1
|
Walker IS, Dini S, Aitken EH, Damelang T, Hasang W, Alemu A, Jensen ATR, Rambhatla JS, Opi DH, Duffy MF, Takashima E, Harawa V, Tsuboi T, Simpson JA, Mandala W, Taylor TE, Seydel KB, Chung AW, Rogerson SJ. A systems serology approach to identifying key antibody correlates of protection from cerebral malaria in Malawian children. BMC Med 2024; 22:388. [PMID: 39267089 PMCID: PMC11396342 DOI: 10.1186/s12916-024-03604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins are expressed on the surface of infected erythrocytes, mediating parasite sequestration in the vasculature. PfEMP1 is a major target of protective antibodies, but the features of the antibody response are poorly defined. METHODS In Malawian children with cerebral or uncomplicated malaria, we characterized the antibody response to 39 recombinant PfEMP1 Duffy binding like (DBL) domains or cysteine-rich interdomain regions (CIDRs) in detail, including measures of antibody classes, subclasses, and engagement with Fcγ receptors and complement. Using elastic net regularized logistic regression, we identified a combination of seven antibody targets and Fc features that best distinguished between children with cerebral and uncomplicated malaria. To confirm the role of the selected targets and Fc features, we measured antibody-dependent neutrophil and THP-1 cell phagocytosis of intercellular adhesion molecule-1 (ICAM-1) and endothelial protein C (EPCR) co-binding infected erythrocytes. RESULTS The selected features distinguished between children with cerebral and uncomplicated malaria with 87% accuracy (median, 80-96% interquartile range) and included antibody to well-characterized DBLβ3 domains and a less well-characterized CIDRγ12 domain. The abilities of antibodies to engage C1q and FcγRIIIb, rather than levels of IgG, correlated with protection. In line with a role of FcγRIIIb binding antibodies to DBLβ3 domains, antibody-dependent neutrophil phagocytosis of ICAM-1 and EPCR co-binding IE was higher in uncomplicated malaria (15% median, 8-38% interquartile range) compared to cerebral malaria (7%, 30-15%, p < 0.001). CONCLUSIONS Antibodies associated with protection from cerebral malaria target a subset of PfEMP1 domains. The Fc features of protective antibody response include engagement of FcγRIIIb and C1q, and ability to induce antibody-dependent neutrophil phagocytosis of infected erythrocytes. Identifying the targets and Fc features of protective immunity could facilitate the development of PfEMP1-based therapeutics for cerebral malaria.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elizabeth H Aitken
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Wina Hasang
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Agersew Alemu
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janavi S Rambhatla
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - D Herbert Opi
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Visopo Harawa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Takafumi Tsuboi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wilson Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | - Terrie E Taylor
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- College of Osteopathic Medicine, Michigan State University, East Lansing, USA
| | - Amy W Chung
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Stephen J Rogerson
- Department of Medicine, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
- Department of Infectious Diseases, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
2
|
Oleinikov AV, Seidu Z, Oleinikov IV, Tetteh M, Lamptey H, Ofori MF, Hviid L, Lopez-Perez M. Profiling the Plasmodium falciparum Erythrocyte Membrane Protein 1-Specific Immununoglobulin G Response Among Ghanaian Children With Hemoglobin S and C. J Infect Dis 2024; 229:203-213. [PMID: 37804095 PMCID: PMC10786258 DOI: 10.1093/infdis/jiad438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023] Open
Abstract
Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are important targets for protective immunity. Abnormal display of PfEMP1 on the surfaces of infected erythrocytes (IEs) and reduced cytoadhesion have been demonstrated in hemoglobin (Hb) AS and HbAC, inherited blood disorders associated with protection against severe P. falciparum malaria. We found that Ghanaian children with HbAS had lower levels of immunoglobulin G against several PfEMP1 variants and that this reactivity increased more slowly with age than in their HbAA counterparts. Moreover, children with HbAS have lower total parasite biomass than those with HbAA at comparable peripheral parasitemias, suggesting impaired cytoadhesion of HbAS IEs in vivo and likely explaining the slower acquisition of PfEMP1-specific immunoglobulin G in this group. In contrast, the function of acquired antibodies was comparable among Hb groups and appears to be intact and sufficient to control parasitemia via opsonization and phagocytosis of IEs.
