1
|
Wu F, Deng Y, Yao X, Li J. Ruminant livestock TR V(D)J genes and CDR3 repertoire. Vet Immunol Immunopathol 2024; 277:110829. [PMID: 39316948 DOI: 10.1016/j.vetimm.2024.110829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Ruminant livestock exhibit certain immune characteristics that make them valuable models for studying T cell receptor diversity and immune responses. This resistance is attributed to their well-developed immune system, comprising both innate and adaptive components. In this review, we delve into the intricate workings of the immune system of ruminant livestock, focusing on innate immunity and adaptive immunity. Specifically, we discuss the TR V(D)J genes (including TRB, TRG, and TRA/D chain) and the characteristics of the complementary determining region 3 (CDR3) repertoire in bovine and ovine species, shedding light on the diversity and functionality of the T-cell receptor(TCR) repertoire in these species. Understanding the distinct features of these germline genes and CDR3 repertoires is essential for unraveling the complexities of immune responses in ruminant livestock. Lastly, we outline future prospects in this field, emphasizing the importance of further research to enhance our understanding of ruminant livestock immunity and its potential applications in disease management, vaccine development, and breeding strategies.
Collapse
Affiliation(s)
- Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China; Department of Laboratory, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlan Deng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
da Silva Antunes R, Garrigan E, Quiambao LG, Dhanda SK, Marrama D, Westernberg L, Wang E, Abawi A, Sutherland A, Armstrong SK, Brickman TJ, Sidney J, Frazier A, Merkel TJ, Peters B, Sette A. T cell reactivity to Bordetella pertussis is highly diverse regardless of childhood vaccination. Cell Host Microbe 2023; 31:1404-1416.e4. [PMID: 37490913 PMCID: PMC10528758 DOI: 10.1016/j.chom.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
The incidence of whooping cough due to Bordetella pertussis (BP) infections has increased recently. It is believed that the shift from whole-cell pertussis (wP) vaccines to acellular pertussis (aP) vaccines may be contributing to this rise. While T cells are key in controlling and preventing disease, nearly all knowledge relates to antigens in aP vaccines. A whole-genome mapping of human BP-specific CD4+ T cell responses was performed in healthy vaccinated adults and revealed unexpected broad reactivity to hundreds of antigens. The overall pattern and magnitude of T cell responses to aP and non-aP vaccine antigens are similar regardless of childhood vaccination, suggesting that asymptomatic infections drive the pattern of T cell reactivity in adults. Lastly, lack of Th1/Th2 polarization to non-aP vaccine antigens suggests these antigens have the potential to counteract aP vaccination Th2 bias. These findings enhance our insights into human T cell responses to BP and identify potential targets for next-generation pertussis vaccines.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| | - Emily Garrigan
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Lorenzo G Quiambao
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandeep Kumar Dhanda
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Daniel Marrama
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Luise Westernberg
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Eric Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Adam Abawi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Aaron Sutherland
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - April Frazier
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
3
|
da Silva Antunes R, Garrigan E, Quiambao LG, Dhanda SK, Marrama D, Westernberg L, Wang E, Sutherland A, Armstrong SK, Brickman TJ, Sidney J, Frazier A, Merkel T, Peters B, Sette A. Genome-wide characterization of T cell responses to Bordetella pertussis reveals broad reactivity and similar polarization irrespective of childhood vaccination profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534182. [PMID: 36993748 PMCID: PMC10055406 DOI: 10.1101/2023.03.24.534182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The incidence of whooping cough (pertussis), the respiratory disease caused by Bordetella pertussis (BP) has increased in recent years, and it is suspected that the switch from whole-cell pertussis (wP) to acellular pertussis (aP) vaccines may be a contributing factor to the rise in morbidity. While a growing body of evidence indicates that T cells play a role in the control and prevention of symptomatic disease, nearly all data on human BP-specific T cells is related to the four antigens contained in the aP vaccines, and data detailing T cell responses to additional non-aP antigens, are lacking. Here, we derived a full-genome map of human BP-specific CD4+ T cell responses using a high-throughput ex vivo Activation Induced Marker (AIM) assay, to screen a peptide library spanning over 3000 different BP ORFs. First, our data show that BP specific-CD4+ T cells are associated with a large and previously unrecognized breadth of responses, including hundreds of targets. Notably, fifteen distinct non-aP vaccine antigens were associated with reactivity comparable to that of the aP vaccine antigens. Second, the overall pattern and magnitude of CD4+ T cell reactivity to aP and non-aP vaccine antigens was similar regardless of aP vs wP childhood vaccination history, suggesting that the profile of T cell reactivity in adults is not driven by vaccination, but rather is likely driven by subsequent asymptomatic or sub-clinical infections. Finally, while aP vaccine responses were Th1/Th2 polarized as a function of childhood vaccination, CD4+ T cell responses to non-aP BP antigens vaccine responses were not, suggesting that these antigens could be used to avoid the Th2 bias associated with aP vaccination. Overall, these findings enhance our understanding of human T cell responses against BP and suggest potential targets for designing next-generation pertussis vaccines.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Emily Garrigan
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Lorenzo G Quiambao
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Sandeep Kumar Dhanda
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Daniel Marrama
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Luise Westernberg
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Eric Wang
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Aaron Sutherland
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
| | - Tod Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
- University of California San Diego School of Medicine, La Jolla, San Diego, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, San Diego, California, USA
- University of California San Diego School of Medicine, La Jolla, San Diego, California, USA
| |
Collapse
|
4
|
Li C, Wang J, Sun W, Liu X, Wang J, Peng Q. The Brucella Effector BspI Suppresses Inflammation via Inhibition of IRE1 Kinase Activity during Brucella Infection. THE JOURNAL OF IMMUNOLOGY 2022; 209:488-497. [DOI: 10.4049/jimmunol.2200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/26/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Mammalian GTPase-activating proteins (GAPs) can inhibit innate immunity signaling in a spatiotemporal fashion; however, the role of bacterial GAPs in mediating innate immunity remains unknown. In this study, we show that BspI, a Brucella type IV secretion system (T4SS) effector protein, containing a GAP domain at the C terminus, negatively regulates proinflammatory responses and host protection to Brucella abotus infection in a mouse model. In macrophages, BspI inhibits the activation of inositol-requiring enzyme 1 (IRE1) kinase, but it does not inhibit activation of ATF6 and PERK. BspI suppresses induction of proinflammatory cytokines via inhibiting the activity of IRE1 kinase caused by VceC, a type IV secretion system effector protein that localizes to the endoplasmic reticulum. Ectopically expressed BspI interacts with IRE1 in HeLa cells. The inhibitory function of BspI depends on its GAP domain but not on interaction with small GTPase Ras-associated binding protein 1B (RAB1B). Collectively, these data support a model where BspI, in a GAP domain–dependent manner, inhibits activation of IRE1 to prevent proinflammatory cytokine responses.
