1
|
Rouvray S, Drummond RA. The role of lipids in regulating macrophage antifungal immunity. mBio 2024; 15:e0305723. [PMID: 39207168 PMCID: PMC11481918 DOI: 10.1128/mbio.03057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Macrophages are critical components of the antifungal immune response. Disturbance in the number or function of these innate immune cells can significantly increase susceptibility to invasive fungal infections. Pathogenic fungi cause billions of infections every year and have an unmet clinical need, with many infections associated with unacceptably high mortality rates that primarily affect vulnerable patients with underlying immune defects. Lipid metabolism has been increasingly appreciated to significantly influence macrophage function, particularly of macrophages residing in lipid-rich organs, such as the brain, or macrophages specialized at clearing dead cells including alveolar macrophages in the lungs. In this review, we provide an overview of macrophage lipid metabolism, and discuss how lipid recycling and dysregulation affect key macrophage functions relevant for antifungal immunity including phagocytosis, functional polarization, and inflammasome activation. We focus on the fungal pathogen Cryptococcus neoformans, as this is the most common cause of death from fungal infection in humans and because several lines of evidence have already linked lipid metabolism in the regulation of C. neoformans and macrophage interactions.
Collapse
Affiliation(s)
- Sophie Rouvray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Davis JM. A deep cut into early cryptococcal pathogenesis. mBio 2024; 15:e0065724. [PMID: 38975784 PMCID: PMC11323497 DOI: 10.1128/mbio.00657-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Dissemination from one organ system to another is common to many pathogens and often the key process separating simple illness from fatal infection. The pathogenic Cryptococcus species offer a prime example. Cryptococcal infection is thought to begin in the lungs, as a mild or asymptomatic pneumonia. However, bloodborne dissemination from the lungs to the brain is responsible for the most devastating forms of infection. As with other disseminating infections, the transition likely depends on rare but crucial events, such as the crossing of a tissue barrier. By their nature, these events are difficult to study. Francis et al. (mBio 15:e03078-23, 2024, https://doi.org/10.1128/mbio.03078-23) have addressed this difficulty by developing a powerful imaging pipeline to scan through unprecedented volumes of tissue from mice infected with Cryptococcus at multiple stages of infection. Their observations challenge some of our basic assumptions about cryptococcal pathogenesis, including when and how the organism reaches the bloodstream and the central nervous system.
Collapse
Affiliation(s)
- J. Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Wang T, Zhao D, Zhang Y, Yu D, Liu G, Zhang K. Annexin A2: A Double-Edged Sword in Pathogen Infection. Pathogens 2024; 13:564. [PMID: 39057791 PMCID: PMC11279864 DOI: 10.3390/pathogens13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Annexin A2 (ANXA2) is a multifunctional calcium- and phospholipid-binding protein that plays an important role in various cells. During pathogen infections, ANXA2 modulates the nuclear factor kappa-B (NF-κB) and cell apoptosis signaling pathways and guides the chemotaxis of inflammatory cells toward inflammation sites, thereby protecting the host organism through the modulation of the inflammatory response. In addition, ANXA2 can regulate immune responses, and in certain pathogen infections, it can interact with pathogen proteins to facilitate their invasion and proliferation. This review provides an overview of the research progress on how ANXA2 regulates pathogen infections.
Collapse
Affiliation(s)
- Tianyu Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Dengshuai Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yuanhang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Dixi Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Keshan Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
5
|
Zhou Y, Huang Y, Yang C, Zang X, Deng H, Liu J, Zhao E, Tian T, Pan L, Xue X. The pathways and the mechanisms by which Cryptococcus enters the brain. Mycology 2024; 15:345-359. [PMID: 39247889 PMCID: PMC11376299 DOI: 10.1080/21501203.2023.2295409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 09/10/2024] Open
Abstract
Generally, Cryptococcus initially infects the respiratory tract, but can spread, eventually crossing the blood-brain barrier (BBB) and causing meningitis or meningoencephalitis. Specifically, Cryptococcus invades the vascular endothelial cells of the BBB, from which it enters the brain. The main mechanisms through which Cryptococcus crosses the BBB are transcellular traversal, the paracellular pathway, and via Trojan horse. In this paper, the mechanisms by which Cryptococcus crosses the BBB were explained in detail. In addition to pathways of entry to the brain, this paper presents a discussion on some rare cryptococcal infections and provides some insights for future research directions.
Collapse
Affiliation(s)
- Yangyu Zhou
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chen Yang
- Department of Respiratory and Critical Care, Weifang Medical College, Weifang, China
| | - Xuelei Zang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hengyu Deng
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| | - Jing Liu
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| | - Enqi Zhao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Tingyue Tian
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, Beijing, China
| |
Collapse
|
6
|
Li X, Xu J, Lin X, Lin Q, Yu T, Chen L, Chen L, Huang X, Zhang X, Chen G, Xu L. Macrophages-derived exo-miR-4449 induced by Cryptococcus affects HUVEC permeability and promotes pyroptosis in BEAS-2B via the HIC1 pathway. Cytokine 2024; 173:156441. [PMID: 37995394 DOI: 10.1016/j.cyto.2023.156441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Macrophages have recently been discovered to assume a significant role in the progression of cryptococcosis. However, the potential involvement of macrophage-derived exosomes in the pathogenesis of cryptococcosis remains uncertain. In this study, we investigated the changes of microRNAs in macrophage exosomes (exo-miRNAs) in cryptococcal infections and the role of markedly altered exo-miRNAs in the modulation of Human Umbilical Vein Endothelial Cells (HUVEC) permeability and ROS accumulation and pyroptosis in Human Bronchial Epithelioid Cells (BEAS-2B). Techniques such as microarray analysis and real-time quantitative PCR were used to detect different exo-miRNAs and to screen for the most highly expressed exo-miRNAs. Then its mimics were transfected into HUVEC to study its effect on the monolayer permeability of HUVEC. Finally, the relationship between this exo-miRNAs and the ROS accumulation and pyroptosis was verified by bioinformatics analysis. The results showed that five exo-miRNAs were overexpressed and two exo-miRNAs were reduced, among which, exo-miR-4449 was expressed at the highest level. Exo-miR-4449 could be internalized by HUVEC and enhanced its monolayer permeability. Moreover, exo-miR-4449 was found to promote ROS accumulation and pyroptosis in BEAS-2B through HIC1 pathway. Thus, exo-miR-4449 plays an important role in the pathogenesis of cryptococcosis and holds promise as a significant biomarker for treatment.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Junping Xu
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Xin Lin
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Qiong Lin
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Tianxing Yu
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Lifang Chen
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Xiaoqing Huang
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Xueping Zhang
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Geng Chen
- Nursing Department, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| | - Liyu Xu
- Department of Pulmonary and Critical Care Medicine, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, China.
| |
Collapse
|
7
|
Lanser DM, Bennett AB, Vu K, Gelli A. Macropinocytosis as a potential mechanism driving neurotropism of Cryptococcus neoformans. Front Cell Infect Microbiol 2023; 13:1331429. [PMID: 38149006 PMCID: PMC10750359 DOI: 10.3389/fcimb.2023.1331429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Cryptococcus neoformans can invade the central nervous system by crossing the blood-brain barrier via a transcellular mechanism that relies on multiple host factors. In this narrative, we review the evidence that a direct interplay between C. neoformans and brain endothelial cells forms the basis for invasion and transmigration across the brain endothelium. Adherence and internalization of C. neoformans is dependent on transmembrane proteins, including a hyaluronic acid receptor and an ephrin receptor tyrosine kinase. We consider the role of EphA2 in facilitating the invasion of the central nervous system by C. neoformans and highlight experimental evidence supporting macropinocytosis as a potential mechanism of internalization and transcytosis. How macropinocytosis might be conclusively demonstrated in the context of C. neoformans is also discussed.