Collapse
Affiliation(s)
- Andrew V Oleinikov
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Zakaria Seidu
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- West Africa Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Irina V Oleinikov
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Mary Tetteh
- Department of Medical Diagnostics, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Helena Lamptey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Mary Lopez-Perez
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Gill J, Singh H, Sharma A. Profiles of global mutations in the human intercellular adhesion molecule-1 (ICAM-1) shed light on population-specific malaria susceptibility. BMC Genomics 2023; 24:773. [PMID: 38093209 PMCID: PMC10720214 DOI: 10.1186/s12864-023-09846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Plasmodium falciparum is responsible for malaria-related morbidity and mortality. PfEMP1 (P. falciparum erythrocyte membrane protein 1) mediates infected erythrocytes adhesion to various surface vascular receptors, including intercellular adhesion molecule-1 (ICAM-1), associating this interaction with severe malaria in several studies. Genetic variation in host ICAM-1 plays a significant role in determining susceptibility to malaria infection via clinical phenotypes such as the ICAM-1Kilifi variant which has been reported to be associated with susceptibility in populations. Our genomic and structural analysis of single nucleotide polymorphisms (SNPs) in ICAM-1 revealed 9 unique mutations each in its distinct A-type and BC-type PfEMP1 DBLβ-interacting regions. These mutations are noted in only a few field isolates and mainly in the African/African American population. The ICAM-1Kilifi variant lies in a flexible loop proximal to the DBLβ-interacting region. This analysis will assist in establishing functional correlations of reported global mutations via experimental and clinical studies and in the tailored design of population-specific genetic surveillance studies. Understanding host polymorphism as an evolutionary force in diverse populations can help to predict predisposition to disease severity and will contribute towards laying the framework for designing population-specific personalized medicines for severe malaria.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India.
| | - Himmat Singh
- ICMR-National Institute of Malaria Research, Sector-8 Dwarka, New Delhi, India
| | - Amit Sharma
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Othman B, Zeef L, Szestak T, Rchiad Z, Storm J, Askonas C, Satyam R, Madkhali A, Haley M, Wagstaff S, Couper K, Pain A, Craig A. Different PfEMP1-expressing Plasmodium falciparum variants induce divergent endothelial transcriptional responses during co-culture. PLoS One 2023; 18:e0295053. [PMID: 38033133 PMCID: PMC10688957 DOI: 10.1371/journal.pone.0295053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.
Collapse
Affiliation(s)
- Basim Othman
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Leo Zeef
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tadge Szestak
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Zineb Rchiad
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Janet Storm
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Caroline Askonas
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Rohit Satyam
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Aymen Madkhali
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Michael Haley
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Simon Wagstaff
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Kevin Couper
- Faculty of Biology, Medicine and Health, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Program, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology, Thuwal, KSA
| | - Alister Craig
- Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
5
|
Adams Y, Clausen AS, Jensen PØ, Lager M, Wilhelmsson P, Henningson AJ, Lindgren PE, Faurholt-Jepsen D, Mens H, Kraiczy P, Kragh KN, Bjarnsholt T, Kjaer A, Lebech AM, Jensen AR. 3D blood-brain barrier-organoids as a model for Lyme neuroborreliosis highlighting genospecies dependent organotropism. iScience 2023; 26:105838. [PMID: 36686395 PMCID: PMC9851883 DOI: 10.1016/j.isci.2022.105838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Lyme neuroborreliosis (LNB), a tick-borne infection caused by spirochetes within the Borrelia burgdorferi sensu lato (s.L.) complex, is among the most prevalent bacterial central nervous system (CNS) infections in Europe and the US. Here we have screened a panel of low-passage B. burgdorferi s.l. isolates using a novel, human-derived 3D blood-brain barrier (BBB)-organoid model. We show that human-derived BBB-organoids support the entry of Borrelia spirochetes, leading to swelling of the organoids and a loss of their structural integrity. The use of the BBB-organoid model highlights the organotropism between B. burgdorferi s.l. genospecies and their ability to cross the BBB contributing to CNS infection.