Collapse
Affiliation(s)
- Chen Li
- *Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Jingyu Wang
- *Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Wanchun Sun
- *Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Xiaofeng Liu
- †Tumor Hospital of Jilin Province, Changchun, China; and
| | - Jun Wang
- §Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qisheng Peng
- *Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
5
|
Pellegrini JM, Gorvel JP, Mémet S. Immunosuppressive Mechanisms in Brucellosis in Light of Chronic Bacterial Diseases. Microorganisms 2022; 10:1260. [PMID: 35888979 PMCID: PMC9324529 DOI: 10.3390/microorganisms10071260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Brucellosis is considered one of the major zoonoses worldwide, constituting a critical livestock and human health concern with a huge socio-economic burden. Brucella genus, its etiologic agent, is composed of intracellular bacteria that have evolved a prodigious ability to elude and shape host immunity to establish chronic infection. Brucella's intracellular lifestyle and pathogen-associated molecular patterns, such as its specific lipopolysaccharide (LPS), are key factors for hiding and hampering recognition by the immune system. Here, we will review the current knowledge of evading and immunosuppressive mechanisms elicited by Brucella species to persist stealthily in their hosts, such as those triggered by their LPS and cyclic β-1,2-d-glucan or involved in neutrophil and monocyte avoidance, antigen presentation impairment, the modulation of T cell responses and immunometabolism. Attractive strategies exploited by other successful chronic pathogenic bacteria, including Mycobacteria, Salmonella, and Chlamydia, will be also discussed, with a special emphasis on the mechanisms operating in brucellosis, such as granuloma formation, pyroptosis, and manipulation of type I and III IFNs, B cells, innate lymphoid cells, and host lipids. A better understanding of these stratagems is essential to fighting bacterial chronic infections and designing innovative treatments and vaccines.
Collapse
|
6
|
Zhang X, Chen J, Cheng H, Zhu J, Dong Q, Zhang H, Chen Z. MicroRNA-155 expression with Brucella infection in vitro and in vivo and decreased serum levels of MicroRNA-155 in patients with brucellosis. Sci Rep 2022; 12:4181. [PMID: 35264708 PMCID: PMC8907217 DOI: 10.1038/s41598-022-08180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Infection with Brucella is characterized by the inhibition of host immune responses. MicroRNA-155 (miR-155) has been implicated in the immune response to many diseases. In this study, its expression during Brucella 16M infection of macrophages and mice was analyzed. Expression of miR-155 was significantly induced in macrophages at 24 h post infection. Further, an analysis of infected mice showed that miR-155 was inhibited at 7 and 14 days but induced at 28 days. Interestingly, this trend in induction or inhibition was reversed at 7 and 14 days in 16M△virB-infected mice. This suggested that decreased expression of miR-155 at an early stage of infection was dependent on intracellular replication. In humans with brucellosis, serum levels of miR-155 were significantly decreased compared to those in individuals without brucellosis and healthy volunteers. Significant correlations were observed between serum level of miR-155 and serum anti-Brucella antibody titers and the sweating symptom. This effect suggests that Brucella interferes with miR-155-regulated immune responses via a unique mechanism. Taken together, data from this study indicate that Brucella infection affects miR-155 expression and that human brucellosis patients show decreased serum levels of miR-155.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Huimin Cheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China.,Animal Husbandry and Veterinary Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Qiao Dong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China.
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
7
|
Brucella induces M1 to M2 polarization of macrophages through STAT6 signaling pathway to promote bacterial intracellular survival. Res Vet Sci 2022; 145:91-101. [DOI: 10.1016/j.rvsc.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
|
8
|
Zhi F, Fang J, Zheng W, Li J, Zhang G, Zhou D, Jin Y, Wang A. A Brucella Omp16 Conditional Deletion Strain Is Attenuated in BALB/c Mice. J Microbiol Biotechnol 2022; 32:6-14. [PMID: 34675138 PMCID: PMC9628832 DOI: 10.4014/jmb.2107.07016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/26/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023]
Abstract
Brucella spp. are facultative intracellular pathogens that invade, survive and proliferate in numerous phagocytic and non-phagocytic cell types, thereby leading to human and animal brucellosis. Outer membrane proteins (Omps) are major immunogenic and protective antigens that are implicated in Brucella virulence. A strain deleted of the omp16 gene has not been obtained which suggests that the Omp16 protein is vital for Brucella survival. Nevertheless, we previously constructed an omp16 conditional deletion strain of Brucella, ΔOmp16. Here, the virulence and immune response elicted by this strain were assessed in a mouse model of infection. Splenomegaly was significantly reduced at two weeks post-infection in ΔOmp16-infected mice compared to infection with the parental strain. The bacterial load in the spleen also was significantly decreased at this post-infection time point in ΔOmp16-infected mice. Histopathological changes in the spleen were observed via hematoxylineosin staining and microscopic examination which showed that infection with the ΔOmp16 strain alleviated spleen histopathological alterations compared to mice infected with the parental strain. Moreover, the levels of humoral and cellular immunity were similar in both ΔOmp16-infected mice and parental strain-infected mice. The results overall show that the virulence of ΔOmp16 is attenuated markedly, but that the immune responses mediated by the deletion and parental strains in mice are indistinguishable. The data provide important insights that illuminate the pathogenic strategies adopted by Brucella.
Collapse
Affiliation(s)
- Feijie Zhi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Jiaoyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Weifang Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Junmei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Guangdong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, P.R. China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, P.R. China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, P.R. China,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, P.R. China,Corresponding author Phone: +862987082869 E-mail:
| |
Collapse
|
9
|
Dadar M, Tiwari R, Sharun K, Dhama K. Importance of brucellosis control programs of livestock on the improvement of one health. Vet Q 2021; 41:137-151. [PMID: 33618618 PMCID: PMC7946044 DOI: 10.1080/01652176.2021.1894501] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/14/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022] Open
Abstract
Brucellosis not only represents an important health restraint on livestock but also causes high economic losses in many developing countries worldwide. Despite considerable efforts made for the control of brucellosis, the disease is still spreading in many regions (such as the Middle East) where it represents one of the most important health hazards impacting both animals and humans. The present review aims to investigate the efficacy of veterinary control programs regarding brucellosis, with a special focus on current prevention, control, and eradication approaches. The reasons for unsuccessful control programs such as the absence of highly effective vaccines and non-certified bulls are also debated, to understand why the prevalence of brucellosis in livestock is not decreasing in many areas despite considerable efforts taken to date. The importance of governmental and regional investment in brucellosis control remains one of the main limiting factors owing to the limited budget allocated to tackle this disease. In this context, one health concept has generated novel comprehensive approaches with multiple economic implications across the livestock industry and public health. However, the implementation of such global preventive strategies appears to be a key issue for many endemic and low-income countries. According to the collected data, epidemiological contexts including management and trade systems along with well-defined agro-ecological zones should be evaluated in brucellosis endemic countries to improve milk production and to enhance the sustainability of the livestock sector at both national and regional levels.
