1
|
Gies SL, Tessmer MH, Frank DW, Feix JB. Site-directed spin label EPR studies of the structure and membrane interactions of the bacterial phospholipase ExoU. APPLIED MAGNETIC RESONANCE 2024; 55:279-295. [PMID: 39175603 PMCID: PMC11340903 DOI: 10.1007/s00723-023-01620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 08/24/2024]
Abstract
Site-directed spin labeling (SDSL) has been invaluable in the analysis of protein structure and dynamics, and has been particularly useful in the study of membrane proteins. ExoU, an important virulence factor in Pseudomonas aeruginosa infections, is a bacterial phospholipase A2 that functions at the membrane - aqueous interface. Using SDSL methodology developed in the Hubbell lab, we find that the region surrounding the catalytic site of ExoU is buried within the tertiary structure of the protein in the soluble, apoenzyme state, but shows a significant increase in dynamics upon membrane binding and activation by ubiquitin. Continuous wave (CW) power saturation EPR studies show that the conserved serine hydrolase motif of ExoU localizes to the membrane surface in the active, holoenzyme state. SDSL studies on the C-terminal four-helix bundle (4HB) domain of ExoU similarly show a co-operative effect of ubiquitin binding and membrane association. CW power saturation studies of the 4HB domain indicate that two interhelical loops intercalate into the lipid bilayer upon formation of the holoenzyme state, anchoring ExoU at the membrane surface. Together these studies establish the orientation and localization of ExoU and the membrane surface, and illustrate the power of SDSL as applied to peripheral membrane proteins.
Collapse
Affiliation(s)
- Samantha L. Gies
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Current address: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Maxx H. Tessmer
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Current address: Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jimmy B. Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
2
|
Constantino-Teles P, Jouault A, Touqui L, Saliba AM. Role of Host and Bacterial Lipids in Pseudomonas aeruginosa Respiratory Infections. Front Immunol 2022; 13:931027. [PMID: 35860265 PMCID: PMC9289105 DOI: 10.3389/fimmu.2022.931027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of the most common agents of respiratory infections and has been associated with high morbidity and mortality rates. The ability of P. aeruginosa to cause severe respiratory infections results from the coordinated action of a variety of virulence factors that promote bacterial persistence in the lungs. Several of these P. aeruginosa virulence mechanisms are mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer membrane vesicles. Other mechanisms arise from the activity of P. aeruginosa enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate host lipid signaling pathways. Moreover, host phospholipases, such as cPLA2α and sPLA2, are also activated during the infectious process and play important roles in P. aeruginosa pathogenesis. These mechanisms affect key points of the P. aeruginosa-host interaction, such as: i) biofilm formation that contributes to bacterial colonization and survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of inflammatory responses, and iv) escape from host defenses. In this mini-review, we present the lipid-based mechanism that interferes with the establishment of P. aeruginosa in the lungs and discuss how bacterial and host lipids can impact the outcome of P. aeruginosa respiratory infections.
Collapse
Affiliation(s)
- Pamella Constantino-Teles
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Albane Jouault
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Centre de Recherche Saint-Antoine, Inserm, Institut Pasteur, Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Paris, France
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Alessandra Mattos Saliba,
| |
Collapse
|
3
|
Hardy KS, Tuckey AN, Renema P, Patel M, Al-Mehdi AB, Spadafora D, Schlumpf CA, Barrington RA, Alexeyev MF, Stevens T, Pittet JF, Wagener BM, Simmons JD, Alvarez DF, Audia JP. ExoU Induces Lung Endothelial Cell Damage and Activates Pro-Inflammatory Caspase-1 during Pseudomonas aeruginosa Infection. Toxins (Basel) 2022; 14:toxins14020152. [PMID: 35202178 PMCID: PMC8878379 DOI: 10.3390/toxins14020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Gram-negative, opportunistic pathogen Pseudomonas aeruginosa utilizes a type III secretion system to inject exoenzyme effectors into a target host cell. Of the four best-studied exoenzymes, ExoU causes rapid cell damage and death. ExoU is a phospholipase A2 (PLA2) that hydrolyses host cell membranes, and P. aeruginosa strains expressing ExoU are associated with poor outcomes in critically ill patients with pneumonia. While the effects of ExoU on lung epithelial and immune cells are well studied, a role for ExoU in disrupting lung endothelial cell function has only recently emerged. Lung endothelial cells maintain a barrier to fluid and protein flux into tissue and airspaces and regulate inflammation. Herein, we describe a pulmonary microvascular endothelial cell (PMVEC) culture infection model to examine the effects of ExoU. Using characterized P. aeruginosa strains and primary clinical isolates, we show that strains expressing ExoU disrupt PMVEC barrier function by causing substantial PMVEC damage and lysis, in a PLA2-dependent manner. In addition, we show that strains expressing ExoU activate the pro-inflammatory caspase-1, in a PLA2-dependent manner. Considering the important roles for mitochondria and oxidative stress in regulating inflammatory responses, we next examined the effects of ExoU on reactive oxygen species production. Infection of PMVECs with P. aeruginosa strains expressing ExoU triggered a robust oxidative stress compared to strains expressing other exoenzyme effectors. We also provide evidence that, intriguingly, ExoU PLA2 activity was detectable in mitochondria and mitochondria-associated membrane fractions isolated from P. aeruginosa-infected PMVECs. Interestingly, ExoU-mediated activation of caspase-1 was partially inhibited by reactive oxygen species scavengers. Together, these data suggest ExoU exerts pleiotropic effects on PMVEC function during P. aeruginosa infection that may inhibit endothelial barrier and inflammatory functions.
Collapse
Affiliation(s)
- Kierra S. Hardy
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda N. Tuckey
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
| | - Phoibe Renema
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Biomedical Sciences, College of Allied Health, University of South Alabama Mobile, Mobile, AL 36688, USA
| | - Mita Patel
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Abu-Bakr Al-Mehdi
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Domenico Spadafora
- Flow Cytometry Core Lab, College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| | - Cody A. Schlumpf
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
| | - Robert A. Barrington
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Flow Cytometry Core Lab, College of Medicine, University of South Alabama, Mobile, AL 36688, USA;
| | - Mikhail F. Alexeyev
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Troy Stevens
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, Birmingham School of Medicine, University of Alabama, Birmingham, AL 35294, USA; (J.-F.P.); (B.M.W.)
| | - Brant M. Wagener
- Department of Anesthesiology and Perioperative Medicine, Birmingham School of Medicine, University of Alabama, Birmingham, AL 35294, USA; (J.-F.P.); (B.M.W.)
| | - Jon D. Simmons
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Diego F. Alvarez
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (K.S.H.); (A.N.T.); (C.A.S.); (R.A.B.)
