis and is a major public health concern. In this study, SseB (the tip protein of the Salmonella pathogenicity island 2 type III secretion system) was fused with the LTA1 subunit of labile-toxin from enterotoxigenic E. coli to make the self-adjuvanting antigen L-SseB. Two unique nanoparticle formulations were developed to allow multimeric presentation of L-SseB. Mice were vaccinated with these formulations and protective efficacy determined via challenging the mice with S. enterica serovars. The polysaccharide (chitosan) formulation was found to elicit better protection when compared to the squalene nanoemulsion. When the polysaccharide formulation was used to vaccinate rabbits, protection from S. enterica challenge was elicited. In summary, L-SseB in a particulate polysaccharide formulation appears to be an attractive candidate vaccine capable of broad protection against S. enterica.
Collapse
Affiliation(s)
- Sayan Das
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Debaki R. Howlader
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Ti Lu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Sean K. Whittier
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Gang Hu
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Simran Sharma
- Department of Veterinary Pathobiology and Bond Life Science Center, University of Missouri, Columbia, MO, United States
| | - Zackary K. Dietz
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Siva S. K. Ratnakaram
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - David J. Varisco
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - William D. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Wendy L. Picking
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
3
|
Cui F, Fan R, Wang D, Li J, Li T. Research progress on iron uptake pathways and mechanisms of foodborne microorganisms and their application in the food sector. Crit Rev Food Sci Nutr 2023; 64:8892-8910. [PMID: 37099732 DOI: 10.1080/10408398.2023.2204491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Iron is one of the essential nutrients for almost all microorganisms. Under iron-limited conditions, bacteria can secrete siderophores to the outside world to absorb iron for survival. This process requires the coordinated action of energy-transducing proteins, transporters, and receptors. The spoilage factors of some spoilage bacteria and the pathogenic mechanism of pathogenic bacteria are also closely related to siderophores. Meanwhile, some siderophores have also gradually evolved toward beneficial aspects. First, a variety of siderophores are classified into three aspects. In addition, representative iron uptake systems of Gram-negative and Gram-positive bacteria are described in detail to understand the common and specific pathways of iron uptake by various bacteria. In particular, the causes of siderophore-induced bacterial pathogenicity and the methods and mechanisms of inhibiting bacterial iron absorption under the involvement of siderophores are presented. Then, the application of siderophores in the food sector is mainly discussed, such as improving the food quality of dairy products and meat, inhibiting the attack of pathogenic bacteria on food, improving the plant growth environment, and promoting plant growth. Finally, this review highlights the unresolved fate of siderophores in the iron uptake system and emphasizes further development of siderophore-based substitutes for traditional drugs, new antibiotic-resistance drugs, and vaccines in the food and health sectors.
Collapse
Affiliation(s)
- Fangchao Cui
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Rongsen Fan
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
- College of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, Dalian, China
| |
Collapse
|
4
|
Teklemariam AD, Al-Hindi RR, Albiheyri RS, Alharbi MG, Alghamdi MA, Filimban AAR, Al Mutiri AS, Al-Alyani AM, Alseghayer MS, Almaneea AM, Albar AH, Khormi MA, Bhunia AK. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023; 12:foods12091756. [PMID: 37174295 PMCID: PMC10178548 DOI: 10.3390/foods12091756] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Salmonella is one of the most common zoonotic foodborne pathogens and a worldwide public health threat. Salmonella enterica is the most pathogenic among Salmonella species, comprising over 2500 serovars. It causes typhoid fever and gastroenteritis, and the serovars responsible for the later disease are known as non-typhoidal Salmonella (NTS). Salmonella transmission to humans happens along the farm-to-fork continuum via contaminated animal- and plant-derived foods, including poultry, eggs, fish, pork, beef, vegetables, fruits, nuts, and flour. Several virulence factors have been recognized to play a vital role in attaching, invading, and evading the host defense system. These factors include capsule, adhesion proteins, flagella, plasmids, and type III secretion systems that are encoded on the Salmonella pathogenicity islands. The increased global prevalence of NTS serovars in recent years indicates that the control approaches centered on alleviating the food animals' contamination along the food chain have been unsuccessful. Moreover, the emergence of antibiotic-resistant Salmonella variants suggests a potential food safety crisis. This review summarizes the current state of the knowledge on the nomenclature, microbiological features, virulence factors, and the mechanism of antimicrobial resistance of Salmonella. Furthermore, it provides insights into the pathogenesis and epidemiology of Salmonella infections. The recent outbreaks of salmonellosis reported in different clinical settings and geographical regions, including Africa, the Middle East and North Africa, Latin America, Europe, and the USA in the farm-to-fork continuum, are also highlighted.
Collapse
Affiliation(s)
- Addisu D Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rashad R Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed S Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mashail A Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani A R Filimban
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah S Al Mutiri
- Laboratory Department, Saudi Food and Drug Authority, Riyadh 12843, Saudi Arabia
| | - Abdullah M Al-Alyani
- Laboratory Department, Saudi Food and Drug Authority, Jeddah 22311, Saudi Arabia
| | - Mazen S Alseghayer
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulaziz M Almaneea
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Monitoring and Risk Assessment Department, Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia
| | - Abdulgader H Albar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Microbiology and Medical Parasitology, Faculty of Medicine, Jeddah University, Jeddah 23218, Saudi Arabia
| | - Mohsen A Khormi
- Department of Biological Sciences, Faculty of Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Wang J, Qian XQ, Yang T, Hou DB, Zhang GL, Li GY. Chaetomadramines A-E, a class of siderophores with potent neuroprotective activity from the fungus Chaetomium madrasense cib-1. Fitoterapia 2023; 164:105351. [PMID: 36375689 DOI: 10.1016/j.fitote.2022.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Five hydroxamate siderophores, chaetomadramines A-E (1-5), along with seven known compounds were isolated from the fermented rice culture of the fungus Chaetomium madrasense cib-1. Compounds 1-5 were structurally elucidated on the basis of spectroscopic data, which were a group of unusual hydroxamate siderophores, bearing a long fatty acyl on the α-NH2 of the Nδ-hydroxylated ornithine. Compounds 2-5 were new. The structural elucidation and spectroscopic data of 1 were reported for the first time. Compounds 2-4 significantly improved the survival rates of PC12 cells in the neuroprotective activity assay at the concentration of 40 μM.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xue-Qing Qian
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Tao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Da-Bin Hou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Guo-Lin Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Guo-You Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Frequency of Salmonella serotypes among children in Iran: antimicrobial susceptibility, biofilm formation, and virulence genes. BMC Pediatr 2022; 22:557. [PMID: 36131275 PMCID: PMC9490922 DOI: 10.1186/s12887-022-03614-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/SIGNIFICANCE Salmonella gastroenteritis causes significant morbidity among pediatric patients, mainly in developing world, such as the Middle East and North Africa (MENA) region. Concurrently, data from MENA countries like Iran, regarding prevalence of Salmonella serotypes, antimicrobial susceptibility, and biofilm production is scarce. MATERIAL & METHODS Slide agglutination was used to determine the serogroup of 140 Salmonella isolates recovered from 4477 stool specimens collected from children with gastroenteritis, and isolates were serotyped by PCR assay. The antimicrobial susceptibility of isolates to five first line drugs was assessed by disk diffusion assay using CLSI guidelines. Semi-quantitative evaluation of biofilm production was done by microtiter plate assay followed by PCR detection of biofilm-associated virulence genes csgD, pefA, and bcsA for each isolate. RESULTS Nearly 94% of Salmonella isolates were recovered from ≤ 5-year-old patients, and 99% of isolates were non-typhoidal. While we found extensive diversity among Salmonella isolates, serogroup D (46%) predominated, and Salmonella Enteritidis (41%) was the most common serotype that showed the highest antimicrobial susceptibility rate (> 96%). For the first time in Iran, S. Newport serotype from human specimens was isolated. Most isolates were sensitive to all test antimicrobials, but 35% of isolates were not-typed (NT) that showed the highest resistance with 48% being resistant to ≥ 1 test antimicrobial. Majority of isolates made weak (or no) biofilm, and we found a weak association between antimicrobial susceptibility, biofilm production, or virulence genes csgD, pefA, and bcsA. CONCLUSIONS The most effective measure that may control pediatric salmonellosis outbreaks is raising awareness of parents of preschoolers about food safety. Isolation of highly diverse Salmonella serotypes, including many commonly isolated from animals, indicates widespread contamination of the food chain. Majority of serotypes were sensitive to first-line antimicrobials, thus presently, pediatric Salmonella infections in this region may be controlled by conventional antimicrobials. However, despite the current trend, an imminent emergence of resistant Salmonella strains is foreseen, since various serotypes resistant to > 1 antimicrobial agent are typically associated with animals. Our results warrant further investigation that includes correlation analysis of clinical data regarding treatment outcomes, and serotype attributes like virulence genes.