Collapse
Affiliation(s)
- Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadyaya Pashu Chikitsa Vigyan Vishwavidyalya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
10
|
Kazemi S, Mirzaei R, Sholeh M, Karampoor S, Keramat F, Saidijam M, Alikhani MY. microRNAs in human brucellosis: A promising therapeutic approach and biomarker for diagnosis and treatment. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1209-1218. [PMID: 34449979 PMCID: PMC8589381 DOI: 10.1002/iid3.519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023]
Abstract
Introduction Human brucellosis is a zoonotic bacterial disease with up to 500,000 new cases each year. The major evasion mechanisms from the host immune system by Brucella are restraint of complement pathway and Toll‐like receptors signaling pathways, interference with efficient antigen presentation to CD4‐positive T lymphocytes, selective subversion of autophagy pathways, inhibition of dendritic cell stimulation, inhibition of autophagolysosomal fusion, and macrophage apoptosis. Many molecular and cellular pathways contribute to brucellosis that microRNAs have a vital function in the immunopathogenesis of this disease. In this regard, these molecules apply for their roles by modulating various events like inflammatory reactions and immune defense. Recently, in the case of immunity to human brucellosis, it has been shown that microRNAs play an important role in immunity against these bacteria. Methods and Results In this study, we tried to review the immune defense and immunopathogenesis of Brucella infection and highlight the current knowledge of the microRNAs in infected cells by Brucella pathogens. The recent findings suggest that the regulation of microRNAs expression is impaired during brucellosis infection, which may contribute to disease progression or inhibition by modulating immune responses against this pathogen. Conclusions The interplay between miRNAs and Brucella pathogens and the underlying process required comprehensive examination to unravel the novel therapeutic or diagnostic approaches.
Collapse
Affiliation(s)
- Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
12
|
Giambartolomei GH, Delpino MV. Immunopathogenesis of Hepatic Brucellosis. Front Cell Infect Microbiol 2019; 9:423. [PMID: 31956605 PMCID: PMC6951397 DOI: 10.3389/fcimb.2019.00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/28/2019] [Indexed: 01/18/2023] Open
Abstract
The hepatic immune system can induce rapid and controlled responses to pathogenic microorganisms and tumor cells. Accordingly, most of the microorganisms that reach the liver through the blood are eliminated. However, some of them, including Brucella spp., take advantage of the immunotolerant capacity of the liver to persist in the host. Brucella has a predilection for surviving in the reticuloendothelial system, with the liver being the largest organ of this system in the human body. Therefore, its involvement in brucellosis is practically invariable. In patients with active brucellosis, the liver is commonly affected, and the most frequent clinical manifestation is hepatosplenomegaly. The molecular mechanisms implicated in liver damage have been recently elucidated. It has been demonstrated how Brucella interacts with hepatocytes inducing its death by apoptosis. The inflammatory microenvironment and the direct effect of Brucella on hepatic stellate cells (HSC) induce their activation and turn these cells from its quiescent form to their fibrogenic phenotype. This HSC activation induced by Brucella infection relies on the presence of a functional type IV secretion system and the effector protein BPE005 through a mechanism involved in the activation of the autophagic pathway. Finally, the molecular mechanisms of liver brucellosis observed so far are shedding light on how the interaction of Brucella with liver cells may play an important role in the discovery of new targets to control the infection. In this review, we report the current understanding of the interaction between liver structural cells and immune system cells during Brucella infection.
Collapse
Affiliation(s)
- Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Hu H, Tian M, Li P, Guan X, Lian Z, Yin Y, Shi W, Ding C, Yu S. Brucella Infection Regulates Thioredoxin-Interacting Protein Expression to Facilitate Intracellular Survival by Reducing the Production of Nitric Oxide and Reactive Oxygen Species. THE JOURNAL OF IMMUNOLOGY 2019; 204:632-643. [PMID: 31852753 DOI: 10.4049/jimmunol.1801550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/16/2019] [Indexed: 12/30/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) is a multifunctional protein that functions in tumor suppression, oxidative stress, and inflammatory responses. However, how TXNIP functions during microbial infections is rarely reported. In this study, we demonstrate that Brucella infection decreased TXNIP expression to promote its intracellular growth in macrophages by decreasing the production of NO and reactive oxygen species (ROS). Following Brucella abortus infection, TXNIP knockout RAW264.7 cells produced significantly lower levels of NO and ROS, compared with wild-type RAW264.7 cells. Inducible NO synthase (iNOS) inhibitor treatment reduced NO levels, which resulted in a dose-dependent restoration of TXNIP expression, demonstrating that the expression of TXNIP is regulated by NO. In addition, the expression of iNOS and the production of NO were dependent on the type IV secretion system of Brucella Moreover, Brucella infection reduced TXNIP expression in bone marrow-derived macrophages and mouse lung and spleen. Knocked down of the TXNIP expression in bone marrow-derived macrophages increased intracellular survival of Brucella These findings revealed the following: 1) TXNIP is a novel molecule to promote Brucella intracellular survival by reducing the production of NO and ROS; 2) a negative feedback-regulation system of NO confers protection against iNOS-mediated antibacterial effects. The elucidation of this mechanism may reveal a novel host surveillance pathway for bacterial intracellular survival.
Collapse
Affiliation(s)
- Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Peng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Xiang Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Zhengmin Lian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Yi Yin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Wentao Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201100, People's Republic of China; and .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, People's Republic of China
| |
Collapse
|
14
|
Brucella neotomae Recapitulates Attributes of Zoonotic Human Disease in a Murine Infection Model. Infect Immun 2018; 87:IAI.00255-18. [PMID: 30373892 DOI: 10.1128/iai.00255-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/23/2018] [Indexed: 01/03/2023] Open
Abstract
Members of the genus Brucella are Gram-negative pathogens that cause chronic systemic infection in farm animals and zoonotic infection in humans. Study of the genus Brucella has been hindered by the need for biosafety level 3 select agent containment. Brucella neotomae, originally isolated from the desert pack rat, presented an opportunity to develop an alternative, non-select agent experimental model. Our prior in vitro work indicated that the cell biology and type IV secretion system (T4SS) dependence of B. neotomae intracellular replication were similar to observations for human-pathogenic select agent Brucella species. Therefore, here, we investigated the pathobiology of B. neotomae infection in the BALB/c mouse. During a sustained infectious course, B. neotomae replicated and persisted in reticuloendothelial organs. Bioluminescent imaging and histopathological and PCR-based analysis demonstrated that the T4SS contributed to efficient early infection of the liver, spleen, and lymph nodes; granuloma formation and hepatosplenomegaly; and early induction of Th1-associated cytokine gene expression. The infectious course and pathologies in the murine model showed similarity to prior observations of primate and native host infection with zoonotic Brucella species. Therefore, the B. neotomae BALB/c infection model offers a promising system to accelerate and complement experimental work in the genus Brucella.