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (P.R.); (M.P.); (A.-B.A.-M.); (M.F.A.); (T.S.); (J.D.S.); (D.F.A.)
- Correspondence:
| |
Collapse
|
4
|
Hardy KS, Tessmer MH, Frank DW, Audia JP. Perspectives on the Pseudomonas aeruginosa Type III Secretion System Effector ExoU and Its Subversion of the Host Innate Immune Response to Infection. Toxins (Basel) 2021; 13:880. [PMID: 34941717 PMCID: PMC8708460 DOI: 10.3390/toxins13120880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic, Gram-negative pathogen and an important cause of hospital acquired infections, especially in immunocompromised patients. Highly virulent P. aeruginosa strains use a type III secretion system (T3SS) to inject exoenzyme effectors directly into the cytoplasm of a target host cell. P. aeruginosa strains that express the T3SS effector, ExoU, associate with adverse outcomes in critically ill patients with pneumonia, owing to the ability of ExoU to rapidly damage host cell membranes and subvert the innate immune response to infection. Herein, we review the structure, function, regulation, and virulence characteristics of the T3SS effector ExoU, a highly cytotoxic phospholipase A2 enzyme.
Collapse
Affiliation(s)
- Kierra S. Hardy
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36608, USA;
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36608, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA;
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36608, USA;
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36608, USA
| |
Collapse
|
5
|
Tessmer MH, DeCero SA, Del Alamo D, Riegert MO, Meiler J, Frank DW, Feix JB. Characterization of the ExoU activation mechanism using EPR and integrative modeling. Sci Rep 2020; 10:19700. [PMID: 33184362 PMCID: PMC7665212 DOI: 10.1038/s41598-020-76023-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
ExoU, a type III secreted phospholipase effector of Pseudomonas aeruginosa, serves as a prototype to model large, dynamic, membrane-associated proteins. ExoU is synergistically activated by interactions with membrane lipids and ubiquitin. To dissect the activation mechanism, structural homology was used to identify an unstructured loop of approximately 20 residues in the ExoU amino acid sequence. Mutational analyses indicate the importance of specific loop amino acid residues in mediating catalytic activity. Engineered disulfide cross-links show that loop movement is required for activation. Site directed spin labeling EPR and DEER (double electron-electron resonance) studies of apo and holo states demonstrate local conformational changes at specific sites within the loop and a conformational shift of the loop during activation. These data are consistent with the formation of a substrate-binding pocket providing access to the catalytic site. DEER distance distributions were used as constraints in RosettaDEER to construct ensemble models of the loop in both apo and holo states, significantly extending the range for modeling a conformationally dynamic loop.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Samuel A DeCero
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Diego Del Alamo
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Molly O Riegert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig SAC, Germany
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Varela-Chavez C, Blondel A, Popoff MR. Bacterial intracellularly active toxins: Membrane localisation of the active domain. Cell Microbiol 2020; 22:e13213. [PMID: 32353188 DOI: 10.1111/cmi.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
Abstract
Numerous bacterial toxins exert their activity by inactivating or modulating a specific intracellular host target. For this purpose, these toxins have developed efficient strategies to overcome the different host cell defences including specific binding to cell surface, internalisation, passage through the endosome or plasma membrane, exploiting intracellular trafficking and addressing to intracellular targets. Several intracellularly active toxins deliver an active domain into the cytosol that interacts with a target localised to the inner face of the plasma membrane. Thus, the large clostridial glucosylating toxins (LCGTs) target Rho/Ras-GTPases, certain virulence factors of Gram negative bacteria, Rho-GTPases, while Pasteurella multocida toxin (PMT) targets trimeric G-proteins. Others such as botulinum neurotoxins and tetanus neurotoxin have their substrate on synaptic vesicle membrane. LCGTs, PMT, and certain virulence factors from Vibrio sp. show a particular structure constituted of a four-helix bundle membrane (4HBM) protruding from the catalytic site that specifically binds to the membrane phospholipids and then trap the catalytic domain at the proximity of the membrane anchored substrate. Structural and functional analysis indicate that the 4HBM tip of the Clostridium sordellii lethal toxin (TcsL) from the LCGT family contain two loops forming a cavity that mediates the binding to phospholipids and more specifically to phosphatidylserine.
Collapse
Affiliation(s)
| | - Arnaud Blondel
- Unité de Bio-Informatique Structurale, Institut Pasteur, Paris, France
| | | |
Collapse
|
7
|
A Potent Anti-SpuE Antibody Allosterically Inhibits Type III Secretion System and Attenuates Virulence of Pseudomonas Aeruginosa. J Mol Biol 2019; 431:4882-4896. [DOI: 10.1016/j.jmb.2019.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/12/2019] [Accepted: 10/20/2019] [Indexed: 01/12/2023]
|
8
|
Yahalom A, Davidov G, Kolusheva S, Shaked H, Barber-Zucker S, Zarivach R, Chill JH. Structure and membrane-targeting of a Bordetella pertussis effector N-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183054. [DOI: 10.1016/j.bbamem.2019.183054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
|
9
|
Springer TI, Reid TE, Gies SL, Feix JB. Interactions of the effector ExoU from Pseudomonas aeruginosa with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes. J Biol Chem 2019; 294:19012-19021. [PMID: 31662432 DOI: 10.1074/jbc.ra119.010278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic multidrug-resistant pathogen and a common cause of infection in cystic fibrosis and ventilator-associated pneumonia and in burn and wound patients. P. aeruginosa uses its type III secretion system to secrete various effector proteins directly into mammalian host cells. ExoU is a potent type III secretion system effector that, after secretion, localizes to the inner cytoplasmic membrane of eukaryotic cells, where it exerts its phospholipase A2 activity upon interacting with ubiquitin and/or ubiquitinated proteins. In this study, we used site-directed spin-labeling electron paramagnetic resonance spectroscopy to examine the interaction of ExoU with soluble analogs of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2). We found that dioctanoyl PI(4,5)P2 binds to and induces conformational changes in a C-terminal four-helix bundle (4HB) domain of ExoU implicated previously in membrane binding. Other soluble phosphoinositides also interacted with the 4HB but less effectively. Molecular modeling and ligand docking studies indicated the potential for numerous hydrogen bond interactions within and between interhelical loops of the 4HB and suggested several potential interaction sites for PI(4,5)P2 Site-directed mutagenesis experiments confirmed that the side chains of Gln-623 and Arg-661 play important roles in mediating PI(4,5)P2-induced conformational changes in ExoU. These results support a mechanism in which direct interactions with phosphatidylinositol-containing lipids play an essential role in targeting ExoU to host membrane bilayers. Molecules or peptides that block this interaction may prove useful in preventing the cytotoxic effects of ExoU to mitigate the virulence of P. aeruginosa strains that express this potent phospholipase toxin.