Collapse
Affiliation(s)
| | | | | | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Nielson JA, Davis JM. Roles for Microglia in Cryptococcal Brain Dissemination in the Zebrafish Larva. Microbiol Spectr 2023; 11:e0431522. [PMID: 36719205 PMCID: PMC10100726 DOI: 10.1128/spectrum.04315-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cryptococcal infection begins in the lungs, but yeast cells subsequently access the bloodstream, from which they can reach the central nervous system (CNS). The resulting meningoencephalitis is the most common presentation and is very difficult to treat. How this fungus interacts with the blood-brain barrier (BBB) and establishes growth in the brain parenchyma remains a central question in fungal pathogenesis. We and others have developed the zebrafish larva as a model host for cryptococcosis and demonstrated that hematogenous CNS infection is replicated in this model. Here, we have used this model to examine the details of BBB crossing and the events immediately before and after. We have observed multiple mechanisms of BBB crossing and found that microglia, the resident phagocytes of the brain, likely have multiple roles. First, microglia either actively transfer yeast cells across the BBB or take up a significant proportion of them immediately after crossing. Second, microglia are capable of clearing individual cryptococcal cells at a developmental stage before adaptive immune cells have emerged. Third, microglia serve to maintain endothelial integrity, preventing other, phagocyte-independent forms of crossing. These proposed microglial functions during infection in the zebrafish larva generate new hypotheses concerning the establishment and control of cryptococcal meningoencephalitis. IMPORTANCE Cryptococcal meningitis is a fungal infection of the brain and a major cause of death in people with uncontrolled HIV. Infection begins in the lungs but can enter the bloodstream and disseminate to the brain. A structure called the blood-brain barrier must be crossed for the fungus to enter and cause meningitis. Learning how Cryptococcus crosses the blood-brain barrier will be crucial to understanding and possibly preventing brain infection. Using the zebrafish larva as a model host, we show that microglia, the resident phagocytes of the brain, potentially play multiple previously unappreciated roles in cryptococcal infection of the brain. These roles include reinforcing the integrity of the blood-brain barrier, clearing cryptococcal cells after they have crossed, and possibly participating directly in crossing via a previously unknown mechanism.
Collapse
Affiliation(s)
- Jacquelyn A. Nielson
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - J. Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, USA
| |
Collapse
|
9
|
Denham ST, Brammer B, Chung KY, Wambaugh MA, Bednarek JM, Guo L, Moreau CT, Brown JCS. A dissemination-prone morphotype enhances extrapulmonary organ entry by Cryptococcus neoformans. Cell Host Microbe 2022; 30:1382-1400.e8. [PMID: 36099922 PMCID: PMC9588642 DOI: 10.1016/j.chom.2022.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 01/08/2023]
Abstract
Environmental pathogens move from ecological niches to mammalian hosts, requiring adaptation to dramatically different environments. Microbes that disseminate farther, including the fungal meningitis pathogen Cryptococcus neoformans, require additional adaptation to diverse tissues. We demonstrate that the formation of a small C. neoformans morphotype-called "seed" cells due to their colonizing ability-is critical for extrapulmonary organ entry. Seed cells exhibit changes in fungal cell size and surface expression that result in an enhanced macrophage update. Seed cell formation is triggered by environmental factors, including C. neoformans' environmental niche, and pigeon guano with phosphate plays a central role. Seed cells show the enhanced expression of phosphate acquisition genes, and mutants unable to acquire phosphate fail to adopt the seed cell morphotype. Additionally, phosphate can be released by tissue damage, potentially establishing a feed-forward loop of seed cell formation and dissemination. Thus, C. neoformans' size variation represent inducible morphotypes that change host interactions to facilitate microbe spread.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Brianna Brammer
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Krystal Y Chung
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph M Bednarek
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Li Guo
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian T Moreau
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
11
|
Pathogenesis of Fungal Infections in the Central Nervous System: Host and Pathogen Factors in Neurotropism. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Reyes EY, Shinohara ML. Host immune responses in the central nervous system during fungal infections. Immunol Rev 2022; 311:50-74. [PMID: 35672656 PMCID: PMC9489659 DOI: 10.1111/imr.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 12/19/2023]
Abstract
Fungal infections in the central nervous system (CNS) cause high morbidity and mortality. The frequency of CNS mycosis has increased over the last two decades as more individuals go through immunocompromised conditions for various reasons. Nevertheless, options for clinical interventions for CNS mycoses are still limited. Thus, there is an urgent need to understand the host-pathogen interaction mechanisms in CNS mycoses for developing novel treatments. Although the CNS has been regarded as an immune-privileged site, recent studies demonstrate the critical involvement of immune responses elicited by CNS-resident and CNS-infiltrated cells during fungal infections. In this review, we discuss mechanisms of fungal invasion in the CNS, fungal pathogen detection by CNS-resident cells (microglia, astrocytes, oligodendrocytes, neurons), roles of CNS-infiltrated leukocytes, and host immune responses. We consider that understanding host immune responses in the CNS is crucial for endeavors to develop treatments for CNS mycosis.
Collapse
Affiliation(s)
- Estefany Y. Reyes
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Mari L. Shinohara
- Department of Immunology, Duke University School of Medicine, Durham, NC 27705, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27705, USA
| |
Collapse
|
13
|
Rathore SS, Sathiyamoorthy J, Lalitha C, Ramakrishnan J. A holistic review on Cryptococcus neoformans. Microb Pathog 2022; 166:105521. [DOI: 10.1016/j.micpath.2022.105521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022]
|
14
|
Gutierrez-Gongora D, Geddes-McAlister J. Peptidases: promising antifungal targets of the human fungal pathogen, Cryptococcus neoformans. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans is a globally important fungal pathogen, primarily inflicting disease on immunocompromised individuals. The widespread use of antifungal agents in medicine and agriculture supports the development of antifungal resistance through evolution, and the emergence of new strains with intrinsic resistance drives the need for new therapeutics. For C. neoformans, the production of virulence factors, including extracellular peptidases (e.g., CnMpr-1 and May1) with mechanistic roles in tissue invasion and fungal survival, constitute approximately 2% of the fungal proteome and cover five classes of enzymes. Given their role in fungal virulence, peptidases represent promising targets for anti-virulence discovery in the development of new approaches against C. neoformans. Additionally, intracellular peptidases, which are involved in resistance mechanisms against current treatment options (e.g., azole drugs), as well as capsule biosynthesis and elaboration of virulence factors, present additional opportunities to combat the pathogen. In this review, we highlight key cryptococcal peptidases with defined or predicted roles in fungal virulence and assess sequence alignments against their human homologs. With this information, we define the feasibility of the select peptidases as “druggable” targets for inhibition, representing prospective therapeutic options against the deadly fungus.
Collapse
Affiliation(s)
- Davier Gutierrez-Gongora
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Jennifer Geddes-McAlister
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Canadian Proteomics and Artificial Intelligence Research and Training Consortium
| |
Collapse
|
15
|
Kim J, Lee KT, Lee JS, Shin J, Cui B, Yang K, Choi YS, Choi N, Lee SH, Lee JH, Bahn YS, Cho SW. Fungal brain infection modelled in a human-neurovascular-unit-on-a-chip with a functional blood-brain barrier. Nat Biomed Eng 2021; 5:830-846. [PMID: 34127820 DOI: 10.1038/s41551-021-00743-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The neurovascular unit, which consists of vascular cells surrounded by astrocytic end-feet and neurons, controls cerebral blood flow and the permeability of the blood-brain barrier (BBB) to maintain homeostasis in the neuronal milieu. Studying how some pathogens and drugs can penetrate the human BBB and disrupt neuronal homeostasis requires in vitro microphysiological models of the neurovascular unit. Here we show that the neurotropism of Cryptococcus neoformans-the most common pathogen causing fungal meningitis-and its ability to penetrate the BBB can be modelled by the co-culture of human neural stem cells, brain microvascular endothelial cells and brain vascular pericytes in a human-neurovascular-unit-on-a-chip maintained by a stepwise gravity-driven unidirectional flow and recapitulating the structural and functional features of the BBB. We found that the pathogen forms clusters of cells that penetrate the BBB without altering tight junctions, suggesting a transcytosis-mediated mechanism. The neurovascular-unit-on-a-chip may facilitate the study of the mechanisms of brain infection by pathogens, and the development of drugs for a range of brain diseases.