Collapse
|
15
|
Utilization of Host Polyamines in Alternatively Activated Macrophages Promotes Chronic Infection by Brucella abortus. Infect Immun 2018; 86:IAI.00458-17. [PMID: 29203548 DOI: 10.1128/iai.00458-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Treatment of intracellular bacterial pathogens with antibiotic therapy often requires a long course of multiple drugs. A barrier to developing strategies that enhance antibiotic efficacy against these pathogens is our poor understanding of the intracellular nutritional environment that maintains bacterial persistence. The intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs); however, knowledge of the metabolic adaptations promoting exploitation of this niche is limited. Here we show that one mechanism promoting enhanced survival in AAMs is a shift in macrophage arginine utilization from production of nitric oxide (NO) to biosynthesis of polyamines, induced by interleukin 4 (IL-4)/IL-13 treatment. Production of polyamines by infected AAMs promoted both intracellular survival of B. abortus and chronic infection in mice, as inhibition of macrophage polyamine synthesis or inactivation of the putative putrescine transporter encoded by potIHGF reduced both intracellular survival in AAMs and persistence in mice. These results demonstrate that increased intracellular availability of polyamines induced by arginase-1 expression in IL-4/IL-13-induced AAMs promotes chronic persistence of B. abortus within this niche and suggest that targeting of this pathway may aid in eradicating chronic infection.
Collapse
|
16
|
Brucella abortus Promotes a Fibrotic Phenotype in Hepatic Stellate Cells, with Concomitant Activation of the Autophagy Pathway. Infect Immun 2017; 86:IAI.00522-17. [PMID: 28993461 DOI: 10.1128/iai.00522-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/01/2017] [Indexed: 01/18/2023] Open
Abstract
The liver is frequently affected in patients with active brucellosis. The present study demonstrates that Brucella abortus infection induces the activation of the autophagic pathway in hepatic stellate cells to create a microenvironment that promotes a profibrogenic phenotype through the induction of transforming growth factor-β1 (TGF-β1), collagen deposition, and inhibition of matrix metalloproteinase-9 (MMP-9) secretion. Autophagy was revealed by upregulation of the LC3II/LC3I ratio and Beclin-1 expression as well as inhibition of p62 expression in infected cells. The above-described findings were dependent on the type IV secretion system (VirB) and the secreted BPE005 protein, which were partially corroborated using the pharmacological inhibitors wortmannin, a phosphatidyl inositol 3-kinase inhibitor, and leupeptin plus E64 (inhibitors of lysosomal proteases). Activation of the autophagic pathway in hepatic stellate cells during Brucella infection could have an important contribution to attenuating inflammatory hepatic injury by inducing fibrosis. However, with time, B. abortus infection induced Beclin-1 cleavage with concomitant cleavage of caspase-3, indicating the onset of apoptosis of LX-2 cells, as was confirmed by the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay and Hoechst staining. These results demonstrate that the cross talk of LX-2 cells and B. abortus induces autophagy and fibrosis with concomitant apoptosis of LX-2 cells, which may explain some potential mechanisms of liver damage observed in human brucellosis.
Collapse
|
17
|
Machelart A, Khadrawi A, Demars A, Willemart K, De Trez C, Letesson JJ, Muraille E. Chronic Brucella Infection Induces Selective and Persistent Interferon Gamma-Dependent Alterations of Marginal Zone Macrophages in the Spleen. Infect Immun 2017; 85:e00115-17. [PMID: 28808159 PMCID: PMC5649024 DOI: 10.1128/iai.00115-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209+ MZ macrophages (MZMs) and the CD169+ marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- B-Lymphocytes/immunology
- B-Lymphocytes/microbiology
- Brucella abortus/drug effects
- Brucella abortus/immunology
- Brucella abortus/pathogenicity
- Brucella melitensis/drug effects
- Brucella melitensis/immunology
- Brucella melitensis/pathogenicity
- Brucella suis/drug effects
- Brucella suis/immunology
- Brucella suis/pathogenicity
- Brucellosis/drug therapy
- Brucellosis/genetics
- Brucellosis/immunology
- Brucellosis/microbiology
- Chemokine CCL19/genetics
- Chemokine CCL19/immunology
- Chemokine CCL21/genetics
- Chemokine CCL21/immunology
- Chemokine CXCL13/genetics
- Chemokine CXCL13/immunology
- Chronic Disease
- Gene Expression Regulation
- Host-Pathogen Interactions
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Macrophages/immunology
- Macrophages/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Rifampin/pharmacology
- Signal Transduction
- Spleen/immunology
- Spleen/microbiology
- Streptomycin/pharmacology
- T-Lymphocytes/immunology
- T-Lymphocytes/microbiology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Arnaud Machelart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Abir Khadrawi
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Aurore Demars
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Kevin Willemart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Carl De Trez
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Department of Structural Biology Research Center, Brussels, Belgium
| | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Eric Muraille
- Laboratoire de Parasitologie, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
18
|
Abstract
Many bacterial pathogens can cause acute infections that are cleared with the onset of adaptive immunity, but a subset of these pathogens can establish persistent, and sometimes lifelong, infections. While bacteria that cause chronic infections are phylogenetically diverse, they share common features in their interactions with the host that enable a protracted period of colonization. This article will compare the persistence strategies of two chronic pathogens from the Proteobacteria, Brucella abortus and Salmonella enterica serovar Typhi, to consider how these two pathogens, which are very different at the genomic level, can utilize common strategies to evade immune clearance to cause chronic intracellular infections of the mononuclear phagocyte system.