Collapse
|
7
|
Silver nanoparticle effect on Salmonella enterica isolated from Northern West Egypt food, poultry, and calves. Appl Microbiol Biotechnol 2022; 106:5701-5713. [PMID: 35945362 PMCID: PMC9418292 DOI: 10.1007/s00253-022-12102-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/11/2022] [Accepted: 07/23/2022] [Indexed: 11/03/2022]
Abstract
A total no. of 65 Salmonella enterica isolates recovered from food samples, feces of diarrheic calves, poultry, and hospital patient in large five cities at Northern West Egypt were obtained from the Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt. The 65 Salmonella enterica isolates had the invA gene were grouped into 11 Salmonella enterica serovars with dominance of S. Enteritidis and S. Kentucky serovars. Their resistance pattern were characterized by using 18 antibiotics from different classes. Approximately 80% of the isolates were multidrug resistant (MDR). Enterobacterial repetitive intergenic consequences polymerase chain reaction (ERIC-PCR) typing of 7 strains of S. Enteritidis showed 5 clusters with dissimilarity 25%. S. Enteritidis clusters in 2 main groups A and B. Group A have 2 human strain (HE2 and HE3) and one food origin (FE7) with a similarity 99%. Group B divided into B1 (FE2) and B2 (FE3) with a similarity ratio ≥ 93%, while ERIC-PCR analysis of 5 strains of S. Kentucky revealed 4 ERIC types, clustered in 2 main groups A and B with similarity 75%. We studied the effect of silver nanoparticles (Ag-NPs) on 10 antibiotic resistant strains of S. Enteritidis and S. Kentucky. The broth microdilution minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were detected. Evaluation of the affection using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed different ratios of Ag-NPs and microorganism as well as at different contact time ended finally with morphological alteration of the bacteria. We submitted new method in vivo to explore the activity of nanosilver in chicken. KEY POINTS: • Importance of ERIC-PCR to determine the relatedness between Salmonella isolates. • Effect of silver nanoparticles to confront the antibacterial resistance. • Studying the effect of silver nanoparticles in vivo on infected chicken with Salmonella.
Collapse
|
8
|
Zhang J, Liu X, Su Y, Li T. An update on T2-toxins: metabolism, immunotoxicity mechanism and human assessment exposure of intestinal microbiota. Heliyon 2022; 8:e10012. [PMID: 35928103 PMCID: PMC9344027 DOI: 10.1016/j.heliyon.2022.e10012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022] Open
Abstract
Mycotoxins are naturally produced secondary metabolites or low molecular organic compounds produced by fungus with high diversification, which cause mycotoxicosis (food contamination) in humans and animals. T-2 toxin is simply one of the metabolites belonging to fungi trichothecene mycotoxin. Specifically, Trichothecenes-2 (T-2) mycotoxin of genus fusarium is considered one of the most hotspot agricultural commodities and carcinogenic compounds worldwide. There are well-known examples of salmonellosis in mice and pigs, necrotic enteritis in chickens, catfish enteric septicemia and colibacillosis in pigs as T-2 toxic agent. On the other hand, it has shown a significant reduction in the Salmonella population's aptitude in the pig intestinal tract. Although the impact of the excess Fusarium contaminants on humans in creating infectious illness is less well-known, some toxins are harmful; for example, salmonellosis and colibacillosis have been frequently observed in humans. More than 20 different metabolites are synthesized and excreted after ingestion, but the T-2 toxin is one of the most protuberant metabolites. Less absorption of mycotoxins in intestinal tract results in biotransformation of toxic metabolites into less toxic variants. In addition to these, effects of microbiota on harmful mycotoxins are not limited to intestinal tract, it may harm the other human vital organs. However, detoxification of microbiota is considered as an alternative way to decontaminate the feed for both animals and humans. These transformations of toxic metabolites depend upon the formation of metabolites. This study is complete in all perspectives regarding interactions between microbiota and mycotoxins, their mechanism and practical applications based on experimental studies.
Collapse
|
9
|
Zhang C, Belwal T, Luo Z, Su B, Lin X. Application of Nanomaterials in Isothermal Nucleic Acid Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102711. [PMID: 34626064 DOI: 10.1002/smll.202102711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/29/2021] [Indexed: 05/26/2023]
Abstract
Because of high sensitivity and specificity, isothermal nucleic acid amplification are widely applied in many fields. To facilitate and improve their performance, various nanomaterials, like nanoparticles, nanowires, nanosheets, nanotubes, and nanoporous films are introduced in isothermal nucleic acid amplification. However, the specific application, roles, and prospect of nanomaterials in isothermal nucleic acid amplification have not been comprehensively reviewed. Here, the application of different nanomaterials (0D, 1D, 2D, and 3D) in isothermal nucleic acid amplification is comprehensively discussed and recent progress in the field is summarized. The nanomaterials are mainly used for reaction enhancer, signal generation/amplification, or surface loading carriers. In addition, 3D nanomaterials can be also functioned as isolated chambers for digital nucleic acid amplification and the tools for DNA sequencing of amplified products. Challenges and future recommendations are also proposed to be better used for recent covid-19 detection, point-of-care diagnostic, food safety, and other fields.
Collapse
Affiliation(s)
- Chao Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
10
|
Lyu Z, Ling J. Increase in Ribosomal Fidelity Benefits Salmonella upon Bile Salt Exposure. Genes (Basel) 2022; 13:184. [PMID: 35205229 PMCID: PMC8872077 DOI: 10.3390/genes13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Translational fidelity is maintained by multiple quality control steps in all three domains of life. Increased translational errors (mistranslation) occur due to genetic mutations and external stresses. Severe mistranslation is generally harmful, but moderate levels of mistranslation may be favored under certain conditions. To date, little is known about the link between translational fidelity and host-pathogen interactions. Salmonella enterica can survive in the gall bladder during systemic or chronic infections due to bile resistance. Here we show that increased translational fidelity contributes to the fitness of Salmonella upon bile salt exposure, and the improved fitness depends on an increased level of intracellular adenosine triphosphate (ATP). Our work thus reveals a previously unknown linkage between translational fidelity and bacterial fitness under bile stress.
Collapse
Affiliation(s)
- Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD 20742, USA
- Molecular and Cellular Biology, Bilogical Sciences Graduate Program, The University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Ligong Z, Hongxia L, Junjie L, Lu Z, Bie X. A duplex real-time NASBA assay targeting serotype-specific gene for rapid detection of viable S. enterica serovar Paratyphi C in retail foods of animal origin. Can J Microbiol 2022; 68:259-268. [PMID: 35025610 DOI: 10.1139/cjm-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonella enterica serovars Paratyphi C is highly adapted to humans and can cause a typhoid-like disease with high mortality rates. In this study, three serovar-specific genes were determined for S. Paratyphi C, SPC_0871,SPC_0872, and SPC_0908, by comparative genomics method. Based on SPC_0908 and xcd gene for testing Salmonella spp., we have developed a duplex real-time nucleic acid sequence-based amplification (real-time NASBA) with molecular beacon approach for simultaneous detection of viable cells of Salmonella spp. and serotype Paratyphi C. The test selectively and consistently detected 53 Salmonella spp. (representing 31 serotypes) and 18 non-Salmonella strains. Additionally, the method showed high resistance to interference by natural background flora in pork and chicken samples. The sensitivity of the established approach was determined to be 4.89 CFU/25 g in artificially contaminated pork and chicken samples after pre-enrichment. We propose this NASBA-based protocol as a potential detection method for Salmonella spp. and serotype Paratyphi C in food of animal origin.
Collapse
Affiliation(s)
- Zhai Ligong
- Anhui Science and Technology University, 177515, Bengbu, China, 233100;
| | - Liu Hongxia
- Ministry of Agriculture of China, Nanjing, China;
| | - Li Junjie
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Zhaoxin Lu
- Colleges of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Xiaomei Bie
- Colleges of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
12
|
Hoffmann A, de Souza LV, Seifert M, von Raffay L, Haschka D, Grubwieser P, Grander M, Mitterstiller AM, Nairz M, Poli M, Weiss G. Pharmacological Targeting of BMP6-SMAD Mediated Hepcidin Expression Does Not Improve the Outcome of Systemic Infections With Intra-Or Extracellular Gram-Negative Bacteria in Mice. Front Cell Infect Microbiol 2021; 11:705087. [PMID: 34368018 PMCID: PMC8342937 DOI: 10.3389/fcimb.2021.705087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Introduction Hepcidin is the systemic master regulator of iron metabolism as it degrades the cellular iron exporter ferroportin. In bacterial infections, hepcidin is upregulated to limit circulating iron for pathogens, thereby increasing iron retention in macrophages. This mechanism withholds iron from extracellular bacteria but could be of disadvantage in infections with intracellular bacteria. We aimed to understand the role of hepcidin in infections with intra- or extracellular bacteria using different hepcidin inhibitors. Methods For the experiments LDN-193189 and oversulfated heparins were used, which interact with the BMP6-SMAD pathway thereby inhibiting hepcidin expression. We infected male C57BL/6N mice with either the intracellular bacterium Salmonella Typhimurium or the extracellular bacterium Escherichia coli and treated these mice with the different hepcidin inhibitors. Results Both inhibitors effectively reduced hepcidin levels in vitro under steady state conditions and upon stimulation with the inflammatory signals interleukin-6 or lipopolysaccharide. The inhibitors also reduced hepcidin levels and increased circulating iron concentration in uninfected mice. However, both compounds failed to decrease liver- and circulating hepcidin levels in infected mice and did not affect ferroportin expression in the spleen or impact on serum iron levels. Accordingly, both BMP-SMAD signaling inhibitors did not influence bacterial numbers in different organs in the course of E.coli or S.Tm sepsis. Conclusion These data indicate that targeting the BMP receptor or the BMP-SMAD pathway is not sufficient to suppress hepcidin expression in the course of infection with both intra- or extracellular bacteria. This suggests that upon pharmacological inhibition of the central SMAD-BMP pathways during infection, other signaling cascades are compensatorily induced to ensure sufficient hepcidin formation and iron restriction to circulating microbes.