Collapse
Affiliation(s)
- Yvonne Adams
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anne Skovsbo Clausen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Biomedical Sciences, University of Copenhagen, University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malin Lager
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Wilhelmsson
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna J. Henningson
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Per-Eric Lindgren
- National Reference Laboratory for Borrelia and Other Tick-Borne Bacteria, Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Faurholt-Jepsen
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Kasper Nørskov Kragh
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anja R. Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
6
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Nortey LN, Anning AS, Nakotey GK, Ussif AM, Opoku YK, Osei SA, Aboagye B, Ghartey-Kwansah G. Genetics of cerebral malaria: pathogenesis, biomarkers and emerging therapeutic interventions. Cell Biosci 2022; 12:91. [PMID: 35715862 PMCID: PMC9204375 DOI: 10.1186/s13578-022-00830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cerebral malaria (CM) is a preeminent cause of severe disease and premature deaths in Sub-Saharan Africa, where an estimated 90% of cases occur. The key features of CM are a deep, unarousable coma that persists for longer than 1 h in patients with peripheral Plasmodium falciparum and no other explanation for encephalopathy. Significant research efforts on CM in the last few decades have focused on unravelling the molecular underpinnings of the disease pathogenesis and the identification of potential targets for therapeutic or pharmacologic intervention. These efforts have been greatly aided by the generation and study of mouse models of CM, which have provided great insights into key events of CM pathogenesis, revealed an interesting interplay of host versus parasite factors that determine the progression of malaria to severe disease and exposed possible targets for therapeutic intervention in severe disease.
Main Body
This paper reviews our current understanding of the pathogenic and immunologic factors involved in CM. We present the current view of the roles of certain gene products e.g., the var gene, ABCA-1, ICAM-1, TNF-alpha, CD-36, PfEMP-1 and G6PD, in CM pathogenesis. We also present alterations in the blood–brain barrier as a consequence of disease proliferation as well as complicated host and parasite interactions, including the T-cell immune reaction, reduced deformation of erythrocytes and cytoadherence. We further looked at recent advances in cerebral malaria treatment interventions by emphasizing on biomarkers, new diagnostic tools and emerging therapeutic options.
Conclusion
Finally, we discuss how the current understanding of some of these pathogenic and immunologic factors could inform the development of novel therapeutic interventions to fight CM.
Collapse
|
8
|
Suurbaar J, Moussiliou A, Tahar R, Olsen RW, Adams Y, Dalgaard N, Baafour EK, Adukpo S, Hviid L, Kusi KA, Alao J, Ofori MF, Ndam NT, Jensen AR. ICAM-1-binding Plasmodium falciparum erythrocyte membrane protein 1 variants elicits opsonic-phagocytosis IgG responses in Beninese children. Sci Rep 2022; 12:12994. [PMID: 35906450 PMCID: PMC9338288 DOI: 10.1038/s41598-022-16305-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
Members of the highly polymorphic Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on the surface of infected erythrocytes (IEs) are important virulence factors, which mediate vascular adhesion of IEs via endothelial host receptors and are targets of naturally acquired immunity. The PfEMP1 family can be divided into clinically relevant subgroups, of which some bind intercellular adhesion molecule 1 (ICAM-1). While the acquisition of IgG specific for ICAM-1-binding DBLβ domains is known to differ between PfEMP1 groups, its ability to induce antibody-dependent cellular phagocytosis (ADCP) is unclear. We therefore measured plasma levels of DBLβ-specific IgG, the ability of such IgG to inhibit PfEMP1-binding to ICAM-1, and its ability to opsonize IEs for ADCP, using plasma from Beninese children with severe (SM) or uncomplicated malaria (UM). IgG specific for DBLβ from group A and B ICAM-1-binding PfEMP1 were dominated by IgG1 and IgG3, and were similar in SM and UM. However, levels of plasma IgG inhibiting ICAM-1-binding of group A DBLβ of PFD1235w was significantly higher in children with UM than SM, and acute UM plasma induced a higher ADCP response than acute SM plasma.
