1
|
De Freitas A, Midlej V. Cannabinoids as cytotoxic agents and potential modulators of the human parasite Trichomonas vaginalis. Biomed Pharmacother 2025; 182:117793. [PMID: 39724679 DOI: 10.1016/j.biopha.2024.117793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/12/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Trichomoniasis, a globally prevalent sexually transmitted infection caused by Trichomonas vaginalis, affects approximately 278 million people each year. It presents a challenge due to resistance to the current treatment, Metronidazole (MTZ), which is also associated with side effects. Cannabis sativa, with more than 100 phytocannabinoids and numerous studies for therapeutic applications, including parasitic infections, has undergone a significant shift in acceptance worldwide, highlighted by legalizations and substantial revenue projections. In this context, the present study delves into the effects of cannabinoids, specifically WIN 55,212-2 (WIN), Cannabivarin (CBV) showcasing their anti-parasitic actions that influence the growth and morphology of T. vaginalis. The analysis extends to encompass the pharmacokinetic properties of these cannabinoids. Among the analyzed cannabinoids, CBV stands out for adhering to Lipinski's rules, indicating its potential suitability for oral drug delivery. They also demonstrated inhibitory effects on the growth of T. vaginalis trophozoites and a reduction in the parasite's adhesion to host cells. Several morphological alterations were observed, such as membrane projections, blebbing, autophagosomes and damaged hydrogenosomes. These results highlight the need for further research to explore the therapeutic potential of cannabinoids and understand their mechanisms of action in T. vaginalis.
Collapse
Affiliation(s)
- Anna De Freitas
- Structural Biology Laboratory, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil
| | - Victor Midlej
- Structural Biology Laboratory, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Oswaldo Cruz Institution, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Hammer AJ, Gaulke CA, Garcia-Jaramillo M, Leong C, Morre J, Sieler MJ, Stevens JF, Jiang Y, Maier CS, Kent ML, Sharpton TJ. Gut microbiota metabolically mediate intestinal helminth infection in zebrafish. mSystems 2024; 9:e0054524. [PMID: 39191377 PMCID: PMC11406965 DOI: 10.1128/msystems.00545-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Intestinal helminth parasite (IHP) infection induces alterations in the composition of microbial communities across vertebrates, although how gut microbiota may facilitate or hinder parasite infection remains poorly defined. In this work, we utilized a zebrafish model to investigate the relationship between gut microbiota, gut metabolites, and IHP infection. We found that extreme disparity in zebrafish parasite infection burden is linked to the composition of the gut microbiome and that changes in the gut microbiome are associated with variation in a class of endogenously produced signaling compounds, N-acylethanolamines, that are known to be involved in parasite infection. Using a statistical mediation analysis, we uncovered a set of gut microbes whose relative abundance explains the association between gut metabolites and infection outcomes. Experimental investigation of one of the compounds in this analysis reveals salicylaldehyde, which is putatively produced by the gut microbe Pelomonas, as a potent anthelmintic with activity against Pseudocapillaria tomentosa egg hatching, both in vitro and in vivo. Collectively, our findings underscore the importance of the gut microbiome as a mediating agent in parasitic infection and highlight specific gut metabolites as tools for the advancement of novel therapeutic interventions against IHP infection. IMPORTANCE Intestinal helminth parasites (IHPs) impact human health globally and interfere with animal health and agricultural productivity. While anthelmintics are critical to controlling parasite infections, their efficacy is increasingly compromised by drug resistance. Recent investigations suggest the gut microbiome might mediate helminth infection dynamics. So, identifying how gut microbes interact with parasites could yield new therapeutic targets for infection prevention and management. We conducted a study using a zebrafish model of parasitic infection to identify routes by which gut microbes might impact helminth infection outcomes. Our research linked the gut microbiome to both parasite infection and to metabolites in the gut to understand how microbes could alter parasite infection. We identified a metabolite in the gut, salicylaldehyde, that is putatively produced by a gut microbe and that inhibits parasitic egg growth. Our results also point to a class of compounds, N-acyl-ethanolamines, which are affected by changes in the gut microbiome and are linked to parasite infection. Collectively, our results indicate the gut microbiome may be a source of novel anthelmintics that can be harnessed to control IHPs.