Collapse
Affiliation(s)
- Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Lara Valente de Souza
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Laura von Raffay
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Grander
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Haschka D, Tymoszuk P, Petzer V, Hilbe R, Heeke S, Dichtl S, Skvortsov S, Demetz E, Berger S, Seifert M, Mitterstiller AM, Moser P, Bumann D, Nairz M, Theurl I, Weiss G. Ferritin H deficiency deteriorates cellular iron handling and worsens Salmonella typhimurium infection by triggering hyperinflammation. JCI Insight 2021; 6:e141760. [PMID: 34236052 PMCID: PMC8410025 DOI: 10.1172/jci.insight.141760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 05/26/2021] [Indexed: 12/30/2022] Open
Abstract
Iron is an essential nutrient for mammals as well as for pathogens. Inflammation-driven changes in systemic and cellular iron homeostasis are central for host-mediated antimicrobial strategies. Here, we studied the role of the iron storage protein ferritin H (FTH) for the control of infections with the intracellular pathogen Salmonella enterica serovar Typhimurium by macrophages. Mice lacking FTH in the myeloid lineage (LysM-Cre+/+Fthfl/fl mice) displayed impaired iron storage capacities in the tissue leukocyte compartment, increased levels of labile iron in macrophages, and an accelerated macrophage-mediated iron turnover. While under steady-state conditions, LysM-Cre+/+Fth+/+ and LysM-Cre+/+Fthfl/fl animals showed comparable susceptibility to Salmonella infection, i.v. iron supplementation drastically shortened survival of LysM-Cre+/+Fthfl/fl mice. Mechanistically, these animals displayed increased bacterial burden, which contributed to uncontrolled triggering of NF-κB and inflammasome signaling and development of cytokine storm and death. Importantly, pharmacologic inhibition of the inflammasome and IL-1β pathways reduced cytokine levels and mortality and partly restored infection control in iron-treated ferritin-deficient mice. These findings uncover incompletely characterized roles of ferritin and cellular iron turnover in myeloid cells in controlling bacterial spread and for modulating NF-κB and inflammasome-mediated cytokine activation, which may be of vital importance in iron-overloaded individuals suffering from severe infections and sepsis.
Collapse
Affiliation(s)
- David Haschka
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Heeke
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Laboratory for Experimental and Translational Research on Radiation Oncology, Tyrolean Cancer Research Institute, Medical University of Innsbruck, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Berger
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Dirk Bumann
- Biozentrum, University of Basel, Klingelbergstrasse, Basel, Switzerland
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Khasheii B, Mahmoodi P, Mohammadzadeh A. Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiol Res 2021; 250:126790. [PMID: 34098495 DOI: 10.1016/j.micres.2021.126790] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Iron is an essential element for all microorganisms. Siderophores are low-weight, high-affinity iron chelating molecules produced in response to iron deficiency by Gram-positive and Gram-negative bacteria which also known as essential virulence factors of bacteria. Several studies have indicated that defective production and/or function of these molecules as well as iron acquisition systems in pathogens are associated with a reduction in pathogenicity of bacteria. Because of their potential role in various biological pathways, siderophores have been received special attention as secondary metabolites. Siderophores can detect iron levels in a variety of environments with a biosensor function. In medicine, siderophores are used to deliver antibiotics (Trojan horse strategy) to resistant bacteria and to treat diseases such as cancer and malaria. In this review, we discuss the iron acquisition pathways in Gram-positive and -negative bacteria, importance of siderophore production in pathogenesis of bacteria, classification of siderophores, and main applications of siderophores in medicine and industry.
Collapse
Affiliation(s)
- Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
15
|
Iron in immune cell function and host defense. Semin Cell Dev Biol 2020; 115:27-36. [PMID: 33386235 DOI: 10.1016/j.semcdb.2020.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The control over iron availability is crucial under homeostatic conditions and even more in the case of an infection. This results from diverse properties of iron: first, iron is an important trace element for the host as well as for the pathogen for various cellular and metabolic processes, second, free iron catalyzes Fenton reaction and is therefore producing reactive oxygen species as a part of the host defense machinery, third, iron exhibits important effects on immune cell function and differentiation and fourth almost every immune activation in turn impacts on iron metabolism and spatio-temporal iron distribution. The central importance of iron in the host and microbe interplay and thus for the course of infections led to diverse strategies to restrict iron for invading pathogens. In this review, we focus on how iron restriction to the pathogen is a powerful innate immune defense mechanism of the host called "nutritional immunity". Important proteins in the iron-host-pathogen interplay will be discussed as well as the influence of iron on the efficacy of innate and adaptive immunity. Recently described processes like ferritinophagy and ferroptosis are further covered in respect to their impact on inflammation and infection control and how they impact on our understanding of the interaction of host and pathogen.
Collapse
|
16
|
Valente de Souza L, Hoffmann A, Weiss G. Impact of bacterial infections on erythropoiesis. Expert Rev Anti Infect Ther 2020; 19:619-633. [PMID: 33092423 DOI: 10.1080/14787210.2021.1841636] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The importance of iron is highlighted by the many complex metabolic pathways in which it is involved. A sufficient supply is essential for the effective production of 200 billion erythrocytes daily, a process called erythropoiesis. AREAS COVERED During infection, the human body can withhold iron from pathogens, mechanism termed nutritional immunity. The subsequent disturbances in iron homeostasis not only impact on immune function and infection control, but also negatively affect erythropoiesis. The complex interplay between iron, immunity, erythropoiesis and infection control on the molecular and clinical level are highlighted in this review. Diagnostic algorithms for correct interpretation and diagnosis of the iron status in the setting of infection are presented. Therapeutic concepts are discussed regarding effects on anemia correction, but also toward their role on the course of infection. EXPERT OPINION In the setting of infection, anemia is often neglected and its impact on the course of diseases is incompletely understood. Clinical expertise can be improved in correct diagnosing of anemia and disturbances of iron homeostasis. Systemic studies are needed to evaluate the impact of specific therapeutic interventions on anemia correction on the course of infection, but also on patients' cardiovascular performance and quality of life.
Collapse
Affiliation(s)
- Lara Valente de Souza
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University ofI nnsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Seribelli AA, Gonzales JC, de Almeida F, Benevides L, Cazentini Medeiros MI, Dos Prazeres Rodrigues D, de C Soares S, Allard MW, Falcão JP. Phylogenetic analysis revealed that Salmonella Typhimurium ST313 isolated from humans and food in Brazil presented a high genomic similarity. Braz J Microbiol 2020; 51:53-64. [PMID: 31728978 PMCID: PMC7058764 DOI: 10.1007/s42770-019-00155-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 12/16/2022] Open
Abstract
Salmonella Typhimurium sequence type 313 (S. Typhimurium ST313) has caused invasive disease mainly in sub-Saharan Africa. In Brazil, ST313 strains have been recently described, and there is a lack of studies that assessed by whole genome sequencing (WGS)-the relationship of these strains. The aims of this work were to study the phylogenetic relationship of 70 S. Typhimurium genomes comparing strains of ST313 (n = 9) isolated from humans and food in Brazil among themselves, with other STs isolated in this country (n = 31) and in other parts of the globe (n = 30) by 16S rRNA sequences, the Gegenees software, whole genome multilocus sequence typing (wgMLST), and average nucleotide identity (ANI) for the genomes of ST313. Additionally, pangenome analysis was performed to verify the heterogeneity of these genomes. The phylogenetic analyses showed that the ST313 genomes were very similar among themselves. However, the ST313 genomes were usually clustered more distantly to other STs of strains isolated in Brazil and in other parts of the world. By pangenome calculation, the core genome was 2,880 CDSs and 4,171 CDSs singletons for all the 70 S. Typhimurium genomes studied. Considering the 10 ST313 genomes analyzed the core genome was 4,112 CDSs and 76 CDSs singletons. In conclusion, the ST313 genomes from Brazil showed a high similarity among them which information might eventually help in the development of vaccines and antibiotics. The pangenome analysis showed that the S. Typhimurium genomes studied presented an open pangenome, but specifically tending to become close for the ST313 strains.