Collapse
Affiliation(s)
- Jennifer Suurbaar
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Université de Paris Cité, MERIT, IRD, 75006, Paris, France
| | | | - Rachida Tahar
- Université de Paris Cité, MERIT, IRD, 75006, Paris, France
| | - Rebecca W Olsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Dalgaard
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eric K Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Selorme Adukpo
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Kwadwo A Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Jules Alao
- Paediatric Department, Mother and Child University and Hospital Center (CHUMEL), Cotonou, Benin
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Nicaise T Ndam
- Université de Paris Cité, MERIT, IRD, 75006, Paris, France
| | - Anja R Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Blankson SO, Dadjé DS, Traikia N, Alao MJ, Ayivi S, Amoussou A, Deloron P, Ndam NT, Milet J, Basco LK, Aniweh Y, Tahar R. ICAM-1 Kilifi variant is not associated with cerebral and severe malaria pathogenesis in Beninese children. Malar J 2022; 21:115. [PMID: 35379236 PMCID: PMC8978164 DOI: 10.1186/s12936-022-04139-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cytoadhesion and sequestration of Plasmodium falciparum infected red blood cells (iRBC) in the microvasculature of vital organs are a major cause of malaria pathology. Several studies have provided evidence on the implication of the human host intercellular adhesion molecule-1 (ICAM-1) as a major receptor for iRBCs binding to P. falciparum erythrocyte membrane protein 1 (PfEMP1) in the development of severe and cerebral malaria. The genetic polymorphism K29M in the immunoglobulin-like domain of ICAM-1, known as ICAM-1Kilifi, has been associated with either increased or decreased risk of developing cerebral malaria.
Methods
To provide more conclusive results, the genetic polymorphism of ICAM-1Kilifi was assessed by PCR and sequencing in blood samples from 215 Beninese children who presented with either mild or severe malaria including cerebral malaria.
Results and conclusions
The results showed that in this cohort of Beninese children, the ICAM-1kilifi variant is present at the frequencies of 0.27, similar to the frequency observed in other African countries. This ICAM-1kilifi variant was not associated with disease severity in agreement with other findings from the Gambia, Tanzania, Malawi, Gabon, and Thailand, suggesting no evidence of a direct link between this polymorphism and the pathogenesis of severe and cerebral malaria.