Collapse
Affiliation(s)
- Tzvia I Springer
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, Wisconsin 53097
| | - Terry-Elinor Reid
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, Wisconsin 53097
| | - Samantha L Gies
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
10
|
Identification and Verification of Ubiquitin-Activated Bacterial Phospholipases. J Bacteriol 2019; 201:JB.00623-18. [PMID: 30455285 DOI: 10.1128/jb.00623-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
ExoU is a potent type III secretion system effector that is injected directly into mammalian cells by the opportunistic pathogen Pseudomonas aeruginosa As a ubiquitin-activated phospholipase A2 (PLA2), ExoU exhibits cytotoxicity by cleaving membrane phospholipids, resulting in lysis of the host cells and inhibition of the innate immune response. Recently, ExoU has been established as a model protein for a group of ubiquitin-activated PLA2 enzymes encoded by a variety of bacteria. Bioinformatic analyses of homologous proteins is a powerful approach that can complement and enhance the overall understanding of protein structure and function. To conduct homology studies, it is important to have efficient and effective tools to screen and to validate the putative homologs of interest. Here we make use of an Escherichia coli-based dual expression system to screen putative ubiquitin-activated PLA2 enzymes from a variety of bacteria that are known to colonize humans and to cause human infections. The screen effectively identified multiple ubiquitin-activated phospholipases, which were validated using both biological and biochemical techniques. In this study, two new ExoU orthologs were identified and the ubiquitin activation of the rickettsial enzyme RP534 was verified. Conversely, ubiquitin was not found to regulate the activity of several other tested enzymes. Based on structural homology analyses, functional properties were predicted for AxoU, a unique member of the group expressed by Achromobacter xylosoxidans IMPORTANCE Bacterial phospholipases act as intracellular and extracellular enzymes promoting the destruction of phospholipid barriers and inflammation during infections. Identifying enzymes with a common mechanism of activation is an initial step in understanding structural and functional properties. These properties serve as critical information for the design of specific inhibitors to reduce enzymatic activity and ameliorate host cell death. In this study, we identify and verify cytotoxic PLA2 enzymes from several bacterial pathogens. Similar to the founding member of the group, ExoU, these enzymes share the property of ubiquitin-mediated activation. The identification and validation of potential toxins from multiple bacterial species provide additional proteins from which to derive structural insights that could lead to paninhibitors useful for treating a variety of infections.
Collapse
|
11
|
Feix JB, Kohn S, Tessmer MH, Anderson DM, Frank DW. Conformational Changes and Membrane Interaction of the Bacterial Phospholipase, ExoU: Characterization by Site-Directed Spin Labeling. Cell Biochem Biophys 2018; 77:79-87. [PMID: 30047043 DOI: 10.1007/s12013-018-0851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
Abstract
Numerous pathogenic bacteria produce proteins evolved to facilitate their survival and dissemination by modifying the host environment. These proteins, termed effectors, often play a significant role in determining the virulence of the infection. Consequently, bacterial effectors constitute an important class of targets for the development of novel antibiotics. ExoU is a potent phospholipase effector produced by the opportunistic pathogen Pseudomonas aeruginosa. Previous studies have established that the phospholipase activity of ExoU requires non-covalent interaction with ubiquitin, however the molecular details of the mechanism of activation and the manner in which ExoU associates with a target lipid bilayer are not understood. In this review we describe our recent studies using site-directed spin labeling (SDSL) and EPR spectroscopy to elucidate the conformational changes and membrane interactions that accompany activation of ExoU. We find that ubiquitin binding and membrane interaction act synergistically to produce structural transitions that occur upon ExoU activation, and that the C-terminal four-helix bundle of ExoU functions as a phospholipid-binding domain, facilitating the association of ExoU with the membrane surface.
Collapse
Affiliation(s)
- Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Samantha Kohn
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Maxx H Tessmer
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David M Anderson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dara W Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
12
|
Phosphatidylinositol 4,5-Bisphosphate-Dependent Oligomerization of the Pseudomonas aeruginosa Cytotoxin ExoU. Infect Immun 2017; 86:IAI.00402-17. [PMID: 28993456 DOI: 10.1128/iai.00402-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022] Open
Abstract
The Pseudomonas aeruginosa type III secretion system delivers effector proteins directly into target cells, allowing the bacterium to modulate host cell functions. ExoU is the most cytotoxic of the known effector proteins and has been associated with more severe infections in humans. ExoU is a patatin-like A2 phospholipase requiring the cellular host factors phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and ubiquitin for its activation in vitro We demonstrated that PI(4,5)P2 also induces the oligomerization of ExoU and that this PI(4,5)P2-mediated oligomerization does not require ubiquitin. Single amino acid substitutions in the C-terminal membrane localization domain of ExoU reduced both its activity and its ability to form higher-order complexes in transfected cells and in vitro Combining inactive truncated ExoU proteins partially restored phospholipase activity and cytotoxicity, indicating that ExoU oligomerization may have functional significance. Our results indicate that PI(4,5)P2 induces the oligomerization of ExoU, which may be a mechanism by which this coactivator enhances the phospholipase activity of ExoU.