Collapse
|
19
|
Hashemifar I, Yadegar A, Jazi FM, Amirmozafari N. Molecular prevalence of putative virulence-associated genes in Brucella melitensis and Brucella abortus isolates from human and livestock specimens in Iran. Microb Pathog 2017; 105:334-339. [PMID: 28284850 DOI: 10.1016/j.micpath.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
Molecular prevalence of nine putative virulence factors in two more prevalent Brucella species in Iranian patients and livestock was investigated. During five years (2010-2015), 120 human and animal specimens were collected from three geographical areas of Iran. All samples were cultured in blood culture media and subcultured into Brucella agar medium. Nine primer pairs were designed for detection of VirB2, VirB5, VceC, BtpA, BtpB, PrpA, BetB, BPE275 and BSPB virulence factors using PCR and sequence analysis. Totally, 68 Brucella isolates including 60 B. melitensis and 8 B. abortus were isolated from the human and animal specimens examined. Approximately, all B. melitensis and B. abortus strains were positive (100%) regarding btpA, btpB, virB5, vceC, bpe275, bspB, and virB2 genes except for prpA and betB that were detected in 86% and 97% of the strains, respectively. Significant relationships were found between the presence of prpA and human B. melitensis isolates (P = 0.04), and also between the presence of betB and human isolates of B. abortus (P = 0.03). In conclusion, our results revealed that Iranian Brucella strains, regardless of human or animal sources, are extremely virulent due to high prevalence of virulence attributes in almost all strains studied.
Collapse
Affiliation(s)
- Iman Hashemifar
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Faramarz Masjedian Jazi
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
NOD1 and NOD2 signalling links ER stress with inflammation. Nature 2016; 532:394-7. [PMID: 27007849 PMCID: PMC4869892 DOI: 10.1038/nature17631] [Citation(s) in RCA: 362] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022]
Abstract
Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn’s disease and type 2 diabetes1,2. ER stress induces the unfolded protein response (UPR), which involves activation of three transmembrane receptors, ATF6 (activating transcription factor 6), PERK (protein kinase RNA-like endoplasmic reticulum kinase) and IRE1α (inositol-requiring enzyme 1α)3 (Extended Data figure 1a). Once activated, IRE1α recruits TRAF2 (TNF receptor-associated factor 2) to the ER membrane to initiate inflammatory responses via the nuclear factor kappa B (NF-κB) pathway4. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) or nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), detect tissue damage or microbial infection. However, it is not clear which PRRs play a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NLR family of PRRs, are important mediators of ER stress-induced inflammation. The ER stress inducers thapsigargin and dithiothreitol (DTT) triggered production of the pro-inflammatory cytokine interleukin (IL)-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system (T4SS) effector protein VceC into host cells5, was TRAF2, NOD1/2 and RIP2-dependent and could be blunted by treatment with the ER-stress inhibitor tauroursodeoxycholate (TUDCA) or an IRE1α kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1α/TRAF2 signaling pathway provides a novel link between innate immunity and ER stress-induced inflammation.
Collapse
|
21
|
Lei S, Zhong Z, Ke Y, Yang M, Xu X, Ren H, An C, Yuan J, Yu J, Xu J, Qiu Y, Shi Y, Wang Y, Peng G, Chen Z. Deletion of the Small RNA Chaperone Protein Hfq down Regulates Genes Related to Virulence and Confers Protection against Wild-Type Brucella Challenge in Mice. Front Microbiol 2016; 6:1570. [PMID: 26834720 PMCID: PMC4718986 DOI: 10.3389/fmicb.2015.01570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/27/2015] [Indexed: 12/28/2022] Open
Abstract
Brucellosis is one of the most common zoonotic epidemics worldwide. Brucella, the etiological pathogen of brucellosis, has unique virulence characteristics, including the ability to survive within the host cell. Hfq is a bacterial chaperone protein that is involved in the survival of the pathogen under stress conditions. Moreover, hfq affects the expression of a large number of target genes. In the present study, we characterized the expression and regulatory patterns of the target genes of Hfq during brucellosis. The results revealed that hfq expression is highly induced in macrophages at the early infection stage and at the late stage of mouse infection. Several genes related to virulence, including omp25, omp31, vjbR, htrA, gntR, and dnaK, were found to be regulated by hfq during infection in BALB/c mice. Gene expression and cytokine secretion analysis revealed that an hfq-deletion mutant induced different cytokine profiles compared with that induced by 16M. Infection with the hfq-deletion mutant induced protective immune responses against 16M challenge. Together, these results suggest that hfq is induced during infection and its deletion results in significant attenuation which affects the host immune response caused by Brucella infection. By regulating genes related to virulence, hfq promotes the virulence of Brucella. The unique characteristics of the hfq-deletion mutant, including its decreased virulence and the ability to induce protective immune response upon infection, suggest that it represents an attractive candidate for the design of a live attenuated vaccine against Brucella.
Collapse
Affiliation(s)
- Shuangshuang Lei
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Yuehua Ke
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Mingjuan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Xiaoyang Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Hang Ren
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Chang An
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Jiuyun Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Jiuxuan Yu
- Institute of Disease Control and Prevention, Academy of Military Medical ScienceBeijing, China; Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical UniversityHohhot, China
| | - Jie Xu
- Institute of Disease Control and Prevention, Academy of Military Medical Science Beijing, China
| | - Yefeng Qiu
- Experimental Animal Center, Academy of Medical Sciences Beijing, China
| | - Yanchun Shi
- Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University Hohhot, China
| | - Yufei Wang
- Department of Laboratory Medicine, The General Hospital of Chinese People's Armed Police Forces Beijing, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University Chengdu, China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, Academy of Military Medical ScienceBeijing, China; College of Medicine, Shihezi UniversityShihezi, China
| |
Collapse
|
22
|
Abstract
Brucellosis, caused by bacteria of the genus Brucella, is an important zoonotic infection that causes reproductive disease in domestic animals and chronic debilitating disease in humans. An intriguing aspect of Brucella infection is the ability of these bacteria to evade the host immune response, leading to pathogen persistence. Conversely, in the reproductive tract of infected animals, this stealthy pathogen is able to cause an acute severe inflammatory response. In this review, we discuss the different mechanisms used by Brucella to cause disease, with emphasis on its virulence factors and the dichotomy between chronic persistence and reproductive disease.
Collapse
Affiliation(s)
| | - Renee M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616; ,
| |
Collapse
|
23
|
The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells. Infect Immun 2015; 84:598-606. [PMID: 26667834 DOI: 10.1128/iai.01227-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023] Open
Abstract
The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway.
Collapse
|
24
|
Ke Y, Wang Y, Li W, Chen Z. Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol 2015; 5:72. [PMID: 26528442 PMCID: PMC4602199 DOI: 10.3389/fcimb.2015.00072] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.