Collapse
Affiliation(s)
- Jin Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kyung-Tae Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jisoo Shin
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Soo Hyun Lee
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jae-Hyun Lee
- Institute for Basic Science (IBS), Center for Nanomedicine, Seoul, Republic of Korea.,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea. .,Institute for Basic Science (IBS), Center for Nanomedicine, Seoul, Republic of Korea. .,Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Chen Y, Li C, Sun D, Strickland AB, Liu G, Shi M. Quantitative analysis reveals internalisation of Cryptococcus neoformans by brain endothelial cells in vivo. Cell Microbiol 2021; 23:e13330. [PMID: 33745221 DOI: 10.1111/cmi.13330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Migration of Cryptococcus neoformans from the blood to the brain parenchyma is crucial to cause fatal meningoencephalitis. Although mechanisms involved in brain migration of C. neoformans have been widely studied in vitro, less is known about how the fungus crosses the blood-brain barrier (BBB) in vivo. This is in part because of the lack of an approach to quantitatively analyse the dynamics of fungal transmigration into the brain across the BBB in vivo. In this study, we report a novel approach to quantitatively analyse the interactions between C. neoformans and brain endothelial cells in a mouse model using flow cytometry. Using this system, we show that C. neoformans was internalised by brain endothelial cells in vivo and that mice infected with acapsular or heat-killed C. neoformans yeast cells displayed a lower frequency of brain endothelial cells containing the yeast cell compared to mice infected with wild-type or viable yeast cells, respectively. We further demonstrate that brain endothelial cells were invaded by serotype A strain (H99 strain) at a higher rate compared to serotype D strain (52D strain). Our experiments established that internalisation of C. neoformans by brain endothelial cells occurred in vivo and offered a powerful approach to quantitatively analyse fungal migration into the brain.
Collapse
Affiliation(s)
- Yanli Chen
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Chang Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Ashley B Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Gongguan Liu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
17
|
Strickland AB, Shi M. Mechanisms of fungal dissemination. Cell Mol Life Sci 2021; 78:3219-3238. [PMID: 33449153 PMCID: PMC8044058 DOI: 10.1007/s00018-020-03736-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Fungal infections are an increasing threat to global public health. There are more than six million fungal species worldwide, but less than 1% are known to infect humans. Most of these fungal infections are superficial, affecting the hair, skin and nails, but some species are capable of causing life-threatening diseases. The most common of these include Cryptococcus neoformans, Aspergillus fumigatus and Candida albicans. These fungi are typically innocuous and even constitute a part of the human microbiome, but if these pathogens disseminate throughout the body, they can cause fatal infections which account for more than one million deaths worldwide each year. Thus, systemic dissemination of fungi is a critical step in the development of these deadly infections. In this review, we discuss our current understanding of how fungi disseminate from the initial infection sites to the bloodstream, how immune cells eliminate fungi from circulation and how fungi leave the blood and enter distant organs, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Ashley B Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
18
|
Xu X, Lin D, Tu S, Gao S, Shao A, Sheng J. Is Ferroptosis a Future Direction in Exploring Cryptococcal Meningitis? Front Immunol 2021; 12:598601. [PMID: 33815361 PMCID: PMC8017140 DOI: 10.3389/fimmu.2021.598601] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
Cryptococcal meningitis (CM) is the leading cause of mortality among patients infected with human immunodeficiency virus (HIV). Although treatment strategies for CM are continually being developed, the mortality rate is still high. Therefore, we need to explore more therapeutic strategies that are aimed at hindering its pathogenic mechanism. In the field of CM, several studies have observed rapid iron accumulation and lipid peroxidation within the brain, all of which are hallmarks of ferroptosis, which is a type of programmed cell death that is characterized by iron dependence and lipid peroxidation. In recent years, many studies have confirmed the involvement of ferroptosis in many diseases, including infectious diseases such as Mycobacterium tuberculosis infection and coronavirus disease-2019 (COVID-19). Furthermore, ferroptosis is considered as immunogenic and pro-inflammatory as the ferroptotic cells release damage-associated molecular pattern molecules (DAMPs) and alarmin, both of which regulate immunity and pro-inflammatory activity. Hence, we hypothesize that there might be a relationship between this unique cell death modality and CM. Herein, we review the evidence of ferroptosis in CM and consider the hypothesis that ferroptotic cell death may be involved in the cell death of CM.
Collapse
Affiliation(s)
- Xianbin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Araújo GRDS, Alves V, Martins-de-Souza PH, Guimarães AJ, Honorato L, Nimrichter L, Takiya CM, Pontes B, Frases S. Dexamethasone and Methylprednisolone Promote Cell Proliferation, Capsule Enlargement, and in vivo Dissemination of C. neoformans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:643537. [PMID: 37744119 PMCID: PMC10512211 DOI: 10.3389/ffunb.2021.643537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 09/26/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, who often have some inflammatory condition and, therefore, end up using glucocorticoids, such as dexamethasone and methylprednisolone. Although the effects of this class of molecules during cryptococcosis have been investigated, their consequences for the biology of C. neoformans is less explored. Here, we studied the effects of dexamethasone and methylprednisolone on the metabolism and on the induction of virulence factors in C. neoformans. Our results showed that both glucocorticoids increased fungal cell proliferation and surface electronegativity but reduced capsule and secreted polysaccharide sizes, as well as capsule compaction, by decreasing the density of polysaccharide fibers. We also tested whether glucocorticoids could affect the fungal virulence in Galleria mellonella and mice. Although the survival rate of Galleria larvae increased, those from mice showed a tendency to decrease, with infected animals dying earlier after glucocorticoid treatments. The pathogenesis of spread of cryptococcosis and the interleukin secretion pattern were also assessed for lungs and brains of infected mice. While increases in the spread of the fungus to lungs were observed after treatment with glucocorticoids, a significant difference in brain was observed only for methylprednisolone, although a trend toward increasing was also observed for dexamethasone. Moreover, increases in both pulmonary and cerebral IL-10 production, reduction of IL-6 production but no changes in IL-4, IL-17, and INF-γ were also observed after glucocorticoid treatments. Finally, histopathological analysis confirmed the increase in number of fungal cells in lung and brain tissues of mice previously subjected to dexamethasone or methylprednisolone treatments. Together, our results provide compelling evidence for the effects of dexamethasone and methylprednisolone on the biology of C. neoformans and may have important implications for future clinical treatments, calling attention to the risks of using these glucocorticoids against cryptococcosis or in immunocompromised individuals.
Collapse
Affiliation(s)
- Glauber R. de S. Araújo
- Laboratório de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Alves
- Laboratório de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. Martins-de-Souza
- Laboratório de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan J. Guimarães
- Laboratório de Bioquímica e Imunologia das Micoses, Depto. de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Leandro Honorato
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Nimrichter
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratório de Imunopatologia. Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Cellular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Camilli G, Blagojevic M, Naglik JR, Richardson JP. Programmed Cell Death: Central Player in Fungal Infections. Trends Cell Biol 2020; 31:179-196. [PMID: 33293167 DOI: 10.1016/j.tcb.2020.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Fungal diseases contribute significantly to morbidity and mortality in humans. Although recent research has improved our understanding of the complex and dynamic interplay that occurs between pathogenic fungi and the human host, much remains to be elucidated concerning the molecular mechanisms that drive fungal pathogenicity and host responses to fungal infections. In recent times, there has been a significant increase in studies investigating the immunological functions of microbial-induced host cell death. In addition, pathogens use many strategies to manipulate host cell death pathways to facilitate their survival and dissemination. This review will focus on the mechanisms of host programmed cell death that occur during opportunistic fungal infections, and explore how cell death pathways may affect immunity towards pathogenic fungi.