Collapse
|
13
|
Zhang J, Wang Y, Guo H, Mao Z, Ge C. Identification and characterization of a phospholipase A1 activity type three secreted protein, PP_ExoU from Pseudomonas plecoglossicida NB2011, the causative agent of visceral granulomas disease in large yellow croaker (Larimichthys crocea). JOURNAL OF FISH DISEASES 2017; 40:831-840. [PMID: 27734506 DOI: 10.1111/jfd.12565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Pseudomonas plecoglossicida NB2011, the causative agent of visceral granulomas disease in farmed Larimichthys crocea in China, encodes a predicted type three effector PP_ExoU, a homolog of the cytotoxin ExoU of Pseudomonas aeruginosa. In this study, secretion of PP_ExoU was tested in various broth, the protein was expressed with the pET30a prokaryotic system, the phospholipase A (PLA) activity of the recombinant protein was determined with fluorogenic phospholipid substrates, fusion expression with green fluorescent protein in transfected HeLa cells was investigated, and the lactate dehydrogenase (LDH) level was measured. The results showed the protein was type three secreted in several media; the recombinant protein displayed significant PLA1 activity with ubiquitin. Fluorescence was observed on the cell membrane and scattered in the cytoplasm of HeLa cells expressing catalytic wild-type PP_ExoU, blebbing and stretching developed in the cell membranes indicating of membrane damage. Fluorescence scattered in the cytoplasm of cells expressing the catalytic inactive protein. A significant LDH level was detected in HeLa cells expressing wild-type PP_exoU, but not in the Ser/Asp-mutated protein, suggestion mutation of predicted catalytic residues abolished the PLA activity. This is the first report on the function of a secreted type three protein from P. plecoglossicida.
Collapse
Affiliation(s)
- J Zhang
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - Y Wang
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - H Guo
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Z Mao
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| | - C Ge
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
14
|
Yang B, Wang Q, Jing M, Guo B, Wu J, Wang H, Wang Y, Lin L, Wang Y, Ye W, Dong S, Wang Y. Distinct regions of the Phytophthora essential effector Avh238 determine its function in cell death activation and plant immunity suppression. THE NEW PHYTOLOGIST 2017; 214:361-375. [PMID: 28134441 DOI: 10.1111/nph.14430] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/09/2016] [Indexed: 05/20/2023]
Abstract
Phytophthora pathogens secrete effectors to manipulate host innate immunity, thus facilitating infection. Among the RXLR effectors highly induced during Phytophthora sojae infection, Avh238 not only contributes to pathogen virulence but also triggers plant cell death. However, the detailed molecular basis of Avh238 functions remains largely unknown. We mapped the regions responsible for Avh238 functions in pathogen virulence and plant cell death induction using a strategy that combines investigation of natural variation and large-scale mutagenesis assays. The correlation between cellular localization and Avh238 functions was also evaluated. We found that the 79th residue (histidine or leucine) of Avh238 determined its cell death-inducing activity, and that the 53 amino acids in its C-terminal region are responsible for promoting Phytophthora infection. Transient expression of Avh238 in Nicotiana benthamiana revealed that nuclear localization is essential for triggering cell death, while Avh238-mediated suppression of INF1-triggered cell death requires cytoplasmic localization. Our results demonstrate that a representative example of an essential Phytophthora RXLR effector can evolve to escape recognition by the host by mutating one nucleotide site, and can also retain plant immunosuppressive activity to enhance pathogen virulence in planta.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Qunqing Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
- Department of Plant Pathology, Shandong Agricultural University, Taian, 271018, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Jiawei Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yang Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
15
|
Tessmer MH, Anderson DM, Buchaklian A, Frank DW, Feix JB. Cooperative Substrate-Cofactor Interactions and Membrane Localization of the Bacterial Phospholipase A 2 (PLA 2) Enzyme, ExoU. J Biol Chem 2017; 292:3411-3419. [PMID: 28069812 DOI: 10.1074/jbc.m116.760074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/05/2017] [Indexed: 11/06/2022] Open
Abstract
The ExoU type III secretion enzyme is a potent phospholipase A2 secreted by the Gram-negative opportunistic pathogen, Pseudomonas aeruginosa Activation of phospholipase activity is induced by protein-protein interactions with ubiquitin in the cytosol of a targeted eukaryotic cell, leading to destruction of host cell membranes. Previous work in our laboratory suggested that conformational changes within a C-terminal domain of the toxin might be involved in the activation mechanism. In this study, we use site-directed spin-labeling electron paramagnetic resonance spectroscopy to investigate conformational changes in a C-terminal four-helical bundle region of ExoU as it interacts with lipid substrates and ubiquitin, and to examine the localization of this domain with respect to the lipid bilayer. In the absence of ubiquitin or substrate liposomes, the overall structure of the C-terminal domain is in good agreement with crystallographic models derived from ExoU in complex with its chaperone, SpcU. Significant conformational changes are observed throughout the domain in the presence of ubiquitin and liposomes combined that are not observed with either liposomes or ubiquitin alone. In the presence of ubiquitin, two interhelical loops of the C-terminal four-helix bundle appear to penetrate the membrane bilayer, stabilizing ExoU-membrane association. Thus, ubiquitin and the substrate lipid bilayer act synergistically to induce a conformational rearrangement in the C-terminal domain of ExoU.
Collapse
Affiliation(s)
- Maxx H Tessmer
- Department of Microbiology and Molecular Genetics; Center for Infectious Disease Research
| | - David M Anderson
- Department of Microbiology and Molecular Genetics; Center for Infectious Disease Research
| | | | - Dara W Frank
- Department of Microbiology and Molecular Genetics; Center for Infectious Disease Research
| | - Jimmy B Feix
- Center for Infectious Disease Research; Department of Biophysics; National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
16
|
Anantharajah A, Mingeot-Leclercq MP, Van Bambeke F. Targeting the Type Three Secretion System in Pseudomonas aeruginosa. Trends Pharmacol Sci 2016; 37:734-749. [PMID: 27344210 DOI: 10.1016/j.tips.2016.05.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
The injectisome type three secretion system (T3SS) is a major virulence factor in Pseudomonas aeruginosa. This bacterium is responsible for severe infections in immunosuppressed or cystic fibrosis patients and has become resistant to many antibiotics. Inhibitors of T3SS may therefore constitute an innovative therapeutic target. After a brief description of the T3SS and its regulation, this review presents strategies to inhibit T3SS-mediated toxicity and describes the main families of existing inhibitors. Over the past few years, 12 classes of small-molecule inhibitors and two types of antibody have been discovered and evaluated in vitro for their capacity to inhibit T3SS expression or function, and to protect host cells from T3SS-mediated cytotoxicity. While only one small molecule has been tested in vivo, a bifunctional antibody targeting both the translocation apparatus of the T3SS and a surface polysaccharide is currently in Phase II clinical trials.