Collapse
Affiliation(s)
- Yuehua Ke
- Institute of Disease Control and Prevention, AMMS Beijing, China
| | - Yufei Wang
- Department of Laboratory Medicine, General Hospital of Chinese People's Armed Police Forces Beijing, China
| | - Wengfeng Li
- Department of Orthopedics, The First Affiliated Hospital of General Hospital of People's Liberation Army Beijing, China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, AMMS Beijing, China
| |
Collapse
|
25
|
Iacoboni PA, Hasenauer FC, Caffaro ME, Gaido A, Rossetto C, Neumann RD, Salatin A, Bertoni E, Poli MA, Rossetti CA. Polymorphisms at the 3′ untranslated region of SLC11A1 gene are associated with protection to Brucella infection in goats. Vet Immunol Immunopathol 2014; 160:230-4. [DOI: 10.1016/j.vetimm.2014.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/04/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
26
|
Xavier MN, Winter MG, Spees AM, den Hartigh AB, Nguyen K, Roux CM, Silva TMA, Atluri VL, Kerrinnes T, Keestra AM, Monack DM, Luciw PA, Eigenheer RA, Bäumler AJ, Santos RL, Tsolis RM. PPARγ-mediated increase in glucose availability sustains chronic Brucella abortus infection in alternatively activated macrophages. Cell Host Microbe 2013; 14:159-70. [PMID: 23954155 PMCID: PMC3777723 DOI: 10.1016/j.chom.2013.07.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/17/2013] [Accepted: 06/20/2013] [Indexed: 01/16/2023]
Abstract
Eradication of persistent intracellular bacterial pathogens with antibiotic therapy is often slow or incomplete. However, strategies to augment antibiotics are hampered by our poor understanding of the nutritional environment that sustains chronic infection. Here we show that the intracellular pathogen Brucella abortus survives and replicates preferentially in alternatively activated macrophages (AAMs), which are more abundant during chronic infection. A metabolic shift induced by peroxisome proliferator-activated receptor γ (PPARγ), which increases intracellular glucose availability, is identified as a causal mechanism promoting enhanced bacterial survival in AAMs. Glucose uptake was crucial for increased replication of B. abortus in AAMs, and for chronic infection, as inactivation of the bacterial glucose transporter gluP reduced both intracellular survival in AAMs and persistence in mice. Thus, a shift in intracellular nutrient availability induced by PPARγ promotes chronic persistence of B. abortus within AAMs, and targeting this pathway may aid in eradicating chronic infection.
Collapse
Affiliation(s)
- Mariana N. Xavier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Alanna M. Spees
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Andreas B. den Hartigh
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Kim Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Christelle M. Roux
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Teane M. A. Silva
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Vidya L. Atluri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Tobias Kerrinnes
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - A. Marijke Keestra
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Denise M. Monack
- Department of Microbiology & Immunology, School of Medicine, Stanford University, Palo Alto, CA, 94305, USA
| | - Paul A. Luciw
- Center for Comparative Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Richard A. Eigenheer
- Proteomics Core Facility, University of California at Davis Genome Center, Davis, CA, 95616, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| | - Renato L. Santos
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, 95616, USA
| |
Collapse
|
27
|
Xavier MN, Winter MG, Spees AM, Nguyen K, Atluri VL, Silva TMA, Bäumler AJ, Müller W, Santos RL, Tsolis RM. CD4+ T cell-derived IL-10 promotes Brucella abortus persistence via modulation of macrophage function. PLoS Pathog 2013; 9:e1003454. [PMID: 23818855 PMCID: PMC3688575 DOI: 10.1371/journal.ppat.1003454] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022] Open
Abstract
Evasion of host immune responses is a prerequisite for chronic bacterial diseases; however, the underlying mechanisms are not fully understood. Here, we show that the persistent intracellular pathogen Brucella abortus prevents immune activation of macrophages by inducing CD4(+)CD25(+) T cells to produce the anti-inflammatory cytokine interleukin-10 (IL-10) early during infection. IL-10 receptor (IL-10R) blockage in macrophages resulted in significantly higher NF-kB activation as well as decreased bacterial intracellular survival associated with an inability of B. abortus to escape the late endosome compartment in vitro. Moreover, either a lack of IL-10 production by T cells or a lack of macrophage responsiveness to this cytokine resulted in an increased ability of mice to control B. abortus infection, while inducing elevated production of pro-inflammatory cytokines, which led to severe pathology in liver and spleen of infected mice. Collectively, our results suggest that early IL-10 production by CD25(+)CD4(+) T cells modulates macrophage function and contributes to an initial balance between pro-inflammatory and anti-inflammatory cytokines that is beneficial to the pathogen, thereby promoting enhanced bacterial survival and persistent infection.
Collapse
Affiliation(s)
- Mariana N. Xavier
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
- Departamento de Clínica e Cirurgia Veterinárias, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Alanna M. Spees
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Kim Nguyen
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Vidya L. Atluri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Teane M. A. Silva
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
- Departamento de Clínica e Cirurgia Veterinárias, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
28
|
Abstract
Host cytokine responses to Brucella abortus infection are elicited predominantly by the deployment of a type IV secretion system (T4SS). However, the mechanism by which the T4SS elicits inflammation remains unknown. Here we show that translocation of the T4SS substrate VceC into host cells induces proinflammatory responses. Ectopically expressed VceC interacted with the endoplasmic reticulum (ER) chaperone BiP/Grp78 and localized to the ER of HeLa cells. ER localization of VceC required a transmembrane domain in its N terminus. Notably, the expression of VceC resulted in reorganization of ER structures. In macrophages, VceC was required for B. abortus-induced inflammation by induction of the unfolded protein response by a process requiring inositol-requiring transmembrane kinase/endonuclease 1. Altogether, these findings suggest that translocation of the T4SS effector VceC induces ER stress, which results in the induction of proinflammatory host cell responses during B. abortus infection. IMPORTANCE Brucella species are pathogens that require a type IV secretion system (T4SS) to survive in host cells and to maintain chronic infection. By as-yet-unknown pathways, the T4SS also elicits inflammatory responses in infected cells. Here we show that inflammation caused by the T4SS results in part from the sensing of a T4SS substrate, VceC, that localizes to the endoplasmic reticulum (ER), an intracellular site of Brucella replication. Possibly via binding of the ER chaperone BiP, VceC causes ER stress with concomitant expression of proinflammatory cytokines. Thus, induction of the unfolded protein response may represent a novel pathway by which host cells can detect pathogens deploying a T4SS.