Collapse
Affiliation(s)
- Austin J Hammer
- Department of Microbiology, Oregon State University, Oregon, USA
| | - Christopher A Gaulke
- Department of Pathobiology, University of Illinois Urbana Champaign, Illinois, USA
| | | | - Connor Leong
- Department of Microbiology, Oregon State University, Oregon, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Jeffrey Morre
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Michael J Sieler
- Department of Microbiology, Oregon State University, Oregon, USA
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Oregon, USA
- Linus Pauling Institute, Oregon State University, Oregon, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Oregon, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Oregon, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Oregon, USA
- Department of Statistics, Oregon State University, Oregon, USA
| |
Collapse
|
3
|
Hammer AJ, Gaulke CA, Garcia-Jaramillo M, Leong C, Morre J, Sieler MJ, Stevens JF, Jiang Y, Maier CS, Kent ML, Sharpton TJ. Gut microbiota metabolically mediate intestinal helminth infection in Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605207. [PMID: 39091873 PMCID: PMC11291147 DOI: 10.1101/2024.07.26.605207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Intestinal helminth parasite (IHP) infection induces alterations in the composition of microbial communities across vertebrates, although how gut microbiota may facilitate or hinder parasite infection remains poorly defined. In this work we utilized a zebrafish model to investigate the relationship between gut microbiota, gut metabolites, and IHP infection. We found that extreme disparity in zebrafish parasite infection burden is linked to the composition of the gut microbiome, and that changes in the gut microbiome are associated with variation in a class of endogenously-produced signaling compounds, N-acylethanolamines, that are known to be involved in parasite infection. Using a statistical mediation analysis, we uncovered a set of gut microbes whose relative abundance explains the association between gut metabolites and infection outcomes. Experimental investigation of one of the compounds in this analysis reveals salicylaldehyde, which is putatively produced by the gut microbe Pelomonas, as a potent anthelmintic with activity against Pseudocapillaria tomentosa egg hatching, both in vitro and in vivo. Collectively, our findings underscore the importance of the gut microbiome as a mediating agent in parasitic infection and highlights specific gut metabolites as tools for the advancement of novel therapeutic interventions against IHP infection.
Collapse
Affiliation(s)
| | - Chris A. Gaulke
- Department of Pathobiology, University of Illinois Urbana Champaign
| | | | - Connor Leong
- Department of Microbiology, Oregon State University
| | | | | | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University
- Linus Pauling Institute, Oregon State University
| | - Yuan Jiang
- Department of Statistics, Oregon State University
| | | | | | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University
- Department of Statistics, Oregon State University
| |
Collapse
|
4
|
Ferguson AA, Inclan-Rico JM, Lu D, Bobardt SD, Hung L, Gouil Q, Baker L, Ritchie ME, Jex AR, Schwarz EM, Rossi HL, Nair MG, Dillman AR, Herbert DR. Hookworms dynamically respond to loss of Type 2 immune pressure. PLoS Pathog 2023; 19:e1011797. [PMID: 38079450 PMCID: PMC10735188 DOI: 10.1371/journal.ppat.1011797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/21/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
The impact of the host immune environment on parasite transcription and fitness is currently unknown. It is widely held that hookworm infections have an immunomodulatory impact on the host, but whether the converse is true remains unclear. Immunity against adult-stage hookworms is largely mediated by Type 2 immune responses driven by the transcription factor Signal Transducer and Activator of Transcription 6 (STAT6). This study investigated whether serial passage of the rodent hookworm Nippostrongylus brasiliensis in STAT6-deficient mice (STAT6 KO) caused changes in parasites over time. After adaptation to STAT6 KO hosts, N. brasiliensis increased their reproductive output, feeding capacity, energy content, and body size. Using an improved N. brasiliensis genome, we found that these physiological changes corresponded with a dramatic shift in the transcriptional landscape, including increased expression of gene pathways associated with egg production, but a decrease in genes encoding neuropeptides, proteases, SCP/TAPS proteins, and transthyretin-like proteins; the latter three categories have been repeatedly observed in hookworm excreted/secreted proteins (ESPs) implicated in immunosuppression. Although transcriptional changes started to appear in the first generation of passage in STAT6 KO hosts for both immature and mature adult stages, downregulation of the genes putatively involved in immunosuppression was only observed after multiple generations in this immunodeficient environment. When STAT6 KO-adapted N. brasiliensis were reintroduced to a naive WT host after up to 26 generations, this progressive change in host-adaptation corresponded to increased production of inflammatory cytokines by the WT host. Surprisingly, however, this single exposure of STAT6 KO-adapted N. brasiliensis to WT hosts resulted in worms that were morphologically and transcriptionally indistinguishable from WT-adapted parasites. This work uncovers remarkable plasticity in the ability of hookworms to adapt to their hosts, which may present a general feature of parasitic nematodes.