Collapse
Affiliation(s)
- Ahalieyah Anantharajah
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
17
|
Structural Basis of Lipid Targeting and Destruction by the Type V Secretion System of Pseudomonas aeruginosa. J Mol Biol 2016; 428:1790-803. [DOI: 10.1016/j.jmb.2016.03.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/05/2016] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
|
18
|
Sawa T, Shimizu M, Moriyama K, Wiener-Kronish JP. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:668. [PMID: 25672496 PMCID: PMC4331484 DOI: 10.1186/s13054-014-0668-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa uses a complex type III secretion system to inject the toxins ExoS, ExoT, ExoU, and ExoY into the cytosol of target eukaryotic cells. This system is regulated by the exoenzyme S regulon and includes the transcriptional activator ExsA. Of the four toxins, ExoU is characterized as the major virulence factor responsible for alveolar epithelial injury in patients with P. aeruginosa pneumonia. Virulent strains of P. aeruginosa possess the exoU gene, whereas non-virulent strains lack this particular gene. The mechanism of virulence for the exoU+ genotype relies on the presence of a pathogenic gene cluster (PAPI-2) encoding exoU and its chaperone, spcU. The ExoU toxin has a patatin-like phospholipase domain in its N-terminal, exhibits phospholipase A2 activity, and requires a eukaryotic cell factor for activation. The C-terminal of ExoU has a ubiquitinylation mechanism of activation. This probably induces a structural change in enzymatic active sites required for phospholipase A2 activity. In P. aeruginosa clinical isolates, the exoU+ genotype correlates with a fluoroquinolone resistance phenotype. Additionally, poor clinical outcomes have been observed in patients with pneumonia caused by exoU+-fluoroquinolone-resistant isolates. Therefore, the potential exists to improve clinical outcomes in patients with P. aeruginosa pneumonia by identifying virulent and antimicrobial drug-resistant strains through exoU genotyping or ExoU protein phenotyping or both.
Collapse
|
19
|
Tyson GH, Halavaty AS, Kim H, Geissler B, Agard M, Satchell KJ, Cho W, Anderson WF, Hauser AR. A novel phosphatidylinositol 4,5-bisphosphate binding domain mediates plasma membrane localization of ExoU and other patatin-like phospholipases. J Biol Chem 2014; 290:2919-37. [PMID: 25505182 DOI: 10.1074/jbc.m114.611251] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial toxins require localization to specific intracellular compartments following injection into host cells. In this study, we examined the membrane targeting of a broad family of bacterial proteins, the patatin-like phospholipases. The best characterized member of this family is ExoU, an effector of the Pseudomonas aeruginosa type III secretion system. Upon injection into host cells, ExoU localizes to the plasma membrane, where it uses its phospholipase A2 activity to lyse infected cells. The targeting mechanism of ExoU is poorly characterized, but it was recently found to bind to the phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a marker for the plasma membrane of eukaryotic cells. We confirmed that the membrane localization domain (MLD) of ExoU had a direct affinity for PI(4,5)P2, and we determined that this binding was required for ExoU localization. Previously uncharacterized ExoU homologs from Pseudomonas fluorescens and Photorhabdus asymbiotica also localized to the plasma membrane and required PI(4,5)P2 for this localization. A conserved arginine within the MLD was critical for interaction of each protein with PI(4,5)P2 and for localization. Furthermore, we determined the crystal structure of the full-length P. fluorescens ExoU and found that it was similar to that of P. aeruginosa ExoU. Each MLD contains a four-helical bundle, with the conserved arginine exposed at its cap to allow for interaction with the negatively charged PI(4,5)P2. Overall, these findings provide a structural explanation for the targeting of patatin-like phospholipases to the plasma membrane and define the MLD of ExoU as a member of a new class of PI(4,5)P2 binding domains.
Collapse
Affiliation(s)
| | - Andrei S Halavaty
- Biochemistry and Center for Structural Genomics of Infectious Diseases, Northwestern University, Chicago, Illinois 60611 and
| | - Hyunjin Kim
- the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | | | | | | | - Wonhwa Cho
- the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Wayne F Anderson
- Biochemistry and Center for Structural Genomics of Infectious Diseases, Northwestern University, Chicago, Illinois 60611 and
| | - Alan R Hauser
- From the Departments of Microbiology-Immunology, Medicine, and
| |
Collapse
|
20
|
Ubiquitin activates patatin-like phospholipases from multiple bacterial species. J Bacteriol 2014; 197:529-41. [PMID: 25404699 DOI: 10.1128/jb.02402-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phospholipase A2 enzymes are ubiquitously distributed throughout the prokaryotic and eukaryotic kingdoms and are utilized in a wide array of cellular processes and physiological and immunological responses. Several patatin-like phospholipase homologs of ExoU from Pseudomonas aeruginosa were selected on the premise that ubiquitin activation of this class of bacterial enzymes was a conserved process. We found that ubiquitin activated all phospholipases tested in both in vitro and in vivo assays via a conserved serine-aspartate catalytic dyad. Ubiquitin chains versus monomeric ubiquitin were superior in inducing catalysis, and ubiquitin-like proteins failed to activate phospholipase activity. Toxicity studies in a prokaryotic dual-expression system grouped the enzymes into high- and low-toxicity classes. Toxicity measured in eukaryotic cells also suggested a two-tiered classification but was not predictive of the severity of cellular damage, suggesting that each enzyme may correspond to unique properties perhaps based on its specific biological function. Additional studies on lipid binding preference suggest that some enzymes in this family may be differentially sensitive to phosphatidyl-4,5-bisphosphate in terms of catalytic activation enhancement and binding affinity. Further analysis of the function and amino acid sequences of this enzyme family may lead to a useful approach to formulating a unifying model of how these phospholipases behave after delivery into the cytoplasmic compartment.