Collapse
|
29
|
Palomares-Resendiz E, Arellano-Reynoso B, Hernández-Castro R, Tenorio-Gutiérrez V, Salas-Téllez E, Suárez-Güemes F, Díaz-Aparicio E. Immunogenic response of Brucella canis virB10 and virB11 mutants in a murine model. Front Cell Infect Microbiol 2012; 2:35. [PMID: 22919627 PMCID: PMC3417389 DOI: 10.3389/fcimb.2012.00035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 03/02/2012] [Indexed: 12/05/2022] Open
Abstract
The virB locus, which encodes the type IV secretion system, is a major component of virulence in Brucella. A non-polar virB10 mutant and a virB11 deletion mutant were constructed in Brucella canis. In the mouse model, both mutants were cleared at day 21 post-infection, indicating reduced virulence in mice. After challenging with wild-type B. canis, the amounts of CFU recovered at day 15 were significantly lower in the group previously vaccinated with the virB10 mutant. Levels of IgG1, IgG2a, IgG2b, and IgM, the induction of the cytokines IL-2, IL-4, IL-10, and the production of IFN-γ were measured in lymphocyte cultures. All strains elicited similar levels of different antibody isotype profiles, and no significant differences were detected (P < 0.05). The wild-type strain induced a rapid and strong INF-γ response at 24 h, while both mutants induced mild INF-γ responses at 24 h, which remained constant over the course of sampling. Our results suggest that the virB mutants elicit a protective immunity and may be considered as candidates for studies to be conducted in dogs against canine brucellosis.
Collapse
Affiliation(s)
- E Palomares-Resendiz
- CENID Microbiología, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias Mexico City, México
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Brucellosis is a global disease of domestic and wild mammals that is caused by intracellular bacteria of the genus Brucella. Although humans are not a natural reservoir for Brucella, infection in the human population is common in many countries, and brucellosis is one of the most common zoonotic infections. Brucella species have evolved to avoid the host's immune system and infection is usually characterized by long-term persistence of the bacteria. One important Brucella virulence factor for intracellular survival and persistence in the host is the type IV secretion system. This review will discuss the Brucella type IV secretion system in detail, including current knowledge of architecture and regulation, as well as the newly identified effector substrates that this system transports into host cells.
Collapse
Affiliation(s)
- Maarten F de Jong
- Department of Medical Microbiology & Immunology, University of California, Davis, CA, USA
| | | |
Collapse
|
31
|
Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Tsolis RM. Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol 2012; 65:523-41. [PMID: 21939378 DOI: 10.1146/annurev-micro-090110-102905] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brucellosis is a zoonotic infection caused primarily by the bacterial pathogens Brucella melitensis and B. abortus. It is acquired by consumption of unpasteurized dairy products or by contact with infected animals. Globally, it is one of the most widespread zoonoses, with 500,000 new cases reported each year. In endemic areas, Brucella infections represent a serious public health problem that results in significant morbidity and economic losses. An important feature of the disease is persistent bacterial colonization of the reticuloendothelial system. In this review we discuss recent insights into mechanisms of intracellular survival and immune evasion that contribute to systemic persistence by the pathogenic Brucella species.
Collapse
Affiliation(s)
- Vidya L Atluri
- Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
32
|
Paredes-Cervantes V, Flores-Mejía R, Moreno-Lafont MC, Lanz-Mendoza H, Tello-López ÁT, Castillo-Vera J, Pando-Robles V, Hurtado-Sil G, González-González E, Rodríguez-Cortés O, Gutiérrez-Hoya A, Vega-Ramírez MT, López-Santiago R. Comparative proteome analysis of Brucella abortus 2308 and its virB type IV secretion system mutant reveals new T4SS-related candidate proteins. J Proteomics 2011; 74:2959-71. [PMID: 21875698 DOI: 10.1016/j.jprot.2011.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 06/27/2011] [Accepted: 07/24/2011] [Indexed: 01/18/2023]
Abstract
Brucella abortus is an alpha-2 proteobacteria with a type IV secretion system (T4SS) known as virB, which is necessary to gain virulence by building up a replicative vacuole associated with the endoplasmic reticulum of the host cell. A virB T4SS mutant of the B. abortus 2308 strain and its wild-type strain were grown in acid medium in order to obtain and analyze their proteomes, looking for putative proteins that may serve as T4SS substrates and those that may be subjected to T4SS regulation. A total of 47 overexpressed and 22 underexpressed proteins from the virB T4SS mutant strain were selected and sequenced. Some of the 69 analyzed proteins have not been described before either as over or under-expressed in relation to a virB T4SS mutation, whereas some of them have been already described by other groups as potentially important secretory proteins in other Brucella species. An important number of the proteins identified are outer membrane and periplasmic space protein, which makes them become particularly important new T4SS-related candidate proteins.
Collapse
|
33
|
Comparative analysis of the early transcriptome of Brucella abortus--infected monocyte-derived macrophages from cattle naturally resistant or susceptible to brucellosis. Res Vet Sci 2010; 91:40-51. [PMID: 20932540 DOI: 10.1016/j.rvsc.2010.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/30/2010] [Accepted: 09/04/2010] [Indexed: 11/27/2022]
Abstract
Brucellosis is a worldwide zoonotic infectious disease that has a significant economic impact on animal production and human public health. We characterized the gene expression profile of B. abortus-infected monocyte-derived macrophages (MDMs) from naïve cattle naturally resistant (R) or susceptible (S) to brucellosis using a cDNA microarray technology. Our data indicate that (1) B. abortus induced a slightly increased genome activation in R MDMs and a down-regulated transcriptome in S MDMs, during the onset of infection, (2) R MDMs had the ability to mount a type 1 immune response against B. abortus infection which was impaired in S cells, and (3) the host cell activity was not altered after 12 h post-B. abortus infection in R MDMs while the cell cycle was largely arrested in infected S MDMs at 12 h p.i. These results contribute to an improved understanding of how host responses may be manipulated to prevent infection by brucellae.
Collapse
|
34
|
de Jong MF, Rolán HG, Tsolis RM. Innate immune encounters of the (Type) 4th kind: Brucella. Cell Microbiol 2010; 12:1195-202. [PMID: 20670294 DOI: 10.1111/j.1462-5822.2010.01498.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In humans, pathogenic Brucella species cause a febrile illness known as brucellosis. A key pathogenic trait of this group of organisms is their ability to survive in immune cells and persist in tissues of the reticuloendothelial system, a process that requires the function of a Type IV secretion system. In contrast to other well-studied Gram-negative bacteria, Brucella spp. do not cause inflammation at the site of invasion, but have a latency period of 2-4 weeks before the onset of symptoms. This review discusses several mechanisms that allow Brucella spp. both to evade detection by pattern recognition receptors of the innate immune system and suppress their signalling. In contrast to these stealth features, the VirB Type IV secretion system, which mediates survival within phagocytic cells, stimulates innate immune responses in vivo. The responses stimulated by this virulence factor are sufficient to check bacterial growth, but not to elicit sterilizing immunity. The result is a stand-off between host and pathogen that results in persistent infection.