Collapse
|
10
|
Lopez-Perez M, Viwami F, Doritchamou J, Ndam NT, Hviid L. Natural Acquired Immunity to Malaria Antigens among Pregnant Women with Hemoglobin C Trait. Am J Trop Med Hyg 2022; 106:853-856. [PMID: 35026728 PMCID: PMC8922521 DOI: 10.4269/ajtmh.21-1039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 11/07/2022] Open
Abstract
Hemoglobin C is the second most common structural hemoglobinopathy in Africa, and carriers have a reduced risk of severe malaria. However, the effect of HbAC on the antibody response to malaria antigens in pregnancy has not been studied. Here, we measured PfEMP1-specific antibodies in plasma samples from 74 Beninese pregnant women with either HbAA or HbAC. IgG-mediated inhibition of VAR2CSA+ infected erythrocytes adhesion to chondroitin sulfate A (CSA) was also tested. PfEMP1-specific IgG levels to VAR2CSA were significantly lower in HbAC women, suggesting less exposure to VAR2CSA. In contrast, the percentage of VAR2CSA+-infected erythrocytes adhesion to CSA was not different between HbAA and HbAC women. Moreover, IgG levels to PfEMP1 variants associated with severe malaria were not significantly different between groups. The findings indicate similar exposure to Plasmodium falciparum parasites expressing PfEMP1 variants causing severe malaria, and justify more comprehensive studies of hemoglobinopathy-related qualitative and quantitative differences in PfEMP1-specific antibody responses.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;,Address correspondence to Mary Lopez-Perez, Panum Institute 07-11-38, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. E-mail:
| | - Firmine Viwami
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France;,Institut de Recherche Clinique du Benin, Abomey Calavi, Benin
| | | | - Nicaise Tuikue Ndam
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement (IRD), Paris, France;,Institut de Recherche Clinique du Benin, Abomey Calavi, Benin;,Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;,Centre for Medical Parasitology, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Walker MR, Barfod L. Production of PfEMP1-Specific Human Monoclonal Antibodies from Naturally Immune Individuals. Methods Mol Biol 2022; 2470:407-421. [PMID: 35881362 DOI: 10.1007/978-1-0716-2189-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmodium falciparum parasites express variable surface antigens on the infected erythrocyte surface allowing adhesion to human host receptors on the blood and endothelial cells, which can result in immune evasion. One of the most studied and key antigens in adhesion is the highly polymorphic PfEMP1. However, despite the vast variation in the PfEMP1 antigens, they are the main targets of naturally acquired immunity and are therefore promising candidates for malaria vaccine development. Generating PfEMP1-specific human monoclonal antibodies from naturally immune individuals will help to determine the best targets of protection from clinical disease. Immortalization of human B cells is one of the oldest and most efficient techniques to generate human monoclonal antibodies. Nevertheless, most protocols require flow cytometry-based cell sorting, which can be a limiting factor for many laboratories. This chapter describes an efficient protocol for the generation of PfEMP1-specific human monoclonal antibodies from malaria immune individuals that can be performed without the use of advanced cell-sorting techniques.
Collapse
Affiliation(s)
- Melanie R Walker
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases Copenhagen, University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Lea Barfod
- Centre for Medical Parasitology at Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Infectious Diseases Copenhagen, University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
12
|