Collapse
|
21
|
Sato H, Frank DW. Intoxication of host cells by the T3SS phospholipase ExoU: PI(4,5)P2-associated, cytoskeletal collapse and late phase membrane blebbing. PLoS One 2014; 9:e103127. [PMID: 25061861 PMCID: PMC4111512 DOI: 10.1371/journal.pone.0103127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/27/2014] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is associated with hospital-acquired infections, ventilator-associated pneumonia, and morbidity of immunocompromised individuals. A subpopulation of P. aeruginosa encodes a protein, ExoU, which exhibits acute cytotoxicity. Toxicity is directly related to the phospholipase A2 activity of the protein after injection into the host cytoplasm via a type III secretion system. ExoU enzymatic activity requires eukaryotic cofactors, ubiquitin or ubiquitin-modified proteins. When administered extracellularly, ExoU is unable to intoxicate epithelial cells in culture, even in the presence of the cofactor. Injection or transfection of ExoU is necessary to observe the acute cytotoxic response. Biochemical approaches indicate that ExoU possesses high affinity to a multifunctional phosphoinositide, phosphatidylinositol 4,5-bisphosphate or PI(4,5)P2 and that it is capable of utilizing this phospholipid as a substrate. In eukaryotic cells, PI(4,5)P2 is mainly located in the cytoplasmic side of the plasma membrane and anchors adaptor proteins that are involved in cytoskeletal structures, focal adhesions, and plasma membranes. Time-lapse fluorescent microscopy analyses of infected live cells demonstrate that ExoU intoxication correlates with intracellular damage in the early phases of infection, such as disruption of focal adhesions, cytoskeletal collapse, actin depolymerization, and cell rounding. At later time points, a membrane blebbing phenotype was prominent prior to the loss of the plasma membrane integrity and barrier function. Membrane blebbing appears to accelerate membrane rupture and the release of intracellular markers. Our data suggest that in eukaryotic host cells, intracellular ExoU targets and hydrolyzes PI(4,5)P2 on the plasma membrane, causing a subsequent disruption of cellular structures and membrane integrity.
Collapse
Affiliation(s)
- Hiromi Sato
- Center for Infectious Disease Research, Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Dara W. Frank
- Center for Infectious Disease Research, Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
22
|
Tai KP, Kamdar K, Yamaki J, Le VV, Tran D, Tran P, Selsted ME, Ouellette AJ, Wong-Beringer A. Microbicidal effects of α- and θ-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Innate Immun 2013; 21:17-29. [PMID: 24345876 DOI: 10.1177/1753425913514784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-resistant bacterial pathogens threaten public health. Because many antibiotics target specific bacterial enzymes or reactions, corresponding genes may mutate under selection and lead to antibiotic resistance. Accordingly, antimicrobials that selectively target overall microbial cell integrity may offer alternative approaches to therapeutic design. Naturally occurring mammalian α- and θ-defensins are potent, non-toxic microbicides that may be useful for treating infections by antibiotic-resistant pathogens because certain defensin peptides disrupt bacterial, but not mammalian, cell membranes. To test this concept, clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), including vancomycin heteroresistant strains, and ciprofloxacin-resistant Pseudomonas aeruginosa (Cip(R)-PA) were tested for sensitivity to α-defensins Crp-4, RMAD-4 and HNPs 1-3, and to RTD-1, macaque θ-defensin-1. In vitro, 3 μM Crp-4, RMAD-4 and RTD-1 reduced MRSA cell survival by 99%, regardless of vancomycin susceptibility. For PA clinical isolates that differ in fluoroquinolone resistance and virulence phenotype, peptide efficacy was independent of strain ciprofloxacin resistance, site of isolation or virulence factor expression. Thus, Crp-4, RMAD-4 and RTD-1 are effective in vitro antimicrobials against clinical isolates of MRSA and Cip(R)-PA, perhaps providing templates for development of α- and θ-defensin-based microbicides against antibiotic resistant or virulent infectious agents.
Collapse
Affiliation(s)
- Kenneth P Tai
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Karishma Kamdar
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Jason Yamaki
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Valerie V Le
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Dat Tran
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Patti Tran
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Michael E Selsted
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - André J Ouellette
- Department of Pathology and Laboratory Medicine, USC Norris Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | - Annie Wong-Beringer
- Titus Family Department of Clinical Pharmacy and Pharmaceutical Economics and Policy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Anderson DM, Feix JB, Monroe AL, Peterson FC, Volkman BF, Haas AL, Frank DW. Identification of the major ubiquitin-binding domain of the Pseudomonas aeruginosa ExoU A2 phospholipase. J Biol Chem 2013; 288:26741-52. [PMID: 23908356 DOI: 10.1074/jbc.m113.478529] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Numerous Gram-negative bacterial pathogens use type III secretion systems to deliver effector molecules into the cytoplasm of a host cell. Many of these effectors have evolved to manipulate the host ubiquitin system to alter host cell physiology or the location, stability, or function of the effector itself. ExoU is a potent A2 phospholipase used by Pseudomonas aeruginosa to destroy membranes of infected cells. The enzyme is held in an inactive state inside of the bacterium due to the absence of a required eukaryotic activator, which was recently identified as ubiquitin. This study sought to identify the region of ExoU required to mediate this interaction and determine the properties of ubiquitin important for binding, ExoU activation, or both. Biochemical and biophysical approaches were used to map the ubiquitin-binding domain to a C-terminal four-helix bundle of ExoU. The hydrophobic patch of ubiquitin is required for full binding affinity and activation. Binding and activation were uncoupled by introducing an L8R substitution in ubiquitin. Purified L8R demonstrated a parental binding phenotype to ExoU but did not activate the phospholipase in vitro. Utilizing these new biochemical data and intermolecular distance measurements by double electron-electron resonance, we propose a model for an ExoU-monoubiquitin complex.