Collapse
Affiliation(s)
- Annabel A. Ferguson
- University of Pennsylvania, School of Veterinary Medicine, Pathobiology Department, Philadelphia, Pennsylvania, United States of America
| | - Juan M. Inclan-Rico
- University of Pennsylvania, School of Veterinary Medicine, Pathobiology Department, Philadelphia, Pennsylvania, United States of America
| | - Dihong Lu
- University of California Riverside, Department of Nematology, Riverside, California, United States of America
| | - Sarah D. Bobardt
- University of California Riverside, School of Medicine, Department of Biomedical Sciences, Riverside, California, United States of America
| | - LiYin Hung
- University of Pennsylvania, School of Veterinary Medicine, Pathobiology Department, Philadelphia, Pennsylvania, United States of America
| | - Quentin Gouil
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- University of Melbourne, Department of Medical Biology, Parkville, Victoria, Australia
| | - Louise Baker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- University of Melbourne, Department of Veterinary Biosciences, Parkville, Victoria, Australia
| | - Matthew E. Ritchie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- University of Melbourne, Department of Medical Biology, Parkville, Victoria, Australia
| | - Aaron R. Jex
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- University of Melbourne, Department of Veterinary Biosciences, Parkville, Victoria, Australia
| | - Erich M. Schwarz
- University of Melbourne, Department of Veterinary Biosciences, Parkville, Victoria, Australia
- Cornell University, Department of Molecular Biology and Genetics, Ithaca, New York, United States of America
| | - Heather L. Rossi
- University of Pennsylvania, School of Veterinary Medicine, Pathobiology Department, Philadelphia, Pennsylvania, United States of America
| | - Meera G. Nair
- University of California Riverside, School of Medicine, Department of Biomedical Sciences, Riverside, California, United States of America
| | - Adler R. Dillman
- University of California Riverside, Department of Nematology, Riverside, California, United States of America
| | - De’Broski R. Herbert
- University of Pennsylvania, School of Veterinary Medicine, Pathobiology Department, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Al-kuraishy HM, Al-Gareeb AI, Alkazmi L, El-Bouseary MM, Hamad RS, Abdelhamid M, Batiha GES. The Potential Nexus between Helminths and SARS-CoV-2 Infection: A Literature Review. J Immunol Res 2023; 2023:5544819. [PMID: 37383608 PMCID: PMC10299886 DOI: 10.1155/2023/5544819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/05/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Chronic helminth infections (CHIs) can induce immunological tolerance through the upregulation of regulatory T cells. In coronavirus disease 2019 (COVID-19), abnormal adaptive immune response and exaggerated immune response may cause immune-mediated tissue damage. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) and CHIs establish complicated immune interactions due to SARS-CoV-2-induced immunological stimulation and CHIs-induced immunological tolerance. However, COVID-19 severity in patients with CHIs is mild, as immune-suppressive anti-inflammatory cytokines counterbalance the risk of cytokine storm. Since CHIs have immunomodulatory effects, therefore, this narrative review aimed to clarify how CHIs modulate the immunoinflammatory response in SARS-CoV-2 infection. CHIs, through helminth-derived molecules, may suppress SARS-CoV-2 entry and associated hyperinflammation through attenuation of the inflammatory signaling pathway. In addition, CHIs may reduce the COVID-19 severity by reducing the SARS-CoV-2 entry points in the initial phase and immunomodulation in the late phase of the disease by suppressing the release of pro-inflammatory cytokines. In conclusion, CHIs may reduce the severity of SARS-CoV-2 infection by reducing hyperinflammation and exaggerated immune response. Thus, retrospective and prospective studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt
| | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
6
|