Quintana MDP. Expression of Single-Domain Soluble and Disulfide-Folded PfEMP1 Antigens in the Escherichia coli SHuffle Expression System. Methods Mol Biol 2022; 2470:273-282. [PMID: 35881352 DOI: 10.1007/978-1-0716-2189-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The genome of Plasmodium falciparum has an A/T content of around 81%. This, together with a high cysteine content and the high molecular weight of several proteins, make the expression of recombinant parasite proteins in heterologous systems challenging. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins composed of several Duffy-binding like (DBL) and cysteine-rich inter-domain region (CIDR) domains involved in cytoadhesion to human host receptors and development of severe malaria. Expression of correctly folded single- and multiple-domain PfEMP1 fragment regions containing cysteines forming disulfide bonds, remains particularly difficult. Nevertheless, expression of single DBL and CIDR domains has been successful and this protocol describes the expression and purification of single-domain soluble PfEMP1 fragments using the Escherichia coli SHuffle expression system.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Lopez-Perez M, Viwami F, Seidu Z, Jensen ATR, Doritchamou J, Ndam NT, Hviid L. PfEMP1-Specific Immunoglobulin G Reactivity Among Beninese Pregnant Women With Sickle Cell Trait. Open Forum Infect Dis 2021; 8:ofab527. [PMID: 34909438 PMCID: PMC8664683 DOI: 10.1093/ofid/ofab527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Sickle cell trait (HbAS) protects against severe Plasmodium falciparum malaria but not against placental malaria (PM). In this study, P falciparum erythrocyte membrane protein (PfEMP1)-specific antibodies were measured in HbAA and HbAS Beninese pregnant women as a proxy of exposure to specific PfEMP1 variants. METHODS Plasma samples collected at delivery from 338 HbAA and 63 HbAS women were used to measure immunoglobulin (Ig)G levels to 6 recombinant PfEMP1 proteins and 3 corresponding native proteins expressed on the infected erythrocyte (IE) surface. Immunoglobulin G-mediated inhibition of VAR2CSA+ IEs adhesion to chondroitin sulfate A (CSA) was also tested. RESULTS Levels of PfEMP1-specific IgG were similar in the 2 groups, except for native IT4VAR09 on IEs, where IgG levels were significantly higher in HbAS women. Adjusted odds ratios for women with positive IgG to HB3VAR06 and PFD1235w suggest a lower risk of infection with these virulent variants among HbAS individuals. The percentage of IEs binding to CSA did not differ between HbAA and HbAS women, but it correlated positively with levels of anti-VAR2CSA and parity. Women with PM had lower levels of anti-VAR2CSA-specific IgG and lower IgG-mediated inhibition of IE adhesion to CSA. CONCLUSIONS The findings support similar malaria exposure in HbAA and HbAS women and a lack of HbAS-dependent protection against placental infection among pregnant women.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Firmine Viwami
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement, Paris, France
- Institut de Recherche Clinique du Benin, Abomey Calavi, Benin
| | - Zakaria Seidu
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nicaise Tuikue Ndam
- UMR 261 MERIT, Université de Paris, Institut de Recherche pour le Développement, Paris, France
- Institut de Recherche Clinique du Benin, Abomey Calavi, Benin
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Tornyigah B, d'Almeida T, Escriou G, Viwami F, Fievet N, Luty AJF, Massougbodji A, Nielsen MA, Deloron P, Tuikue Ndam N. Plasmodium falciparum VAR2CSA-Specific IgG Subclass Responses Reflect Protection Against Low Birth Weight and Pregnancy-Associated Malaria. Front Immunol 2021; 12:610305. [PMID: 33968015 PMCID: PMC8099026 DOI: 10.3389/fimmu.2021.610305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes expressing the VAR2CSA antigen in the placenta results in poor pregnancy outcomes, including low birth weight and maternal anemia. Antigen-specific antibody-mediated immunity is acquired during successive pregnancies. Thus, evaluating VAR2CSA-specific IgG profiles among pregnant women will increase knowledge on the immunological mechanisms associated with protection, and help in the development of VAR2CSA-based placental malaria vaccines. Using the PAMVAC candidate vaccine antigen, we assessed anti-VAR2CSA IgG subclass responses of a cohort of pregnant Beninese, and analyzed their relationships with pregnancy outcomes. Cytophilic IgG1 and IgG3 responses were the most frequent, with prevalences ranging from 28% (IgG3) up to 50% (IgG1). Elevated levels of VAR2CSA-specific total IgG and cytophilic IgG3 during pregnancy were consistently associated with higher birth weights, whilst high levels of IgG4 were associated with a reduced risk of placental infections. This suggests that protective anti-VAR2CSA IgG responses are coordinated between both cytophilic and non-cytophilic antibodies.