Collapse
Affiliation(s)
- Amanda Ap Seribelli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Av. do Café, s/n°-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Júlia C Gonzales
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Av. do Café, s/n°-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fernanda de Almeida
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Av. do Café, s/n°-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Leandro Benevides
- National Laboratory of Scientific Computation - LNCC, Petrópolis, Brazil
| | | | | | | | - Marc W Allard
- Food and Drug Administration - FDA, College Park, MA, USA
| | - Juliana P Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Av. do Café, s/n°-Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
18
|
Telser J, Volani C, Hilbe R, Seifert M, Brigo N, Paglia G, Weiss G. Metabolic reprogramming of Salmonella infected macrophages and its modulation by iron availability and the mTOR pathway. MICROBIAL CELL 2019; 6:531-543. [PMID: 31832425 PMCID: PMC6883347 DOI: 10.15698/mic2019.12.700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Iron is an essential nutrient for immune cells and microbes, therefore the control of its homeostasis plays a decisive role for infections. Moreover, iron affects metabolic pathways by modulating the translational expression of the key tricarboxylic acid cycle (TCA) enzyme mitochondrial aconitase and the energy formation by mitochondria. Recent data provide evidence for metabolic re-programming of immune cells including macrophages during infection which is centrally controlled by mTOR. We herein studied the effects of iron perturbations on metabolic profiles in macrophages upon infection with the intracellular bacterium Salmonella enterica serovar Typhimurium and analysed for a link to the mTOR pathway. Infection of the murine macrophage cell line RAW264.7 with Salmonella resulted in the induction of mTOR activity, anaerobic glycolysis and inhibition of the TCA activity as reflected by reduced pyruvate and increased lactate levels. In contrast, iron supplementation to macrophages not only affected the mRNA expression of TCA and glycolytic enzymes but also resulted in metabolic reprogramming with increased pyruvate accumulation and reduced lactate levels apart from modulating the concentrations of several other metabolites. While mTOR slightly affected cellular iron homeostasis in infected macrophages, mTOR inhibition by rapamycin resulted in a significant growth promotion of bacteria. Importantly, iron further increased bacterial numbers in rapamycin treated macrophages, however, the metabolic profiles induced by iron in the presence or absence of mTOR activity differed in several aspects. Our data indicate, that iron not only serves as a bacterial nutrient but also acts as a metabolic modulator of the TCA cycle, partly reversing the Warburg effect and resulting in a pathogen friendly nutritional environment.
Collapse
Affiliation(s)
- Julia Telser
- Department of Internal Medicine II, Medical University of Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria
| | - Chiara Volani
- Department of Internal Medicine II, Medical University of Innsbruck, Austria.,EURAC Research, Institute for Biomedicine, Bolzano/Bozen, Italy
| | - Richard Hilbe
- Department of Internal Medicine II, Medical University of Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Medical University of Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Austria
| | | | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria
| |
Collapse
|
19
|
Tonziello G, Caraffa E, Pinchera B, Granata G, Petrosillo N. Present and future of siderophore-based therapeutic and diagnostic approaches in infectious diseases. Infect Dis Rep 2019; 11:8208. [PMID: 31649808 PMCID: PMC6778818 DOI: 10.4081/idr.2019.8208] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/04/2019] [Indexed: 12/30/2022] Open
Abstract
Iron is an essential micronutrient required for the growth of almost all aerobic organisms; the iron uptake pathway in bacteria therefore represents a possible target for novel antimicrobials, including hybrids between antimicrobials and siderophores. Siderophores are low molecular weight iron chelators that bind to iron and are actively transported inside the cell through specific binding protein complexes. These binding protein complexes are present both in Gram negative bacteria, in their outer and inner membrane, and in Gram positive bacteria in their cytoplasmic membrane. Most bacteria have the ability to produce siderophores in order to survive in environments with limited concentrations of free iron, however some bacteria synthetize natural siderophore-antibiotic conjugates that exploit the siderophore-iron uptake pathway to deliver antibiotics into competing bacterial cells and gain a competitive advantage. This approach has been referred to as a Trojan Horse Strategy. To overcome the increasing global problem of antibiotic resistance in Gram negative bacteria, which often have reduced outer membrane permeability, siderophore-antibiotic hybrid conjugates have been synthetized in vitro. Cefiderocol is the first siderophore-antibiotic conjugate that progressed to late stage clinical development so far. In studies on murine models the iron-siderophore uptake pathway has been also exploited for diagnostic imaging of infectious diseases, in which labelled siderophores have been used as specific probes. The aim of this review is to describe the research progress in the field of siderophore-based therapeutic and diagnostic approaches in infectious diseases.
Collapse
Affiliation(s)
- Gilda Tonziello
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome
| | - Emanuela Caraffa
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome
| | | | - Guido Granata
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome
| | - Nicola Petrosillo
- National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome
| |
Collapse
|
20
|
Paramasivam OR, Trivedi S, Sangith N, Sankaran K. Active sulfite oxidase domain of Salmonella enterica pathogenic protein small intestine invasive factor E (SiiE): a potential diagnostic target. Appl Microbiol Biotechnol 2019; 103:5679-5688. [PMID: 31104097 DOI: 10.1007/s00253-019-09894-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Serovars of Salmonella enterica are common food-borne bacterial pathogens. Salmonella typhi, which causes typhoid, is the most dangerous of them. Though detailed molecular pathogenesis studies reveal many virulence factors, inability to identify their biochemical functions hampers the development of diagnostic methods and therapeutic leads. Lack of quicker diagnosis is an impediment in starting early antibiotic treatment to reduce the severe morbidity and mortality in typhoid. In this study, employing bioinformatic prediction, biochemical analysis, and recombinantly cloning the active region, we show that extracellularly secreted virulence-associated protein, small intestinal invasion factor E (SiiE), possesses a sulfite oxidase (SO) domain that catalyzes the conversion of sodium sulfite to sodium sulfate using tungsten as the cofactor. This activity common to Salmonella enterica serovars seems to be specific to them from bioinformatic analysis of available bacterial genomes. Along with the ability of this large non-fimbrial adhesin of 600 kDa binding to sialic acid on the host cells, this activity could aid in subverting the host defense mechanism by destroying sulfites released by the immune cells and colonize the host gastrointestinal epithelium. Being an extracellular enzyme, it could be an ideal candidate for developing diagnostics of S. enterica, particularly S. typhi.
Collapse
Affiliation(s)
| | - Swati Trivedi
- Centre for Biotechnology, Anna University, Chennai, 600020, India
| | - Nikhil Sangith
- Centre for Biotechnology, Anna University, Chennai, 600020, India.
| | | |
Collapse
|
21
|
Salmonella SiiE prevents an efficient humoral immune memory by interfering with IgG + plasma cell persistence in the bone marrow. Proc Natl Acad Sci U S A 2019; 116:7425-7430. [PMID: 30910977 DOI: 10.1073/pnas.1818242116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serum IgG, which is mainly generated from IgG-secreting plasma cells in the bone marrow (BM), protects our body against various pathogens. We show here that the protein SiiE of Salmonella is both required and sufficient to prevent an efficient humoral immune memory against the pathogen by selectively reducing the number of IgG-secreting plasma cells in the BM. Attenuated SiiE-deficient Salmonella induces high and lasting titers of specific and protective Salmonella-specific IgG and qualifies as an efficient vaccine against Salmonella A SiiE-derived peptide with homology to laminin β1 is sufficient to ablate IgG-secreting plasma cells from the BM, identifying laminin β1 as a component of niches for IgG-secreting plasma cells in the BM, and furthermore, qualifies it as a unique therapeutic option to selectively ablate IgG-secreting plasma cells in autoimmune diseases and multiple myeloma.
Collapse
|
22
|
Das S, Sreevidya VS, Udvadia AJ, Gyaneshwar P. Dopamine-induced sulfatase and its regulator are required for Salmonella enterica serovar Typhimurium pathogenesis. MICROBIOLOGY-SGM 2019; 165:302-310. [PMID: 30648943 DOI: 10.1099/mic.0.000769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Catecholamine hormones enhance the virulence of pathogenic bacteria. Studies in the 1980s made intriguing observations that catecholamines were required for induction of sulfatase activity in many enteric pathogens, including Salmonella enterica serovar Typhimurium. In this report, we show that STM3122 and STM3124, part of horizontally acquired Salmonella pathogenesis island 13, encode a catecholamine-induced sulfatase and its regulator, respectively. Induction of sulfatase activity was independent of the well-studied QseBC and QseEF two-component regulatory systems. S. Typhimurium 14028S mutants lacking STM3122 or STM3124 showed reduced virulence in zebrafish. Because catecholamines are inactivated by sulfation in the mammalian gut, S. Typhimurium could utilize CA-induced sulfatase to access free catecholamines for growth and virulence.