Spalinger MR, Canale V, Becerra A, Shawki A, Crawford M, Santos AN, Chatterjee P, Li J, Nair MG, McCole DF. PTPN2 regulates bacterial clearance in a mouse model of enteropathogenic and enterohemorrhagic E. coli infection. JCI Insight 2023; 8:156909. [PMID: 36810248 PMCID: PMC9977497 DOI: 10.1172/jci.insight.156909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/11/2023] [Indexed: 02/23/2023] Open
Abstract
Macrophages intimately interact with intestinal epithelial cells, but the consequences of defective macrophage-epithelial cell interactions for protection against enteric pathogens are poorly understood. Here, we show that in mice with a deletion in protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in macrophages, infection with Citrobacter rodentium, a model of enteropathogenic and enterohemorrhagic E. coli infection in humans, promoted a strong type 1/IL-22-driven immune response, culminating in accelerated disease but also faster clearance of the pathogen. In contrast, deletion of PTPN2 specifically in epithelial cells rendered the epithelium unable to upregulate antimicrobial peptides and consequently resulted in a failure to eliminate the infection. The ability of PTPN2-deficient macrophages to induce faster recovery from C. rodentium was dependent on macrophage-intrinsic IL-22 production, which was highly increased in macrophages deficient in PTPN2. Our findings demonstrate the importance of macrophage-mediated factors, and especially macrophage-derived IL-22, for the induction of protective immune responses in the intestinal epithelium, and show that normal PTPN2 expression in the epithelium is crucial to allow for protection against enterohemorrhagic E. coli and other intestinal pathogens.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA.,Department for Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Vinicius Canale
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Anica Becerra
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Ali Shawki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Meli'sa Crawford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Alina N Santos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Pritha Chatterjee
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
7
|
Lundregan SL, Mäkinen H, Buer A, Holand H, Jensen H, Husby A. Infection by a helminth parasite is associated with changes in DNA methylation in the house sparrow. Ecol Evol 2022; 12:e9539. [PMID: 36447599 PMCID: PMC9702581 DOI: 10.1002/ece3.9539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.
Collapse
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Hannu Mäkinen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Amberly Buer
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Håkon Holand
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
8
|
Diet-Induced Gut Barrier Dysfunction Is Exacerbated in Mice Lacking Cannabinoid 1 Receptors in the Intestinal Epithelium. Int J Mol Sci 2022; 23:ijms231810549. [PMID: 36142461 PMCID: PMC9504303 DOI: 10.3390/ijms231810549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
The gut barrier provides protection from pathogens and its function is compromised in diet-induced obesity (DIO). The endocannabinoid system in the gut is dysregulated in DIO and participates in gut barrier function; however, whether its activity is protective or detrimental for gut barrier integrity is unclear. We used mice conditionally deficient in cannabinoid receptor subtype-1 (CB1R) in the intestinal epithelium (intCB1−/−) to test the hypothesis that CB1Rs in intestinal epithelial cells provide protection from diet-induced gut barrier dysfunction. Control and intCB1−/− mice were placed for eight weeks on a high-fat/sucrose Western-style diet (WD) or a low-fat/no-sucrose diet. Endocannabinoid levels and activity of their metabolic enzymes were measured in the large-intestinal epithelium (LI). Paracellular permeability was tested in vivo, and expression of genes for gut barrier components and inflammatory markers were analyzed. Mice fed WD had (i) reduced levels of endocannabinoids in the LI due to lower activity of their biosynthetic enzymes, and (ii) increased permeability that was exacerbated in intCB1−/− mice. Moreover, intCB1−/− mice fed WD had decreased expression of genes for tight junction proteins and increased expression of inflammatory markers in LI. These results suggest that CB1Rs in the intestinal epithelium serve a protective role in gut barrier function in DIO.