Collapse
Affiliation(s)
- Giorgio Camilli
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK.
| | - Mariana Blagojevic
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| |
Collapse
|
21
|
An Antivirulence Approach for Preventing Cryptococcus neoformans from Crossing the Blood-Brain Barrier via Novel Natural Product Inhibitors of a Fungal Metalloprotease. mBio 2020; 11:mBio.01249-20. [PMID: 32694141 PMCID: PMC7374060 DOI: 10.1128/mbio.01249-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungal infections like cryptococcal meningitis are difficult to resolve because of the limited therapies available. The small arsenal of antifungal drugs reflect the difficulty in finding available targets in fungi because like mammalian cells, fungi are eukaryotes. The limited efficacy, toxicity, and rising resistance of antifungals contribute to the high morbidity and mortality of fungal infections and further underscore the dire but unmet need for new antifungal drugs. The traditional approach in antifungal drug development has been to target fungal growth, but an attractive alternative is to target mechanisms of pathogenesis. An important attribute of Cryptococcus neoformans (Cn) pathogenesis is its ability to enter the central nervous system. Here, we describe a large-scale screen that identified three natural products that prevented Cn from crossing the blood-brain barrier by inhibiting the virulence factor Mpr1 without affecting the growth of Cn. We propose that compounds identified here could be further developed as antivirulence therapy that would be administered preemptively or serve as a prophylactic in patients at high risk for developing cryptococcal meningitis. Cryptococcus neoformans (Cn) is the leading cause of fungal meningitis, a deadly disease with limited therapeutic options. Dissemination to the central nervous system hinges on the ability of Cn to breach the blood-brain barrier (BBB) and is considered an attribute of Cn virulence. Targeting virulence instead of growth for antifungal drug development has not been fully exploited despite the benefits of this approach. Mpr1 is a secreted fungal metalloprotease not required for fungal growth, but rather, it functions as a virulence factor by facilitating Cn migration across the BBB. This central role for Mpr1, its extracellular location, and lack of expression in mammalian cells make Mpr1 a high-value target for an antivirulence approach aimed at developing therapeutics for cryptococcal meningitis. To test this notion, we devised a large-scale screen to identify compounds that prohibited Cn from crossing the BBB by selectively blocking Mpr1 proteolytic activity, without inhibiting the growth of Cn. A phytochemical natural product-derived library was screened to identify new molecular scaffolds of prototypes unique to a Cn microecosystem. Of the 240 pure natural products examined, 3 lead compounds, abietic acid, diosgenin, and lupinine inhibited Mpr1 proteolytic activity with 50% inhibitory concentration (IC50) values of <10 μM, displayed little to no mammalian cell toxicity, and did not affect Cn growth. Notably, the lead compounds blocked Cn from crossing the BBB, without damaging the barrier integrity, suggesting the bioactive molecules had no off-target effects. We propose that these new drug scaffolds are promising candidates for the development of antivirulence therapy against cryptococcal meningitis.
Collapse
|
22
|
Abstract
Among fungal pathogens, Cryptococcus neoformans has gained great importance among the scientific community of several reasons. This fungus is the causative agent of cryptococcosis, a disease mainly associated to HIV immunosuppression and characterized by the appearance of meningoencephalitis. Cryptococcal meningitis is responsible for hundreds of thousands of deaths every year. Research of the pathogenesis and virulence mechanisms of this pathogen has focused on three main different areas: Adaptation to the host environment (nutrients, pH, and free radicals), mechanism of immune evasion (which include phenotypic variations and the ability to behave as a facultative intracellular pathogen), and production of virulence factors. Cryptococcus neoformans has two phenotypic characteristics, the capsule and synthesis of melanin that have a profound effect in the virulence of the yeast because they both have protective effects and induce host damage as virulence factors. Finally, the mechanisms that result in dissemination and brain invasion are also of key importance to understand cryptococcal disease. In this review, I will provide a brief overview of the main mechanisms that makes C. neoformans a pathogen in susceptible patients. Abbreviations: RNS: reactive nitrogen species; BBB: brain blood barrier; GXM: glucuronoxylomannan; GXMGal: glucuronoxylomannogalactan
Collapse
Affiliation(s)
- Oscar Zaragoza
- a Mycology Reference Laboratory National Centre for Microbiology , Instituto de Salud Carlos III Carretera Majadahonda-Pozuelo , Madrid , Spain
| |
Collapse
|
23
|
Aaron PA, Gelli A. Harnessing the Activity of the Fungal Metalloprotease, Mpr1, To Promote Crossing of Nanocarriers through the Blood-Brain Barrier. ACS Infect Dis 2020; 6:138-149. [PMID: 31820926 DOI: 10.1021/acsinfecdis.9b00348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cryptococcus neoformans (Cn) is the leading cause of fungal meningitis primarily in immunosuppressed patients. Cn invades the central nervous system by overcoming the highly restricted blood-brain barrier (BBB). We previously determined that a secreted fungal metalloprotease, Mpr1, that also confers crossing ability to yeast upon CnMPR1 expression in Saccharomyces cerevisiae is central to this process. This led us to question whether Mpr1 could be engineered to function as part of a nanocarrier delivery vehicle. Here, a eukaryotic expression system produced proteolytically active Mpr1 recombinant protein that was successfully conjugated to functionalized quantum dot (QD) nanoparticles and readily internalized by brain microvascular endothelial cells. An in vitro BBB model showed QD-Mpr1 crossed the BBB significantly better than mock QD, and QD-Mpr1 did not damage BBB integrity. Internalization of QD-Mpr1 occurred by membrane invaginations and endocytic pits typical of receptor-mediated endocytosis involving clathrin-coated entry points. This study substantiates the notion that fungal mechanisms of BBB entry may be harnessed for new drug delivery platform technologies.
Collapse
Affiliation(s)
- Phylicia A. Aaron
- Department of Pharmacology, School of Medicine, University of California, 3503 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, California 95616, United States
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, 3503 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, California 95616, United States
| |
Collapse
|
24
|
Abstract
Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. This phenomenon has been most often studied for Cryptococcus neoformans, a yeast that causes roughly 180,000 deaths per year, primarily in immunocompromised (e.g., human immunodeficiency virus [HIV]) patients. Existing dogma purports that vomocytosis involves distinctive cellular pathways and intracellular physicochemical cues in the host cell during phagosomal maturation. Moreover, it has been observed that the immunological state of the individual and macrophage phenotype affect vomocytosis outcomes. Here we compile the current knowledge on the factors (with respect to the phagocytic cell) that promote vomocytosis of C. neoformans from macrophages.
Collapse
|
25
|
Lacerda MPF, Marcelino MY, Lourencetti NMS, Neto ÁB, Gattas EA, Mendes-Giannini MJS, Fusco-Almeida AM. Methodologies and Applications of Proteomics for Study of Yeast Strains: An Update. Curr Protein Pept Sci 2019; 20:893-906. [PMID: 31322071 DOI: 10.2174/1389203720666190715145131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Yeasts are one of the mostly used microorganisms as models in several studies. A wide range of applications in different processes can be attributed to their intrinsic characteristics. They are eukaryotes and therefore valuable expression hosts that require elaborate post-translational modifications. Their arsenal of proteins has become a valuable biochemical tool for the catalysis of several reactions of great value to the food (beverages), pharmaceutical and energy industries. Currently, the main challenge in systemic yeast biology is the understanding of the expression, function and regulation of the protein pool encoded by such microorganisms. In this review, we will provide an overview of the proteomic methodologies used in the analysis of yeasts. This research focuses on the advantages and improvements in their most recent applications with an understanding of the functionality of the proteins of these microorganisms, as well as an update of the advances of methodologies employed in mass spectrometry.