Collapse
Affiliation(s)
- Seema Das
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Ava J Udvadia
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
23
|
Malov VA, Maleyev VV, Parkhomenko YG, Tsvetkova NA, Smetanina SV, Gorobchenko AN, Belugin VN. The problem of diagnosis of generalized and focal forms of salmonellosis. TERAPEVT ARKH 2018; 90:90-97. [PMID: 30701821 DOI: 10.26442/terarkh2018901190-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The article describes the clinical observation with an unfavorable outcome of the generalized form of salmonella infection caused by Salmonella typhimurium group B in a woman of 60 years without immunodeficiency, complicated by the development of multiple abscesses of the lower parts of abdominal cavity, probably of appendicular origin. In a short literary review, the pathogenetic mechanisms that contribute to the formation of generalized and extraintestinal forms of salmonella infection are discussed.
Collapse
Affiliation(s)
- V A Malov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - V V Maleyev
- Central Research Institute of Epidemiology, Federal Supervision Service for Consumer Rights Protection and People's Welfare, Moscow, Russia
| | - Y G Parkhomenko
- Infectious Clinical Hospital №2, Moscow City Health Department, Moscow, Russia
| | - N A Tsvetkova
- Infectious Clinical Hospital №2, Moscow City Health Department, Moscow, Russia
| | - S V Smetanina
- Infectious Clinical Hospital №2, Moscow City Health Department, Moscow, Russia
| | - A N Gorobchenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - V N Belugin
- Infectious Clinical Hospital №2, Moscow City Health Department, Moscow, Russia
| |
Collapse
|
24
|
Draft Genome Sequences of Three Salmonella enterica Serovar 4,[5],12:i:- Strains and One S. enterica Serovar Typhimurium Strain, Isolated in Brazil. GENOME ANNOUNCEMENTS 2018; 6:6/27/e00488-18. [PMID: 29976603 PMCID: PMC6033978 DOI: 10.1128/genomea.00488-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Draft genomes of three Salmonella enterica 4,[5],12:i:− (STi) strains isolated from human infections were obtained using Illumina sequencing. They were negative for the fljBA operon but positive for hin, and k-mer analyses revealed their identity as S. enterica 4,[5],12:i:− 08-1736 and S. Draft genomes of three Salmonella enterica 4,[5],12:i:− (STi) strains isolated from human infections were obtained using Illumina sequencing. They were negative for the fljBA operon but positive for hin, and k-mer analyses revealed their identity as S. enterica 4,[5],12:i:− 08-1736 and S. Typhimurium. A draft S. Typhimurium sequence is described for comparison.
Collapse
|
25
|
Robson C, O'Sullivan MVN, Sivagnanam S. Salmonella enterica Serovar Typhi: An Unusual Cause of Infective Endocarditis. Trop Med Infect Dis 2018; 3:tropicalmed3010035. [PMID: 30274432 PMCID: PMC6136621 DOI: 10.3390/tropicalmed3010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 01/04/2023] Open
Abstract
While typhoid fever is a common infection, Salmonella enterica serovar Typhi is a rare cause of endocarditis. We describe the case of a 20-year-old male who was treated for a primary episode of microbiologically-confirmed typhoid fever. He presented six weeks post-discharge with fever and lethargy. S. Typhi was again identified in blood cultures, and echocardiography identified a mitral valve lesion. Our case suggests that a relapse of typhoid should prompt further investigation for a deep-seated infection, including consideration of echocardiographic evaluation to rule out infective endocarditis.
Collapse
Affiliation(s)
- Christopher Robson
- Department of Infectious Diseases, Blacktown Hospital, Blacktown, NSW 2148, Australia.
| | - Matthew V N O'Sullivan
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
| | - Shobini Sivagnanam
- Department of Infectious Diseases, Blacktown Hospital, Blacktown, NSW 2148, Australia.
| |
Collapse
|
26
|
Wielgusz K, Irzykowska L. Occurrence of pathogenic and endophytic fungi and their influence on quality of medicinal plants applied in management of neurological diseases and mental disorders. HERBA POLONICA 2018. [DOI: 10.1515/hepo-2017-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Summary
Due to increasing demand of medicinal plants (MPs), quality and safety more attention to the plant health should be paid. Among herb pathogens, especially fungi cause serious diseases in these plants decreasing yield and quality of herbal raw material. Some species, i.e. Fusarium sp., Alternaria sp., Penicillium sp. are known as mycotoxin producers. Paradoxically, self-treatment with herbal raw material can expose the patient to mycotoxin activity. In tissues of some MPs species, asymptomatically endophytic fungi residue. It is known that they are able to influence a biosynthesis of secondary metabolites in their host plant or produce biologically active compounds. Until recently these microorganisms have been neglected as a component of MPs, the reason why there have unexplored bioactivity and biodiversity. The paper presents an overview of herbal plants that are used in the treatment of nervous system diseases. Pathogenic fungi that infect these plants are described. It focused mainly on species producing harmful mycotoxins. The publication presents a list of these mycotoxins and a brief description of their effects on human health. The second part of this article provides information on the occurrence of endophytic fungi in herbal plants and their effects on human health. Coexistence of fungi and medicinal plants is not fully understood but can be crucial to ensure health and safety of patients with neurological diseases and mental disorders.
Collapse
Affiliation(s)
- Katarzyna Wielgusz
- Institute of Natural Fibers and Medicinal Plants Department of Breeding and Agriculture of Fibrous and Energetic Plants Wojska Polskiego 71b 60-630 Poznań , Poland
| | - Lidia Irzykowska
- Poznan University of Life Sciences Department of Phytopathology, Seed Science and Technology Dąbrowskiego 159 60-594 Poznań , Poland
| |
Collapse
|
27
|
Urdaneta V, Casadesús J. Adaptation of Salmonella enterica to bile: essential role of AcrAB-mediated efflux. Environ Microbiol 2018; 20:1405-1418. [PMID: 29349886 DOI: 10.1111/1462-2920.14047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Abstract
Adaptation to bile is the ability to endure the lethal effects of bile salts after growth on sublethal concentrations. Surveys of adaptation to bile in Salmonella enterica ser. Tyhimurium reveal that active efflux is essential for adaptation while other bacterial functions involved in bile resistance are not. Among S. enterica mutants lacking one or more efflux systems, only strains lacking AcrAB are unable to adapt, thus revealing an essential role for AcrAB. Transcription of the acrAB operon is upregulated in the presence of a sublethal concentration of sodium deoxycholate (DOC) while other efflux loci are either weakly upregulated or irresponsive. Upregulation of acrAB transcription is strong during exponential growth, and weak in stationary cultures. Single cell analysis of ethidium bromide accumulation indicates that DOC-induced AcrAB-mediated efflux occurs in both exponential and stationary cultures. Upregulation of acrAB expression may thus be crucial at early stages of adaptation, while sustained AcrAB activity may be sufficient to confer bile resistance in nondividing cells.
Collapse
Affiliation(s)
- Verónica Urdaneta
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, Sevilla, Spain
| |
Collapse
|
28
|
Salmonella Utilizes Zinc To Subvert Antimicrobial Host Defense of Macrophages via Modulation of NF-κB Signaling. Infect Immun 2017; 85:IAI.00418-17. [PMID: 28874447 PMCID: PMC5695101 DOI: 10.1128/iai.00418-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023] Open
Abstract
Zinc sequestration by macrophages is considered a crucial host defense strategy against infection by the intracellular bacterium Salmonella enterica serovar Typhimurium. However, the underlying mechanisms remain elusive. In this study, we found that zinc favors pathogen survival within macrophages. Salmonella-hosting macrophages contained higher free zinc levels than did uninfected macrophages and cells that successfully eliminated bacteria, which was paralleled by the impaired production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in bacterium-harboring cells. A profound, zinc-mediated inhibition of NF-κB p65 transcriptional activity affecting the expression of the ROS- and RNS-forming enzymes phos47 and inducible nitric oxide synthase (iNOS) provided a mechanistic explanation for this phenomenon. Macrophages responded to infection by enhancing the expression of zinc-scavenging metallothioneins 1 and 2, whose genetic deletion caused increased free zinc levels, reduced ROS and RNS production, and increased the survival of Salmonella. Our data suggest that Salmonella invasion of macrophages results in a bacterium-driven increase in the intracellular zinc level, which weakens antimicrobial defense and the ability of macrophages to eradicate the pathogen. Thus, limitation of cytoplasmic zinc levels may help to control infection by intracellular bacteria.