Collapse
Affiliation(s)
- David M Anderson
- From the Department of Microbiology and Molecular Genetics and the Center for Infectious Disease Research and
| | | | | | | | | | | | | |
Collapse
|
24
|
Phosphatidylinositol 4,5-bisphosphate is a novel coactivator of the Pseudomonas aeruginosa cytotoxin ExoU. Infect Immun 2013; 81:2873-81. [PMID: 23716613 DOI: 10.1128/iai.00414-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ExoU is a potent phospholipase A2 effector protein secreted by the type III secretion system of Pseudomonas aeruginosa. By cleaving plasma membrane phospholipids, it causes rapid lysis of eukaryotic cells. However, ExoU does not exhibit activity on its own but instead requires eukaryotic cell cofactors for activation. Ubiquitin and ubiquitinated proteins have been shown to activate ExoU, but previous work suggested that other cofactors are also involved. In this study, we demonstrate that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is another important coactivator of ExoU. PI(4,5)P2 works synergistically with ubiquitin to greatly enhance the phospholipase A2 activity of ExoU. Distinct residues of ExoU were critical for activation by PI(4,5)P2 and by ubiquitin, indicating that these factors activate ExoU by discrete mechanisms. In support of the biological relevance of PI(4,5)P2 coactivation, a yeast mutant with reduced PI(4,5)P2 levels was less susceptible to the cytotoxic activity of ExoU. Together, these findings further elaborate the molecular mechanism of ExoU.
Collapse
|
25
|
Structural basis of eukaryotic cell targeting by type III secretion system (T3SS) effectors. Res Microbiol 2013; 164:605-19. [PMID: 23541478 DOI: 10.1016/j.resmic.2013.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
Abstract
Type III secretion systems (T3SS) are macromolecular complexes that translocate a wide number of effector proteins into eukaryotic host cells. Once within the cytoplasm, many T3SS effectors mimic the structure and/or function of eukaryotic proteins in order to manipulate signaling cascades, and thus play pivotal roles in colonization, invasion, survival and virulence. Structural biology techniques have played key roles in the unraveling of bacterial strategies employed for mimicry and targeting. This review provides an overall view of our current understanding of structure and function of T3SS effectors, as well as of the different classes of eukaryotic proteins that are targeted and the consequences for the infected cell.
Collapse
|
26
|
Structure of the type III secretion effector protein ExoU in complex with its chaperone SpcU. PLoS One 2012; 7:e49388. [PMID: 23166655 PMCID: PMC3498133 DOI: 10.1371/journal.pone.0049388] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 10/10/2012] [Indexed: 11/21/2022] Open
Abstract
Disease causing bacteria often manipulate host cells in a way that facilitates the infectious process. Many pathogenic gram-negative bacteria accomplish this by using type III secretion systems. In these complex secretion pathways, bacterial chaperones direct effector proteins to a needle-like secretion apparatus, which then delivers the effector protein into the host cell cytosol. The effector protein ExoU and its chaperone SpcU are components of the Pseudomonas aeruginosa type III secretion system. Secretion of ExoU has been associated with more severe infections in both humans and animal models. Here we describe the 1.92 Å X-ray structure of the ExoU–SpcU complex, a full-length type III effector in complex with its full-length cognate chaperone. Our crystallographic data allow a better understanding of the mechanism by which ExoU kills host cells and provides a foundation for future studies aimed at designing inhibitors of this potent toxin.
Collapse
|
27
|
Yu X, Tang J, Wang Q, Ye W, Tao K, Duan S, Lu C, Yang X, Dong S, Zheng X, Wang Y. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death. THE NEW PHYTOLOGIST 2012; 196:247-260. [PMID: 22816601 DOI: 10.1111/j.1469-8137.2012.04241.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• The Phytophthora sojae genome encodes hundreds of RxLR effectors predicted to manipulate various plant defense responses, but the molecular mechanisms involved are largely unknown. Here we have characterized in detail the P. sojae RxLR effector Avh241. • To determine the function and localization of Avh241, we transiently expressed it on different plants. Silencing of Avh241 in P. sojae, we determined its virulence during infection. Through the assay of promoting infection by Phytophthora capsici to Nicotiana benthamiana, we further confirmed this virulence role. • Avh241 induced cell death in several different plants and localized to the plant plasma membrane. An N-terminal motif within Avh241 was important for membrane localization and cell death-inducing activity. Two mitogen-activated protein kinases, NbMEK2 and NbWIPK, were required for the cell death triggered by Avh241 in N. benthamiana. Avh241 was important for the pathogen's full virulence on soybean. Avh241 could also promote infection by P. capsici and the membrane localization motif was not required to promote infection. • This work suggests that Avh241 interacts with the plant immune system via at least two different mechanisms, one recognized by plants dependent on subcellular localization and one promoting infection independent on membrane localization.
Collapse
Affiliation(s)
- Xiaoli Yu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Junli Tang
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Qunqing Wang
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Tao
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Shuyi Duan
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Chenchen Lu
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Yang
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Zheng
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
28
|
Geissler B. Bacterial toxin effector-membrane targeting: outside in, then back again. Front Cell Infect Microbiol 2012; 2:75. [PMID: 22919666 PMCID: PMC3417404 DOI: 10.3389/fcimb.2012.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/14/2012] [Indexed: 01/20/2023] Open
Abstract
Pathogenic bacteria utilize multiple approaches to establish infection and mediate their toxicity to eukaryotic cells. Dedicated protein machines deposit toxic effectors directly inside the host, whereas secreted toxins must enter cells independently of other bacterial components. Regardless of how they reach the cytosol, these bacterial proteins must accurately identify their intracellular target before they can manipulate the host cell to benefit their associated bacteria. Within eukaryotic cells, post-translational modifications and individual targeting motifs spatially regulate endogenous host proteins. This review focuses on the strategies employed by bacterial effectors to associate with a frequently targeted location within eukaryotic cells, the plasma membrane.