Collapse
Affiliation(s)
- Maria Priscila F Lacerda
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Mônica Yonashiro Marcelino
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Natália M S Lourencetti
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| | - Álvaro Baptista Neto
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | - Edwil A Gattas
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Engineering of Bioprocesses and Biotechnology, Araraquara, Brazil
| | | | - Ana Marisa Fusco-Almeida
- Sao Paulo State University (UNESP), School of Pharmaceutical Sciences - Department of Clinical Analysis, Araraquara, Brazil
| |
Collapse
|
26
|
In vitro evaluation of antifungal combination against Cryptococcus neoformans. Diagn Microbiol Infect Dis 2019; 94:155-156. [DOI: 10.1016/j.diagmicrobio.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 01/22/2023]
|
27
|
de Oliveira HC, Trevijano-Contador N, Garcia-Rodas R. Cryptococcal Pathogenicity and Morphogenesis. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00340-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Vu K, Garcia JA, Gelli A. Cryptococcal Meningitis and Anti-virulence Therapeutic Strategies. Front Microbiol 2019; 10:353. [PMID: 30863389 PMCID: PMC6399105 DOI: 10.3389/fmicb.2019.00353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/11/2019] [Indexed: 01/31/2023] Open
Abstract
Fungal infections of the central nervous system are responsible for significant morbidity and mortality. Cryptococcus neoformans (Cn) is the primary cause of fungal meningitis. Infection begins in the lung after inhalation of fungal spores but often spreads to other organs, particularly the brain in immunosuppressed individuals. Cn’s ability to survive phagocytosis and endure the onslaught of oxidative attack imposed by the innate immune response facilitates dissemination to the central nervous system (CNS). Despite the success of Cn at bypassing innate immunity, entry into the heavily protected brain requires that Cn overwhelm the highly restricted blood-brain barrier (BBB). This is a formidable task but mounting evidence suggests that Cn expresses surface-bound and secreted virulence factors including urease, metalloprotease, and hyaluronic acid that can undermine the BBB. In addition, Cn can exploit multiple routes of entry to gain access to the CNS. In this review, we discuss the cellular and molecular interface of Cn and the BBB, and we propose that the virulence factors mediating BBB crossing could be targeted for the development of anti-virulence drugs aimed at preventing fungal colonization of the CNS.
Collapse
Affiliation(s)
- Kiem Vu
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Javier A Garcia
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Santiago-Tirado FH, Klein RS, Doering TL. An In Vitro Brain Endothelial Model for Studies of Cryptococcal Transmigration into the Central Nervous System. ACTA ACUST UNITED AC 2019; 53:e78. [PMID: 30776307 DOI: 10.1002/cpmc.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryptococcus neoformans is an environmental yeast found worldwide that causes lethal brain infections, particularly in immunocompromised hosts. In 2016, there were 280,000 cases of cryptococcal meningitis in the HIV+ population, two-thirds of them fatal; other immunocompromised patients are also affected. The burden of cryptococcal disease and the limits of current chemotherapy create a pressing need for improved treatment. One hindrance to the development of new therapies is lack of understanding of how this pathogen breaches the barriers protecting the brain. Here we describe a tool for investigating this process. This simple in vitro blood-brain-barrier (BBB) model, based on a human brain endothelial cell line grown on a permeable membrane, may be used to assay the BBB transmigration of C. neoformans or other neurotropic pathogens. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Felipe H Santiago-Tirado
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri.,Current address: Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
|
31
|
Konradt C, Hunter CA. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur J Immunol 2018; 48:1607-1620. [PMID: 30160302 DOI: 10.1002/eji.201646789] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 07/24/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
There are over 10 trillion endothelial cells (EC) that line the vasculature of the human body. These cells not only have specialized functions in the maintenance of homeostasis within the circulation and various tissues but they also have a major role in immune function. EC also represent an important replicative niche for a subset of viral, bacterial, and parasitic organisms that are present in the blood or lymph; however, there are major gaps in our knowledge regarding how pathogens interact with EC and how this influences disease outcome. In this article, we review the literature on EC-pathogen interactions and their role in innate and adaptive mechanisms of resistance to infection and highlight opportunities to address prominent knowledge gaps.
Collapse
Affiliation(s)
- Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J Fungi (Basel) 2018; 4:jof4030088. [PMID: 30060601 PMCID: PMC6162697 DOI: 10.3390/jof4030088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Fu MS, Coelho C, De Leon-Rodriguez CM, Rossi DCP, Camacho E, Jung EH, Kulkarni M, Casadevall A. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog 2018; 14:e1007144. [PMID: 29906292 PMCID: PMC6021110 DOI: 10.1371/journal.ppat.1007144] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen and its interaction with macrophages is a key event determining the outcome of infection. Urease is a major virulence factor in C. neoformans but its role during macrophage interaction has not been characterized. Consequently, we analyzed the effect of urease on fungal-macrophage interaction using wild-type, urease-deficient and urease-complemented strains of C. neoformans. The frequency of non-lytic exocytosis events was reduced in the absence of urease. Urease-positive C. neoformans manifested reduced and delayed intracellular replication with fewer macrophages displaying phagolysosomal membrane permeabilization. The production of urease was associated with increased phagolysosomal pH, which in turn reduced growth of urease-positive C. neoformans inside macrophages. Interestingly, the ure1 mutant strain grew slower in fungal growth medium which was buffered to neutral pH (pH 7.4). Mice inoculated with macrophages carrying urease-deficient C. neoformans had lower fungal burden in the brain than mice infected with macrophages carrying wild-type strain. In contrast, the absence of urease did not affect survival of yeast when interacting with amoebae. Because of the inability of the urease deletion mutant to grow on urea as a sole nitrogen source, we hypothesize urease plays a nutritional role involved in nitrogen acquisition in the environment. Taken together, our data demonstrate that urease affects fitness within the mammalian phagosome, promoting non-lytic exocytosis while delaying intracellular replication and thus reducing phagolysosomal membrane damage, events that could facilitate cryptococcal dissemination when transported inside macrophages. This system provides an example where an enzyme involved in nutrient acquisition modulates virulence during mammalian infection.
Collapse
Affiliation(s)
- Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carlos M. De Leon-Rodriguez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Diego C. P. Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Eric H. Jung
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
34
|
Esher SK, Zaragoza O, Alspaugh JA. Cryptococcal pathogenic mechanisms: a dangerous trip from the environment to the brain. Mem Inst Oswaldo Cruz 2018; 113:e180057. [PMID: 29668825 PMCID: PMC5909089 DOI: 10.1590/0074-02760180057] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic pathogenic yeast that causes serious infections, most commonly of the central nervous system (CNS). C. neoformans is mainly found in the environment and acquired by inhalation. It could be metaphorically imagined that cryptococcal disease is a "journey" for the microorganism that starts in the environment, where this yeast loads its suitcase with virulence traits. C. neoformans first encounters the infected mammalian host in the lungs, a site in which it must choose the right elements from its "virulence suitcase" to survive the pulmonary immune response. However, the lung is often only the first stop in this journey, and in some individuals the fungal trip continues to the brain. To enter the brain, C. neoformans must "open" the main barrier that protects this organ, the blood brain barrier (BBB). Once in the brain, C. neoformans expresses a distinct set of protective attributes that confers a strong neurotropism and the ability to cause brain colonisation. In summary, C. neoformans is a unique fungal pathogen as shown in its ability to survive in the face of multiple stress factors and to express virulence factors that contribute to the development of disease.
Collapse
Affiliation(s)
- Shannon K Esher
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| | - Oscar Zaragoza
- Instituto de Salud Carlos III, National Centre for Microbiology, Mycology Reference Laboratory, Madrid, Spain
| | - James Andrew Alspaugh
- Duke University School of Medicine, Department of Molecular Genetics and Microbiology, Department of Medicine, Durham, USA
| |
Collapse
|
35
|
Lv Y, Li Y, Zhang D, Zhang A, Guo W, Zhu S. HMGB1-induced asthmatic airway inflammation through GRP75-mediated enhancement of ER-mitochondrial Ca 2+ transfer and ROS increased. J Cell Biochem 2018; 119:4205-4215. [PMID: 29292841 DOI: 10.1002/jcb.26653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/20/2017] [Indexed: 02/01/2023]
Abstract
Imbalanced T-helper (TH)1/Th2 response contributes significantly to asthma pathogenesis. Our study indicated that HMGB1 play an important role in the release of Th2-associated cytokines of asthma. However, the specific mechanism about HMGB1-induced imbalanced TH1/Th2 response is not known. In vivo, an OVA-induced asthma mouse model was set up and mice treated with anti-HMGB1 IgG. The mice treated with the anti-HMGB1 IgG ameliorated airway hyper-reactivity, disruption of Th1/Th2 balance and the upregulation of GRP75 induced by OVA. In vitro, the exposure of normal human bronchial epithelial cells to HMGB1 resulted in the upregulation of GRP75, proinflammatory cytokine production, enhanced ER-Mitochondrial Ca2+ transfer, and enhancement of reactive oxygen species (ROS). While HMGB1-induced these changes were attenuated by GRP75 siRNA treatment. Sequentially, pretreatment with 2-APB, SKF960365 (SKF) and Ru360 which inhibit ER-Mitochondrial Ca2+ transfer significantly lowered HMGB1-induced the generation of ROS and the release of Th2 cytokines in 16HBE cells. Meanwhile, N-acetylcysteine (NAC) significantly attenuated the HMGB1-mediated pro-inflammatory cytokines release. Therefore, these results indicate that GRP75-mediated ER-Mitochondrial Ca2+ transfer may be an important contributor in imbalanced of Th1/Th2 balance of asthma. Moreover, HMGB1 specifically induces the release of Th2 cytokines through GRP75-mediated enhancement of ER-Mitochondrial Ca2+ transfer and ROS increased.