Collapse
|
29
|
Zhou B, Liang T, Zhan Z, Liu R, Li F, Xu H. Rapid and simultaneous quantification of viable Escherichia coli O157:H7 and Salmonella spp. in milk through multiplex real-time PCR. J Dairy Sci 2017; 100:8804-8813. [PMID: 28865862 DOI: 10.3168/jds.2017-13362] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022]
Abstract
Escherichia coli O157:H7 and Salmonella spp. in milk are 2 common pathogens that cause foodborne diseases. An accurate, rapid, specific method has been developed for the simultaneous detection of viable E. coli O157:H7 and Salmonella spp. in milk. Two specific genes, namely, fliC from E. coli O157:H7 and invA from Salmonella spp., were selected to design primers and probes. A combined treatment containing sodium deoxycholate (SDO) and propidium monoazide (PMA) was applied to detect viable E. coli O157:H7 and Salmonella spp. only. Traditional culture methods and SDO-PMA-multiplex real-time (mRT) PCR assay were applied to determine the number of viable E. coli O157:H7 and Salmonella spp. in cell suspensions with different proportions of dead cells. These methods revealed consistent findings regarding the detected viable cells. The detection limit of the SDO-PMA-mRT-PCR assay reached 102 cfu/mL for Salmonella spp. and 102 cfu/mL for E. coli O157:H7 in milk. The detection limit of SDO-PMA-mRT-PCR for E. coli O157:H7 and Salmonella spp. in milk was significantly similar even in the presence of 106 cfu/mL of 2 nontarget bacteria. The proposed SDO-PMA-mRT-PCR assay is a potential approach for the accurate and sensitive detection of viable E. coli O157:H7 and Salmonella spp. in milk.
Collapse
Affiliation(s)
- Baoqing Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Taobo Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Zhongxu Zhan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Rui Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
30
|
Echeverz M, García B, Sabalza A, Valle J, Gabaldón T, Solano C, Lasa I. Lack of the PGA exopolysaccharide in Salmonella as an adaptive trait for survival in the host. PLoS Genet 2017; 13:e1006816. [PMID: 28542593 PMCID: PMC5464674 DOI: 10.1371/journal.pgen.1006816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/08/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022] Open
Abstract
Many bacteria build biofilm matrices using a conserved exopolysaccharide named PGA or PNAG (poly-β-1,6-N-acetyl-D-glucosamine). Interestingly, while E. coli and other members of the family Enterobacteriaceae encode the pgaABCD operon responsible for PGA synthesis, Salmonella lacks it. The evolutionary force driving this difference remains to be determined. Here, we report that Salmonella lost the pgaABCD operon after the divergence of Salmonella and Citrobacter clades, and previous to the diversification of the currently sequenced Salmonella strains. Reconstitution of the PGA machinery endows Salmonella with the capacity to produce PGA in a cyclic dimeric GMP (c-di-GMP) dependent manner. Outside the host, the PGA polysaccharide does not seem to provide any significant benefit to Salmonella: resistance against chlorine treatment, ultraviolet light irradiation, heavy metal stress and phage infection remained the same as in a strain producing cellulose, the main biofilm exopolysaccharide naturally produced by Salmonella. In contrast, PGA production proved to be deleterious to Salmonella survival inside the host, since it increased susceptibility to bile salts and oxidative stress, and hindered the capacity of S. Enteritidis to survive inside macrophages and to colonize extraintestinal organs, including the gallbladder. Altogether, our observations indicate that PGA is an antivirulence factor whose loss may have been a necessary event during Salmonella speciation to permit survival inside the host. During bacterial evolution, specific traits that optimize the organism’s fitness are selected. The production of exopolysaccharides is widespread among bacteria in which they play a protective shielding role as main constituents of biofilms. In contrast to closely related siblings, Salmonella has lost the capacity to produce the exopolysaccharide PGA. Our study reveals that Salmonella lost pga genes, and that the driving force for such a loss may have been the detrimental impact that PGA has during Salmonella invasion of internal organs where it augments the susceptibility to bile salts and oxygen radicals, reducing bacterial survival inside macrophages and rendering Salmonella avirulent. These results suggest that gene-loss has played an important role during Salmonella evolution.
Collapse
Affiliation(s)
- Maite Echeverz
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Begoña García
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Amaia Sabalza
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Jaione Valle
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Cristina Solano
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
- * E-mail: (CS); (IL)
| | - Iñigo Lasa
- Navarrabiomed-Universidad Pública de Navarra-Departamento de Salud, IDISNA, Pamplona, Spain
- * E-mail: (CS); (IL)
| |
Collapse
|
31
|
Pathania P, Sharma A, Kumar B, Rishi P, Raman Suri C. Selective identification of specific aptamers for the detection of non-typhoidal salmonellosis in an apta-impedimetric sensing format. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2098-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Sextuplex PCR combined with immunomagnetic separation and PMA treatment for rapid detection and specific identification of viable Salmonella spp., Salmonella enterica serovars Paratyphi B, Salmonella Typhimurium, and Salmonella Enteritidis in raw meat. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Stewart MK, Cookson BT. Evasion and interference: intracellular pathogens modulate caspase-dependent inflammatory responses. Nat Rev Microbiol 2016; 14:346-59. [PMID: 27174147 DOI: 10.1038/nrmicro.2016.50] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathogens have evolved to complete the virulence cycle of colonization, replication and dissemination in intimate association with a complex network of extracellular and intracellular surveillance systems that guard tissue spaces. In this Review, we discuss the strategies used by bacteria and viruses to evade or inhibit intracellular detection that is coupled to pro-inflammatory caspase-dependent protective responses. Such strategies include alterations of lipopolysaccharide (LPS) structures, the regulated expression of components of type III secretion systems, and the utilization of proteins that inhibit inflammasome formation, the enzymatic activity of caspases and cytokine signalling. Inflammation is crucial in response to exposure to pathogens, but is potentially damaging and thus tightly regulated. The threshold for the activation of pro-inflammatory caspases is determined by the immediate stimulus in the context of previous signals. Pathogen, genetic and situational factors modulate this threshold, which determines the ability of the host to resist infection while minimizing harm.
Collapse
Affiliation(s)
- Mary K Stewart
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | - Brad T Cookson
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.,Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
34
|
Mitterstiller AM, Haschka D, Dichtl S, Nairz M, Demetz E, Talasz H, Soares MP, Einwallner E, Esterbauer H, Fang FC, Geley S, Weiss G. Heme oxygenase 1 controls early innate immune response of macrophages to Salmonella Typhimurium infection. Cell Microbiol 2016; 18:1374-89. [PMID: 26866925 DOI: 10.1111/cmi.12578] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022]
Abstract
Macrophages are central for the immune control of intracellular microbes. Heme oxygenase 1 (HO-1, hmox) is the first and rate limiting enzyme in the breakdown of heme originating from degraded senescent erythrocytes and heme-proteins, yielding equal amounts of iron, carbon monoxide and biliverdin. HO-1 is strongly up-regulated in macrophages in response to inflammatory signals, including bacterial endotoxin. In view of the essential role of iron for the growth and proliferation of intracellular bacteria along with known effects of the metal on innate immune function, we examined whether HO-1 plays a role in the control of infection with the intracellular bacterium Salmonella Typhimurium. We studied the course of infection in stably-transfected murine macrophages (RAW264.7) bearing a tetracycline-inducible plasmid producing hmox shRNA and in primary HO-1 knockout macrophages. While uptake of bacteria into macrophages was not affected, a significantly reduced survival of intracellular Salmonella was observed upon hmox knockdown or pharmacological hmox inhibition, which was independent of Nramp1 functionality. This could be traced to limitation of iron availability for intramacrophage bacteria along with enhanced stimulation of innate immune effector pathways, including the formation of reactive oxygen and nitrogen species and increased TNF-α expression. Mechanistically, these latter effects result from intracellular iron limitation with subsequent activation of NF-κB and further inos, tnfa and p47phox transcription along with reduced formation of the anti-inflammatory and radical scavenging molecules, CO and biliverdin as a consequence of HO-1 silencing. Taken together our data provide novel evidence that the infection-driven induction of HO-1 exerts detrimental effects in the early control of Salmonella infection, whereas hmox inhibition can favourably modulate anti-bacterial immune effector pathways of macrophages and promote bacterial elimination.
Collapse
Affiliation(s)
- Anna-Maria Mitterstiller
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Heribert Talasz
- Division of Clinical Biochemistry, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | | | - Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Ferric C Fang
- University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7735, USA
| | - Stephan Geley
- Division of Molecular Pathophysiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
35
|
Soares MP, Weiss G. The Iron age of host-microbe interactions. EMBO Rep 2015; 16:1482-500. [PMID: 26474900 DOI: 10.15252/embr.201540558] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/23/2015] [Indexed: 12/25/2022] Open
Abstract
Microbes exert a major impact on human health and disease by either promoting or disrupting homeostasis, in the latter instance leading to the development of infectious diseases. Such disparate outcomes are driven by the ever-evolving genetic diversity of microbes and the countervailing host responses that minimize their pathogenic impact. Host defense strategies that limit microbial pathogenicity include resistance mechanisms that exert a negative impact on microbes, and disease tolerance mechanisms that sustain host homeostasis without interfering directly with microbes. While genetically distinct, these host defense strategies are functionally integrated, via mechanisms that remain incompletely defined. Here, we explore the general principles via which host adaptive responses regulating iron (Fe) metabolism impact on resistance and disease tolerance to infection.