Collapse
Affiliation(s)
- Bernard Tornyigah
- Université de Paris, MERIT, IRD, Paris, France.,Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Tania d'Almeida
- Université de Paris, MERIT, IRD, Paris, France.,Université Pierre et Marie Curie, Ecole doctorale 393 Pierre Louis de Santé publique, Paris, France
| | | | - Firmine Viwami
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Cotonou, Benin
| | - Nadine Fievet
- Université de Paris, MERIT, IRD, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Cotonou, Benin
| | - Adrian J F Luty
- Université de Paris, MERIT, IRD, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Cotonou, Benin
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Cotonou, Benin
| | - Morten A Nielsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | | | - Nicaise Tuikue Ndam
- Université de Paris, MERIT, IRD, Paris, France.,Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
15
|
Adams Y, Olsen RW, Bengtsson A, Dalgaard N, Zdioruk M, Satpathi S, Behera PK, Sahu PK, Lawler SE, Qvortrup K, Wassmer SC, Jensen AT. Plasmodium falciparum erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood-brain barrier in cerebral malaria. J Exp Med 2021; 218:e20201266. [PMID: 33492344 PMCID: PMC7833209 DOI: 10.1084/jem.20201266] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebral malaria (CM) is caused by the binding of Plasmodium falciparum-infected erythrocytes (IEs) to the brain microvasculature, leading to inflammation, vessel occlusion, and cerebral swelling. We have previously linked dual intercellular adhesion molecule-1 (ICAM-1)- and endothelial protein C receptor (EPCR)-binding P. falciparum parasites to these symptoms, but the mechanism driving the pathogenesis has not been identified. Here, we used a 3D spheroid model of the blood-brain barrier (BBB) to determine unexpected new features of IEs expressing the dual-receptor binding PfEMP1 parasite proteins. Analysis of multiple parasite lines shows that IEs are taken up by brain endothelial cells in an ICAM-1-dependent manner, resulting in breakdown of the BBB and swelling of the endothelial cells. Via ex vivo analysis of postmortem tissue samples from CM patients, we confirmed the presence of parasites within brain endothelial cells. Importantly, this discovery points to parasite ingress into the brain endothelium as a contributing factor to the pathology of human CM.
Collapse
Affiliation(s)
- Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca W. Olsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Bengtsson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Dalgaard
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mykola Zdioruk
- Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | | | - Praveen K. Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, India
| | - Sean E. Lawler
- Brigham and Women’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Anja T.R. Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Gonzales SJ, Reyes RA, Braddom AE, Batugedara G, Bol S, Bunnik EM. Naturally Acquired Humoral Immunity Against Plasmodium falciparum Malaria. Front Immunol 2020; 11:594653. [PMID: 33193447 PMCID: PMC7658415 DOI: 10.3389/fimmu.2020.594653] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a significant contributor to the global burden of disease, with around 40% of the world's population at risk of Plasmodium infections. The development of an effective vaccine against the malaria parasite would mark a breakthrough in the fight to eradicate the disease. Over time, natural infection elicits a robust immune response against the blood stage of the parasite, providing protection against malaria. In recent years, we have gained valuable insight into the mechanisms by which IgG acts to prevent pathology and inhibit parasite replication, as well as the potential role of immunoglobulin M (IgM) in these processes. Here, we discuss recent advances in our understanding of the mechanisms, acquisition, and maintenance of naturally acquired immunity, and the relevance of these discoveries for the development of a potential vaccine against the blood stage of Plasmodium falciparum.
Collapse
Affiliation(s)
| | | | | | | | | | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
17
|
Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev 2020; 293:230-252. [PMID: 31562653 PMCID: PMC6972667 DOI: 10.1111/imr.12807] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Malaria, a mosquito-borne infectious disease caused by parasites of the genus Plasmodium continues to be a major health problem worldwide. The unicellular Plasmodium-parasites have the unique capacity to infect and replicate within host erythrocytes. By expressing variant surface antigens Plasmodium falciparum has evolved to avoid protective immune responses; as a result in endemic areas anti-malaria immunity develops gradually over many years of multiple and repeated infections. We are studying the role of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed by asexual stages of P. falciparum responsible for the pathogenicity of severe malaria. The immunopathology of falciparum malaria has been linked to cyto-adhesion of infected erythrocytes to specific host receptors. A greater appreciation of the PfEMP1 molecules important for the development of protective immunity and immunopathology is a prerequisite for the rational discovery and development of a safe and protective anti-disease malaria vaccine. Here we review the role of ICAM-1 and EPCR receptor adhering falciparum-parasites in the development of severe malaria; we discuss our current research to understand the factors involved in the pathogenesis of cerebral malaria and the feasibility of developing a vaccine targeted specifically to prevent this disease.
Collapse
Affiliation(s)
- Anja Ramstedt Jensen
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesRigshospitaletCopenhagenDenmark
| |
Collapse
|