Collapse
Affiliation(s)
- Yanhua Lv
- Department of Respiratory, Zhongshan city people's hospital, Zhongshan, Guangdong, China
| | - Yanli Li
- Department of Respiratory, Inner Mongolia people's hospital, Hohhot, Inner Mongolia, China
| | - Dandan Zhang
- Department of Respiratory, Zhongshan city people's hospital, Zhongshan, Guangdong, China
| | - Anbing Zhang
- Department of Respiratory, Zhongshan city people's hospital, Zhongshan, Guangdong, China
| | - Weihong Guo
- Department of Respiratory, Zhongshan city people's hospital, Zhongshan, Guangdong, China
| | - Shunfang Zhu
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Gongdong, China
| |
Collapse
|
36
|
Aaron PA, Jamklang M, Uhrig JP, Gelli A. The blood-brain barrier internalises Cryptococcus neoformans via the EphA2-tyrosine kinase receptor. Cell Microbiol 2018; 20. [PMID: 29197141 DOI: 10.1111/cmi.12811] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening meningitis most commonly in populations with impaired immunity. Here, we resolved the transcriptome of the human brain endothelium challenged with C. neoformans to establish whether C. neoformans invades the CNS by co-opting particular signalling pathways as a means to promote its own entry. Among the 5 major pathways targeted by C. neoformans, the EPH-EphrinA1 (EphA2) tyrosine kinase receptor-signalling pathway was examined further. Silencing the EphA2 receptor transcript in a human brain endothelial cell line or blocking EphA2 activity with an antibody or chemical inhibitor prevented transmigration of C. neoformans in an in vitro model of the blood-brain barrier (BBB). In contrast, treating brain endothelial cells with an EphA2 chemical agonist or an EphA2 ligand promoted greater migration of fungal cells across the BBB. C. neoformans activated the EPH-tyrosine kinase pathway through a CD44-dependent phosphorylation of EphA2, promoting clustering and internalisation of EphA2 receptors. Moreover, HEK293T cells expressing EphA2 revealed an association between EphA2 and C. neoformans that boosted internalisation of C. neoformans. Collectively, the results suggest that C. neoformans promotes EphA2 activity via CD44, and this in turn creates a permeable barrier that facilitates the migration of C. neoformans across the BBB.
Collapse
Affiliation(s)
- Phylicia A Aaron
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, California, USA
| | - Mantana Jamklang
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, California, USA
| | - John P Uhrig
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, California, USA
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, California, USA
| |
Collapse
|
37
|
Yang CL, Wang J, Zou LL. Innate immune evasion strategies against Cryptococcal meningitis caused by Cryptococcus neoformans. Exp Ther Med 2017; 14:5243-5250. [PMID: 29285049 PMCID: PMC5740712 DOI: 10.3892/etm.2017.5220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
As an infectious fungus that affects the respiratory tract, Cryptococcus neoformans (C. neoformans) commonly causes asymptomatic pulmonary infection. C. neoformans may target the brain instead of the lungs and cross the blood-brain barrier (BBB) in the early phase of infection; however, this is dependent on successful evasion of the host innate immune system. During the initial stage of fungal infection, a complex network of innate immune factors are activated. C. neoformans utilizes a number of strategies to overcome the anti-fungal mechanisms of the host innate immune system and cross the BBB. In the present review, the defensive mechanisms of C. neoformans against the innate immune system and its ability to cross the BBB were discussed, with an emphasis on recent insights into the activities of anti-phagocytotic and anti-oxidative factors in C. neoformans.
Collapse
Affiliation(s)
- Cheng-Liang Yang
- Translational Neuroscience and Neural Regeneration and Repair Institute, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China.,Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Jun Wang
- Translational Neuroscience and Neural Regeneration and Repair Institute, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China.,Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Li-Li Zou
- Translational Neuroscience and Neural Regeneration and Repair Institute, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China.,Institute of Cell Therapy, The First Hospital of Yichang, China Three Gorges University, Yichang, Hubei 443002, P.R. China.,Department of Microbiology and Immunology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
38
|
Na Pombejra S, Salemi M, Phinney BS, Gelli A. The Metalloprotease, Mpr1, Engages AnnexinA2 to Promote the Transcytosis of Fungal Cells across the Blood-Brain Barrier. Front Cell Infect Microbiol 2017; 7:296. [PMID: 28713781 PMCID: PMC5492700 DOI: 10.3389/fcimb.2017.00296] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/16/2017] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic pathogens display multiple mechanisms for breaching the blood-brain barrier (BBB) and invading the central nervous system (CNS). Of the fungal spp., that cause disease in mammals, only some cross brain microvascular endothelial cells which constitute the BBB, and invade the brain. Cryptococcus neoformans, the leading cause of fungal meningoencephalitis, crosses the BBB directly by transcytosis or by co-opting monocytes. We previously determined that Mpr1, a secreted fungal metalloprotease, facilitates association of fungal cells to brain microvascular endothelial cells and we confirmed that the sole expression of CnMPR1 endowed S. cerevisiae with an ability to cross the BBB. Here, the gain of function conferred onto S. cerevisiae by CnMPR1 (i.e., Sc<CnMPR1> strain) was used to identify targets of Mpr1 that might reside on the surface of the BBB. Following biotin-labeling of BBB surface proteins, Sc<CnMPR1>-associated proteins were identified by LC-MS/MS. Of the 62 proteins identified several were cytoskeleton-endocytosis-associated including AnnexinA2 (AnxA2). Using an in vitro model of the human BBB where AnxA2 activity was blocked, we found that the lack of AnxA2 activity prevented the movement of S. cerevisiae across the BBB (i.e., transcytosis of Sc<CnMPR1> strain) but unexpectedly, TEM analysis revealed that AnxA2 was not required for the association or the internalization of Sc<CnMPR1>. Additionally, the co-localization of AnxA2 and Sc<CnMPR1> suggest that successful crossing of the BBB is dependent on an AxnA2-Mpr1-mediated interaction. Collectively the data suggest that AnxA2 plays a central role in fungal transcytosis in human brain microvascular endothelial cells. The movement and exocytosis of Sc<CnMPR1> is dependent on membrane trafficking events that involve AnxA2 but these events appear to be independent from the actions of AnxA2 at the host cell surface. We propose that Mpr1 activity promotes cytoskeleton remodeling in brain microvascular endothelial cells and thereby engages AnxA2 in order to facilitate fungal transcytosis of the BBB.
Collapse
Affiliation(s)
- Sarisa Na Pombejra
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| | - Michelle Salemi
- Proteomics Core Facility, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| | - Brett S Phinney
- Proteomics Core Facility, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, Genome and Biomedical Sciences Facility, University of California, DavisDavis, CA, United States
| |
Collapse
|
39
|
Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017; 46:891-909. [PMID: 28636958 PMCID: PMC5662000 DOI: 10.1016/j.immuni.2017.06.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege.