Collapse
|
9
|
Crooks BA, Mckenzie D, Cadd LC, McCoy CJ, McVeigh P, Marks NJ, Maule AG, Mousley A, Atkinson LE. Pan-phylum In Silico Analyses of Nematode Endocannabinoid Signalling Systems Highlight Novel Opportunities for Parasite Drug Target Discovery. Front Endocrinol (Lausanne) 2022; 13:892758. [PMID: 35846343 PMCID: PMC9283691 DOI: 10.3389/fendo.2022.892758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid signalling (ECS) system is a complex lipid signalling pathway that modulates diverse physiological processes in both vertebrate and invertebrate systems. In nematodes, knowledge of endocannabinoid (EC) biology is derived primarily from the free-living model species Caenorhabditis elegans, where ECS has been linked to key aspects of nematode biology. The conservation and complexity of nematode ECS beyond C. elegans is largely uncharacterised, undermining the understanding of ECS biology in nematodes including species with key importance to human, veterinary and plant health. In this study we exploited publicly available omics datasets, in silico bioinformatics and phylogenetic analyses to examine the presence, conservation and life stage expression profiles of EC-effectors across phylum Nematoda. Our data demonstrate that: (i) ECS is broadly conserved across phylum Nematoda, including in therapeutically and agriculturally relevant species; (ii) EC-effectors appear to display clade and lifestyle-specific conservation patterns; (iii) filarial species possess a reduced EC-effector complement; (iv) there are key differences between nematode and vertebrate EC-effectors; (v) life stage-, tissue- and sex-specific EC-effector expression profiles suggest a role for ECS in therapeutically relevant parasitic nematodes. To our knowledge, this study represents the most comprehensive characterisation of ECS pathways in phylum Nematoda and inform our understanding of nematode ECS complexity. Fundamental knowledge of nematode ECS systems will seed follow-on functional studies in key nematode parasites to underpin novel drug target discovery efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Louise E. Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Montanhaur ADRS, Lima EDO, Delafiori J, Esteves CZ, Prado CCR, Allegretti SM, Ueta MT, Levy CE, Catharino RR. Metabolic alterations in Strongyloidiasis stool samples unveil potential biomarkers of infection. Acta Trop 2022; 227:106279. [PMID: 34968451 DOI: 10.1016/j.actatropica.2021.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/01/2022]
Abstract
Strongyloidiasis, a parasitosis caused by Strongyloides stercoralis in humans, is a very prevalent infection in tropical or subtropical areas. Gaps on public health strategies corroborates to the high global incidence of strongyloidiasis especially due to challenges involved on its diagnosis. Based on the lack of a gold-standard diagnostic tool, we aimed to present a metabolomic study for the assessment of stool metabolic alterations. Stool samples were collected from 25 patients segregated into positive for strongyloidiasis (n = 10) and negative control (n = 15) and prepared for direct injection high-resolution mass spectrometry analysis. Using metabolomics workflow, 18 metabolites were annotated increased or decreased in strongyloidiasis condition, from which a group of 5 biomarkers comprising caprylic acid, mannitol, glucose, lysophosphatidylinositol and hydroxy-dodecanoic acid demonstrated accuracy over 89% to be explored as potential markers. The observed metabolic alteration in stool samples indicates involvement of microbiota remodeling, parasite constitution, and host response during S. stercoralis infection.
Collapse
|
11
|
Spalinger MR, Crawford M, Bobardt SD, Li J, Sayoc-Becerra A, Santos AN, Shawki A, Chatterjee P, Nair MG, McCole DF. Loss of protein tyrosine phosphatase non-receptor type 2 reduces IL-4-driven alternative macrophage activation. Mucosal Immunol 2022; 15:74-83. [PMID: 34420044 PMCID: PMC8732276 DOI: 10.1038/s41385-021-00441-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 02/04/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells that are often divided into two major subsets: classically activated, typically pro-inflammatory (M1) macrophages that mediate host defense, and alternatively activated, tolerance-inducing (M2) macrophages that exert homeostatic and tissue-regenerative functions. Disturbed macrophage function/differentiation results either in inadequate, excessive immune activation or in a failure to induce efficient protective immune responses against pathogens. Loss-of-function variants in protein tyrosine phosphatase non-receptor type 2 (PTPN2) are associated with chronic inflammatory disorders, but the effect of macrophage-intrinsic PTPN2 loss is still poorly understood. Here we report that PTPN2-deficient macrophages fail to acquire an alternatively activated/M2 phenotype. This was the consequence of reduced IL-6 receptor expression and a failure to induce IL-4 receptor in response to IL-6, resulting in an inability to respond to the key M2-inducing cytokine IL-4. Ultimately, failure to adequately respond to IL-6 and IL-4 resulted in increased levels of M1 macrophage marker expression in vitro and exacerbated lung inflammation upon infection with Nippostrongylus brasiliensis in vivo. These results demonstrate that PTPN2 loss interferes with the ability of macrophages to adequately respond to inflammatory stimuli and might explain the increased susceptibility of PTPN2 loss-of-function carriers to developing inflammatory diseases.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA.