Collapse
Affiliation(s)
| | - Günter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University, Innsbruck, Austria
| |
Collapse
|
36
|
Increased ferroportin-1 expression and rapid splenic iron loss occur with anemia caused by Salmonella enterica Serovar Typhimurium infection in mice. Infect Immun 2015; 83:2290-9. [PMID: 25824831 DOI: 10.1128/iai.02863-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/06/2015] [Indexed: 01/24/2023] Open
Abstract
The Gram-negative intracellular bacterium Salmonella enterica serovar Typhimurium causes persistent systemic inflammatory disease in immunocompetent mice. Following oral inoculation with S. Typhimurium, mice develop a hematopathological syndrome akin to typhoid fever with splenomegaly, microcytic anemia, extramedullary erythropoiesis, and increased hemophagocytic macrophages in the bone marrow, liver, and spleen. Additionally, there is marked loss of iron from the spleen, an unanticipated result, given the iron sequestration reported in anemia of inflammatory disease. To establish why tissue iron does not accumulate, we evaluated multiple measures of pathology for 4 weeks following oral infection in mice. We demonstrate a quantitative decrease in splenic iron following infection despite increased numbers of splenic phagocytes. Infected mice have increased duodenal expression of the iron exporter ferroportin-1, consistent with increased uptake of dietary iron. Liver and splenic macrophages also express high levels of ferroportin-1. These observations indicate that splenic and hepatic macrophages export iron during S. Typhimurium infection, in contrast to macrophage iron sequestration observed in anemia of inflammatory disease. Tissue macrophage export of iron occurs concurrent with high serum concentrations of interferon gamma (IFN-γ) and interleukin 12 (IL-12). In individual mice, high concentrations of both proinflammatory (tumor necrosis factor alpha [TNF-α]) and anti-inflammatory (IL-10) cytokines in serum correlate with increased tissue bacterial loads throughout 4 weeks of infection. These in vivo observations are consistent with previous cell culture studies and suggest that the relocation of iron from tissue macrophages during infection may contribute to anemia and also to host survival of acute S. Typhimurium infection.
Collapse
|
37
|
Jones C, Darton TC, Pollard AJ. Why the development of effective typhoid control measures requires the use of human challenge studies. Front Microbiol 2014; 5:707. [PMID: 25566221 PMCID: PMC4267421 DOI: 10.3389/fmicb.2014.00707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/27/2014] [Indexed: 01/21/2023] Open
Affiliation(s)
- Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford Oxford, UK
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford Oxford, UK
| |
Collapse
|
38
|
Porta A, Morello S, Granata I, Iannone R, Maresca B. Insertion of a 59 amino acid peptide in Salmonella Typhimurium membrane results in loss of virulence in mice. FEBS J 2014; 281:5043-53. [PMID: 25208333 DOI: 10.1111/febs.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/26/2022]
Abstract
We demonstrated previously that expression of a single trans-membrane region of the Δ(12) -desaturase gene of Synechocystis sp. PCC 6803 in Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) altered the membrane physical state of this pathogen, induced a significant change in the pattern of mRNA transcription of major heat shock genes, and inhibited pathogen growth inside murine macrophages. In this study, we demonstrate that injection of the modified Salmonella strain [Stm(pBAD200)] into C57Bl6j mice is safe. Survival of mice was associated with bacterial clearance, an increased number of splenic leukocytes, and high levels of interleukin-12, interferon γ and tumor necrosis factor α in spleens as well as in sera. Furthermore, Stm(pBAD200)-injected mice developed a Salmonella-specific antibody and Th1-like responses. Mice challenged with Stm(pBAD200) are protected from systemic infection with Salmonella wild-type. Similarly, mice infected with Stm(pBAD200) by the oral route survived when challenged with an oral lethal dose of Salmonella wild-type. The avirulent Stm(pBAD200) phenotype is associated with a remarkable change in the expression of the hilC, hilD, hilA, invF and phoP genes, among others, whose products are required for invasion and replication of Salmonella inside phagocytic cells. These data demonstrate the use of trans-membrane peptides to generate attenuated strains, providing a potential novel strategy to develop vaccines for both animal and human use.
Collapse
Affiliation(s)
- Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | | | | | | |
Collapse
|
39
|
Nairz M, Haschka D, Demetz E, Weiss G. Iron at the interface of immunity and infection. Front Pharmacol 2014; 5:152. [PMID: 25076907 PMCID: PMC4100575 DOI: 10.3389/fphar.2014.00152] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/10/2014] [Indexed: 12/18/2022] Open
Abstract
Both, mammalian cells and microbes have an essential need for iron, which is required for many metabolic processes and for microbial pathogenicity. In addition, cross-regulatory interactions between iron homeostasis and immune function are evident. Cytokines and the acute phase protein hepcidin affect iron homeostasis leading to the retention of the metal within macrophages and hypoferremia. This is considered to result from a defense mechanism of the body to limit the availability of iron for extracellular pathogens while on the other hand the reduction of circulating iron results in the development of anemia of inflammation. Opposite, iron and the erythropoiesis inducing hormone erythropoietin affect innate immune responses by influencing interferon-gamma (IFN-γ) mediated (iron) or NF-kB inducible (erythropoietin) immune effector pathways in macrophages. Thus, macrophages loaded with iron lose their ability to kill intracellular pathogens via IFN-γ mediated effector pathways such as nitric oxide (NO) formation. Accordingly, macrophages invaded by the intracellular bacterium Salmonella enterica serovar Typhimurium increase the expression of the iron export protein ferroportin thereby reducing the availability of iron for intramacrophage bacteria while on the other side strengthening anti-microbial macrophage effector pathways via increased formation of NO or TNF-α. In addition, certain innate resistance genes such as natural resistance associated macrophage protein function (Nramp1) or lipocalin-2 exert part of their antimicrobial activity by controlling host and/or microbial iron homeostasis. Consequently, pharmacological or dietary modification of cellular iron trafficking enhances host resistance to intracellular pathogens but may increase susceptibility to microbes in the extracellular compartment and vice versa. Thus, the control over iron homeostasis is a central battlefield in host–pathogen interplay influencing the course of an infectious disease in favor of either the mammalian host or the pathogenic invader.
Collapse
Affiliation(s)
- Manfred Nairz
- Department of Internal Medicine VI-Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine VI-Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI-Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine VI-Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck Innsbruck, Austria
| |
Collapse
|
40
|
Zhai L, Yu Q, Bie X, Lu Z, Lv F, Zhang C, Kong X, Zhao H. Development of a PCR test system for specific detection of Salmonella Paratyphi B in foods. FEMS Microbiol Lett 2014; 355:83-9. [PMID: 24725227 DOI: 10.1111/1574-6968.12443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 01/02/2023] Open
Abstract
Salmonella enterica serotype Paratyphi B is a globally distributed human-specific pathogen causing paratyphoid fever. The aim of this study was to develop a rapid and reliable polymerase chain reaction (PCR) assay for its detection in food. The SPAB_01124 gene was found to be unique to S. Paratyphi B using comparative genomics. Primers for fragments of the SPAB_01124 gene and the Salmonella-specific invA gene were used in combination to establish a multiplex PCR assay that showed 100% specificity across 45 Salmonella strains (representing 34 serotypes) and 18 non-Salmonella strains. The detection limit was 2.2 CFU mL(-1) of S. Paratyphi B after 12-h enrichment in pure culture. It was shown that co-culture with S. Typhimurium or Escherichia coli up to concentrations of 3.6 × 10(5) CFU and 3.3 × 10(4) CFU, respectively, did not interfere with PCR detection of S. Paratyphi B. In artificially contaminated milk, the assay could detect as few as 62 CFU mL(-1) after 8 h of enrichment. In conclusion, comparative genomics was found to be an efficient approach to the mining of pathogen-specific target genes, and the PCR assay that was developed from this provided a rapid, specific, and sensitive method for detection of S. Paratyphi B.