Collapse
Affiliation(s)
- Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Olave MC, Vargas-Zambrano JC, Celis AM, Castañeda E, González JM. Infective capacity of Cryptococcus neoformans and Cryptococcus gattii in a human astrocytoma cell line. Mycoses 2017; 60:447-453. [PMID: 28338245 DOI: 10.1111/myc.12619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Pathogenesis of cryptococcosis in the central nervous system (CNS) is a topic of ongoing research, including the mechanisms by which this fungus invades and infects the brain. Astrocytes, the most common CNS cells, play a fundamental role in the local immune response. Astrocytes might participate in cryptococcosis either as a host or by responding to fungal antigens. To determine the infectivity of Cryptococcus neoformans var. grubii and Cryptococcus gattii in a human astrocytoma cell line and the induction of major histocompatibility complex (MHC) molecules. A glioblastoma cell line was infected with C. neoformans var. grubii and C. gattii blastoconidia labelled with FUN-1 fluorescent stain. The percentage of infection and expression of HLA class I and II molecules were determined by flow cytometry. The interactions between the fungi and cells were observed by fluorescence microscopy. There was no difference between C. neoformans var. grubii and C. gattii in the percentage infection, but C. neoformans var. grubii induced higher expression of HLA class II than C. gattii. More blastoconidia were recovered from C. neoformans-infected cells than from C. gattii infected cells. Cryptococcus neoformans var. grubii may have different virulence mechanisms that allow its survival in human glia-derived cells.
Collapse
Affiliation(s)
- M C Olave
- Grupo Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá DC, Colombia
| | - J C Vargas-Zambrano
- Grupo Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá DC, Colombia
| | - A M Celis
- Mycology and Phytopathology Laboratory, Department of Biological Sciences, Universidad de los Andes, Bogotá DC, Colombia
| | - E Castañeda
- Grupo de Micología, Instituto Nacional de Salud, Bogotá DC, Colombia
| | - J M González
- Grupo Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá DC, Colombia
| |
Collapse
|
41
|
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen. mBio 2017; 8:mBio.02183-16. [PMID: 28143979 PMCID: PMC5285505 DOI: 10.1128/mbio.02183-16] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a “Trojan horse” mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain.
Collapse
|
42
|
Fang W, Fa ZZ, Xie Q, Wang GZ, Yi J, Zhang C, Meng GX, Gu JL, Liao WQ. Complex Roles of Annexin A2 in Host Blood-Brain Barrier Invasion by Cryptococcus neoformans. CNS Neurosci Ther 2017; 23:291-300. [PMID: 28130864 DOI: 10.1111/cns.12673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Fungal transversal across the brain microvascular endothelial cells (BMECs) is the essential step for the development of cryptococcal meningoencephalitis. Annexin A2 (AnxA2) is an important signaling protein involved in several intracellular processes such as membrane trafficking, endocytosis, and exocytosis. AIM To investigate the roles and mechanism of AnxA2 during cryptococcal transversal of BMECs. RESULTS Cryptococcus neoformans infection initiated upregulation of AnxA2 in mouse BMECs. Blockade with anti-AnxA2 antibody led to a reduction in fungal transcytosis activity but no change in its adhesion efficiency. Intriguingly, AnxA2 depletion caused a significant increase in fungal association activity but had no effect on their transcytosis. AnxA2 suppression resulted in marked reduction in its partner protein S100A10, and S100A10 suppression in BMECs significantly reduced the cryptococcal transcytosis efficiency. Furthermore, AnxA2 dephosphorylation at Tyr23 and dephosphorylation of downstream cofilin were required for cryptococcal transversal of BMECs, both of which might be primarily involved in the association of C. neoformans with host cells. CONCLUSIONS Our work indicated that AnxA2 played complex roles in traversal of C. neoformans across host BMECs, which might be dependent on downstream cofilin to inhibit fungal adhesion but rely on its partner S100A10 to promote cryptococcal transcytosis.
Collapse
Affiliation(s)
- Wei Fang
- PLA Key Laboratory of Mycosis, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Zhen-Zong Fa
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Qun Xie
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Gui-Zhen Wang
- ICU Department, Urumuqi Army General Hospital, Urumqi, Xinjiang, China
| | - Jiu Yi
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Chao Zhang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Guang-Xun Meng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju-Lin Gu
- PLA Key Laboratory of Mycosis, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China.,Department of Dermatology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Qing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| |
Collapse
|
43
|
Klein RS, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat Immunol 2017; 18:132-141. [PMID: 28092376 DOI: 10.1038/ni.3656] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/02/2016] [Indexed: 11/09/2022]
Abstract
Inflammation is emerging as a critical mechanism underlying neurological disorders of various etiologies, yet its role in altering brain function as a consequence of neuroinfectious disease remains unclear. Although acute alterations in mental status due to inflammation are a hallmark of central nervous system (CNS) infections with neurotropic pathogens, post-infectious neurologic dysfunction has traditionally been attributed to irreversible damage caused by the pathogens themselves. More recently, studies indicate that pathogen eradication within the CNS may require immune responses that interfere with neural cell function and communication without affecting their survival. In this Review we explore inflammatory processes underlying neurological impairments caused by CNS infection and discuss their potential links to established mechanisms of psychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charise Garber
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nicole Howard
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
44
|
A Zebrafish Model of Cryptococcal Infection Reveals Roles for Macrophages, Endothelial Cells, and Neutrophils in the Establishment and Control of Sustained Fungemia. Infect Immun 2016; 84:3047-62. [PMID: 27481252 PMCID: PMC5038067 DOI: 10.1128/iai.00506-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023] Open
Abstract
Cryptococcal meningoencephalitis is a fungal infection that predominantly affects immunocompromised patients and is uniformly fatal if left untreated. Timely diagnosis is difficult, and screening or prophylactic measures have generally not been successful. Thus, we need a better understanding of early, asymptomatic pathogenesis. Inhaled cryptococci must survive the host immune response, escape the lung, and persist within the bloodstream in order to reach and invade the brain. Here we took advantage of the zebrafish larval infection model to assess the process of cryptococcal infection and disease development sequentially in a single host. Using yeast or spores as infecting particles, we discovered that both cell types survived and replicated intracellularly and that both ultimately established a sustained, low-level fungemia. We propose that the establishment and maintenance of this sustained fungemia is an important stage of disease progression that has been difficult to study in other model systems. Our data suggest that sustained fungemia resulted from a pattern of repeated escape from, and reuptake by, macrophages, but endothelial cells were also seen to play a role as a niche for cryptococcal survival. Circulating yeast collected preferentially in the brain vasculature and eventually invaded the central nervous system (CNS). As suggested previously in a mouse model, we show here that neutrophils can play a valuable role in limiting the sustained fungemia, which can lead to meningoencephalitis. This early stage of pathogenesis-a balanced interaction between cryptococcal cells, macrophages, endothelial cells, and neutrophils-could represent a window for timely detection and intervention strategies for cryptococcal meningoencephalitis.
Collapse
|
45
|
Stukes S, Coelho C, Rivera J, Jedlicka AE, Hajjar KA, Casadevall A. The Membrane Phospholipid Binding Protein Annexin A2 Promotes Phagocytosis and Nonlytic Exocytosis of Cryptococcus neoformans and Impacts Survival in Fungal Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:1252-61. [PMID: 27371724 DOI: 10.4049/jimmunol.1501855] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 06/02/2016] [Indexed: 12/31/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen with a unique intracellular pathogenic strategy that includes nonlytic exocytosis, a phenomenon whereby fungal cells are expunged from macrophages without lysing the host cell. The exact mechanism and specific proteins involved in this process have yet to be completely defined. Using murine macrophages deficient in the membrane phospholipid binding protein, annexin A2 (ANXA2), we observed a significant decrease in both phagocytosis of yeast cells and the frequency of nonlytic exocytosis. Cryptococcal cells isolated from Anxa2-deficient (Anxa2(-/-)) bone marrow-derived macrophages and lung parenchyma displayed significantly larger capsules than those isolated from wild-type macrophages and tissues. Concomitantly, we observed significant differences in the amount of reactive oxygen species produced between Anxa2(-/-) and Anxa2(+/+) macrophages. Despite comparable fungal burden, Anxa2(-/-) mice died more rapidly than wild-type mice when infected with C. neoformans, and Anxa2(-/-) mice exhibited enhanced inflammatory responses, suggesting that the reduced survival reflected greater immune-mediated damage. Together, these findings suggest a role for ANXA2 in the control of cryptococcal infection, macrophage function, and fungal morphology.