| | - Meli'sa Crawford
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Sarah D Bobardt
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jiang Li
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Alina N Santos
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Ali Shawki
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Pritha Chatterjee
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Meera G Nair
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Declan F McCole
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
12
|
Berger CS, Laroche J, Maaroufi H, Martin H, Moon KM, Landry CR, Foster LJ, Aubin-Horth N. The parasite Schistocephalus solidus secretes proteins with putative host manipulation functions. Parasit Vectors 2021; 14:436. [PMID: 34454597 PMCID: PMC8400842 DOI: 10.1186/s13071-021-04933-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Manipulative parasites are thought to liberate molecules in their external environment, acting as manipulation factors with biological functions implicated in their host's physiological and behavioural alterations. These manipulation factors are part of a complex mixture called the secretome. While the secretomes of various parasites have been described, there is very little data for a putative manipulative parasite. It is necessary to study the molecular interaction between a manipulative parasite and its host to better understand how such alterations evolve. METHODS Here, we used proteomics to characterize the secretome of a model cestode with a complex life cycle based on trophic transmission. We studied Schistocephalus solidus during the life stage in which behavioural changes take place in its obligatory intermediate fish host, the threespine stickleback (Gasterosteus aculeatus). We produced a novel genome sequence and assembly of S. solidus to improve protein coding gene prediction and annotation for this parasite. We then described the whole worm's proteome and its secretome during fish host infection using LC-MS/MS. RESULTS A total of 2290 proteins were detected in the proteome of S. solidus, and 30 additional proteins were detected specifically in the secretome. We found that the secretome contains proteases, proteins with neural and immune functions, as well as proteins involved in cell communication. We detected receptor-type tyrosine-protein phosphatases, which were reported in other parasitic systems to be manipulation factors. We also detected 12 S. solidus-specific proteins in the secretome that may play important roles in host-parasite interactions. CONCLUSIONS Our results suggest that S. solidus liberates molecules with putative host manipulation functions in the host and that many of them are species-specific.
Collapse
Affiliation(s)
- Chloé Suzanne Berger
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| | - Jérôme Laroche
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Halim Maaroufi
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
| | - Hélène Martin
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Christian R. Landry
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Département de Biochimie, Microbiologie Et Bioinformatique, Université Laval, Quebec, QC Canada
- PROTEO, Le Réseau Québécois de Recherche Sur La Fonction, la structure et l’ingénierie des protéines, Université Laval, Quebec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Quebec, Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Nadia Aubin-Horth
- Département de Biologie, Université Laval, Quebec, QC Canada
- Institut de Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Quebec, QC Canada
- Ressources Aquatiques Québec (RAQ), Institut Des Sciences de La Mer de Rimouski, Quebec, Canada
| |
Collapse
|
13
|
Wiley MB, Perez PA, Argueta DA, Avalos B, Wood CP, DiPatrizio NV. UPLC-MS/MS Method for Analysis of Endocannabinoid and Related Lipid Metabolism in Mouse Mucosal Tissue. Front Physiol 2021; 12:699712. [PMID: 34335305 PMCID: PMC8317065 DOI: 10.3389/fphys.2021.699712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system is expressed in cells throughout the body and controls a variety of physiological and pathophysiological functions. We describe robust and reproducible UPLC-MS/MS-based methods for analyzing metabolism of the endocannabinoids, 2-arachidonoyl-sn-glycerol and arachidonoyl ethanolamide, and related monoacylglycerols (MAGs) and fatty acid ethanolamides (FAEs), respectively, in mouse mucosal tissues (i.e., intestine and lung). These methods are optimized for analysis of activity of the MAG biosynthetic enzyme, diacylglycerol lipase (DGL), and MAG degradative enzymes, monoacylglycerol lipase (MGL) and alpha/beta hydrolase domain containing-6 (ABHD6). Moreover, we describe a novel UPLC-MS/MS-based method for analyzing activity of the FAE degradative enzyme, fatty acid amide hydrolase (FAAH), that does not require use of radioactive substrates. In addition, we describe in vivo pharmacological methods to inhibit MAG biosynthesis selectively in the mouse small-intestinal epithelium. These methods will be useful for profiling endocannabinoid metabolism in rodent mucosal tissues in health and disease.