Collapse
Affiliation(s)
- Maarten F de Jong
- Department of Medical Microbiology & Immunology, University of California at Davis, Davis, CA, USA
| | | | | |
Collapse
|
35
|
Delpino MV, Barrionuevo P, Scian R, Fossati CA, Baldi PC. Brucella-infected hepatocytes mediate potentially tissue-damaging immune responses. J Hepatol 2010; 53:145-54. [PMID: 20452697 DOI: 10.1016/j.jhep.2010.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 12/29/2009] [Accepted: 02/01/2010] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Hepatic involvement is frequent in human brucellosis. While different histopathological lesions have been reported in these patients, the underlying cellular and molecular mechanisms have not been addressed. METHODS This study assessed whether Brucella abortus can infect a human hepatoma cell line and induce a proinflammatory response in these cells. RESULTS The bacterium not only infected the human hepatoma cell line HepG2 but also exhibited intracellular replication. The infection induced hepatoma cells to secrete IL-8, and supernatants from Brucella-infected hepatoma cells were shown to induce the migration of human neutrophils. The infection also induced the expression of the intercellular adhesion molecule ICAM-1 on hepatoma cells, and the adhesion of neutrophils to these cells was significantly higher than to uninfected hepatoma cells. ICAM-1 expression was also induced by stimulation of hepatoma cells with supernatants from Brucella-infected neutrophils. While Brucella infection did not induce the expression of matrix metalloproteinases (MMPs) in hepatoma cells, it significantly induced MMP-9 in neutrophils. Hepatoma cell apoptosis was significantly induced by B. abortus infection and also by stimulation with supernatants from Brucella-infected neutrophils. CONCLUSIONS The present study provides clues regarding potential mechanisms of tissue damage during liver brucellosis.
Collapse
Affiliation(s)
- M Victoria Delpino
- Instituto de Estudios de la Inmunidad Humoral (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
36
|
Neta AVC, Mol JP, Xavier MN, Paixão TA, Lage AP, Santos RL. Pathogenesis of bovine brucellosis. Vet J 2010; 184:146-55. [DOI: 10.1016/j.tvjl.2009.04.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/05/2009] [Accepted: 04/13/2009] [Indexed: 12/14/2022]
|
37
|
Nondividing but metabolically active gamma-irradiated Brucella melitensis is protective against virulent B. melitensis challenge in mice. Infect Immun 2009; 77:5181-9. [PMID: 19703982 DOI: 10.1128/iai.00231-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Brucella spp. are gram-negative bacteria that cause the most frequent zoonotic disease worldwide, with more than 500,000 human infections yearly; however, no human vaccine is currently available. As with other intracellular organisms, cytotoxic mechanisms against infected cells are thought to have an important role in controlling infection and mediating long-term immunity. Live attenuated strains developed for use in animals elicit protection but retain unacceptable levels of virulence. Thus, the optimal design for a brucellosis vaccine requires a nonliving vaccine that confers effective immunity. Historically, inactivation methods such as chemical or heat treatment successfully impair Brucella reproductive capacity; nevertheless, metabolically inactive vaccines (subunit or killed) present very limited efficacy. Hence, we hypothesized that bacterial metabolism plays a major role in creating the proper antigenic and adjuvant properties required for efficient triggering of protective responses. Here, we demonstrate that inactivation of Brucella melitensis by gamma-irradiation inhibited its replication capability and yet retained live-Brucella protective features. Irradiated Brucella possessed metabolic and transcriptional activity, persisted in macrophages, generated antigen-specific cytotoxic T cells, and protected mice against virulent bacterial challenge, without signs of residual virulence. In conclusion, pathogen metabolic activity has a positive role in shaping protective responses, and the generation of inactivated and yet metabolically active microbes is a promising strategy for safely vaccinating against intracellular organisms such as B. melitensis.
Collapse
|
38
|
Abstract
Type IV secretion (T4S) systems are versatile machines involved in many processes relevant to bacterial virulence, such as horizontal DNA transfer and effector translocation into human cells. A recent workshop organized by the International University of Andalousia in Baeza, Spain, covered most aspects of bacterial T4S relevant to human disease, ranging from the structural and mechanistic analysis of the T4S systems to the physiological roles of the translocated effector proteins in subverting cellular functions in infected humans. This review reports the highlights from this workshop, which include the first visualization of a T4S system core complex spanning both membranes of Gram-negative bacteria, the identification of the first host receptors for T4S systems, the identification and characterization of novel T4S effector proteins, the analysis of the molecular function of effector proteins in subverting human cellular functions and an analysis of the role of T4S systems in the evolution of pathogenic bacteria. Our increasing knowledge of the biology of T4S systems improves our ability to exploit them as biotechnological tools or to use them as novel targets for a new generation of antimicrobials.
Collapse
Affiliation(s)
- Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria, and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC-IDICAN, Santander, Spain
| | | | | |
Collapse
|
39
|
Natural antibody contributes to host defense against an attenuated Brucella abortus virB mutant. Infect Immun 2009; 77:3004-13. [PMID: 19364836 DOI: 10.1128/iai.01114-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Brucella abortus is an intracellular pathogen that persists within phagocytic cells of the reticuloendothelial system. To identify in vivo interactions between B. abortus and the host that lead to persistent infection, we studied the persistence of B. abortus and an isogenic virB mutant deficient in the VirB type IV secretion system (T4SS) in knockout mice. In contrast to control mice, mice lacking B cells (Igh6(-/-)) were permissive for infection with the attenuated virB mutant. To determine the basis for this phenotype, we characterized immune functions of Igh6(-/-) mice in the context of B. abortus infection. Igh6(-/-) mice had greater numbers of extracellular bacteria in the spleen and increased early expression of proinflammatory cytokines during B. abortus infection. Further, a virB mutant, despite its wild-type level of survival, failed to elicit microgranuloma formation in the spleens of Igh6(-/-) mice, suggesting a requirement for the T4SS to elicit this pathological change. Passive transfer of immunoglobulin G from naïve mice restored the ability of Igh6(-/-) mice to control the persistence of the virB mutant by a complement-independent mechanism. Further, adoptive transfer of CD11b(+) cells from C57BL/6 mice to Igh6(-/-) mice restored the ability of the knockout mice to limit the replication of the virB mutant in the spleen, suggesting that the Igh6(-)(/)(-) mutation affects phagocyte function and that phagocyte function can be restored by natural antibody.
Collapse
|