Collapse
Affiliation(s)
- Sabriya Stukes
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Johanna Rivera
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne E Jedlicka
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Katherine A Hajjar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065; and Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205;
| |
Collapse
|
46
|
Zhang M, Sun D, Shi M. Dancing cheek to cheek: Cryptococcus neoformans and phagocytes. SPRINGERPLUS 2015; 4:410. [PMID: 26266081 PMCID: PMC4531118 DOI: 10.1186/s40064-015-1192-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/29/2015] [Indexed: 01/04/2023]
Abstract
Meningoencephalitis caused by Cryptococcus neoformans (Cn) has become one of the leading causes of mortality in AIDS patients. Understanding the interactions between Cn and phagocytes is fundamental in exploring the pathogenicity of cryptococcal meningoencephalitis. Cn may be extracellular or contained in the monocytes, macrophages, neutrophils, dendritic cells and even endothelial cells. The internalized Cn may proliferate inside the host cells, or cause the lysis of host cells, or leave the host cells via non-lytic exocytosis, or even hijack the host cells (Trojan horse) for the brain dissemination, which are regulated by microbe factors and also immune molecules. Coexistence of protective and deleterious roles of phagocytes in the progression of cryptococcosis warrant further investigation.
Collapse
Affiliation(s)
- Mingshun Zhang
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD USA ; Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu China
| | - Donglei Sun
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD USA
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD USA
| |
Collapse
|
47
|
Ueno N, Lodoen MB. From the blood to the brain: avenues of eukaryotic pathogen dissemination to the central nervous system. Curr Opin Microbiol 2015; 26:53-9. [PMID: 26048316 PMCID: PMC10538213 DOI: 10.1016/j.mib.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 12/25/2022]
Abstract
Infection of the central nervous system (CNS) is a significant cause of morbidity and mortality, and treatments available to combat the highly debilitating symptoms of CNS infection are limited. The mechanisms by which pathogens in the circulation overcome host immunity and breach the blood-brain barrier are active areas of investigation. In this review, we discuss recent work that has significantly advanced our understanding of the avenues of pathogen dissemination to the CNS for four eukaryotic pathogens of global health importance: Toxoplasma gondii, Plasmodium falciparum, Trypanosoma brucei, and Cryptococcus neoformans. These studies highlight the remarkable diversity of pathogen strategies for trafficking to the brain and will ultimately contribute to an improved ability to combat life-threatening CNS disease.
Collapse
Affiliation(s)
- Norikiyo Ueno
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, CA, USA.
| |
Collapse
|
48
|
de Brito Ximenes P, Beltrão EIC, Macêdo DPC, Buonafina MDS, de Lima-Neto RG, Neves RP. Targeting the Cryptococcus neoformans var. grubii cell wall using lectins: study of the carbohydrate-binding domain. Molecules 2015; 20:3776-82. [PMID: 25723851 PMCID: PMC6272190 DOI: 10.3390/molecules20033776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 01/21/2023] Open
Abstract
Cryptococcus neoformans var. grubii is considered to be the major cause of cryptococcosis in immunosuppressed patients. Understanding cell wall glycoproteins using lectins is of medical interest and can contribute to specific therapy. The aim of this study was to evaluate the carbohydrates on the cell wall of Cryptococcus neoformans var. grubii clinical isolates, using a fluorescein isothiocyanate-lectin binding protocol. Thirty yeast strains stocked in the culture collection were cultivated for 2 days at 30 °C with shaking. Cells were obtained by centrifugation, washed in phosphate-buffered saline, and a suspension of 107 cells/mL was obtained. To determine the binding profile of lectins, concanavalin A (Con A), wheat germ agglutinin (WGA), Ulex europaeus agglutinin I (UEA-I), and peanut agglutinin (PNA) conjugated to fluorescein were used. All the tested clinical isolates of Cryptococcus neoformans var. grubii were intensely stained by WGA, moderately stained by Con A, and weakly stained by PNA and UEA-I. Thus, Cryptococcus can be detected in clinical specimens such as blood and cerebrospinal fluid using the fluorescent lectin WGA, which may be considered as an option for detection in cases of suspected cryptococcosis with low laboratory sensitivity. Future applications may be developed using this basic tool.
Collapse
Affiliation(s)
- Pamella de Brito Ximenes
- Department of Mycology, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Eduardo Isidoro Carneiro Beltrão
- Department of Biochemistry, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Danielle Patrícia Cerqueira Macêdo
- Department of Pharmaceutical Sciences, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Maria Daniela Silva Buonafina
- Department of Mycology, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Reginaldo Gonçalves de Lima-Neto
- Department of Tropical Medicine, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| | - Rejane Pereira Neves
- Department of Mycology, Universidade Federal de Pernambuco (UFPE), Av. Prof. Nelson Chaves, s/n°-Cidade Universitária, Recife 50670-420, Brazil.
| |
Collapse
|
49
|
Liu TB, Subbian S, Pan W, Eugenin E, Xie J, Xue C. Cryptococcus inositol utilization modulates the host protective immune response during brain infection. Cell Commun Signal 2014; 12:51. [PMID: 25201772 PMCID: PMC4172957 DOI: 10.1186/s12964-014-0051-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptococcus neoformans is the most common cause of fungal meningitis among individuals with HIV/AIDS, which is uniformly fatal without proper treatment. The underlying mechanism of disease development in the brain that leads to cryptococcal meningoencephalitis remains incompletely understood. We have previously demonstrated that inositol transporters (ITR) are required for Cryptococcus virulence. The itr1aΔ itr3cΔ double mutant of C. neoformans was attenuated for virulence in a murine model of intra-cerebral infection; demonstrating that Itr1a and Itr3c are required for full virulence during brain infection, despite a similar growth rate between the mutant and wild type strains in the infected brain. RESULTS To understand the immune pathology associated with infection by the itr1aΔ itr3cΔ double mutant, we investigated the molecular correlates of host immune response during mouse brain infection. We used genome-wide transcriptome shotgun sequencing (RNA-Seq) and quantitative real-time PCR (qRT-PCR) methods to examine the host gene expression profile in the infected brain. Our results show that compared to the wild type, infection of mouse brains by the mutant leads to significant activation of cellular networks/pathways associated with host protective immunity. Most of the significantly differentially expressed genes (SDEG) are part of immune cell networks such as tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) regulon, indicating that infection by the mutant mounts a stronger host immune response compared to the wild type. Interestingly, a significant reduction in glucuronoxylomannan (GXM) secretion was observed in the itr1aΔ itr3cΔ mutant cells, indicating that inositol utilization pathways play a role in capsule production. CONCLUSIONS Since capsule has been shown to impact the host response during Cryptococcus-host interactions, our results suggest that the reduced GXM production may contribute to the increased immune activation in the mutant-infected animals.
Collapse
|
50
|
Coelho C, Bocca AL, Casadevall A. The tools for virulence of Cryptococcus neoformans. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:1-41. [PMID: 24581388 DOI: 10.1016/b978-0-12-800261-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes almost half a million deaths each year. It is believed that most humans are infected with C. neoformans, possibly in a form that survives through latency in the lung and can reactivate to cause disease if the host becomes immunosuppressed. C. neoformans has a remarkably sophisticated intracellular survival capacities yet it is a free-living fungus with no requirement for mammalian virulence whatsoever. In this review, we discuss the tools that C. neoformans possesses to achieve survival, latency and virulence within its host. Some of these tools are mechanisms to withstand starvation and others aim to protect against microbicidal molecules produced by the immune system. Furthermore, we discuss how these tools were acquired through evolutionary pressures and perhaps accidental stochastic events, all of which combined to produce an organism with an unusual and unique intracellular pathogenic strategy.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, New York, USA; Centre for Neuroscience and Cell Biology of Coimbra, Institute of Microbiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Anamelia Lorenzetti Bocca
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, New York, USA.
| |
Collapse
|