Collapse
Affiliation(s)
- Mark B Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Donovan A Argueta
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Bryant Avalos
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Courtney P Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
14
|
Wiley MB, Bobardt SD, Nordgren TM, Nair MG, DiPatrizio NV. Cannabinoid Receptor Subtype-1 Regulates Allergic Airway Eosinophilia During Lung Helminth Infection. Cannabis Cannabinoid Res 2021; 6:242-252. [PMID: 33998896 PMCID: PMC8217601 DOI: 10.1089/can.2020.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Introduction: Over 1 billion humans carry infectious helminth parasites that can lead to chronic comorbidities such as anemia and growth retardation in children. Helminths induce a T-helper type 2 (Th2) immune response in the host and can cause severe tissue damage and fibrosis if chronic. We recently reported that mice infected with the soil-transmitted helminth, Nippostrongylus brasiliensis, displayed elevated levels of endocannabinoids (eCBs) in the lung and intestine. eCBs are lipid-signaling molecules that control inflammation; however, their function in infection is not well defined. Materials and Methods: A combination of pharmacological approaches and genetic mouse models was used to investigate roles for the eCB system in inflammatory responses and lung injury in mice during parasitic infection with N. brasiliensis. Results: Hemorrhaging of lung tissue in mice infected with N. brasiliensis was exacerbated by inhibiting peripheral cannabinoid receptor subtype-1 (CB1Rs) with the peripherally restricted CB1R antagonist, AM6545. In addition, these mice exhibited an increase in nonfunctional alveolar space and prolonged airway eosinophilia compared to vehicle-treated infected mice. In contrast to mice treated with AM6545, infected cannabinoid receptor subtype-2-null mice (Cnr2-/-) did not display any changes in these parameters compared to wild-type mice. Conclusions: Roles for the eCB system in Th2 immune responses are not well understood; however, increases in its activity in response to infection suggest an immunomodulatory role. Moreover, these findings suggest a role for eCB signaling at CB1Rs but not cannabinoid receptor subtypes-2 in the resolution of Th2 inflammatory responses, which become host destructive over time.
Collapse
Affiliation(s)
- Mark B. Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Tara M. Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
15
|
Clarke TL, Johnson RL, Simone JJ, Carlone RL. The Endocannabinoid System and Invertebrate Neurodevelopment and Regeneration. Int J Mol Sci 2021; 22:2103. [PMID: 33672634 PMCID: PMC7924210 DOI: 10.3390/ijms22042103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis has long been used for its medicinal and psychoactive properties. With the relatively new adoption of formal medicinal cannabis regulations worldwide, the study of cannabinoids, both endogenous and exogenous, has similarly flourished in more recent decades. In particular, research investigating the role of cannabinoids in regeneration and neurodevelopment has yielded promising results in vertebrate models. However, regeneration-competent vertebrates are few, whereas a myriad of invertebrate species have been established as superb models for regeneration. As such, this review aims to provide a comprehensive summary of the endocannabinoid system, with a focus on current advances in the area of endocannabinoid system contributions to invertebrate neurodevelopment and regeneration.
Collapse
Affiliation(s)
- Tristyn L. Clarke
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Rachael L. Johnson
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
- eCB Consulting Inc., P.O. Box 652, 3 Cameron St. W., Cannington, ON L2S 3A1, Canada
| | - Robert L. Carlone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada; (T.L.C.); (R.L.J.); (J.J.S.)