Collapse
Affiliation(s)
- Brett Geissler
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA.
| |
Collapse
|
29
|
Gendrin C, Contreras-Martel C, Bouillot S, Elsen S, Lemaire D, Skoufias DA, Huber P, Attree I, Dessen A. Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa. PLoS Pathog 2012; 8:e1002637. [PMID: 22496657 PMCID: PMC3320612 DOI: 10.1371/journal.ppat.1002637] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/25/2012] [Indexed: 11/30/2022] Open
Abstract
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative pathogens to inject effectors directly into the cytoplasm of eukaryotic cells. ExoU from the opportunistic pathogen Pseudomonas aeruginosa is one of the most aggressive toxins injected by a T3SS, leading to rapid cell necrosis. Here we report the crystal structure of ExoU in complex with its chaperone, SpcU. ExoU folds into membrane-binding, bridging, and phospholipase domains. SpcU maintains the N-terminus of ExoU in an unfolded state, required for secretion. The phospholipase domain carries an embedded catalytic site whose position within ExoU does not permit direct interaction with the bilayer, which suggests that ExoU must undergo a conformational rearrangement in order to access lipids within the target membrane. The bridging domain connects catalytic domain and membrane-binding domains, the latter of which displays specificity to PI(4,5)P2. Both transfection experiments and infection of eukaryotic cells with ExoU-secreting bacteria show that ExoU ubiquitination results in its co-localization with endosomal markers. This could reflect an attempt of the infected cell to target ExoU for degradation in order to protect itself from its aggressive cytotoxic action. Pseudomonas aeruginosa is a leading cause of nosocomial infections and is a particular threat for cystic fibrosis and immunodepressed patients. One of the most aggressive toxins in its arsenal is ExoU, injected directly into target cells by a needle-like complex located on the surface of the bacterium, the type III secretion system. P. aeruginosa strains that express ExoU cause rapid cell death as a consequence of the membrane-destruction (phospholipase) potential of the toxin. In this work, we report the three-dimensional structure of ExoU in complex with a partner molecule, SpcU. ExoU contains three distinct regions, and the fold suggests how ExoU binds to the membrane or other molecules within the target cell and becomes activated. In addition, we also show that once it is translocated into the cell, ExoU co-localizes with intracellular organelles of the endosomal pathway, potentially in an attempt of the target cell to destroy the toxin. This work provides new insight into the cellular destruction mechanism of this aggressive toxin and could be a basis for the development of new inhibitors of P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Claire Gendrin
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, Grenoble, France
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
| | - Carlos Contreras-Martel
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, Grenoble, France
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
| | - Stéphanie Bouillot
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Bacterial Pathogenesis and Cellular Responses, iRTSV, Université Grenoble I, Grenoble, France
- INSERM UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
| | - Sylvie Elsen
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Bacterial Pathogenesis and Cellular Responses, iRTSV, Université Grenoble I, Grenoble, France
- INSERM UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
| | - David Lemaire
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Laboratoire des Interactions Protéine Métal, IBEB, Université Aix-Marseille II, Saint Paul Lez Durance, France
| | - Dimitrios A. Skoufias
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Viral Infection and Cancer Group, IBS, Grenoble, France
| | - Philippe Huber
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Bacterial Pathogenesis and Cellular Responses, iRTSV, Université Grenoble I, Grenoble, France
- INSERM UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
| | - Ina Attree
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- Bacterial Pathogenesis and Cellular Responses, iRTSV, Université Grenoble I, Grenoble, France
- INSERM UMR-S 1036, Biology of Cancer and Infection, Grenoble, France
| | - Andréa Dessen
- Bacterial Pathogenesis Group, Institut de Biologie Structurale (IBS), Université Grenoble I, Grenoble, France
- Commissariat à l'Enérgie Atomique (CEA), Grenoble and Cadarache, France
- Centre National de la Recherche Scientifique (CNRS), Grenoble and Cadarache, France
- * E-mail:
| |
Collapse
|
30
|
Knodler LA, Ibarra JA, Pérez-Rueda E, Yip CK, Steele-Mortimer O. Coiled-coil domains enhance the membrane association of Salmonella type III effectors. Cell Microbiol 2011; 13:1497-517. [PMID: 21679290 PMCID: PMC3418822 DOI: 10.1111/j.1462-5822.2011.01635.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coiled-coil domains in eukaryotic and prokaryotic proteins contribute to diverse structural and regulatory functions. Here we have used in silico analysis to predict which proteins in the proteome of the enteric pathogen, Salmonella enterica serovar Typhimurium, harbour coiled-coil domains. We found that coiled-coil domains are especially prevalent in virulence-associated proteins, including type III effectors. Using SopB as a model coiled-coil domain type III effector, we have investigated the role of this motif in various aspects of effector function including chaperone binding, secretion and translocation, protein stability, localization and biological activity. Compared with wild-type SopB, SopB coiled-coil mutants were unstable, both inside bacteria and after translocation into host cells. In addition, the putative coiled-coil domain was required for the efficient membrane association of SopB in host cells. Since many other Salmonella effectors were predicted to contain coiled-coil domains, we also investigated the role of this motif in their intracellular targeting in mammalian cells. Mutation of the predicted coiled-coil domains in PipB2, SseJ and SopD2 also eliminated their membrane localization in mammalian cells. These findings suggest that coiled-coil domains represent a common membrane-targeting determinant for Salmonella type III effectors.
Collapse
Affiliation(s)
- Leigh A Knodler
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA.
| | | | | | | | | |
Collapse
|
31
|
Benson MA, Komas SM, Schmalzer KM, Casey MS, Frank DW, Feix JB. Induced conformational changes in the activation of the Pseudomonas aeruginosa type III toxin, ExoU. Biophys J 2011; 100:1335-43. [PMID: 21354407 DOI: 10.1016/j.bpj.2011.01.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/07/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023] Open
Abstract
ExoU is a 74-kDa, water-soluble toxin injected directly into mammalian cells through the type III secretion system of the opportunistic pathogen, Pseudomonas aeruginosa. Previous studies have shown that ExoU is a Ca(2+)-independent phospholipase that requires a eukaryotic protein cofactor. One protein capable of activating ExoU and serving as a required cofactor was identified by biochemical and proteomic methods as superoxide dismutase (SOD1). In these studies, we carried out site-directed spin-labeling electron paramagnetic resonance spectroscopy to examine the effects of SOD1 and substrate liposomes on the structure and dynamics of ExoU. Local conformational changes within the catalytic site were observed in the presence of substrate liposomes, and were enhanced by the addition of SOD1 in a concentration-dependent manner. Conformational changes in the C-terminal domain of ExoU were observed upon addition of cofactor, even in the absence of liposomes. Double electron-electron resonance experiments indicated that ExoU samples multiple conformations in the resting state. In contrast, addition of SOD1 induced ExoU to adopt a single, well-defined conformation. These studies provide, to our knowledge, the first direct evidence for cofactor- and membrane-induced conformational changes in the mechanism of activation of ExoU.
Collapse
Affiliation(s)
- Marc A Benson
- Center for Infectious Disease Research, Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|