Collapse
Affiliation(s)
- Ligong Zhai
- College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
DelGiorno KE, Tam JW, Hall JC, Thotakura G, Crawford HC, van der Velden AWM. Persistent salmonellosis causes pancreatitis in a murine model of infection. PLoS One 2014; 9:e92807. [PMID: 24717768 PMCID: PMC3981665 DOI: 10.1371/journal.pone.0092807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/25/2014] [Indexed: 12/29/2022] Open
Abstract
Pancreatitis, a known risk factor for the development of pancreatic ductal adenocarcinoma, is a serious, widespread medical condition usually caused by alcohol abuse or gallstone-mediated ductal obstruction. However, many cases of pancreatitis are of an unknown etiology. Pancreatitis has been linked to bacterial infection, but causality has yet to be established. Here, we found that persistent infection of mice with the bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) was sufficient to induce pancreatitis reminiscent of the human disease. Specifically, we found that pancreatitis induced by persistent S. Typhimurium infection was characterized by a loss of pancreatic acinar cells, acinar-to-ductal metaplasia, fibrosis and accumulation of inflammatory cells, including CD11b+ F4/80+, CD11b+ Ly6Cint Ly6G+ and CD11b+ Ly6Chi Ly6G- cells. Furthermore, we found that S. Typhimurium colonized and persisted in the pancreas, associated with pancreatic acinar cells in vivo, and could invade cultured pancreatic acinar cells in vitro. Thus, persistent infection of mice with S. Typhimurium may serve as a useful model for the study of pancreatitis as it relates to bacterial infection. Increased knowledge of how pathogenic bacteria can cause pancreatitis will provide a more integrated picture of the etiology of the disease and could lead to the development of new therapeutic approaches for treatment and prevention of pancreatitis and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Kathleen E. DelGiorno
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Jason W. Tam
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason C. Hall
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Gangadaar Thotakura
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Howard C. Crawford
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Adrianus W. M. van der Velden
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pathology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
42
|
CD11b+ Ly6Chi Ly6G- immature myeloid cells recruited in response to Salmonella enterica serovar Typhimurium infection exhibit protective and immunosuppressive properties. Infect Immun 2014; 82:2606-14. [PMID: 24711563 DOI: 10.1128/iai.01590-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Immature myeloid cells in bone marrow are a heterogeneous population of cells that, under normal conditions, provide tissues with protective cell types such as granulocytes and macrophages. Under certain pathological conditions, myeloid cell homeostasis is altered and immature forms of these cells appear in tissues. Murine immature myeloid cells that express CD11b and Ly6C or Ly6G (two isoforms of Gr-1) have been associated with immunosuppression in cancer (in the form of myeloid-derived suppressor cells) and, more recently, infection. Here, we found that CD11b(+) Ly6C(hi) Ly6G(-) and CD11b(+) Ly6C(int) Ly6G(+) cells accumulated and persisted in tissues of mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). Recruitment of CD11b(+) Ly6C(hi) Ly6G(-) but not CD11b(+) Ly6C(int) Ly6G(+) cells from bone marrow into infected tissues depended on chemokine receptor CCR2. The CD11b(+) Ly6C(hi) Ly6G(-) cells exhibited a mononuclear morphology, whereas the CD11b(+) Ly6C(int) Ly6G(+) cells exhibited a polymorphonuclear or band-shaped nuclear morphology. The CD11b(+) Ly6C(hi) Ly6G(-) cells differentiated into macrophage-like cells following ex vivo culture and could present antigen to T cells in vitro. However, significant proliferation of T cells was observed only when the ability of the CD11b(+) Ly6C(hi) Ly6G(-) cells to produce nitric oxide was blocked. CD11b(+) Ly6C(hi) Ly6G(-) cells recruited in response to S. Typhimurium infection could also present antigen to T cells in vivo, but increasing their numbers by adoptive transfer did not cause a corresponding increase in T cell response. Thus, CD11b(+) Ly6C(hi) Ly6G(-) immature myeloid cells recruited in response to S. Typhimurium infection exhibit protective and immunosuppressive properties that may influence the outcome of infection.
Collapse
|
43
|
Abstract
In this issue of Cell Host & Microbe, Deriu et al. present a mechanistic explanation underlying the benefits of certain probiotic bacteria. Intestinal bacteria compete for the essential nutrient iron, leading to replacement of pathogenic Salmonella by the probiotic Escherichia coli Nissle, which is better equipped with iron acquisition systems, and resolution of infectious colitis.
Collapse
Affiliation(s)
- Guenter Weiss
- Department of Internal Medicine VI, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
44
|
The impact of Fusarium mycotoxins on human and animal host susceptibility to infectious diseases. Toxins (Basel) 2014; 6:430-52. [PMID: 24476707 PMCID: PMC3942744 DOI: 10.3390/toxins6020430] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 12/11/2022] Open
Abstract
Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well.
Collapse
|
45
|
Parry CM, Wijedoru L, Arjyal A, Baker S. The utility of diagnostic tests for enteric fever in endemic locations. Expert Rev Anti Infect Ther 2014; 9:711-25. [DOI: 10.1586/eri.11.47] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
46
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
47
|
Proteomics-based identification of plasma proteins and their association with the host-pathogen interaction in chronic typhoid carriers. Int J Infect Dis 2013; 19:59-66. [PMID: 24291468 PMCID: PMC7129176 DOI: 10.1016/j.ijid.2013.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 01/03/2023] Open
Abstract
Background Current diagnostic tests are inadequate to detect typhoid cases, as well as the chronic carrier state, the sole reservoir of Salmonella enterica serovar Typhi. The current study was conducted to find new molecular signatures of pathogen/disease to understand the mechanism behind the host–pathogen interaction in enteric fever. Methods Proteomics-based studies were done to determine the expression of differentially expressed proteins in the plasma of controls, acute typhoid cases, and chronic typhoid carriers. Further, transcriptome-based analysis using reverse-transcriptase PCR (RT-PCR) was done in controls, acute typhoid cases, and chronic typhoid carriers. Results Results showed the upregulation of proprotein convertase subtilisin, furin, haptoglobin, and albumin in the plasma of chronic typhoid carriers. The elevation in mRNA expression of four differentially expressed proteins confirms the changes at the transcriptional level. Further, the increase in albumin and haptoglobin in chronic typhoid carriers shows their role in free radical generation, inflammation, and monocyte cell signaling. Conclusion Through proteomics techniques, this study identified four proteins in the chronic typhoid carrier host that may have a role in the disease pathogenesis of enteric fever.
Collapse
|
48
|
Lianou A, Koutsoumanis KP. Strain variability of the behavior of foodborne bacterial pathogens: A review. Int J Food Microbiol 2013; 167:310-21. [DOI: 10.1016/j.ijfoodmicro.2013.09.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
|
49
|
Mastroeni P, Grant A. Dynamics of spread of Salmonella enterica in the systemic compartment. Microbes Infect 2013; 15:849-57. [PMID: 24183878 DOI: 10.1016/j.micinf.2013.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/09/2013] [Indexed: 12/21/2022]
Abstract
Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses.
Collapse
Affiliation(s)
- Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| | | |
Collapse
|
50
|
Boko CK, Kpodekon TM, Duprez JN, Imberechts H, Taminiau B, Bertrand S, Mainil JG. Identification and typing of Salmonella enterica serotypes isolated from guinea fowl (Numida meleagris) farms in Benin during four laying seasons (2007 to 2010). Avian Pathol 2013; 42:1-8. [PMID: 23391175 DOI: 10.1080/03079457.2012.751484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The main problem for the local guinea fowl (Numida meleagris) traditional farming and raising system in north-east Benin is the high mortality rate of the keets (up to 70%) due to a combination of climatic, nutritional, hygienic and infectious causes. The present study was carried out to identify and compare the isolates of Salmonella enterica from necropsied keets, laying guinea fowl, surrogate hen mothers, other contact animal species and farmers during four laying seasons (2007 to 2010). S. enterica belonging to eight different serotypes (Adelaide, Farakan, Kingston, Legon, Luke, Oakland, Sangalkam and Teshie) and one untypable isolate were isolated from 13 to 19% of the necropsied keets. The serotypes Adelaide, Farakan, Luke, Sangalkam and Teshie and the untypable isolate were isolated in only one township during 1 year of sampling, while serotypes Oakland, Legon and Kingston were present in two to three townships for 2 to 3 years of sampling. Serotypes Farakan, Kingston, Legon, Oakland and Sangalkam were also isolated from faecal samples of laying guinea fowl and/or surrogate domestic fowl hen mothers. Further comparison by pulsed-field gel electrophoresis and virulotyping provided evidence for their clonality within each of those five serotypes and therefore for the adult guinea fowl and/or hens as the most probable origin of contamination of the keets. The antibiotic resistance profiles, with all isolates resistant to oxacillin, sulfamethoxazol and colistin, emphasize the rise of antibiotic resistance in salmonellas from guinea fowl in this area and the need for alternative therapy policies for these birds.
Collapse
Affiliation(s)
- C Kadoéito Boko
- Département de Production et Santé Animales, Laboratoire de Recherche en Biologie Appliquée , Université d'Abomey-Calavi, Ecole Polytechnique d'Abomey Calavi (EPAC), BP 637 Abomey Calavi, Benin
| | | | | | | | | | | | | |
Collapse
|