- Centre for Neuroscience, Brock University, 1812 Sir Isaac brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
16
|
Pai AY, Wenziger C, Streja E, Argueta DA, DiPatrizio NV, Rhee CM, Vaziri ND, Kalantar-Zadeh K, Piomelli D, Moradi H. Impact of Circulating N-Acylethanolamine Levels with Clinical and Laboratory End Points in Hemodialysis Patients. Am J Nephrol 2021; 52:59-68. [PMID: 33601382 DOI: 10.1159/000513381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients with ESRD on maintenance hemodialysis (MHD) are particularly susceptible to dysregulation of energy metabolism, which may manifest as protein energy wasting and cachexia. In recent years, the endocannabinoid system has been shown to play an important role in energy metabolism with potential relevance in ESRD. N-acylethanolamines are a class of fatty acid amides which include the major endocannabinoid ligand, anandamide, and the endogenous peroxisome proliferator-activated receptor-α agonists, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). METHODS Serum concentrations of OEA and PEA were measured in MHD patients and their correlations with various clinical/laboratory indices were examined. Secondarily, we evaluated the association of circulating PEA and OEA levels with 12-month all-cause mortality. RESULTS Both serum OEA and PEA levels positively correlated with high-density lipoprotein-cholesterol levels and negatively correlated with body fat and body anthropometric measures. Serum OEA levels correlated positively with serum interleukin-6 (IL-6) (rho = 0.19; p = 0.004). Serum PEA and IL-6 showed a similar but nonsignificant trend (rho = 0.12; p = 0.07). Restricted cubic spline analyses showed that increasing serum OEA and PEA both trended toward higher mortality risk, and these associations were statistically significant for PEA (PEA ≥4.7 pmol/mL; reference: PEA <4.7 pmol/mL) after adjustments in a Cox model (hazard ratio 2.99; 95% confidence interval 1.04, 8.64). CONCLUSIONS In MHD patients, OEA and PEA are significantly correlated with variables related to lipid metabolism and body mass. Additionally, higher serum levels of PEA are associated with mortality risk. Future studies are needed to examine the potential mechanisms responsible for these findings and their clinical implications.
Collapse
Affiliation(s)
- Alex Y Pai
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Cachet Wenziger
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Elani Streja
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
- Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Connie M Rhee
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Nosratola D Vaziri
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
- Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - Daniele Piomelli
- Anatomy and Neurobiology, University of California Irvine School of Medicine, Irvine, California, USA
| | - Hamid Moradi
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA,
- Tibor Rubin VA Medical Center, Long Beach, California, USA,
| |
Collapse
|
17
|
Bobardt SD, Dillman AR, Nair MG. The Two Faces of Nematode Infection: Virulence and Immunomodulatory Molecules From Nematode Parasites of Mammals, Insects and Plants. Front Microbiol 2020; 11:577846. [PMID: 33343521 PMCID: PMC7738434 DOI: 10.3389/fmicb.2020.577846] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Helminths stage a powerful infection that allows the parasite to damage host tissue through migration and feeding while simultaneously evading the host immune system. This feat is accomplished in part through the release of a diverse set of molecules that contribute to pathogenicity and immune suppression. Many of these molecules have been characterized in terms of their ability to influence the infectious capabilities of helminths across the tree of life. These include nematodes that infect insects, known as entomopathogenic nematodes (EPN) and plants with applications in agriculture and medicine. In this review we will first discuss the nematode virulence factors, which aid parasite colonization or tissue invasion, and cause many of the negative symptoms associated with infection. These include enzymes involved in detoxification, factors essential for parasite development and growth, and highly immunogenic ES proteins. We also explore how these parasites use several classes of molecules (proteins, carbohydrates, and nucleic acids) to evade the host's immune defenses. For example, helminths release immunomodulatory molecules in extracellular vesicles that may be protective in allergy and inflammatory disease. Collectively, these nematode-derived molecules allow parasites to persist for months or even years in a host, avoiding being killed or expelled by the immune system. Here, we evaluate these molecules, for their individual and combined potential as vaccine candidates, targets for anthelminthic drugs, and therapeutics for allergy and inflammatory disease. Last, we evaluate shared virulence and immunomodulatory mechanisms between mammalian and non-mammalian plant parasitic nematodes and EPNs, and discuss the utility of EPNs as a cost-effective model for studying nematode-derived molecules. Better knowledge of the virulence and immunomodulatory molecules from both entomopathogenic nematodes and soil-based helminths will allow for their use as beneficial agents in fighting disease and pests, divorced from their pathogenic consequences.
Collapse
Affiliation(s)
- Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, Riverside, CA, United States
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
18
|
Almogi-Hazan O, Or R. Cannabis, the Endocannabinoid System and Immunity-the Journey from the Bedside to the Bench and Back. Int J Mol Sci 2020; 21:ijms21124448. [PMID: 32585801 PMCID: PMC7352399 DOI: 10.3390/ijms21124448] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system. While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited. A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage. Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders. In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.
Collapse
|